IRGB4065PBF [INFINEON]

PDP TRENCH IGBT; PDP TRENCH IGBT
IRGB4065PBF
型号: IRGB4065PBF
厂家: Infineon    Infineon
描述:

PDP TRENCH IGBT
PDP TRENCH IGBT

光电二极管 双极性晶体管
文件: 总9页 (文件大小:786K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97059B  
IRGB4065PbF  
IRGS4065PbF  
PDP TRENCH IGBT  
Features  
l
Advanced Trench IGBT Technology  
Key Parameters  
l
Optimized for Sustain and Energy Recovery  
circuits in PDP applications  
Low VCE(on) and Energy per Pulse (EPULSE  
for improved panel efficiency  
High repetitive peak current capability  
Lead Free package  
VCE min  
300  
V
V
A
TM  
VCE(ON) typ. @ IC = 70A  
IRP max @ TC= 25°C c  
TJ max  
1.75  
l
)
205  
150  
l
l
°C  
C
C
C
E
E
C
G
G
C
G
TO-220  
D2Pak  
IRGS4065DPbF  
E
IRGB4065DPbF  
n-channel  
G
C
E
Gate  
Collector  
Emitter  
Description  
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced  
trenchIGBTtechnologytoachievelowVCE(on) andlowEPULSETM ratingpersiliconareawhichimprovepanel  
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current  
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP  
applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VGE  
±30  
Gate-to-Emitter Voltage  
V
IC @ TC = 25°C  
IC @ TC = 100°C  
IRP @ TC = 25°C  
PD @TC = 25°C  
PD @TC = 100°C  
Continuous Collector Current, VGE @ 15V  
Continuous Collector, VGE @ 15V  
Repetitive Peak Current  
70  
A
40  
205  
178  
Power Dissipation  
W
71  
Power Dissipation  
1.4  
Linear Derating Factor  
W/°C  
°C  
TJ  
-40 to + 150  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 seconds  
Mounting Torque, 6-32 or M3 Screw  
300  
10lb in (1.1N m)  
N
Thermal Resistance  
Parameter  
Typ.  
Max.  
Units  
RθJC  
RθCS  
RθJA  
RθJA  
Junction-to-Case  
–––  
0.50  
–––  
–––  
0.70  
–––  
62  
Case-to-Sink, Flat Greased Surface , TO-220  
Junction-to-Ambient, TO-220  
Junction-to-Ambient (PCB Mount) , D2Pak  
°C/W  
40  
www.irf.com  
1
09/05/06  
IRGB/S4065PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGE = 0V, ICE = 1.0 mA  
Parameter  
Collector-to-Emitter Breakdown Voltage 300  
Min. Typ. Max. Units  
BVCES  
–––  
–––  
V
Reference to 25°C, ICE = 1.0 mA  
∆ΒVCES/TJ  
Breakdown Voltage Temp. Coefficient  
Static Collector-to-Emitter Voltage  
–––  
–––  
–––  
–––  
–––  
–––  
2.6  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
0.23  
–––  
V/°C  
VGE = 15V, ICE = 25A e  
1.20 1.40  
1.35 –––  
1.75 2.10  
VGE = 15V, ICE = 40A e  
VGE = 15V, ICE = 70A e  
VGE = 15V, ICE = 120A e  
VGE = 15V, ICE = 70A, TJ = 150°C  
VCE = VGE, ICE = 500µA  
VCE(on)  
V
V
2.35  
2.00  
–––  
-11  
2.0  
50  
–––  
–––  
5.0  
VGE(th)  
Gate Threshold Voltage  
VGE(th)/TJ  
ICES  
Gate Threshold Voltage Coefficient  
Collector-to-Emitter Leakage Current  
––– mV/°C  
V
CE = 300V, VGE = 0V  
VCE = 300V, VGE = 0V, TJ = 150°C  
GE = 30V  
VGE = -30V  
CE = 25V, ICE = 25A  
25  
–––  
100  
-100  
–––  
–––  
–––  
µA  
V
IGES  
Gate-to-Emitter Forward Leakage  
Gate-to-Emitter Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
Gate-to-Collector Charge  
Turn-On delay time  
Rise time  
–––  
–––  
26  
nA  
V
gfe  
Qg  
Qgc  
td(on)  
tr  
S
VCE = 200V, IC = 25A, VGE = 15V  
See Fig. 14  
62  
nC  
20  
IC = 25A, VCC = 180V  
RG = 10, L=200µH, LS= 150nH  
TJ = 25°C  
30  
26  
ns  
ns  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
Turn-Off delay time  
Fall time  
170  
160  
30  
IC = 25A, VCC = 180V  
RG = 10, L=200µH, LS= 150nH  
TJ = 150°C  
Turn-On delay time  
Rise time  
28  
Turn-Off delay time  
Fall time  
250  
310  
–––  
tst  
VCC = 240V, VGE = 15V, RG= 5.1Ω  
L = 220nH, C= 0.40µF, VGE = 15V  
Shoot Through Blocking Time  
100  
–––  
ns  
µJ  
–––  
–––  
875  
975  
–––  
–––  
EPULSE  
VCC = 240V, RG= 5.1Ω, TJ = 25°C  
Energy per Pulse  
L = 220nH, C= 0.40µF, VGE = 15V  
VCC = 240V, RG= 5.1Ω, TJ = 100°C  
VGE = 0V  
Ciss  
Coss  
Crss  
LC  
Input Capacitance  
––– 2200 –––  
VCE = 30V  
Output Capacitance  
–––  
–––  
–––  
110  
55  
–––  
–––  
–––  
pF  
ƒ = 1.0MHz,  
See Fig.13  
Reverse Transfer Capacitance  
Internal Collector Inductance  
5.0  
Between lead,  
nH 6mm (0.25in.)  
from package  
LE  
Internal Emitter Inductance  
–––  
13  
–––  
and center of die contact  
Notes:  
 Half sine wave with duty cycle = 0.25, ton=1µsec.  
‚ R is measured at TJ of approximately 90°C.  
θ
ƒ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRGB/S4065PbF  
280  
240  
200  
160  
120  
80  
280  
240  
200  
160  
120  
80  
TOP  
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
TOP  
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
V
V
GE  
GE  
V
V
GE  
GE  
V
V
GE  
GE  
V
V
GE  
GE  
BOTTOM  
V
BOTTOM  
V
GE  
GE  
40  
40  
0
0
0
2
4
6
8
10 12 14 16  
(V)  
0
2
4
6
8
10 12 14 16  
(V)  
V
V
CE  
CE  
Fig 2. Typical Output Characteristics @ 75°C  
Fig 1. Typical Output Characteristics @ 25°C  
360  
280  
TOP  
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
TOP  
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
V
V
320  
280  
240  
200  
160  
120  
80  
GE  
GE  
240  
200  
160  
120  
80  
V
V
GE  
GE  
V
V
GE  
GE  
V
V
GE  
GE  
BOTTOM  
V
BOTTOM  
V
GE  
GE  
40  
40  
0
0
0
2
4
6
8
10 12 14 16  
(V)  
0
2
4
6
8
10 12 14 16  
(V)  
V
V
CE  
CE  
Fig 3. Typical Output Characteristics @ 125°C  
Fig 4. Typical Output Characteristics @ 150°C  
600  
500  
20  
I
= 25A  
C
15  
10  
5
400  
300  
200  
100  
0
T
= 25°C  
J
T
T
= 25°C  
T
= 125°C  
J
J
J
= 150°C  
0
0
5
10  
15  
20  
0
5
10  
15  
20  
V
, Gate-to-Emitter Voltage (V)  
V
(V)  
GE  
GE  
Fig 5. Typical Transfer Characteristics  
Fig 6. VCE(ON) vs. Gate Voltage  
www.irf.com  
3
IRGB/S4065PbF  
80  
70  
60  
50  
40  
30  
20  
10  
0
220  
200  
180  
160  
140  
120  
100  
80  
ton= 1µs  
Duty cycle = 0.25  
Half Sine Wave  
60  
40  
20  
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
Case Temperature (°C)  
T
, Case Temperature (°C)  
C
Fig 8. Typical Repetitive Peak Current vs. Case Temperature  
Fig 7. Maximum Collector Current vs. Case Temperature  
1000  
1000  
V
= 240V  
L = 220nH  
C = 0.4µF  
CC  
900  
800  
700  
600  
500  
400  
300  
200  
L = 220nH  
C = variable  
900  
800  
700  
600  
500  
400  
100°C  
100°C  
25°C  
25°C  
160 170 180 190 200 210 220 230  
150 160 170 180 190 200 210 220 230 240  
Collector-to-Emitter Voltage (V)  
I , Peak Collector Current (A)  
C
V
CE,  
Fig 9. Typical EPULSE vs. Collector Current  
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage  
1400  
1000  
OPERATION IN THIS AREA  
V
= 240V  
CC  
LIMITED BY V (on)  
CE  
L = 220nH  
t = 1µs half sine  
1200  
1000  
800  
C= 0.4µF  
10µsec  
100  
100µsec  
C= 0.3µF  
C= 0.2µF  
600  
10  
1msec  
400  
200  
1
25  
50  
75  
100  
125  
150  
1
10  
100  
1000  
T , Temperature (ºC)  
V
(V)  
J
CE  
Fig 11. EPULSE vs. Temperature  
Fig 12. Forrward Bias Safe Operating Area  
4
www.irf.com  
IRGB/S4065PbF  
100000  
10000  
1000  
100  
25  
20  
15  
10  
5
V
= 0V,  
= C  
f = 1 MHZ  
+ C , C  
GS  
I
= 25A  
C
C
C
C
SHORTED  
ies  
res  
oes  
ge  
gd  
ce  
= C  
gc  
= C + C  
ce  
gc  
V
V
V
= 240V  
CE  
= 200V  
= 150V  
CE  
CE  
Cies  
Coes  
Cres  
0
10  
0
10 20 30 40 50 60 70 80  
, Total Gate Charge (nC)  
0
50  
100  
150  
200  
250  
300  
Q
G
V
, Collector-toEmitter-Voltage(V)  
CE  
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage  
1
D = 0.50  
0.20  
0.1  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.05  
0.0239  
0.1179  
0.3264  
0.2324  
0.000011  
0.000047  
0.000922  
0.004889  
τ
τ
J τJ  
τ
0.02  
0.01  
Cτ  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2τ2  
3τ3  
4τ4  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRGB/S4065PbF  
A
RG  
C
PULSEA  
PULSEB  
DRIVER  
L
VCC  
B
Ipulse  
RG  
DUT  
tST  
Fig 16a. tst and EPULSE Test Circuit  
Fig 16b. tst Test Waveforms  
VCE  
Energy  
IC Current  
L
VCC  
DUT  
0
1K  
Fig 16c. EPULSE Test Waveforms  
Fig. 17 - Gate Charge Circuit (turn-off)  
6
www.irf.com  
IRGB/S4065PbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
(;$03/(ꢅ 7+,6ꢀ,6ꢀ$1ꢀ,5)ꢁꢆꢁꢆꢀ  
/27ꢀ&2'(ꢀꢁꢂꢃꢄ  
3$57ꢀ180%(5  
,17(51$7,21$/  
5(&7,),(5  
/2*2  
$66(0%/('ꢀ21ꢀ::ꢀꢁꢄꢉꢀꢊꢆꢆꢆ  
,1ꢀ7+(ꢀ$66(0%/<ꢀ/,1(ꢀꢇ&ꢇ  
'$7(ꢀ&2'(  
<($5ꢀꢆꢀ ꢀꢊꢆꢆꢆ  
:((.ꢀꢁꢄ  
1RWHꢅꢀꢇ3ꢇꢀLQꢀDVVHPEO\ꢀOLQHꢀSRVLWLRQ  
LQGLFDWHVꢀꢇ/HDGꢀꢈꢀ)UHHꢇ  
$66(0%/<  
/27ꢀ&2'(  
/,1(ꢀ&  
TO-220AB package is not recommended for Surface Mount Application.  
www.irf.com  
7
IRGB/S4065PbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
25  
8
www.irf.com  
IRGB/S4065PbF  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
15.42 (.609)  
23.90 (.941)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
26.40 (1.039)  
24.40 (.961)  
4
3
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
The specifications set forth in this data sheet are the sole and  
exclusive specifications applicable to the identified product, and  
no specifications or features are implied whether by industry  
custom, sampling or otherwise. We qualify our products in  
accordance with our internal practices and procedures, which by  
their nature do not include qualification to all possible or even all  
widely used applications. Without limitation, we have not qualified  
our product for medical use or applications involving hi-reliability  
applications. Customers are encouraged to and responsible for  
qualifying product to their own use and their own application  
environments, especially where particular features are critical to  
operational performance or safety. Please contact your IR  
representative if you have specific design or use requirements or  
for further information.  
Data and specifications subject to change without notice.  
This product has been designed for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.09/06  
www.irf.com  
9

相关型号:

IRGB4086PBF

PDD TRENCH IGBT
INFINEON

IRGB410U

Insulated Gate Bipolar Transistor, 500V V(BR)CES, N-Channel, TO-220AB, TO-220, 3 PIN
INFINEON

IRGB420

INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=7.5A)
INFINEON

IRGB420U

INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=7.5A)
INFINEON

IRGB420UD2

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=500V, @Vge=15V,Ic=7.5A)
INFINEON

IRGB430

INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=15A)
INFINEON

IRGB430U

INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=15A)
INFINEON

IRGB430UD2

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=500V, @Vge=15V, Ic=15A)
INFINEON

IRGB440U

INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=22A)
INFINEON

IRGB4620DPBF

Insulated Gate Bipolar Transistor, 32A I(C), 600V V(BR)CES, N-Channel,
INFINEON

IRGB4630DPBF

Insulated Gate Bipolar Transistor,
INFINEON

IRGB4B60K

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON