MRF175GU [MOTOROLA]

N-CHANNEL MOS BROADBAND RF POWER FETs; N沟道MOS宽带射频功率FET
MRF175GU
型号: MRF175GU
厂家: MOTOROLA    MOTOROLA
描述:

N-CHANNEL MOS BROADBAND RF POWER FETs
N沟道MOS宽带射频功率FET

晶体 射频场效应晶体管 CD 局域网
文件: 总8页 (文件大小:186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MRF175GU/D  
SEMICONDUCTOR TECHNICAL DATA  
The RF MOSFET Line  
N–Channel Enhancement–Mode  
Designed for broadband commercial and military applications using push pull  
circuits at frequencies to 500 MHz. The high power, high gain and broadband  
performance of these devices makes possible solid state transmitters for FM  
broadcast or TV channel frequency bands.  
200/150 WATTS, 28 V, 500 MHz  
N–CHANNEL MOS  
BROADBAND  
Guaranteed Performance  
RF POWER FETs  
MRF175GV @ 28 V, 225 MHz (“V” Suffix)  
Output Power — 200 Watts  
Power Gain — 14 dB Typ  
Efficiency — 65% Typ  
MRF175GU @ 28 V, 400 MHz (“U” Suffix)  
Output Power — 150 Watts  
Power Gain — 12 dB Typ  
Efficiency — 55% Typ  
D
100% Ruggedness Tested At Rated Output Power  
Low Thermal Resistance  
G
G
Low C  
— 20 pF Typ @ V  
= 28 V  
DS  
S
rss  
(FLANGE)  
CASE 375–04, STYLE 2  
D
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
65  
Unit  
Vdc  
Vdc  
Drain–Source Voltage  
Drain–Gate Voltage  
V
DSS  
V
DGR  
65  
(R  
= 1.0 M)  
GS  
Gate–Source Voltage  
V
±40  
Vdc  
Adc  
GS  
Drain Current — Continuous  
I
26  
D
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
D
400  
2.27  
Watts  
W/°C  
C
Storage Temperature Range  
Operating Junction Temperature  
THERMAL CHARACTERISTICS  
T
65 to +150  
200  
°C  
°C  
stg  
T
J
Characteristic  
Thermal Resistance, Junction to Case  
Symbol  
Max  
Unit  
R
0.44  
°C/W  
θJC  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS (1)  
Drain–Source Breakdown Voltage  
(V = 0, I = 50 mA)  
V
65  
Vdc  
mAdc  
(BR)DSS  
GS  
Zero Gate Voltage Drain Current  
(V = 28 V, V = 0)  
D
I
2.5  
1.0  
DSS  
GSS  
DS GS  
Gate–Source Leakage Current  
(V = 20 V, V = 0)  
I
µAdc  
GS DS  
(continued)  
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and  
packaging MOS devices should be observed.  
REV 7  
Motorola, Inc. 1995  
ELECTRICAL CHARACTERISTICS — continued (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS (1)  
Gate Threshold Voltage (V  
DS  
= 10 V, I = 100 mA)  
V
1.0  
0.1  
2.0  
3.0  
0.9  
3.0  
6.0  
1.5  
Vdc  
Vdc  
D
GS(th)  
Drain–Source On–Voltage (V  
GS  
= 10 V, I = 5.0 A)  
V
D
DS(on)  
Forward Transconductance (V  
DS  
= 10 V, I = 2.5 A)  
g
fs  
mhos  
D
DYNAMIC CHARACTERISTICS (1)  
Input Capacitance (V  
DS  
= 28 V, V  
GS  
= 0, f = 1.0 MHz)  
= 0, f = 1.0 MHz)  
= 0, f = 1.0 MHz)  
C
180  
200  
20  
pF  
pF  
pF  
iss  
Output Capacitance (V  
DS  
= 28 V, V  
GS  
C
oss  
Reverse Transfer Capacitance (V  
DS  
= 28 V, V  
GS  
C
rss  
FUNCTIONAL CHARACTERISTICS — MRF175GV (2) (Figure 1)  
Common Source Power Gain  
G
12  
55  
14  
65  
dB  
%
ps  
(V  
DD  
= 28 Vdc, P  
= 200 W, f = 225 MHz, I  
= 200 W, f = 225 MHz, I  
= 200 W, f = 225 MHz, I  
= 2.0 x 100 mA)  
= 2.0 x 100 mA)  
= 2.0 x 100 mA,  
out  
DQ  
DQ  
DQ  
Drain Efficiency  
(V = 28 Vdc, P  
η
DD  
out  
Electrical Ruggedness  
(V = 28 Vdc, P  
ψ
No Degradation in Output Power  
DD out  
VSWR 10:1 at all Phase Angles)  
NOTES:  
1. Each side of device measured separately.  
2. Measured in push–pull configuration.  
L2  
R1  
+
C10  
28 V  
BIAS 0–6 V  
C8  
C9  
C3  
C4  
R2  
L1  
D.U.T.  
T2  
T1  
C6  
C5  
C1  
