IRGB20B60PD1 [INFINEON]

SMPS IGBT; SMPS IGBT
IRGB20B60PD1
型号: IRGB20B60PD1
厂家: Infineon    Infineon
描述:

SMPS IGBT
SMPS IGBT

双极性晶体管
文件: 总10页 (文件大小:351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94613A  
IRGB20B60PD1  
SMPS IGBT  
WARP2 SERIES IGBT WITH  
ULTRAFAST SOFT RECOVERY DIODE  
C
VCES = 600V  
VCE(on) typ. = 2.05V  
@ VGE = 15V IC = 13.0A  
Applications  
Telecom and Server SMPS  
PFC and ZVS SMPS Circuits  
Uninterruptable Power Supplies  
Consumer Electronics Power Supplies  
Equivalent MOSFET  
Parameters   
G
Features  
RCE(on) typ. = 158mΩ  
ID (FET equivalent) = 20A  
E
NPT Technology, Positive Temperature Coefficient  
Lower VCE(SAT)  
Lower Parasitic Capacitances  
Minimal Tail Current  
n-channel  
HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode  
Tighter Distribution of Parameters  
Higher Reliability  
Benefits  
E
C
Parallel Operation for Higher Current Applications  
Lower Conduction Losses and Switching Losses  
Higher Switching Frequency up to 150kHz  
G
TO-220AB  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
Collector-to-Emitter Voltage  
600  
V
VCES  
IC @ TC = 25°C  
Continuous Collector Current  
Continuous Collector Current  
Pulse Collector Current (Ref. Fig. C.T.4)  
Clamped Inductive Load Current  
Diode Continous Forward Current  
Diode Continous Forward Current  
Maximum Repetitive Forward Current  
Gate-to-Emitter Voltage  
40  
22  
IC @ TC = 100°C  
ICM  
80  
80  
A
ILM  
IF @ TC = 25°C  
IF @ TC = 100°C  
IFRM  
10  
4
16  
±20  
V
VGE  
PD @ TC = 25°C  
PD @ TC = 100°C  
TJ  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
215  
W
86  
-55 to +150  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
°C  
TSTG  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
–––  
–––  
Typ.  
–––  
Max.  
0.58  
5.0  
Units  
°C/W  
RθJC (IGBT)  
Thermal Resistance Junction-to-Case-(each IGBT)  
Thermal Resistance Junction-to-Case-(each Diode)  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
–––  
Rθ (Diode)  
JC  
RθCS  
0.50  
–––  
80  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
Weight  
–––  
Rθ  
JA  
2 (0.07)  
–––  
g (oz)  
1
www.irf.com  
12/10/03  
IRGB20B60PD1  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Collector-to-Emitter Breakdown Voltage  
Temperature Coeff. of Breakdown Voltage  
Internal Gate Resistance  
Min. Typ. Max. Units  
Conditions  
VGE = 0V, IC = 500µA  
Ref.Fig  
4, 5,6,8,9  
7,8,9  
V(BR)CES  
600  
3.0  
0.32  
4.3  
V
V/°C  
V(BR)CES/TJ  
VGE = 0V, IC = 1mA (25°C-125°C)  
1MHz, Open Collector  
RG  
IC = 13A, VGE = 15V  
2.05  
2.50  
2.65  
3.30  
4.0  
2.35  
2.80  
3.00  
3.70  
5.0  
VCE(on)  
IC = 20A, VGE = 15V  
Collector-to-Emitter Saturation Voltage  
V
IC = 13A, VGE = 15V, TJ = 125°C  
IC = 20A, VGE = 15V, TJ = 125°C  
VGE(th)  
VGE(th)/TJ  
gfe  
IC = 250µA  
Gate Threshold Voltage  
V
mV/°C  
S
V
V
CE = VGE, IC = 1.0mA  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-11  
19  
CE = 50V, IC = 40A, PW = 80µs  
ICES  
VGE = 0V, VCE = 600V  
Collector-to-Emitter Leakage Current  
1.0  
250  
µA  
VGE = 0V, VCE = 600V, TJ = 125°C  
IF = 4.0A, VGE = 0V  
0.1  
mA  
V
VFM  
IGES  
Diode Forward Voltage Drop  
1.5  
1.8  
1.7  
±100  
10  
IF = 4.0A, VGE = 0V, TJ = 125°C  
VGE = ±20V, VCE = 0V  
1.4  
Gate-to-Emitter Leakage Current  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter Min. Typ. Max. Units  
