MRF173 [TE]

N-CHANNEL BROADBAND RF POWER MOSFET; N沟道宽带射频功率MOSFET
MRF173
型号: MRF173
厂家: TE CONNECTIVITY    TE CONNECTIVITY
描述:

N-CHANNEL BROADBAND RF POWER MOSFET
N沟道宽带射频功率MOSFET

晶体 晶体管 射频 放大器 局域网
文件: 总8页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
SEMICONDUCTOR TECHNICAL DATA  
by MRF173/D  
The RF MOSFET Line  
M
R
F
1
7
3
R
F
P
o
w
e
r
F
i
e
l
d
E
f
f
e
c
t
T
r
a
n
s
i
s
t
o
r
N–Channel Enhancement Mode MOSFET  
80 W, 28 V, 175 MHz  
N–CHANNEL  
BROADBAND  
RF POWER MOSFET  
Designed for broadband commercial and military applications up to 200 MHz  
frequency range. The high–power, high–gain and broadband performance of  
this device make possible solid state transmitters for FM broadcast or TV  
channel frequency bands.  
Guaranteed Performance at 150 MHz, 28 V:  
Output Power = 80 W  
Gain = 11 dB (13 dB Typ)  
Efficiency = 55% Min. (60% Typ)  
D
Low Thermal Resistance  
Ruggedness Tested at Rated Output Power  
Nitride Passivated Die for Enhanced Reliability  
Low Noise Figure — 1.5 dB Typ at 2.0 A, 150 MHz  
Excellent Thermal Stability; Suited for Class A Operation  
G
CASE 211–11, STYLE 2  
S
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
65  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
Drain–Source Voltage  
Drain–Gate Voltage  
V
DSS  
V
DGO  
65  
Gate–Source Voltage  
Drain Current — Continuous  
V
GS  
±40  
9.0  
I
D
Total Device Dissipation @ T = 25°C  
P
D
220  
Watts  
C
Derate above 25°C  
1.26  
W/°C  
Storage Temperature Range  
Operating Temperature Range  
T
–65 to +150  
200  
°C  
°C  
stg  
T
J
THERMAL CHARACTERISTICS  
Characteristic  
Thermal Resistance, Junction to Case  
Symbol  
Max  
Unit  
R
0.8  
°C/W  
θ
JC  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–Source Breakdown Voltage (V = 0 V, V = 0 V)  
I
D
= 50 mA  
V
(BR)DSS  
65  
V
DS  
GS  
Zero Gate Voltage Drain Current (V = 28 V, V = 0 V)  
I
2.0  
1.0  
mA  
µA  
DS  
GS  
DSS  
GSS  
Gate–Source Leakage Current (V = 40 V, V = 0 V)  
I
GS  
DS  
ON CHARACTERISTICS  
Gate Threshold Voltage (V = 10 V, I = 50 mA)  
V
1.0  
3.0  
6.0  
1.4  
V
V
DS  
D
GS(th)  
Drain–Source On–Voltage (V  
, V = 10 V, I = 3.0 A)  
DS(on) GS  
V
DS(on)  
D
Forward Transconductance (V = 10 V, I = 2.0 A)  
g
fs  
1.8  
2.2  
mhos  
DS  
D
(continued)  
NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and  
packaging MOS devices should be observed.  
REV 10  
1
ELECTRICAL CHARACTERISTICS — continued (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
DYNAMIC CHARACTERISTICS  
Input Capacitance (V = 28 V, V = 0 V, f = 1.0 MHz)  
C
110  
105  
10  
pF  
pF  
pF  
DS  
GS  
iss  
Output Capacitance (V = 28 V, V = 0 V, f = 1.0 MHz)  
C
oss  
DS  
GS  
Reverse Transfer Capacitance (V = 28 V, V = 0 V, f = 1.0 MHz)  
C
rss  
DS  
GS  
FUNCTIONAL CHARACTERISTICS  
Noise Figure (V = 28 V, f = 150 MHz, I = 50 mA)  
NF  
11  
1.5  
13  
dB  
dB  
DD  
DQ  
Common Source Power Gain  
G
ps  
(V = 28 V, P = 80 W, f = 150 MHz, I = 50 mA)  
DD  
out  
DQ  
Drain Efficiency (V = 28 V, P = 80 W, f = 150 MHz, I = 50 mA)  
η
55  
60  
%
DD  
out  
DQ  
Electrical Ruggedness  
ψ
No Degradation in Output Power  
(V = 28 V, P = 80 W, f = 150 MHz, I = 50 mA)  
DD  
out  
DQ  
Load VSWR 30:1 at all phase angles  
Series Equivalent Input Impedance  
Z
2.99–j4.5  
2.68–j1.3  
Ohms  
Ohms  
in  
(V = 28 V, P = 80 W, f = 150 MHz, I = 50 mA)  
DD  
out  
DQ  
Series Equivalent Output Impedance  
Z
out  
(V = 28 V, P = 80 W, f = 150 MHz, I = 50 mA)  
DD  
out  
DQ  
R F C 1  
V
D
=
2 8  
V
R2  
D
C
1
1
C
1
2
+
V
dc  
+
-
+
-
R
1
C
8
C
9
Z
1
C
1
0
C1 3  
C1 5  
C
1
4
-
R
F
C
2
R
F
D
.
U
.
T
.
O
U
T
P
U
T
L
3
L
4
C
1
6
R
F
R
3
I
N
P
U
T
C
1
L
1
L
2
C
4
C
5
C
6
C
7
C
2
C
3
C1, C15 — 470 pF Unelco  
C2, C3, C5 — 9–180 pF, Arco 463  
C4, C6 — 15 pF, Unelco  
L3 — #14 AWG Hairpin 0.8long  
L4 — #14 AWG Hairpin 1.1long  
RFC1 — Ferroxcube VK200–19/4B  
C7 — 5–80 pF, Arco 462  
C8, C10, C14, C16 — 0.1 µF  
C9, C13 — 50 µF, 50 Vdc  
RFC2 — 18 Turns #18 AWG Enameled, 0.3ID  
R1 — 10 k, 10 Turns Bourns  
R2 — 1.8 k, 1/4 W  
C11, C12 — 680 pF, Feed Through  
L1 — #16 AWG, 1–1/4 Turns, 0.3ID  
L2 — #16 AWG Hairpin 1long  
R3 — 10 k, 1/2 W  
Z1 — 1N5925A Motorola Zener  
Figure 1. 150 MHz Test Circuit  
REV 10  
2
TYPICAL CHARACTERISTICS  
1 20  
1 00  
8 0  
6 0  
4 0  
2 0  
0
8 0  
7 0  
6 0  
5 0  
4 0  
3 0  
f
=
1 00 M Hz  
15 0 M Hz  
f
=
1 00 MH z  
1 50 MH z  
20 0 M Hz  
2
0
0
M
H
z
V
=
D
2 8  
V
D
2 0  
1 0  
0
I
D
=
Q
5 0 m A  
V
D
=
D
1 3 . 5  
V
I
D
=
Q
5 0 m A  
0
2 . 0  
4 . 0  
6 . 0  
8 .0  
1 0  
1 2  
1 4  
0
1
2
3
4
5
6
7
8
9
1 0  
P , I NP UT P OWE R ( WATT S)  
in  
P , I NP UT P O WE R (WATTS )  
i n  
Figure 2. Output Power versus Input Power  
Figure 3. Output Power versus Input Power  
1 40  
1 20  
1 40  
1 20  
I
f
=
5 0 m A  
I
=
D Q  
5 0 m A  
D
Q
P = 4 . 0  
in  
W
P = 8 . 0  
i n  
W
=
1 00 M Hz  
f
=
1 50 MH z  
1 00  
8 0  
1 00  
8 0  
3 .0  
2 .0  
W
W
6 .0  
4 .0  
W
W
6
0
6 0  
1 .0  
W
2 .0  
W
4 0  
2 0  
0
4 0  
2 0  
0
1 0  
1 2  
1 4  
16  
18  
20  
2
2
2
4
2
6
2
8
3
0
1
0
1
2
1
4
1
6
1
8
2
0
2
2
2
4
2
6
2
8
3
0
V
D
,
S
U
P
P
L
Y
V
O
L
T
A
G
E
(
V
O
L
T
S
)
V
D
,
S
U
P
P
L
Y
V
O
L
T
A
G
E
(
V
O
L
T
S
)
D
D
Figure 4. Output Power versus Supply Voltage  
Figure 5. Output Power versus Supply Voltage  
2
2
1
4
0
2 0  
1 8  
I
f
=
Q
5
0
m
A
1
2
0
P
V
=
=
8 0  
2 8  
W
V
D
o
u
t
P = 1 4  
i n  
W
=
2 00 M Hz  
D
D
1 6  
I
D Q  
=
5
0
m
A
1 00  
8 0  
1 0  
W
1 4  
1 2  
6 .0  
4 .0  
W
6 0  
1
0
W
8 . 0  
6 . 0  
4 . 0  
2 . 0  
4 0  
2 0  
0
2 0  
4 0  
6 0  
8 0  
1 00 1 20 1 40 1 60 1 80 2 0 0 2 2 0  
f , FRE Q UE NCY (M Hz)  
1 0  
1 2  
1
4
16  
18  
20  
22  
24  
26  
2 8  
3 0  
V
D
, S UPP LY V OLTA GE ( VO LT S)  
D
Figure 7. Power Gain versus Frequency  
Figure 6. Output Power versus Supply Voltage  
REV 10  
3
8 0  
7 0  
6 0  
5 0  
4 0  
3 0  
2 0  
1 0  
0
6 . 0  
5 . 0  
4 . 0  
3 . 0  
2 . 0  
1 . 0  
0
f
=
1 50 M Hz  
= C O NS TA NT  
V
V
=
1 0  
V
D
S
P
V
I
i
n
=
3 .0  
V
=
28  
50 m A  
3. 0  
V
G S (t h)  
D
S
=
D
Q
V
=
V
G
S
(
t
h
)
0
1 .0  
2 .0  
3 .0  
4 .0  
5 .0  
6 .0  
- 14 - 12 - 10 - 8. 0 - 6. 0 - 4. 0 - 2. 0  
0
G ATE - SO UR C E V OLTA GE ( VO LTS )  
2. 0 4 .0 6 . 0  
V ,  
G S  
V
G
,
S
G ATE - S O URCE V O LTA G E (V O LTS )  
Figure 8. Output Power versus Gate Voltage  
Figure 9. Drain Current versus Gate Voltage  
1 .2  
1 .1  
1 .0  
0 .9  
0 .8  
4 20  
3 60  
3 00  
2 40  
1 80  
1 20  
6 0  
1 4 0  
C
i ss  
V
=
28  
V
D
S
1 2 0  
1 0 0  
8 0  
6 0  
4 0  
2 0  
0
V
G
=
0
V
I
D
=
3 . 0  
1. 0  
A
A
S
F
R
E
Q
=
1
MH z  
5 00 mA  
C
os s  
50 mA  
C
r s s  
0
0 .7  
1
6
20  
24  
2 8  
- 25  
0
25  
50  
T , C ASE TE M PER ATU RE°) ( C  
75  
10 0  
12 5  
1 50  
1 75  
0
4
8
12  
V
D
,
S
D
R
A
I
N
-
S
O
U
R
C
E
V
O
L
T
A
G
E
(
V
O
L
T
S
)
C
Figure 10. Gate–Source Voltage versus  
Case Temperature  
Figure 11. Capacitance versus Drain Voltage  
1
0
5. 0  
2. 0  
1. 0  
0. 5  
T
= °C25  
C
0. 2  
0. 1  
1. 0  
2. 0  
4
.
0
6
.
0
1
0
2
0
4 0  
6
0
1
0
0
V
D
,
D
R
A
I
N
-
S
O
U
R
C
E
V
O
L
T
A
G
E
(
V
O
L
T
S
)
S
Figure 12. DC Safe Operating Area  
REV 10  
4
Table 1. Common Source S–Parameters (VDS = 12.5 V, ID = 4 A)  
S
11  
S
21  
S
12  
S
22  
f
|S  
|
φ
–170  
–173  
–174  
–175  
–176  
–177  
–178  
–178  
–179  
–179  
–179  
–180  
–180  
180  
|S  
|
φ
|S  
|
φ
|S |  
22  
φ
–174  
–179  
–178  
180  
179  
–179  
–179  
180  
179  
–180  
–179  
–180  
180  
180  
179  
179  
178  
178  
178  
178  
176  
176  
177  
176  
176  
175  
174  
175  
176  
175  
173  
173  
174  
172  
172  
172  
171  
173  
170  
169  
170  
170  
MHz  
11  
21  
12  
30  
0.879  
0.883  
0.885  
0.885  
0.888  
0.888  
0.888  
0.890  
0.888  
0.892  
0.893  
0.894  
0.896  
0.896  
0.898  
0.899  
0.899  
0.902  
0.902  
0.904  
0.907  
0.907  
0.909  
0.911  
0.909  
0.913  
0.914  
0.915  
0.917  
0.916  
0.917  
0.919  
0.919  
0.920  
0.921  
0.923  
0.925  
0.926  
0.927  
0.929  
0.929  
0.930  
8.09  
6.19  
4.94  
4.21  
3.57  
3.06  
2.71  
2.45  
2.28  
2.02  
1.84  
1.73  
1.58  
1.51  
1.38  
1.28  
1.25  
1.15  
1.12  
1.08  
0.97  
0.95  
0.90  
0.85  
0.83  
0.78  
0.74  
0.74  
0.70  
0.69  
0.65  
0.65  
0.62  
0.60  
0.57  
0.56  
0.54  
0.51  
0.51  
0.49  
0.46  
0.45  
92  
0.014  
0.016  
0.016  
0.017  
0.017  
0.017  
0.018  
0.019  
0.020  
0.021  
0.022  
0.023  
0.024  
0.026  
0.026  
0.028  
0.030  
0.030  
0.032  
0.034  
0.037  
0.037  
0.039  
0.039  
0.042  
0.044  
0.044  
0.047  
0.048  
0.052  
0.055  
0.055  
0.057  
0.059  
0.061  
0.063  
0.065  
0.067  
0.070  
0.071  
0.072  
0.076  
23  
0.839  
0.839  
0.853  
0.845  
0.849  
0.852  
0.842  
0.858  
0.859  
0.872  
0.870  
0.880  
0.887  
0.863  
0.850  
0.871  
0.890  
0.884  
0.899  
0.893  
0.941  
0.884  
0.896  
0.888  
0.895  
0.893  
0.882  
0.877  
0.909  
0.912  
0.885  
0.898  
0.887  
0.918  
0.929  
0.900  
0.907  
0.902  
0.942  
0.926  
0.901  
0.904  
40  
87  
84  
81  
77  
77  
76  
72  
70  
69  
67  
66  
64  
61  
60  
58  
57  
55  
53  
51  
49  
48  
49  
48  
46  
45  
42  
42  
41  
39  
37  
38  
36  
37  
35  
34  
36  
34  
33  
31  
32  
32  
24  
28  
30  
34  
37  
42  
43  
46  
50  
52  
55  
55  
56  
60  
60  
62  
63  
63  
65  
65  
65  
67  
68  
68  
69  
69  
72  
73  
71  
71  
70  
72  
72  
71  
71  
71  
75  
73  
71  
72  
73  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
270  
280  
290  
300  
310  
320  
330  
340  
350  
360  
370  
380  
390  
400  
410  
420  
430  
440  
179  
179  
179  
179  
179  
178  
178  
178  
178  
177  
177  
177  
177  
176  
176  
176  
176  
176  
175  
175  
175  
175  
175  
174  
174  
174  
173  
173  
REV 10  
5
Table 1. Common Source S–Parameters (VDS = 12.5 V, ID = 4 A) (continued)  
S
11  
S
21  
S
12  
S
22  
f
|S  
|
φ
173  
172  
172  
172  
171  
171  
|S  
|
φ
|S  
|
φ
|S |  
22  
φ
170  
167  
168  
168  
167  
167  
MHz  
11  
21  
12  
450  
460  
470  
480  
490  
500  
0.932  
0.932  
0.933  
0.931  
0.931  
0.931  
0.45  
0.44  
0.42  
0.42  
0.41  
0.41  
29  
0.079  
0.082  
0.081  
0.086  
0.089  
0.092  
75  
0.924  
0.938  
0.908  
0.933  
0.926  
0.936  
30  
30  
29  
28  
27  
71  
73  
72  
72  
71  
Table 2. Common Source S–Parameters (VDS = 28 V, ID = 4 A)  
S
11  
S
21  
S
12  
S
22  
f
|S  
|
φ
–163  
–167  
–170  
–171  
–172  
–174  
–174  
–175  
–175  
–176  
–176  
–177  
–177  
–177  
–178  
–178  
–179  
–179  
–179  
–179  
–180  
–180  
180  
|S  
|
φ
|S  
|
φ
|S |  
22  
φ
–169  
–174  
–174  
–175  
–175  
–174  
–174  
–176  
–177  
–175  
–172  
–175  
–176  
–176  
–176  
–175  
–176  
–177  
–178  
–178  
–178  
–178  
–178  
–180  
179  
MHz  
11  
21  
12  
30  
0.840  
0.849  
0.853  
0.854  
0.859  
0.859  
0.861  
0.866  
0.865  
0.871  
0.875  
0.877  
0.883  
0.884  
0.886  
0.890  
0.891  
0.896  
0.898  
0.901  
0.905  
0.906  
0.909  
0.913  
0.912  
0.916  
0.918  
0.919  
0.922  
0.922  
0.924  
0.926  
0.926  
11.48  
8.80  
6.99  
5.92  
5.00  
4.29  
3.77  
3.39  
3.12  
2.75  
2.49  
2.31  
2.10  
1.99  
1.82  
1.66  
1.62  
1.47  
1.41  
1.36  
1.22  
1.19  
1.11  
1.03  
0.10  
0.93  
0.88  
0.87  
0.83  
0.80  
0.75  
0.74  
0.71  
92  
0.016  
0.017  
0.017  
0.017  
0.018  
0.018  
0.019  
0.018  
0.018  
0.019  
0.021  
0.023  
0.023  
0.023  
0.023  
0.025  
0.027  
0.030  
0.031  
0.032  
0.033  
0.034  
0.037  
0.038  
0.041  
0.042  
0.041  
0.044  
0.046  
0.051  
0.054  
0.053  
0.054  
20  
0.718  
0.713  
0.748  
0.746  
0.746  
0.741  
0.735  
0.768  
0.782  
0.794  
0.783  
0.776  
0.806  
0.807  
0.806  
0.820  
0.815  
0.819  
0.842  
0.855  
0.906  
0.845  
0.831  
0.837  
0.859  
0.876  
0.865  
0.837  
0.863  
0.879  
0.878  
0.897  
0.879  
40  
86  
82  
79  
74  
73  
71  
67  
64  
63  
60  
59  
56  
53  
51  
49  
48  
46  
43  
41  
38  
38  
39  
37  
35  
34  
31  
31  
31  
27  
26  
27  
24  
22  
24  
23  
25  
30  
38  
40  
41  
42  
45  
51  
55  
58  
61  
59  
60  
63  
67  
70  
70  
67  
68  
70  
72  
74  
73  
74  
74  
73  
74  
74  
77  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
270  
280  
290  
300  
310  
320  
330  
340  
350  
180  
179  
179  
178  
179  
179  
178  
–180  
180  
178  
178  
177  
177  
176  
177  
177  
177  
179  
REV 10  
6
Table 2. Common Source S–Parameters (VDS = 28 V, ID = 4 A) (continued)  
S
11  
S
21  
S
12  
S
22  
f
|S  
|
φ
177  
177  
176  
176  
176  
175  
175  
174  
174  
174  
173  
173  
173  
172  
172  
|S  
|
φ
|S  
|
φ
|S |  
22  
φ
177  
175  
174  
174  
177  
175  
173  
173  
172  
172  
171  
172  
171  
169  
168  
MHz  
11  
21  
12  
360  
370  
380  
390  
400  
410  
420  
430  
440  
450  
460  
470  
480  
490  
500  
0.927  
0.929  
0.931  
0.934  
0.934  
0.936  
0.938  
0.938  
0.939  
0.941  
0.941  
0.942  
0.940  
0.940  
0.940  
0.68  
0.64  
0.62  
0.60  
0.57  
0.56  
0.53  
0.51  
0.49  
0.48  
0.47  
0.45  
0.44  
0.43  
0.42  
26  
0.056  
0.058  
0.062  
0.064  
0.065  
0.068  
0.070  
0.072  
0.075  
0.080  
0.082  
0.080  
0.083  
0.088  
0.092  
75  
0.888  
0.893  
0.885  
0.903  
0.898  
0.931  
0.906  
0.885  
0.895  
0.923  
0.940  
0.904  
0.910  
0.906  
0.927  
24  
23  
25  
22  
21  
20  
21  
21  
19  
19  
18  
18  
18  
17  
73  
72  
74  
78  
77  
74  
73  
75  
78  
75  
75  
74  
72  
72  
DESIGN CONSIDERATIONS  
MRF173 was characterized at IDQ = 50 mA, which is the  
suggested minimum value of IDQ. For special applications  
such as linear amplification, IDQ may have to be selected to  
optimize the critical parameters.  
The gate is a dc open circuit and draws no current. There-  
fore, the gate bias circuit may generally be just a simple re-  
sistive divider network. Some special applications may  
require a more elaborate bias system.  
The MRF173 is a RF MOSFET power N–channel en-  
hancement mode field–effect transistor (FET) designed for  
VHF power amplifier applications. M/A-COM RF MOSFETs  
feature a vertical structure with a planar design, thus avoid-  
ing the processing difficulties associated with V–groove pow-  
er FETs.  
M/A-COM Application Note AN211A, FETs in Theory and  
Practice, is suggested reading for those not familiar with the  
construction and characteristics of FETs.  
GAIN CONTROL  
Power output of the MRF173 may be controlled from its  
rated value down to zero (negative gain) by varying the dc  
gate voltage. This feature facilitates the design of manual gain  
control, AGC/ALC and modulation systems. (see Figure 8.)  
The major advantages of RF power FETs include high  
gain, low noise, simple bias systems, relative immunity from  
thermal runaway, and the ability to withstand severely mis-  
matched loads without suffering damage. Power output can  
be varied over a wide range with a low power dc control sig-  
nal, thus facilitating manual gain control, ALC and modula-  
tion.  
AMPLIFIER DESIGN  
Impedance matching networks similar to those used with  
bipolar VHF transistors are suitable for MRF173. See M/A-COM  
Application Note AN721, Impedance Matching Networks  
Applied to RF Power Transistors. The higher input imped-  
ance of RF MOSFETs helps ease the task of broadband net-  
work design. Both small–signal scattering parameters and  
large–signal impedances are provided. While the s–parame-  
ters will not produce an exact design solution for high power  
operation, they do yield a good first approximation. This is an  
additional advantage of RF MOS power FETs.  
DC BIAS  
The MRF173 is an enhancement mode FET and, there-  
fore, does not conduct when drain voltage is applied.  
Drain current flows when a positive voltage is applied to  
the gate. See Figure 9 for a typical plot of drain current  
versus gate voltage. RF power FETs require forward bias  
for optimum performance. The value of quiescent drain  
current (IDQ) is not critical for many applications. The  
REV 10  
7
PACKAGE DIMENSIONS  
A
U
N O TE S :  
1. D I MEN S I ON I N G A N D TO LE R AN C I N G P ER AN S I  
Y 14. 5M, 198 2.  
M
2. C O N TR O LL IN G D I MEN S I ON : I N CH .  
1
INCHES  
DIM MIN MAX  
MILLIMETERS  
M
Q
MIN  
24. 39  
11. 82  
5. 82  
MAX  
25. 14  
12. 95  
6. 98  
5. 96  
2. 79  
4. 52  
0. 17  
---  
4
A
B
C
D
E
H
J
0. 960  
0. 465  
0. 229  
0. 216  
0. 084  
0. 144  
0. 003  
0. 435  
0. 990  
0. 510  
0. 275  
0. 235  
0. 110  
0. 178  
0. 007  
---  
R
B
5. 49  
2. 14  
3. 66  
0. 08  
2
3
K
M
Q
R
U
11. 05  
D
45ꢀ ꢀ ꢀN O M  
45ꢀ ꢀ ꢀN O M  
_
_
K
0. 115  
0. 246  
0. 720  
0. 130  
0. 255  
0. 730  
2. 93  
6. 25  
3. 30  
6. 47  
18. 29  
18. 54  
J
S TY LE 2:  
P IN 1. S OU R C E  
2. G AT E  
C
H
E
SEATING  
PLANE  
3. S OU R C E  
4. D R AI N  
CASE 211–11  
ISSUE N  
Specifications subject to change without notice.  
n North America: Tel. (800) 366-2266, Fax (800) 618-8883  
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298  
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020  
Visit www.macom.com for additional data sheets and product information.  
REV 10  
8

相关型号:

MRF173CQ

N-CHANNEL BROADBAND RF POWER MOSFET
TE

MRF173CQ

N-CHANNEL BROADBAND RF POWER MOSFETs
MOTOROLA

MRF174

N-CHANNEL MOS BROADBAND RF POWER FET
MOTOROLA

MRF174

N-CHANNEL MOS BROADBAND RF POWER FET
TE

MRF175GU

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF175GU

N-CHANNEL MOS BROADBAND RF POWER FETs
TE

MRF175GU

RF POWER FIELD-EFFECT TRANSISTOR
ASI

MRF175GU1111

N-CHANNEL MOS BROADBAND RF POWER FETs
TE

MRF175GV

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF175GV

N-CHANNEL MOS BROADBAND RF POWER FETs
TE

MRF175GV

RF POWER FIELD-EFFECT TRANSISTOR
ASI

MRF175LU

N-CHANNEL BROADBAND RF POWER FETs
MOTOROLA