C2  
C7  
C1 — Arco 404, 8.060 pF  
C2, C3, C7, C8 — 1000 pF Chip  
C4, C9 — 0.1 µF Chip  
C5 — 180 pF Chip  
C6 — 100 pF and 130 pF Chips in Parallel  
R1 — 100 Ohms, 1/2 W  
R2 — 1.0 k Ohm, 1/2 W  
T1 — 4:1 Impedance Ratio RF Transformer.  
T1 — Can Be Made of 25 Ohm Semirigid Coax,  
T1 — 4752 Mils O.D.  
C10 — 0.47 µF Chip, Kemet 1215 or Equivalent  
L1 — 10 Turns AWG #16 Enamel Wire, Close  
L1 — Wound, 1/4I.D.  
T2 — 1:9 Impedance Ratio RF Transformer.  
T2 — Can Be Made of 1518 Ohms Semirigid  
T2 — Coax, 6290 Mils O.D.  
L2 — Ferrite Beads of Suitable Material for  
L2 — 1.52.0 µH Total Inductance  
NOTE: For stability, the input transformer T1 should be loaded  
NOTE: with ferrite toroids or beads to increase the common  
NOTE: mode inductance. For operation below 100 MHz. The  
NOTE: same is required for the output transformer.  
Board material — .062fiberglass (G10),  
Two sided, 1 oz. copper, ε  
5
r
Unless otherwise noted, all chip capacitors  
are ATC Type 100 or Equivalent.  
Figure 1. 225 MHz Test Circuit  
MRF175GU MRF175GV  
2
MOTOROLA RF DEVICE DATA  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
FUNCTIONAL CHARACTERISTICS — MRF175GU (1) (Figure 2)  
Common Source Power Gain  
G
10  
50  
12  
55  
dB  
%
ps  
(V  
DD  
= 28 Vdc, P  
= 150 W, f = 400 MHz, I  
= 150 W, f = 400 MHz, I  
= 150 W, f = 400 MHz, I  
= 2.0 x 100 mA)  
= 2.0 x 100 mA)  
= 2.0 x 100 mA,  
out  
DQ  
DQ  
DQ  
Drain Efficiency  
(V = 28 Vdc, P  
η
DD  
out  
Electrical Ruggedness  
(V = 28 Vdc, P  
ψ
No Degradation in Output Power  
DD out  
VSWR 10:1 at all Phase Angles)  
NOTE:  
1. Measured in push–pull configuration.  
B
A
L5  
L6  
C14  
C15  
BIAS  
28 V  
C18  
R1  
C10  
C11  
C1  
C12  
R2  
C13  
L3  
D.U.T.  
C8  
L1  
Z1  
Z3  
Z4  
Z5  
B1  
C3  
C4  
C6  
L4  
C5  
C7  
B2  
Z2  
Z6  
L2  
C2  
C9  
R3  
A
B
0.180  
C16  
C17  
0.200  
B1 — Balun 50 Semi Rigid Coax 0.086O.D. 2Long  
B2 — Balun 50 Semi Rigid Coax 0.141O.D. 2Long  
C1, C2, C8, C9 — 270 pF ATC Chip Cap  
C3, C5, C7 — 1.020 pF Trimmer Cap  
C4 — 15 pF ATC Chip Cap  
L1, L2 — Hairpin Inductor #18 Wire  
L3, L4 — 12 Turns #18 Enameled Wire 0.340I.D.  
L5 — Ferroxcube VK200 20/4B  
L6 — 3 Turns #16 Enameled Wire 0.340I.D.  
R1 — 1.0 k1/4 W Resistor  
C6 — 33 pF ATC Chip Cap  
R2, R3 — 10 k1/4 W Resistor  
C10, C12, C13, C16, C17 — 0.01 µF Ceramic Cap  
C11 — 1.0 µF 50 V Tantalum  
C14, C15 — 680 pF Feedthru Cap  
Z1, Z2 — Microstrip Line 0.400x 0.250″  
Z3, Z4 — Microstrip Line 0.870x 0.250″  
Z5, Z6 — Microstrip Line 0.500x 0.250″  
C18 — 20 µF 50 V Tantalum  
Board material — 0.060Teflon–fiberglass,  
ε = 2.55, copper clad both sides, 2 oz. copper.  
r
Figure 2. 400 MHz Test Circuit  
MOTOROLA RF DEVICE DATA  
MRF175GU MRF175GV  
3
TYPICAL CHARACTERISTICS  
4000  
3000  
2000  
1000  
0
100  
V
V
= 20 V  
= 10 V  
DS  
10  
DS  
T
= 25°C  
C
1
0
2
4
6
8
10  
12  
14  
16  
18  
20  
1
10  
, DRAIN–SOURCE VOLTAGE (VOLTS)  
100  
I
, DRAIN CURRENT (AMPS)  
V
DS  
D
Figure 3. Common Source Unity Current Gain  
Frequency versus Drain Current  
Figure 4. DC Safe Operating Area  
5
4
3
2
1
1.2  
V
= 28 V  
DD  
1.1  
1
V
= 10 V  
DS  
I
= 4 A  
D
3 A  
2 A  
TYPICAL DEVICE SHOWN, V  
GS(th)  
= 3 V  
0.9  
0.8  
100 mA  
1
2
3
4
5
6
25  
0
25  
50  
75  
100  
125  
150  
175  
V
, GATE–SOURCE VOLTAGE (VOLTS)  
T
, CASE TEMPERATURE (°C)  
GS  
C
Figure 5. Drain Current versus Gate Voltage  
(Transfer Characteristics)  
Figure 6. Gate–Source Voltage versus  