Total Gate Charge (turn-on)  
Conditions  
Ref.Fig  
17  
IC = 13A  
Qg  
68  
24  
102  
36  
Qgc  
V
CC = 400V  
VGE = 15V  
IC = 13A, VCC = 390V  
CT1  
Gate-to-Collector Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
nC  
µJ  
ns  
Qge  
10  
15  
Eon  
CT3  
CT3  
95  
140  
145  
285  
26  
Eoff  
VGE = +15V, RG = 10 , L = 200µH  
100  
195  
20  
Etotal  
td(on)  
tr  
TJ = 25°C  
IC = 13A, VCC = 390V  
V
GE = +15V, RG = 10, L = 200µH  
5.0  
115  
6.0  
165  
150  
315  
19  
7.0  
135  
8.0  
215  
195  
410  
25  
td(off)  
tf  
TJ = 25°C  
Turn-Off delay time  
Fall time  
Eon  
IC = 13A, VCC = 390V  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
CT3  
11,13  
Eoff  
V
GE = +15V, RG = 10, L = 200µH  
TJ = 125°C  
C = 13A, VCC = 390V  
µJ  
ns  
Etotal  
td(on)  
tr  
WF1,WF2  
CT3  
I
VGE = +15V, RG = 10 , L = 200µH  
6.0  
125  
13  
8.0  
140  
17  
12,14  
td(off)  
tf  
TJ = 125°C  
WF1,WF2  
Turn-Off delay time  
Fall time  
Cies  
Coes  
Cres  
Coes eff.  
Coes eff. (ER)  
V
V
GE = 0V  
16  
15  
Input Capacitance  
Output Capacitance  
1560  
95  
CC = 30V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Time Related)  
Effective Output Capacitance (Energy Related)  
20  
pF f = 1Mhz  
VGE = 0V, VCE = 0V to 480V  
83  
61  
TJ = 150°C, IC = 80A  
CC = 480V, Vp =600V  
3
V
RBSOA  
Reverse Bias Safe Operating Area  
Diode Reverse Recovery Time  
Diode Reverse Recovery Charge  
Peak Reverse Recovery Current  
FULL SQUARE  
CT2  
Rg = 22 , VGE = +15V to 0V  
trr  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
IF = 4.0A, VR = 200V,  
28  
38  
42  
57  
ns  
nC  
A
19  
21  
di/dt = 200A/µs  
Qrr  
IF = 4.0A, VR = 200V,  
di/dt = 200A/µs  
40  
60  
70  
105  
5.2  
6.7  
Irr  
IF = 4.0A, VR = 200V,  
di/dt = 200A/µs  
2.9  
3.7  
19,20,21,22  
CT5  
Notes:  
 RCE(on) typ. = equivalent on-resistance = VCE(on) typ. / IC, where VCE(on) typ. = 2.05V and IC = 13A. ID (FET Equivalent) is the equivalent MOSFET ID rating @ 25°C for  
applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.  
‚ VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 22Ω.  
ƒ Pulse width limited by max. junction temperature.  
„ Energy losses include "tail" and diode reverse recovery. Data generated with use of Diode 8ETH06.  
Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES  
.
Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES  
.
2
www.irf.com  
IRGB20B60PD1  
45  
40  
35  
30  
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
0
0
0
20 40 60 80 100 120 140 160  
(°C)  
0
20 40 60 80 100 120 140 160  
T
T
(°C)  
C
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
100  
10  
1
40  
35  
30  
25  
20  
15  
10  
5
V
= 15V  
GE  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 6.0V  
0
0
10  
100  
(V)  
1000  
0
1
2
3
4
5
6
V
(V)  
CE  
V
CE  
Fig. 3 - Reverse Bias SOA  
Fig. 4 - Typ. IGBT Output Characteristics  
TJ = 150°C; VGE =15V  
TJ = -40°C; tp = 80µs  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
V
= 15V  
V
= 18V  
GE  
GE  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 6.0V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
V
(V)  
V
(V)  
CE  
CE  
Fig. 6 - Typ. IGBT Output Characteristics  
Fig. 5 - Typ. IGBT Output Characteristics  
TJ = 125°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
www.irf.com  
3
IRGB20B60PD1  
10  
9
8
7
6
5
4
3
2
1
0
450  
400  
350  
I
I
I
= 20A  
= 13A  
= 8.0A  
CE  
CE  
CE  
T
= 25°C  
J
300  
250  
200  
150  
100  
50  
T
= 125°C  
J
0
0
5
10  
15  
20  
0
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 7 - Typ. Transfer Characteristics  
CE = 50V; tp = 10µs  
Fig. 8 - Typical VCE vs. VGE  
V
TJ = 25°C  
10  
9
8
7
6
5
4
3
2
1
0
100  
10  
1
I
I
I
= 20A  
CE  
CE  
CE  
= 13A  
T = 150°C  
J
= 8.0A  
T = 125°C  
J
T = 25°C  
J
0.1  
0
5
10  
15  
20  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Forward Voltage Drop - V  
(V)  
FM  
V
(V)  
GE  
Fig. 9 - Typical VCE vs. VGE  
Fig. 10 - Typ. Diode Forward Characteristics  
TJ = 125°C  
tp = 80µs  
350  
300  
250  
200  
150  
100  
50  
1000  
E
ON  
td  
OFF  
100  
td  
E
ON  
OFF  
t
F
10  
1
t
R
0
0
5
10  
15  
20  
25  
0
5
10  
15  
(A)  
20  
25  
I
(A)  
I
C
C
Fig. 11 - Typ. Energy Loss vs. IC  
Fig. 12 - Typ. Switching Time vs. IC  
TJ = 125°C; L = 200µH; VCE = 390V, RG = 10; VGE = 15V.  
TJ = 125°C; L = 200µH; VCE = 390V, RG = 10; VGE = 15V.  
Diode clamp used: 8ETH06 (See C.T.3)  
Diode clamp used: 8ETH06 (See C.T.3)  
4
www.irf.com  
IRGB20B60PD1  
1000  
100  
10  
250  
200  
150  
100  
50  
td  
OFF  
E
ON  
E
td  
OFF  
ON  
t
F
t
R
1
0
10  
20  
(
30  
40  
0
5
10  
15  
20  
25  
30  
35  
R
)
R
(
)
G
G
Fig. 14 - Typ. Switching Time vs. RG  
Fig. 13 - Typ. Energy Loss vs. RG  
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V  
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V  
Diode clamp used: 8ETH06 (See C.T.3)  
Diode clamp used: 8ETH06 (See C.T.3)  
12  
10  
8
10000  
Cies  
1000  
6
Coes  
100  
4
2
Cres  
0
10  
0
100 200 300 400 500 600 700  
(V)  
0
20  
40  
60  
(V)  
80  
100  
V
CE  
V
CE  
Fig. 16- Typ. Capacitance vs. VCE  
Fig. 15- Typ. Output Capacitance  
VGE= 0V; f = 1MHz  
Stored Energy vs. VCE  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
16  
14  
12  
10  
8
400V  
6
0.9  
0.8  
0.7  
0.6  
4
2
0
-50  
0
50  
100  
150  
200  
0
10 20 30 40 50 60 70 80  
T , Junction Temperature (°C)  
Q
, Total Gate Charge (nC)  
J
G
Fig. 18 - Normalized Typical VCE(on) vs.  
Junction Temperature  
Fig. 17 - Typical Gate Charge vs. VGE  
ICE = 13A  
ICE = 13A; VGE = 15V  
www.irf.com  
5
IRGB20B60PD1  
14  
12  
10  
8
50  
45  
40  
35  
30  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
I
= 8.0A  
= 4.0A  
F
I
F
I
I
= 8.0A  
= 4.0A  
F
F
6
4
25  
2
VR = 200V  
TJ = 125°C  
TJ = 25°C  
20  
0
100  
1000  
100  
1000  
di /dt - (A/µs)  
f
di /dt - (A/µs)  
f
Fig. 20 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Reverse Recovery vs. dif/dt  
200  
1000  
VR= 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
160  
I
I
= 8.0A  
= 4.0A  
I
I
= 8.0A  
= 4.0A  
F
F
F
F
120  
80  
40  
0
A
100  
100  
100  
1000  
1000  
di /dt - (A/µs)  
f
di /dt - (A/µs)  
f
Fig. 21 - Typical Stored Charge vs. dif/dt  
Fig. 22 - Typical di(rec)M/dt vs. dif/dt,  
6
www.irf.com  
IRGB20B60PD1  
1
D = 0.50  
0.20  
0.10  
0.1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
R1  
τ
0.0076  
0.2696  
0.1568  
0.1462  
0.000001  
0.000270  
0.001386  
0.015586  
τ
J τJ  
τ
Cτ  
0.05  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.02  
0.01  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
0.02  
0.01  
0.1  
τ
J τJ  
τ
τ
Cτ  
1.779  
0.000226  
1 τ1  
Ci= τi/Ri  
τ
2τ2  
3.223  
0.001883  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
7
IRGB20B60PD1  
L
L
VCC  
80 V  
DUT  
DUT  
0
480V  
Rg  
1K  
Fig.C.T.2 - RBSOA Circuit  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
V
CC  
R =  
L
I
CM  
PFC diode  
DUT /  
DRIVER  
VCC  
DUT  
VCC  
Rg  
Rg  
Fig.C.T.4 - Resistive Load Circuit  
Fig.C.T.3 - Switching Loss Circuit  
REVERSE RECOVERY CIRCUIT  
V
= 200V  
R
0.01  
L = 70µH  
D.U.T.  
D
dif/dt  
ADJUST  
IRFP250  
G
S
Fig. C.T.5 - Reverse Recovery Parameter  
Test Circuit  
8
www.irf.com  
IRGB20B60PD1  
450  
400  
350  
300  
250  
200  
150  
100  
50  
18  
16  
14  
12  
10  
8
450  
400  
350  
300  
250  
200  
150  
100  
50  
45  
40  
TEST CURRENT  
35  
tf  
30  
25  
tr  
90% ICE  
90% test current  
20  
5% VCE  
5% ICE  
10% test current  
15  
6
4
10  
5% VCE  
5
2
0
0
0
0
Eon Loss  
Eoff Loss  
-50  
-5  
-50  
-2  
7.75  
7.85  
7.95  
Time (µs)  
8.05  
8.15  
-0.20 0.00 0.20 0.40 0.60 0.80  
Time(µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 125°C using Fig. CT.3  
@ TJ = 125°C using Fig. CT.3  
3
t
rr  
I
F
t
t
a
b
0
4
Q
rr  
2
I
0.5  
I
RRM  
RRM  
5
di(rec)M/dt  
0.75  
I
RRM  
1
di /dt  
f
4. Qrr - Area under curve defined by trr  
1. dif/dt - Rate of change of current  
through zero crossing  
and IRRM  
trr X IRRM  
Qrr  
=
2. IRRM - Peak reverse recovery current  
2
3. trr - Reverse recovery time measured  
from zero crossing point of negative  
going IF to point where a line passing  
through 0.75 IRRM and 0.50 IRRM  
extrapolated to zero current  
5. di(rec)M/dt - Peak rate of change of  
current during tb portion of trr  
Fig. WF3 - Reverse Recovery Waveform and  
Definitions  
www.irf.com  
9
IRGB20B60PD1  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
10.29 (.405)  
- B -  
3.78 (.149)  
3.54 (.139)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A -  
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
LEAD ASSIGNMENTS  
1.15 (.045)  
MIN  
1 - GATE  
1
2
3
2 -COLLECTOR  
3 EMITTER  
4 - COLLECTOR  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B A M  
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
NOTES:  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH  
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.  
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.  
TO-220AB Part Marking Information  
TO-220AB package is not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 12/03  
10  
www.irf.com  

相关型号:

IRGB20B60PD1PBF

WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB30B60K

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGB30B60KPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGB4045DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4055PBF

Advanced Trench IGBT Technology
INFINEON

IRGB4056DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4059DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODEINSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4060DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4061DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4062DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4064DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODEINSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4065PBF

PDP TRENCH IGBT
INFINEON