IRGB4056DPBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE; 绝缘栅双极型晶体管,超快软恢复二极管
IRGB4056DPBF
型号: IRGB4056DPBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
绝缘栅双极型晶体管,超快软恢复二极管

晶体 二极管 双极型晶体管 功率控制 栅 局域网 超快软恢复二极管 快速软恢复二极管
文件: 总10页 (文件大小:763K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97188  
IRGB4056DPbF  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
ULTRAFAST SOFT RECOVERY DIODE  
Features  
• Low VCE (ON) Trench IGBT Technology  
C
VCES = 600V  
• Low switching losses  
• Maximum Junction temperature 175 °C  
• 5 µS short circuit SOA  
IC = 12A, TC = 100°C  
• SquareRBSOA  
G
tSC 5µs, TJ(max) = 175°C  
• 100% of the parts tested for 4X rated current (ILM  
• Positive VCE (ON) Temperature co-efficient  
• Ultra fast soft Recovery Co-Pak Diode  
• Tightparameterdistribution  
)
E
VCE(on) typ. = 1.55V  
n-channel  
• LeadFreePackage  
Benefits  
C
• High Efficiency in a wide range of applications  
• Suitable for a wide range of switching frequencies due to  
Low VCE (ON) and Low Switching losses  
• RuggedtransientPerformanceforincreasedreliability  
• ExcellentCurrentsharinginparalleloperation  
• Low EMI  
E
C
G
TO-220AB  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VCES  
Collector-to-Emitter Voltage  
Continuous Collector Current  
Continuous Collector Current  
Pulse Collector Current  
600  
V
IC @ TC = 25°C  
24  
IC @ TC = 100°C  
12  
48  
ICM  
Clamped Inductive Load Current  
ILM  
48  
A
IF @ TC = 25°C  
Diode Continous Forward Current  
Diode Continous Forward Current  
Diode Maximum Forward Current  
24  
IF @ TC = 100°C  
12  
IFM  
48  
VGE  
Continuous Gate-to-Emitter Voltage  
Transient Gate-to-Emitter Voltage  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
±20  
±30  
140  
70  
V
PD @ TC = 25°C  
W
PD @ TC = 100°C  
TJ  
-55 to +175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
°C  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
–––  
Typ.  
–––  
–––  
0.50  
80  
Max.  
1.07  
3.66  
–––  
Units  
°C/W  
RθJC (IGBT)  
RθJC (Diode)  
RθCS  
Thermal Resistance Junction-to-Case-(each IGBT)  
Thermal Resistance Junction-to-Case-(each Diode)  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
RθJA  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
–––  
1
www.irf.com  
02/24/06  
IRGB4056DPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
CT6  
Parameter  
Collector-to-Emitter Breakdown Voltage  
Min. Typ. Max. Units  
Conditions  
VGE = 0V, IC = 100µA  
V(BR)CES  
600  
4.0  
0.30  
1.55  
1.90  
1.97  
V
V(BR)CES/TJ  
V
GE = 0V, IC = 1mA (25°C-175°C)  
CT6  
Temperature Coeff. of Breakdown Voltage  
V/°C  
IC = 12A, VGE = 15V, TJ = 25°C  
IC = 12A, VGE = 15V, TJ = 150°C  
IC = 12A, VGE = 15V, TJ = 175°C  
5,6,7  
1.85  
VCE(on)  
VGE(th)  
Collector-to-Emitter Saturation Voltage  
V
9,10,11  
V
V
V
CE = VGE, IC = 350µA  
Gate Threshold Voltage  
6.5  
V
mV/°C  
S
9, 10,  
VGE(th)/ TJ  
CE = VGE, IC = 1.0mA (25°C - 175°C)  
CE = 50V, IC = 12A, PW = 80µs  
11, 12  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-18  
gfe  
7.7  
ICES  
VGE = 0V, VCE = 600V  
VGE = 0V, VCE = 600V, TJ = 175°C  
IF = 12A  
Collector-to-Emitter Leakage Current  
2.0  
25  
µA  
475  
2.10  
1.61  
VFM  
IGES  
8
Diode Forward Voltage Drop  
3.10  
V
IF = 12A, TJ = 175°C  
VGE = ±20V  
Gate-to-Emitter Leakage Current  
±100  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
24  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min. Typ. Max. Units  
Conditions  
Qg  
IC = 12A  
25  
7.0  
11  
38  
11  
16  
118  
273  
391  
40  
24  
94  
31  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
V
GE = 15V  
CT1  
nC  
µJ  
ns  
VCC = 400V  
IC = 12A, VCC = 400V, VGE = 15V  
RG = 22, L = 200µH, LS = 150nH, TJ = 25°C  
Energy losses include tail & diode reverse recovery  
IC = 12A, VCC = 400V, VGE = 15V  
CT4  
CT4  
75  
225  
300  
31  
G = 22 , L = 200µH, LS = 150nH, TJ = 25°C  
R
17  
td(off)  
tf  
Turn-Off delay time  
Fall time  
83  
24  
Eon  
Eoff  
Etotal  
td(on)  
tr  
IC = 12A, VCC = 400V, VGE=15V  
13, 15  
CT4  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
185  
355  
540  
30  
RG=22 , L=100µH, LS=150nH, TJ = 175°C  
µJ  
ns  
pF  
Energy losses include tail & diode reverse recovery  
IC = 12A, VCC = 400V, VGE = 15V  
RG = 22, L = 200µH, LS = 150nH  
TJ = 175°C  
WF1, WF2  
14, 16  
CT4  
18  
td(off)  
tf  
WF1  
Turn-Off delay time  
Fall time  
102  
41  
WF2  
Cies  
Coes  
Cres  
V
GE = 0V  
23  
Input Capacitance  
765  
52  
VCC = 30V  
Output Capacitance  
Reverse Transfer Capacitance  
23  
f = 1.0Mhz  
TJ = 175°C, IC = 48A  
4
V
CC = 480V, Vp =600V  
Rg = 22, VGE = +15V to 0V  
CC = 400V, Vp =600V  
RBSOA  
SCSOA  
Reverse Bias Safe Operating Area  
Short Circuit Safe Operating Area  
FULL SQUARE  
CT2  
V
22, CT3  
WF4  
5
µs  
Rg = 22, VGE = +15V to 0V  
TJ = 175°C  
Erec  
trr  
Reverse Recovery Energy of the Diode  
Diode Reverse Recovery Time  
280  
68  
µJ  
ns  
A
17, 18, 19  
20, 21  
WF3  
VCC = 400V, IF = 12A  
VGE = 15V, Rg = 22 , L =200µH, Ls = 150nH  
Irr  
Peak Reverse Recovery Current  
19  
Notes:  
 VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 22.  
‚ This is only applied to TO-220AB package.  
ƒ Pulse width limited by max. junction temperature.  
„ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.  
2
www.irf.com  
IRGB4056DPbF  
25  
20  
15  
10  
5
150  
125  
100  
75  
50  
25  
0
0
0
20 40 60 80 100 120 140 160 180  
(°C)  
0
20 40 60 80 100 120 140 160 180  
T
(°C)  
T
C
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
100  
100  
10  
1
10µsec  
10  
100µsec  
1msec  
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
1
1
10  
100  
(V)  
1000  
10000  
10  
100  
(V)  
1000  
V
V
CE  
CE  
Fig. 3 - Forward SOA  
TC = 25°C, TJ 175°C; VGE =15V  
Fig. 4 - Reverse Bias SOA  
TJ = 175°C; VGE =15V  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 18V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
V
= 18V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
www.irf.com  
3
IRGB4056DPbF  
45  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 18V  
GE  
40  
35  
30  
25  
20  
15  
10  
5
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
-40°c  
25°C  
175°C  
0
0
1
2
3
4
5
6
7
8
0.0  
1.0  
2.0  
(V)  
3.0  
4.0  
V
F
V
(V)  
CE  
Fig. 7 - Typ. IGBT Output Characteristics  
Fig. 8 - Typ. Diode Forward Characteristics  
TJ = 175°C; tp = 80µs  
tp = 80µs  
20  
18  
16  
14  
12  
20  
18  
16  
14  
12  
I
I
I
= 6.0A  
= 12A  
= 24A  
I
I
I
= 6.0A  
= 12A  
= 24A  
CE  
CE  
CE  
CE  
CE  
CE  
10  
8
10  
8
6
6
4
4
2
2
0
0
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 10 - Typical VCE vs. VGE  
Fig. 9 - Typical VCE vs. VGE  
TJ = 25°C  
TJ = -40°C  
50  
40  
30  
20  
10  
0
20  
18  
16  
14  
12  
10  
8
T = 25°C  
J
T
= 175°C  
J
I
I
I
= 6.0A  
CE  
CE  
CE  
= 12A  
= 24A  
6
4
2
0
0
5
10  
15  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 11 - Typical VCE vs. VGE  
Fig. 12 - Typ. Transfer Characteristics  
CE = 50V; tp = 10µs  
TJ = 175°C  
V
4
www.irf.com  
IRGB4056DPbF  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
100  
10  
td  
t
OFF  
E
OFF  
F
td  
ON  
E
ON  
t
R
1
0
10  
20  
30  
5
10  
15  
(A)  
20  
25  
I
C
I
(A)  
C
Fig. 13 - Typ. Energy Loss vs. IC  
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 175°C; L = 200µH; VCE = 400V, RG = 22; VGE = 15V  
TJ = 175°C; L = 200µH; VCE = 400V, RG = 22; VGE = 15V  
500  
1000  
450  
400  
E
OFF  
350  
300  
td  
OFF  
100  
250  
200  
150  
100  
50  
E
ON  
t
F
td  
ON  
t
R
10  
0
25  
50  
Rg (  
75  
100  
125  
0
25  
50  
75  
()  
100  
125  
R
G
)
Fig. 16 - Typ. Switching Time vs. RG  
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 12A; VGE = 15V  
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 12A; VGE = 15V  
25  
25  
10  
R
G =  
20  
15  
10  
5
20  
15  
10  
5
22  
R
G =  
47  
R
G =  
100  
R
G =  
0
0
10  
20  
30  
0
25  
50  
75  
Ω)  
100  
125  
I
(A)  
R
(
F
G
Fig. 17 - Typ. Diode IRR vs. IF  
Fig. 18 - Typ. Diode IRR vs. RG  
TJ = 175°C  
TJ = 175°C  
www.irf.com  
5
IRGB4056DPbF  
1400  
1200  
1000  
800  
25  
20  
15  
10  
5
24A  
10Ω  
22Ω  
47Ω  
12A  
600  
100Ω  
400  
6.0A  
200  
0
0
500  
1000  
1500  
0
500  
1000  
1500  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 20 - Typ. Diode QRR vs. diF/dt  
CC = 400V; VGE = 15V; TJ = 175°C  
Fig. 19 - Typ. Diode IRR vs. diF/dt  
VCC = 400V; VGE = 15V; IF = 12A; TJ = 175°C  
V
120  
20  
18  
16  
14  
12  
10  
8
400  
R
= 10  
G
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
350  
300  
250  
200  
150  
100  
50  
= 22  
R
G
= 47  
R
G
R
= 100  
G
6
4
2
0
0
8
10  
12  
14  
(V)  
16  
18  
0
10  
20  
30  
I
(A)  
V
GE  
F
Fig. 22 - VGE vs. Short Circuit Time  
Fig. 21 - Typ. Diode ERR vs. IF  
VCC = 400V; TC = 25°C  
TJ = 175°C  
16  
14  
12  
10  
8
10000  
1000  
100  
V
V
= 300V  
= 400V  
CES  
CES  
Cies  
6
4
Coes  
Cres  
2
0
10  
0
5
10  
15  
20  
25  
30  
0
20  
40  
60  
(V)  
80  
100  
Q
, Total Gate Charge (nC)  
V
G
CE  
Fig. 24 - Typical Gate Charge vs. VGE  
Fig. 23 - Typ. Capacitance vs. VCE  
ICE = 12A; L = 600µH  
VGE= 0V; f = 1MHz  
6
www.irf.com  
IRGB4056DPbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.1  
0.02  
0.01  
τ
J τJ  
τ
τ
Cτ  
0.358  
0.424  
0.287  
0.000171  
0.001361  
0.009475  
τ
1τ1  
τ
2 τ2  
3τ3  
Ci= τi/Ri  
/
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
0.1  
0.02  
0.01  
Ri (°C/W) τi (sec)  
τ0.821094 0.000233  
τ
J τJ  
τ
τC  
τ
1τ1  
τ
2 τ2  
3τ3  
1.913817 0.001894  
0.926641 0.014711  
Ci= τi/Ri  
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
/
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
7
IRGB4056DPbF  
L
L
80 V  
VCC  
DUT  
DUT  
480V  
0
Rg  
1K  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
diode clamp /  
DUT  
L
4x  
- 5V  
DC  
360V  
DUT /  
DRIVER  
VCC  
DUT  
Rg  
Fig.C.T.3 - S.C. SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
V
CC  
C force  
400µH  
R =  
I
CM  
D1  
10K  
C sense  
DUT  
VCC  
G force  
DUT  
0.0075µ  
Rg  
E sense  
E force  
Fig.C.T.5 - Resistive Load Circuit  
Fig.C.T.6 - BVCES Filter Circuit  
8
www.irf.com  
IRGB4056DPbF  
500  
400  
300  
200  
100  
0
25  
20  
15  
10  
5
500  
400  
300  
200  
100  
0
50  
40  
30  
tr  
tf  
TEST  
20  
90% ICE  
90% test  
5% ICE  
10  
10% test  
5% VCE  
5% VCE  
0
0
EOFF Loss  
EON  
-100  
-5  
-100  
-10  
-0.50 0.00 0.50 1.00 1.50 2.00  
11.70 11.80 11.90 12.00 12.10  
Time(µs)  
Time (µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 175°C using Fig. CT.4  
@ TJ = 175°C using Fig. CT.4  
25  
500  
400  
300  
200  
100  
0
250  
200  
150  
100  
50  
20  
QRR  
15  
tRR  
10  
VCE  
5
0
ICE  
-5  
-10  
-15  
-20  
-25  
10%  
Peak  
IRR  
Peak  
IRR  
0
-100  
-50  
-0.05  
0.05  
0.15  
-5.00  
0.00  
5.00  
10.00  
time (µS)  
time (µS)  
Fig. WF3 - Typ. Diode Recovery Waveform  
Fig. WF4 - Typ. S.C. Waveform  
@ TJ = 25°C using Fig. CT.3  
@ TJ = 175°C using Fig. CT.4  
www.irf.com  
9
IRGB4056DPbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
TO-220AB package is not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 02/06  
10  
www.irf.com  

相关型号:

IRGB4059DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODEINSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4060DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4061DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4062DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4064DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODEINSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGB4065PBF

PDP TRENCH IGBT
INFINEON

IRGB4086PBF

PDD TRENCH IGBT
INFINEON

IRGB410U

Insulated Gate Bipolar Transistor, 500V V(BR)CES, N-Channel, TO-220AB, TO-220, 3 PIN
INFINEON

IRGB420

INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=7.5A)
INFINEON

IRGB420U

INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=7.5A)
INFINEON

IRGB420UD2

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=500V, @Vge=15V,Ic=7.5A)
INFINEON

IRGB430

INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=15A)
INFINEON