Case Temperature  
1000  
500  
V
= 0 V  
GS  
f = 1 MHz  
C
oss  
200  
100  
50  
C
iss  
C
rss  
20  
10  
0
5
10  
15  
20  
25  
V
, DRAIN–SOURCE VOLTAGE (VOLTS)  
DS  
Figure 7. Capacitance versus Drain–Source Voltage*  
* Data shown applies to each half of MRF175GU/GV.  
MRF175GU MRF175GV  
4
MOTOROLA RF DEVICE DATA  
TYPICAL CHARACTERISTICS  
MRF175GV  
300  
200  
100  
0
320  
280  
I
= 2 x 100 mA  
DQ  
f = 225 MHz  
240  
200  
P
= 12 W  
in  
8 W  
4 W  
160  
120  
80  
40  
0
V
I
= 28 V  
= 2 x 100 mA  
DD  
DQ  
f = 225 MHz  
0
12  
24  
12  
14  
16  
18  
20  
22  
24  
26  
28  
P
, POWER INPUT (WATTS)  
V , SUPPLY VOLTAGE (VOLTS)  
DD  
in  
Figure 8. Power Input versus Power Output  
Figure 9. Output Power versus Supply Voltage  
MRF175GU  
200  
180  
160  
140  
120  
100  
200  
180  
160  
140  
120  
100  
P
= 14 W  
in  
f = 400 MHz  
500 MHz  
10 W  
6 W  
80  
60  
40  
20  
0
80  
60  
40  
20  
V
I
= 28 V  
= 2 x 100 mA  
DS  
DQ  
f = 400 MHz  
24 26  
0
12  
14  
16  
18  
20  
22  
28  
0
5
10  
15  
20  
25  
V
, SUPPLY VOLTAGE (VOLTS)  
P
, INPUT POWER (WATTS)  
DD  
in  
Figure 10. Output Power versus Supply Voltage  
Figure 11. Output Power versus Input Power  
MRF175GV  
30  
25  
P
= 200 W  
out  
20  
15  
V
I
= 28 V  
= 2 x 100 mA  
DS  
DQ  
150 W  
10  
5
5
10  
20  
50  
100  
200  
500  
f, FREQUENCY (MHz)  
Figure 12. Power Gain versus Frequency  
MOTOROLA RF DEVICE DATA  
MRF175GU MRF175GV  
5
INPUT AND OUTPUT IMPEDANCE  
V
= 28 V, I = 2 x 100 mA  
DQ  
DD  
Z
in  
f
Z
Z
*
OL  
in  
OHMS  
300  
MHz  
OHMS  
400  
225  
(P  
= 150 W)  
out  
225  
400  
Z
225  
300  
400  
500  
1.95 – j2.30  
1.75 – j0.20  
1.60 + j2.20  
1.35 + j4.00  
3.10 – j0.25  
2.60 + j0.20  
2.00 + j1.20  
1.70 + j2.70  
f = 500 MHz  
f = 500 MHz  
300  
*
Z
*
225  
OL  
OL  
150  
100  
150  
100  
50  
30  
(P  
out  
= 200 W)  
Z
*=Conjugateoftheoptimumload  
OL  
impedance into which the device  
operates at a given output power,  
voltage and frequency.  
30  
50  
100  
150  
225  
6.50 – j5.10  
5.00 – j4.80  
3.60 – j4.20  
2.80 – j3.60  
1.95 – j2.30  
6.30 – j2.50  
5.75 – j2.75  
4.60 – j2.65  
2.60 – j2.20  
2.60 – j0.60  
50  
30  
Z
= 10 Ω  
o
NOTE: Input and output impedance values given are measured from gate to gate and drain to drain respectively.  
Figure 13. Series Equivalent Input/Output Impedance  
RF POWER MOSFET CONSIDERATIONS  
MOSFET CAPACITANCES  
The physical structure of a MOSFET results in capacitors  
between the terminals. The metal oxide gate structure deter-  
provided for general information about the device. They are  
not RF design parameters and no attempt should be made to  
use them as such.  
mines the capacitors from gate–to–drain (C ), and gate–to–  
gd  
source (C ). The PN junction formed during the fabrication  
LINEARITY AND GAIN CHARACTERISTICS  
gs  
In addition to the typical IMD and power gain, data pres-  
ented in Figure 3 may give the designer additional informa-  
tion on the capabilities of this device. The graph represents  
the small signal unity current gain frequency at a given drain  
of the MOSFET results in a junction capacitance from drain–  
to–source (C ).  
ds  
These capacitances are characterized as input (C ), out-  
iss  
put (C  
) and reverse transfer (C ) capacitances on data  
sheets. The relationships between the inter–terminal capaci-  
tances and those given on data sheets are shown below. The  
oss  
rss  
current level. This is equivalent to f for bipolar transistors.  
T
Since this test is performed at a fast sweep speed, heating of  
the device does not occur. Thus, in normal use, the higher  
temperatures may degrade these characteristics to some ex-  
tent.  
C
can be specified in two ways:  
iss  
1. Drain shorted to source and positive voltage at the gate.  
2. Positivevoltageofthedraininrespecttosourceandzero  
volts at the gate. In the latter case the numbers are lower.  
However, neither method represents the actual operat-  
ing conditions in RF applications.  
DRAIN CHARACTERISTICS  
One figure of merit for a FET is its static resistance in the  
full–on condition. This on–resistance, V  
, occurs in the  
DS(on)  
linear region of the output characteristic and is specified un-  
der specific test conditions for gate–source voltage and drain  
DRAIN  
C
gd  
current. For MOSFETs, V  
has a positive temperature  
DS(on)  
coefficient and constitutes an important design consideration  
at high temperatures, because it contributes to the power  
dissipation within the device.  
GATE  
C
C
C
= C + C  
gd gs  
iss  
C
= C + C  
ds  
oss  
rss  
gd  
ds  
= C  
gd  
C
gs  
SOURCE  
GATE CHARACTERISTICS  
The gate of the MOSFET is a polysilicon material, and is  
electrically isolated from the source by a layer of oxide. The  
input resistance is very high — on the order of 10 ohms —  
The C  
iss  
given in the electrical characteristics table was  
measured using method 2 above. It should be noted that  
, C , C are measured at zero drain current and are  
9
C
resulting in a leakage current of a few nanoamperes.  
iss oss rss  
MRF175GU MRF175GV  
6
MOTOROLA RF DEVICE DATA  
Gate control is achieved by applying a positive voltage  
slightly in excess of the gate–to–source threshold voltage,  
DESIGN CONSIDERATIONS  
The MRF175G is a RF power N–channel enhancement  
mode field–effect transistor (FETs) designed for HF, VHF and  
UHF power amplifier applications. Motorola RF MOSFETs  
feature a vertical structure with a planar design.  
Motorola Application Note AN211A, FETs in Theory and  
Practice, is suggested reading for those not familiar with the  
construction and characteristics of FETs.  
The major advantages of RF power FETs include high  
gain, low noise, simple bias systems, relative immunity from  
thermal runaway, and the ability to withstand severely mis-  
matched loads without suffering damage. Power output can  
be varied over a wide range with a low power dc control sig-  
nal.  
V
.
GS(th)  
Gate Voltage Rating — Never exceed the gate voltage  
rating (or any of the maximum ratings on the front page). Ex-  
ceeding the rated V can result in permanent damage to  
GS  
the oxide layer in the gate region.  
Gate Termination — The gates of this device are essen-  
tially capacitors. Circuits that leave the gate open–circuited  
or floating should be avoided. These conditions can result in  
turn–on of the devices due to voltage build–up on the input  
capacitor due to leakage currents or pickup.  
Gate Protection — These devices do not have an internal  
monolithic zener diode from gate–to–source. If gate protec-  
tion is required, an external zener diode is recommended.  
Using a resistor to keep the gate–to–source impedance  
low also helps damp transients and serves another important  
function. Voltage transients on the drain can be coupled to  
the gate through the parasitic gate–drain capacitance. If the  
gate–to–source impedance and the rate of voltage change  
on the drain are both high, then the signal coupled to the gate  
may be large enough to exceed the gate–threshold voltage  
and turn the device on.  
DC BIAS  
The MRF175G is an enhancement mode FET and, there-  
fore, does not conduct when drain voltage is applied. Drain  
current flows when a positive voltage is applied to the gate.  
RF power FETs require forward bias for optimum perfor-  
mance. The value of quiescent drain current (I  
) is not criti-  
DQ  
cal for many applications. The MRF175G was characterized  
at I = 100 mA, each side, which is the suggested minimum  
DQ  
value of I  
cation, I  
DQ  
parameters.  
. For special applications such as linear amplifi-  
DQ  
may have to be selected to optimize the critical  
HANDLING CONSIDERATIONS  
When shipping, the devices should be transported only in  
antistatic bags or conductive foam. Upon removal from the  
packaging, careful handling procedures should be adhered  
to. Those handling the devices should wear grounding straps  
and devices not in the antistatic packaging should be kept in  
metal tote bins. MOSFETs should be handled by the case  
and not by the leads, and when testing the device, all leads  
should make good electrical contact before voltage is ap-  
plied. As a final note, when placing the FET into the system it  
is designed for, soldering should be done with grounded  
equipment.  
The gate is a dc open circuit and draws no current. There-  
fore, the gate bias circuit may be just a simple resistive divid-  
er network. Some applications may require a more elaborate  
bias sytem.  
GAIN CONTROL  
Power output of the MRF176 may be controlled from its  
rated value down to zero (negative gain) by varying the dc  
gate voltage. This feature facilitates the design of manual  
gain control, AGC/ALC and modulation systems.  
MOTOROLA RF DEVICE DATA  
MRF175GU MRF175GV  
7
PACKAGE DIMENSIONS  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
U
G
Q RADIUS 2 PL  
M
M
M
0.25 (0.010)  
T
A
B
1
2
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
E
G
H
J
K
N
Q
R
U
MAX  
1.350  
0.410  
0.230  
0.235  
0.070  
0.440  
0.112  
0.006  
0.215  
0.875  
0.070  
0.410  
MIN  
33.79  
9.40  
4.83  
5.47  
1.27  
10.92  
2.59  
0.11  
MAX  
34.29  
10.41  
5.84  
5.96  
1.77  
11.18  
2.84  
0.15  
1.330  
0.370  
0.190  
0.215  
0.050  
0.430  
0.102  
0.004  
0.185  
0.845  
0.060  
0.390  
–B–  
R
5
3
K
D
4.83  
21.46  
1.52  
9.91  
5.33  
22.23  
1.78  
J
N
10.41  
E
1.100 BSC  
27.94 BSC  
H
STYLE 2:  
SEATING  
PLANE  
PIN 1. DRAIN  
2. DRAIN  
3. GATE  
–T–  
–A–  
C
4. GATE  
5. SOURCE  
CASE 375–04  
ISSUE D  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MRF175GU/D  

相关型号:

MRF175GU1111

N-CHANNEL MOS BROADBAND RF POWER FETs
TE

MRF175GV

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF175GV

N-CHANNEL MOS BROADBAND RF POWER FETs
TE

MRF175GV

RF POWER FIELD-EFFECT TRANSISTOR
ASI

MRF175LU

N-CHANNEL BROADBAND RF POWER FETs
MOTOROLA

MRF175LU

N-CHANNEL BROADBAND RF POWER FETs
TE

MRF175LV

N-CHANNEL BROADBAND RF POWER FETs
MOTOROLA

MRF175LV

N-CHANNEL BROADBAND RF POWER FETs
TE

MRF176

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF176GU

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF176GU

The RF MOSFET Line 200/150W, 500MHz, 50V
TE

MRF176GV

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA