IRGB4060DPBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE; 绝缘栅双极型晶体管,超快软恢复二极管
IRGB4060DPBF
型号: IRGB4060DPBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
绝缘栅双极型晶体管,超快软恢复二极管

晶体 二极管 双极型晶体管 栅 超快软恢复二极管 快速软恢复二极管
文件: 总10页 (文件大小:291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97073B  
IRGB4060DPbF  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
C
ULTRAFAST SOFT RECOVERY DIODE  
VCES = 600V  
Features  
IC = 8.0A, TC = 100°C  
tsc > 5µs, Tjmax = 175°C  
VCE(on) typ. = 1.55V  
Low VCE (on) Trench IGBT Technology  
Low Switching Losses  
Maximum Junction temperature 175 °C  
5µs SCSOA  
G
E
Square RBSOA  
n-channel  
100% of The Parts Tested for 4X Rated Current (ILM  
Positive VCE (on) Temperature Coefficient.  
Ultra Fast Soft Recovery Co-pak Diode  
Tighter Distribution of Parameters  
Lead-Free Package  
)
C
Benefits  
High Efficiency in a Wide Range of Applications  
E
C
G
Suitable for a Wide Range of Switching Frequencies due  
to Low VCE (ON) and Low Switching Losses  
Rugged Transient Performance for Increased Reliability  
Excellent Current Sharing in Parallel Operation  
Low EMI  
TO-220AB  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
600  
16  
Units  
V
VCES  
Collector-to-Emitter Breakdown Voltage  
Continuous Collector Current  
Continuous Collector Current  
Pulsed Collector Current  
IC@ TC = 25°C  
IC@ TC = 100°C  
ICM  
8
32  
Clamped Inductive Load Current c  
ILM  
32  
A
IF@TC=25°C  
IF@TC=100°C  
IFM  
Diode Continuous Forward Current  
Diode Continuous Forward Current  
Diode Maximum Forward Current d  
16  
8
32  
± 20  
± 30  
99  
Continuous Gate-to-Emitter Voltage  
Transient Gate-to-Emitter Voltage  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
V
VGE  
PD @ TC =25°  
PD @ TC =100°  
TJ  
W
°C  
50  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
300 (0.063 in. (1.6mm) from case)  
Thermal Resistance  
Parameter  
Junction-to-Case - IGBT e  
Junction-to-Case - Diode e  
Min.  
Typ.  
Max.  
1.51  
3.66  
Units  
°C/W  
g
RθJC  
RθJC  
RθCS  
RθJA  
Wt  
Case-to-Sink, flat, greased surface  
0.5  
80  
Junction-to-Ambient, typical socket mount e  
Weight  
1.44  
1
www.irf.com  
9/22/06  
IRGB4060DPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
Ref.Fig  
V
V
GE = 0V,Ic =100 µA  
GE = 0V, Ic = 250 µA ( 25 -175 oC )  
V(BR)CES  
Collector-to-Emitter Breakdown Voltage  
Temperature Coeff. of Breakdown Voltage  
600  
4.0  
V
CT6  
V(BR)CES/TJ  
0.3  
V/°C  
IC = 8A, VGE = 15V, TJ = 25°C  
IC = 8A, VGE = 15V, TJ = 150°C  
IC = 8A, VGE = 15V, TJ = 175°C  
1.55 1.85  
VCE(on)  
Collector-to-Emitter Saturation Voltage  
2.00  
1.95  
6.5  
25  
V
5,6,7,9,  
10 ,11  
VGE(th)  
V
V
V
V
CE = VGE, IC = 250 µA  
Gate Threshold Voltage  
V
mV/°C  
S
9,10,11,12  
-18  
5.6  
1
CE = VGE, IC = 250 µA ( 25 -175 oC )  
CE = 50V, IC = 8A, PW =80µs  
GE = 0V,VCE = 600V  
VGE(th)/TJ  
gfe  
Threshold Voltage temp. coefficient  
Forward Transconductance  
ICES  
µA  
Collector-to-Emitter Leakage Current  
VGE = 0v, VCE = 600V, TJ =175°C  
IF = 8A  
400  
µA  
8
VFM  
1.80 2.80  
V
Diode Forward Voltage Drop  
IF = 8A, TJ = 175°C  
1.30  
IGES  
VGE = ± 20 V  
Gate-to-Emitter Leakage Current  
±100 nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min. Typ. Max. Units  
Conditions  
Ref.Fig  
24  
Qg  
19  
5
29  
7
IC = 8A  
nC VCC = 400V  
VGE = 15V  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
CT1  
8
12  
115  
195  
310  
39  
21  
106  
26  
70  
IC = 8A, VCC = 400V, VGE = 15V  
µJ RG = 47, L=1mH, LS= 150nH, TJ = 25°C  
Energy losses include tail and diode reverse recovery  
IC = 8A, VCC = 400V  
145  
215  
30  
CT4  
CT4  
15  
ns RG = 47, L=1mH, LS= 150nH  
TJ = 25°C  
95  
td(off)  
tf  
Turn-Off delay time  
Fall time  
20  
Eon  
Eoff  
Etotal  
td(on)  
tr  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
165  
240  
405  
28  
IC = 8A, VCC = 400V, VGE = 15V  
µJ RG = 47, L=1mH, LS= 150nH, TJ = 175°C  
Energy losses include tail and diode reverse recovery  
IC = 8A, VCC = 400V  
13,15  
CT4  
WF1,WF2  
14,16  
17  
ns RG = 47, L=1mH, LS= 150nH  
TJ = 175°C  
CT4  
117  
35  
td(off)  
tf  
Turn-Off delay time  
Fall time  
WF1,WF2  
Cies  
Coes  
Cres  
Input Capacitance  
535  
45  
VGE = 0V  
22  
pF  
Output Capacitance  
Reverse Transfer Capacitance  
VCC = 30V  
15  
f = 1Mhz  
TJ = 175°C, IC = 32A  
VCC = 480V, Vp =600V  
RG = 47, VGE = +15V to 0V  
4
RBSOA  
Reverse Bias Safe Operating Area  
FULL SQUARE  
CT2  
V
CC = 400V, Vp =600V  
22, CT3  
WF4  
SCSOA  
Short Circuit Safe Operating Area  
5
µs  
RG = 47, VGE = +15V to 0V  
TJ = 175oC  
Erec  
trr  
Reverse recovery energy of the diode  
Diode Reverse recovery time  
165  
60  
µJ  
ns  
A
17,18,19  
20,21  
V
CC = 400V, IF = 8A  
Irr  
Peak Reverse Recovery Current  
14  
VGE = 15V, Rg = 47, L=1mH, LS=150nH  
WF3  
Notes:  
VCC = 80% (VCES), VGE = 15V, L = 100 µH, RG = 47 Ω.  
‚ Pulse width limited by max. junction temperature.  
ƒRθ is measured at TJ approximately 90°C  
„Refer to AN-1086 for guidelines for measuring V(BR)CES safely  
2
www.irf.com  
IRGB4060DPbF  
120  
100  
80  
60  
40  
20  
0
18  
16  
14  
12  
10  
8
6
4
2
0
0
10  
0
20 40 60 80 100 120 140 160 180  
0
20 40 60 80 100 120 140 160 180  
(°C)  
T
(°C)  
T
C
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
100  
10  
1
100  
10 µs  
10  
100 µs  
1
1ms  
DC  
0.1  
100  
1000  
1
10  
100  
1000  
V
(V)  
V
(V)  
CE  
CE  
Fig. 4 - Reverse Bias SOA  
TJ = 175°C; VCE = 15V  
Fig. 3 - Forward SOA,  
TC = 25°C; TJ 175°C  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
V
= 18V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
V
= 18V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0
0
0
2
4
6
8
2
4
6
8
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
www.irf.com  
3
IRGB4060DPbF  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
V
= 18V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
25  
20  
15  
10  
5
-40°C  
25°C  
175°C  
0
0.0  
1.0  
2.0  
(V)  
3.0  
4.0  
0
2
4
6
8
V
V
(V)  
F
CE  
Fig. 7 - Typ. IGBT Output Characteristics  
Fig. 8 - Typ. Diode Forward Characteristics  
TJ = 175°C; tp = 80µs  
tp = 80µs  
20  
20  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
I
I
I
= 4.0A  
= 8.0A  
= 16A  
I
I
I
= 4.0A  
= 8.0A  
= 16A  
CE  
CE  
CE  
CE  
CE  
CE  
6
6
4
4
2
2
0
0
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 9 - Typical VCE vs. VGE  
Fig. 10 - Typical VCE vs. VGE  
TJ = -40°C  
TJ = 25°C  
35  
30  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
T
T
= 25°C  
J
J
= 175°C  
I
I
I
= 4.0A  
= 8.0A  
= 16A  
CE  
CE  
CE  
6
4
2
0
0
0
5
10  
15  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 12 - Typ. Transfer Characteristics  
Fig. 11 - Typical VCE vs. VGE  
VCE = 50V; tp = 10µs  
TJ = 175°C  
4
www.irf.com  
IRGB4060DPbF  
1000  
100  
10  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
td  
OFF  
t
F
E
OFF  
td  
ON  
E
ON  
t
R
0
1
0
5
10  
(A)  
15  
20  
0
5
10  
(A)  
15  
20  
I
I
C
C
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 175°C; L=1mH; VCE= 400V  
RG= 47; VGE= 15V  
Fig. 13 - Typ. Energy Loss vs. IC  
TJ = 175°C; L = 1mH; VCE = 400V, RG = 47; VGE = 15V.  
350  
1000  
100  
10  
300  
E
OFF  
250  
td  
OFF  
200  
150  
100  
50  
E
ON  
td  
t
ON  
R
t
F
0
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
R
()  
R
()  
G
G
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 175°C; L = 1mH; VCE = 400V, ICE = 8A; VGE = 15V  
Fig. 16- Typ. Switching Time vs. RG  
TJ = 175°C; L=1mH; VCE= 400V  
ICE= 8A; VGE= 15V  
25  
20  
15  
10  
5
30  
R
R
10 Ω  
G =  
25  
20  
15  
10  
5
22 Ω  
G =  
R
47 Ω  
G =  
R
100Ω  
G =  
0
0
0
25  
50  
75  
100  
125  
0
5
10  
(A)  
15  
20  
R
(Ω)  
I
G
F
Fig. 17 - Typical Diode IRR vs. IF  
Fig. 18 - Typical Diode IRR vs. RG  
TJ = 175°C  
TJ = 175°C; IF = 8.0A  
www.irf.com  
5
IRGB4060DPbF  
1400  
1200  
1000  
800  
600  
400  
200  
0
25  
20  
15  
10  
5
10Ω  
16A  
22Ω  
47 Ω  
100Ω  
8.0A  
4.0A  
0
0
500  
1000  
1500  
0
500  
di /dt (A/µs)  
1000  
di /dt (A/µs)  
F
F
Fig. 20 - Typical Diode QRR  
VCC= 400V; VGE= 15V; TJ = 175°C  
Fig. 19- Typical Diode IRR vs. diF/dt  
VCC= 400V; VGE= 15V;  
ICE= 8A; TJ = 175°C  
18  
16  
14  
12  
10  
8
80  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
70  
60  
50  
40  
30  
20  
10  
10 Ω  
22 Ω  
47 Ω  
100 Ω  
6
4
0
0
5
10  
(A)  
15  
20  
8
10  
12  
14  
(V)  
16  
18  
V
GE  
I
F
Fig. 22- Typ. VGE vs Short Circuit Time  
Fig. 21 - Typical Diode ERR vs. IF  
VCC=400V, TC =25°C  
TJ = 175°C  
1000  
100  
10  
16  
14  
12  
10  
8
Cies  
300V  
400V  
Coes  
Cres  
6
4
2
0
1
0
5
10  
15  
20  
0
20  
40  
60  
(V)  
80  
100  
Q
, Total Gate Charge (nC)  
V
G
CE  
Fig. 23- Typ. Capacitance vs. VCE  
Fig. 24 - Typical Gate Charge vs. VGE  
VGE= 0V; f = 1MHz  
ICE = 8A, L=600µH  
6
www.irf.com  
IRGB4060DPbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τι (sec)  
Cτ 0.555579 0.000216  
0.590565 0.00117  
0.365255 0.009076  
τ
J τJ  
τ
τ
0.02  
0.01  
τ
1 τ1  
τ
2 τ2  
3 τ3  
Ci= τi/Ri  
Ci= τi/Ri  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τι (sec)  
τ
J τJ  
τ
Cτ 0.821094 0.000233  
1.913817 0.001894  
0.926641 0.014711  
τ
τ
1 τ1  
τ
2 τ2  
3τ3  
Ci= τi/Ri  
Ci= τi/Ri  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
7
IRGB4060DPbF  
L
L
VCC  
80 V  
+
-
DUT  
DUT  
480V  
0
Rg  
1K  
Fig.C.T.2 - RBSOA Circuit  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.3 - S.C.SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
Fig.C.T.5 - Resistive Load Circuit  
Fig.C.T.6 - Typical Filter Circuit for  
V(BR)CES Measurement  
8
www.irf.com  
IRGB4060DPbF  
500  
400  
300  
200  
100  
0
25  
20  
15  
10  
5
500  
400  
300  
200  
100  
0
25  
20  
tr  
90% ICE  
15  
TEST  
tf  
90% test  
10  
5
t
5% ICE  
10% test current  
5% VCE  
5% VCE  
0
0
EOFF Loss  
0.60  
EON Loss  
-100  
-5  
-100  
-5  
-0.40  
0.10  
1.10  
11.70  
11.90  
12.10  
Time(µs)  
Time (µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 175°C using Fig. CT.4  
@ TJ = 175°C using Fig. CT.4  
15  
10  
5
500  
100  
80  
60  
40  
20  
0
QRR  
tRR  
VCE  
400  
300  
200  
100  
0
ICE  
0
10%  
Peak  
-5  
Peak  
IRR  
IRR  
-10  
-15  
-20  
-100  
-20  
-5.00  
0.00  
5.00  
10.00  
-0.05  
0.05  
0.15  
time (µS)  
time (µS)  
WF.3- Typ. Reverse Recovery Waveform  
@ TJ = 175°C using CT.4  
WF.4- Typ. Short Circuit Waveform  
@ TJ = 25°C using CT.3  
www.irf.com  
9
IRGB4060DPbF  
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
PART NUMBER  
LOT CODE 1789  
ASSEMBLED ON WW 19, 2000  
IN THE ASSEMBLY LINE "C"  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
YEAR 0 = 2000  
WEEK 19  
Note: "P" in assembly line position  
indicates "Lead - F ree"  
ASSEMBLY  
LOT CODE  
LINE C  
TO-220AB packages are not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 09/06  
10  
www.irf.com  

相关型号:

IRGB4061DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4062DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4064DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODEINSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4065PBF

PDP TRENCH IGBT
INFINEON

IRGB4086PBF

PDD TRENCH IGBT
INFINEON

IRGB410U

Insulated Gate Bipolar Transistor, 500V V(BR)CES, N-Channel, TO-220AB, TO-220, 3 PIN
INFINEON

IRGB420

INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=7.5A)
INFINEON

IRGB420U

INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=7.5A)
INFINEON

IRGB420UD2

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=500V, @Vge=15V,Ic=7.5A)
INFINEON

IRGB430

INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=15A)
INFINEON

IRGB430U

INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=15A)
INFINEON

IRGB430UD2

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=500V, @Vge=15V, Ic=15A)
INFINEON