MRF175GU1111 [TE]

N-CHANNEL MOS BROADBAND RF POWER FETs; N沟道MOS宽带射频功率FET
MRF175GU1111
型号: MRF175GU1111
厂家: TE CONNECTIVITY    TE CONNECTIVITY
描述:

N-CHANNEL MOS BROADBAND RF POWER FETs
N沟道MOS宽带射频功率FET

射频
文件: 总10页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
SEMICONDUCTOR TECHNICAL DATA  
by MRF176GU/D  
The RF MOSFET Line  
R
F
P
o
w
e
r
M
R
F
1
7
6
G
U
F
i
e
l
d
-
E
f
f
e
c
t
T
r
a
n
s
i
s
t
o
r
s
M
R
F
1
7
6
G
V
N–Channel Enhancement–Mode  
Designed for broadband commercial and military applications using push pull  
circuits at frequencies to 500 MHz. The high power, high gain and broadband  
performance of these devices makes possible solid state transmitters for FM  
broadcast or TV channel frequency bands.  
200/150 W, 50 V, 500 MHz  
N–CHANNEL MOS  
BROADBAND  
Electrical Performance  
RF POWER FETs  
MRF176GU @ 50 V, 400 MHz (“U” Suffix)  
Output Power — 150 Watts  
Power Gain — 14 dB Typ  
D
Efficiency — 50% Typ  
MRF176GV @ 50 V, 225 MHz (“V” Suffix)  
Output Power — 200 Watts  
Power Gain — 17 dB Typ  
G
G
S
Efficiency — 55% Typ  
(
F
L
A
N
G
E
)
100% Ruggedness Tested At Rated Output Power  
Low Thermal Resistance  
D
Low Crss — 7.0 pF Typ @ VDS = 50 V  
CASE 375–04, STYLE 2  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
125  
±40  
16  
Unit  
Vdc  
Vdc  
Adc  
Drain–Source Voltage  
Gate–Source Voltage  
V
DSS  
V
GS  
Drain Current — Continuous  
I
D
Total Device Dissipation @ T = 25°C  
P
D
400  
Watts  
C
Derate above 25°C  
2.27  
W/°C  
Storage Temperature Range  
Operating Junction Temperature  
THERMAL CHARACTERISTICS  
T
–65 to +150  
200  
°C  
°C  
stg  
T
J
Characteristic  
Thermal Resistance, Junction to Case  
Symbol  
Max  
Unit  
R
0.44  
°C/W  
θ
JC  
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and  
packaging MOS devices should be observed.  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS (1)  
Drain–Source Breakdown Voltage  
(V = 0, I = 100 mA)  
V
125  
Vdc  
mAdc  
µAdc  
(BR)DSS  
GS  
D
Zero Gate Voltage Drain Current  
(V = 50 V, V = 0)  
I
2.5  
1.0  
DSS  
DS  
GS  
Gate–Body Leakage Current  
(V = 20 V, V = 0)  
I
GSS  
GS  
DS  
NOTE:  
1. Each side of device measured separately.  
REV 9  
1
ELECTRICAL CHARACTERISTICS — continued (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS (1)  
Gate Threshold Voltage (V = 10 V, I = 100 mA)  
V
1.0  
1.0  
2.0  
3.0  
3.0  
3.0  
6.0  
5.0  
Vdc  
Vdc  
DS  
D
GS(th)  
Drain–Source On–Voltage (V = 10 V, I = 5.0 A)  
V
DS(on)  
GS  
D
Forward Transconductance (V = 10 V, I = 2.5 A)  
g
fs  
mhos  
DS  
D
DYNAMIC CHARACTERISTICS (1)  
Input Capacitance (V = 50 V, V = 0, f = 1.0 MHz)  
C
180  
100  
6.0  
pF  
pF  
pF  
DS  
GS  
iss  
Output Capacitance (V = 50 V, V = 0, f = 1.0 MHz)  
C
oss  
DS  
GS  
Reverse Transfer Capacitance (V = 50 V, V = 0, f = 1.0 MHz)  
C
rss  
DS  
GS  
FUNCTIONAL CHARACTERISTICS — MRF176GV (2) (Figure 1)  
Common Source Power Gain  
G
15  
50  
17  
55  
dB  
%
ps  
(V = 50 Vdc, P = 200 W, f = 225 MHz, I = 2.0 x 100 mA)  
DD  
out  
DQ  
Drain Efficiency  
η
(V = 50 Vdc, P = 200 W, f = 225 MHz, I = 2.0 x 100 mA)  
DD  
out  
DQ  
Electrical Ruggedness  
(V = 50 Vdc, P = 200 W, f = 225 MHz, I = 2.0 x 100 mA,  
ψ
No Degradation in Output Power  
DD  
out  
DQ  
VSWR 10:1 at all Phase Angles)  
NOTES:  
1. Each side of device measured separately.  
2. Measured in push–pull configuration.  
R
1
+
C
1
0
5
0
V
B
I
A
S
0
-
6
V
C
8
C
9
-
C
3
C
4
D
.
U
.
T
.
R
2
T
2
T
1
C
5
C
1
C
2
C
6
C
7
C1 — Arco 404, 8.0ā ā 60 pF  
C2, C3, C6, C8 — 1000 pF Chip  
C4, C9 — 0.1 µF Chip  
L2 — Ferrite Beads of Suitable Material  
L2 — for 1.5ā ā 2.0 µH, Total Inductance  
R1 — 100 Ohms, 1/2 W  
C5 — 180 pF Chip  
R2 — 1.0 kOhms, 1/2 W  
C7 — Arco 403, 3.0ā ā 35 pF  
T1 — 4:1 Impedance Ratio RF Transformer.  
T1 — Can Be Made of 25 Ohm Semirigid  
T1 — Co–Ax, 47ā ā 62 Mils O.D.  
T2 — 1:4 Impedance Ratio RF Transformer.  
T2 — Can Be Made of 25 Ohm Semirigid  
T2 — Co–Ax, 62ā ā 90 Mils O.D.  
C10 — 0.47 µF Chip, Kemet 1215 or Equivalent  
L1 — 10 Turns AWG #16 Enameled Wire,  
L1 — Close Wound, 1/4I.D.  
Board material — .062fiberglass (G10),  
Two sided, 1 oz. copper, ε ^ 5  
r
NOTE: For stability, the input transformer T1 should be loaded  
NOTE: with ferrite toroids or beads to increase the common  
NOTE: mode inductance. For operation below 100 MHz. The  
NOTE: same is required for the output transformer.  
Unless otherwise noted, all chip capacitors  
are ATC Type 100 or Equivalent  
Figure 1. 225 MHz Test Circuit  
REV 9  
2
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
FUNCTIONAL CHARACTERISTICS — MRF176GU (1) (Figure 2)  
Common Source Power Gain  
G
12  
45  
14  
50  
dB  
%
ps  
(V = 50 Vdc, P = 150 W, f = 400 MHz, I = 2.0 x 100 mA)  
DD  
out  
DQ  
Drain Efficiency  
η
(V = 50 Vdc, P = 150 W, f = 400 MHz, I = 2.0 x 100 mA)  
DD  
out  
DQ  
Electrical Ruggedness  
(V = 50 Vdc, P = 150 W, f = 400 MHz, I = 2.0 x 100 mA,  
ψ
No Degradation in Output Power  
DD  
out  
DQ  
VSWR 10:1 at all Phase Angles)  
NOTE:  
1. Measured in push–pull configuration.  
A
B
L
7
L 8  
C
1
7
C1 8  
BIA S  
C1 9  
5
0
V
C
1
3
C
1
5
C
11  
C1 2  
R
1
R
2
C
9
L
L
1
2
Z
1
2
Z
3
4
L
L
3
4
C
1
C
C
6
7
B
1
C
3
C
5
C
4
C8  
B
2
C1 0  
Z
Z
C
2
D. U. T.  
L
6
R
3
A
B
C
1
4
C1 6  
B1 — Balun, 50 Semirigid Coax .086 OD 2Long  
B2 — Balun, 50 Semirigid Coax .141 OD 2Long  
C1, C2, C9, C10 — 270 pF ATC Chip Capacitor  
C3 — 15 pF ATC Chip Cap  
C4, C8 — 1.0ā ā 20 pF Piston Trimmer Cap  
C5 — 27 pF ATC Chip Cap  
L5, L6 — 13T #18 W .250 ID  
L7 — Ferroxcube VK–200 20/4B  
L8 — 3T #18 W .340 ID  
R1 — 1.0 k1/4 W Resistor  
R2, R3 — 10 k1/4 W Resistor  
C6, C7 — 22 pF Mini Unelco Capacitor  
C11, C13, C14, C15, C16 — 0.01 µF Ceramic Capacitor  
C12 — 1.0 µF 50 V Tantalum Cap  
.
4
0
0″  
0″  
C17, C18 — 680 pF Feedthru Capacitor  
.
2
0
0
C19 — 10 µF 100 V Tantalum Cap  
L1, L2 — Hairpin Inductor #18 W  
L3, L4 — Hairpin Inductor #18 W  
Z1, Z2 — Microstrip Line .400L x .250W  
Z3, Z4 — Microstrip Line .450L x .250W  
.
2
0
.
2
0
0
Ckt Board Material — .060teflon–fiberglass, copper clad both sides, 2 oz. copper,  
ε = 2.55  
r
Figure 2. 400 MHz Test Circuit  
REV 9  
3
TYPICAL CHARACTERISTICS  
4
3
2
1
00 0  
00 0  
00 0  
00 0  
0
1
0
0
0
1
V
=
3
0
V
D S  
1
5
V
1
T
=
°
C
2
5
C
0
1
2
3
4
5
6
7
8
9
1
0
2
1
0
5
0
2 0 0  
I
D
,
D
R
A
IN  
C
U
R
R
E
N
T
(
AM  
P
S
)
V
D S  
,
D
R
A
I
N
-
S
O
U
R
C
E
V
O
L
T
A
G
E
(V O LTS)  
Figure 3. Common Source Unity Current Gain*  
Gain–Frequency versus Drain Current  
Figure 4. DC Safe Operating Area  
* Data shown applies to each half of MRF176GU/GV  
I
N
f
P
U
T
A
N
D
O
U
T
P
U
T
I
M
x
P
E
D
A
0
N
C
E
M
R
F
1
7
6
G
U
/
G
V
V
=
5
0
V,  
=
I
2
1
0
mA  
D D  
D Q  
Z
Z *  
O L  
O HM S  
Z
i n  
i
n
M
H
z
O
H
M
S
4 00  
3
00  
(
P
=
=
1
5
0
W
)
ou t  
22 5  
2
3
4
5
2
0
0
0
5
2
2
.
0
0
8
6
5
-
j
2
1
.
.
5
0
6
4
3
.
.
.
5
0
0
0
0
-
j
j
j
3
3
1
.
5
1
9
0
0
0
0
f =  
MH z  
5
0
0
M
H
z
f
=
5
00  
0
0
0
.
0
5
0
-
+
+
j
j
j
1
0
5
0
8
0
6
-
-
+
.
.
4
0
0
1
1
.
.
0
2
.
7
7
1
5
0
.
2
.
j0 . 1  
Z
*
O L  
(
P
2
00  
W
)
ou t  
3
0
0
22 5  
10 0  
3
0
7
5
3
2
2
.
.
.
.
.
5
5
2
5
0
0
-
-
-
-
-
j
j
j
j
j
6
.
.
.
.
.
5
0
1
7
.
.
0
0
0
-
j
j
4
5
.
.
0 0  
0
5
0
0
7
6
4
2
0
0
8
5
0
1
4
0
-
-
-
-
0
2
25  
1
0
0
0
5
0
0
5
0
1
1
.
0
0
j5 .2  
0
1
2
5
2
0
ă
8
.
.
2
0
0
j
j
5
4
.
.
0
0
0
5
0
1 50  
Z
0
*
0
ă
5
0
2
O L  
3
0
1
0
0
Z
*
O L  
=
C
o
n
j
u
g
a
t
e
o
f
t
h
e
o
p
t
i
m
u
m
l
o
a
d
i
m
pe  
d
a
n
c
e
i
n
t
o
w
h
i
c
h
t
he  
d
e
v
i
c
e
o u tp u t  
a
5
Z
= 10  
o
o
a
p
e
d
r
a
t
e
s
a
t
a
g
i
v
e
n
o
u
t
p
u
t
p
o
w
e
r,  
v
o
l
t
g
e
r
3
0
n
f
r
e
q
u
e
n
c
y
.
N
O
T
E
:
I
n
p
u
t
a
n
d
o
u
t
p
u
t
i
m
p
e
d
a
n
c
e
v
a
l
u
e
s
g
i
v
e
n
a
r
e
m
e
a
s
u
r
e
d
f
r
o
m
g
a
t
e
t
o
g
a
t
e
a
n
d
d
r
a
i
n
t
o
d
r
a
i
n
e
s
p
e
c
t
i
v
e
l
y
.
Figure 5. Series Equivalent Input/Output Impedance  
REV 9  
4
TYPICAL CHARACTERISTICS  
5
0
0
3 0  
2 5  
2 0  
1 5  
1 0  
5
C
C
is s  
2
0
0
5
0
0
0
P
ou t  
=
2
0
0
W
os s  
1
V
f
=
0
V
z
G S  
=
1
MH  
1
5
0
W
2
0
V
I
=
5
0
V
D S  
=
2
x
1
00  
m
A
D Q  
C
r s s  
1
0
5
0
1
0
2
0
3
0
4
0
5
0
5
1
0
2
0
5
0
1
00  
2
00  
5 0 0  
V
D S  
,
D
R
A
IN  
-
SO  
U
R
C
E
V
O
L
T
A
GE  
(
V
O
LT  
S
)
f
,
F
R
E
Q
U
E
N
C
Y
(M Hz)  
Figure 6. Capacitance versus Drain–Source Voltage*  
Figure 7. Power Gain versus Frequency  
* Data shown applies to each half of MRF176GU/GV  
MRF176GV  
3
2
1
0
0
0
0
0
0
3
2
2
2
1
1
2
8
4
0
6
2
8
4
0
0
0
0
0
0
0
I
f
=
2
5
x
1
0
0
mA  
D Q  
V
=
5
0
V
D D  
=
2
2
M
H
z
P
=
6
W
i n  
4
0
V
=
4
W
2
W
I
f
2
5
x
1
0
0
2
m
A
D Q  
=
2
2
M
H z  
0
0
0
0
6
1
3
0
3
2
3
4
3
6
3
8
4
0
4
2
4
4
4
6
4
8
5 0  
P ,  
in  
P
O
W
E
R
I
N
P
U
T
(
WAT  
T
S)  
V
D S  
,
S
U
P
PLY  
V
O
L
T
A
G
E
(
V
O
L
T
S
)
Figure 9. Output Power versus Supply Voltage  
Figure 8. Power Input versus Power Output  
REV 9  
5
TYPICAL CHARACTERISTICS  
MRF176GU  
2 00  
1 80  
1 60  
1 40  
1 20  
2 00  
1 80  
1 60  
1 40  
1 20  
f
=
4
0
0
M
H
z
f
=
4
0
0
M
H
z
5
0
0
MH z  
5
0
0
M
H
z
1
00  
8 0  
6 0  
4 0  
2 0  
0
1
00  
8 0  
6 0  
4 0  
2 0  
0
V
=
4
0
V
V
D D  
=
5
0
V
D
D
I
=
2
x
1
0
0
m
A
I
=
2
x
1
0
0
m
A
D Q  
D Q  
0
2
4
6
8
10  
12  
1
4
1
6
0
2
4
6
8
1
0
1
2
1
4
1 6  
P ,  
in  
I
N
P
U
T
P
OW  
E
R
(
WAT  
T
S)  
P ,  
i n  
I
N
P
U
T
P
O
WE  
R
(WATTS )  
Figure 10. Output Power versus Input Power  
Figure 11. Output Power versus Input Power  
2
1
1
1
1
0
8
6
4
2
0
0
0
0
0
P
i n  
=
1
2
W
8
W
W
4
1
0 0  
80  
60  
40  
20  
0
I
f
=
2
x 1  
MH z  
00  
mA  
D Q  
=
4
0
0
2
0
3
0
4
0
5 0  
V
D D  
,
S
U
P
P
LY  
V
O
L
T
A
G
E
(
V
O
L
T
S
)
Figure 12. Output Power versus Supply Voltage  
REV 9  
6
NOTE: S–Parameter data represents measurements taken from one chip only.  
Table 1. Common Source S–Parameters (VDS = 50 V, ID = 0.35 A)  
S
11  
S
21  
S
12  
S
22  
f
|S  
|
φ
–159  
–163  
–166  
–167  
–168  
–169  
–170  
–171  
–171  
–172  
–172  
–173  
–173  
–174  
–174  
–175  
–175  
–176  
–176  
–176  
–177  
–177  
–178  
–178  
–178  
–179  
–179  
–180  
–180  
180  
|S  
|
φ
|S  
|
φ
|S |  
22  
φ
MHz  
11  
21  
12  
30  
0.804  
0.851  
0.846  
0.842  
0.846  
0.858  
0.875  
0.890  
0.902  
0.909  
0.915  
0.920  
0.924  
0.928  
0.934  
0.940  
0.945  
0.950  
0.953  
0.955  
0.956  
0.958  
0.960  
0.963  
0.965  
0.967  
0.968  
0.969  
0.970  
0.971  
0.973  
0.973  
0.974  
0.975  
0.975  
0.976  
0.976  
0.976  
0.977  
0.978  
17.80  
12.50  
10.40  
8.45  
7.28  
6.13  
5.36  
4.61  
4.04  
3.41  
2.92  
2.61  
2.41  
2.24  
2.10  
1.96  
1.78  
1.56  
1.36  
1.22  
1.14  
1.08  
1.05  
1.01  
0.96  
0.87  
0.78  
0.72  
0.68  
0.65  
0.61  
0.61  
0.58  
0.55  
0.50  
0.47  
0.44  
0.42  
0.40  
0.39  
87  
0.018  
0.018  
0.018  
0.017  
0.017  
0.016  
0.015  
0.014  
0.013  
0.012  
0.011  
0.010  
0.009  
0.008  
0.007  
0.008  
0.007  
0.006  
0.005  
0.004  
0.004  
0.004  
0.005  
0.006  
0.005  
0.005  
0.005  
0.006  
0.008  
0.009  
0.009  
0.008  
0.008  
0.010  
0.013  
0.013  
0.012  
0.010  
0.011  
0.015  
–1  
0.602  
0.606  
0.610  
0.652  
0.708  
0.786  
0.883  
0.916  
0.919  
0.857  
0.819  
0.816  
0.858  
0.951  
1.046  
1.130  
1.120  
1.030  
0.940  
0.900  
0.940  
0.940  
1.010  
1.120  
1.160  
1.150  
1.030  
0.964  
0.926  
0.940  
0.980  
1.053  
1.095  
1.135  
1.086  
1.045  
0.979  
0.940  
1.015  
1.038  
–149  
–147  
–149  
–154  
–157  
–159  
–158  
–157  
–158  
–156  
–157  
–160  
–162  
–164  
–164  
–163  
–165  
–165  
–165  
–164  
–167  
–170  
–169  
–170  
–172  
–172  
–171  
–170  
–169  
–172  
–173  
–175  
–174  
–173  
–175  
–175  
–174  
–174  
–175  
–177  
40  
77  
70  
67  
65  
63  
59  
53  
46  
41  
39  
38  
38  
38  
35  
30  
24  
22  
20  
21  
21  
22  
21  
18  
13  
10  
8
–9  
–14  
–16  
–15  
–15  
–17  
–22  
–29  
–31  
–29  
–24  
–20  
–21  
–24  
–23  
–18  
–8  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
270  
280  
290  
300  
310  
320  
330  
340  
350  
360  
370  
380  
390  
400  
410  
420  
2
7
6
13  
29  
44  
55  
57  
47  
8
46  
11  
11  
10  
11  
7
58  
72  
179  
83  
179  
82  
179  
70  
178  
3
61  
178  
1
65  
178  
–1  
1
74  
177  
84  
177  
4
84  
177  
4
71  
176  
4
67  
REV 9  
7
Table 1. Common Source S–Parameters (VDS = 50 V, ID = 0.35 A) continued  
S
11  
S
21  
S
12  
S
22  
f
|S  
|
φ
176  
176  
176  
175  
175  
175  
174  
174  
172  
169  
166  
164  
161  
|S  
|
φ
|S  
|
φ
|S |  
22  
φ
–178  
–178  
–177  
–178  
–178  
–176  
–178  
–179  
178  
MHz  
11  
21  
12  
430  
440  
450  
460  
470  
480  
490  
500  
600  
700  
800  
900  
1000  
0.978  
0.979  
0.979  
0.979  
0.979  
0.979  
0.980  
0.981  
0.972  
0.971  
0.971  
0.972  
0.972  
0.38  
0.37  
0.37  
0.32  
0.30  
0.30  
0.29  
0.28  
0.24  
0.15  
0.13  
0.10  
0.08  
3
0
0.017  
0.017  
0.015  
0.013  
0.015  
0.019  
0.021  
0.021  
0.012  
0.027  
0.022  
0.032  
0.030  
74  
1.073  
1.091  
1.107  
1.118  
1.003  
0.975  
0.963  
0.993  
0.943  
0.999  
0.977  
0.972  
0.999  
83  
86  
71  
60  
66  
80  
92  
93  
75  
70  
73  
83  
–2  
–6  
–5  
–3  
–1  
0
–5  
–8  
–9  
–5  
–9  
176  
174  
172  
169  
RF POWER MOSFET CONSIDERATIONS  
MOSFET CAPACITANCES  
the small signal unity current gain frequency at a given drain  
current level. This is equivalent to fT for bipolar transistors.  
Since this test is performed at a fast sweep speed, heating of  
the device does not occur. Thus, in normal use, the higher  
temperatures may degrade these characteristics to some ex-  
tent.  
The physical structure of a MOSFET results in capacitors  
between the terminals. The metal oxide gate structure deter-  
mines the capacitors from gate–to–drain (Cgd), and gate–to–  
source (Cgs). The PN junction formed during the fabrication  
of the MOSFET results in a junction capacitance from drain–  
to–source (Cds).  
These capacitances are characterized as input (Ciss), out-  
put (Coss) and reverse transfer (Crss) capacitances on data  
sheets. The relationships between the inter–terminal capaci-  
tances and those given on data sheets are shown below. The  
DRAIN CHARACTERISTICS  
One figure of merit for a FET is its static resistance in the  
full–on condition. This on–resistance, VDS(on), occurs in the  
linear region of the output characteristic and is specified un-  
der specific test conditions for gate–source voltage and drain  
current. For MOSFETs, VDS(on) has a positive temperature  
coefficient and constitutes an important design consideration  
at high temperatures, because it contributes to the power  
dissipation within the device.  
C
iss can be specified in two ways:  
1. Drain shorted to source and positive voltage at the gate.  
2. Positive voltage of the drain in respect to source and zero  
volts at the gate. In the latter case the numbers are lower.  
However, neither method represents the actual operat-  
ing conditions in RF applications.  
GATE CHARACTERISTICS  
The gate of the MOSFET is a polysilicon material, and is  
electrically isolated from the source by a layer of oxide. The  
input resistance is very high — on the order of 109 ohms —  
resulting in a leakage current of a few nanoamperes.  
Gate control is achieved by applying a positive voltage  
slightly in excess of the gate–to–source threshold voltage,  
D
R
A
IN  
C
g d  
G
AT  
E
C
C
C
=
C
+
C
gs  
is s  
g d  
C
=
C
+
C
ds  
d
s
os s  
r s s  
g d  
=
C
g d  
VGS(th)  
.
C
Gate Voltage Rating — Never exceed the gate voltage  
rating (or any of the maximum ratings on the front page). Ex-  
ceeding the rated VGS can result in permanent damage to  
the oxide layer in the gate region.  
Gate Termination — The gates of this device are essen-  
tially capacitors. Circuits that leave the gate open–circuited  
or floating should be avoided. These conditions can result in  
turn–on of the devices due to voltage build–up on the input  
capacitor due to leakage currents or pickup.  
g s  
S
O
U
R
C
E
The Ciss given in the electrical characteristics table was  
measured using method 2 above. It should be noted that  
iss, Coss, Crss are measured at zero drain current and are  
provided for general information about the device. They are  
not RF design parameters and no attempt should be made to  
use them as such.  
C
Gate Protection — This device does not have an internal  
monolithic zener diode from gate–to–source. The addition of  
an internal zener diode may result in detrimental effects on  
the reliability of a power MOSFET. If gate protection is re-  
quired, an external zener diode is recommended.  
LINEARITY AND GAIN CHARACTERISTICS  
In addition to the typical IMD and power gain, data pre-  
sented in Figure 3 may give the designer additional informa-  
tion on the capabilities of this device. The graph represents  
REV 9  
8
HANDLING CONSIDERATIONS  
DESIGN CONSIDERATIONS  
The gate of the MOSFET, which is electrically isolated  
from the rest of the die by a very thin layer of SiO2, may be  
damaged if the power MOSFET is handled or installed im-  
properly. Exceeding the 40 V maximum gate–to–source volt-  
age rating, VGS(max), can rupture the gate insulation and  
destroy the FET. RF Power MOSFETs are not nearly as sus-  
ceptible as CMOS devices to damage due to static discharge  
because the input capacitances of power MOSFETs are  
much larger and absorb more energy before being charged  
to the gate breakdown voltage. However, once breakdown  
begins, there is enough energy stored in the gate–source ca-  
pacitance to ensure the complete perforation of the gate ox-  
ide. To avoid the possibility of device failure caused by static  
discharge, precautions similar to those taken with small–sig-  
nal MOSFET and CMOS devices apply to power MOSFETs.  
When shipping, the devices should be transported only in  
antistatic bags or conductive foam. Upon removal from the  
packaging, careful handling procedures should be adhered  
to. Those handling the devices should wear grounding straps  
and devices not in the antistatic packaging should be kept in  
metal tote bins. MOSFETs should be handled by the case  
and not by the leads, and when testing the device, all leads  
should make good electrical contact before voltage is ap-  
plied. As a final note, when placing the FET into the system it  
is designed for, soldering should be done with grounded  
equipment.  
The gate of the power MOSFET could still be in danger af-  
ter the device is placed in the intended circuit. If the gate may  
see voltage transients which exceed VGS(max), the circuit de-  
signer should place a 40 V zener across the gate and source  
terminals to clamp any potentially destructive spikes. Using a  
resistor to keep the gate–to–source impedance low also  
helps damp transients and serves another important func-  
tion. Voltage transients on the drain can be coupled to the  
gate through the parasitic gate–drain capacitance. If the  
gate–to–source impedance and the rate of voltage change  
on the drain are both high, then the signal coupled to the gate  
may be large enough to exceed the gate–threshold voltage  
and turn the device on.  
The MRF176G is a RF power N–channel enhancement  
mode field–effect transistor (FETs) designed for VHF and  
UHF power amplifier applications. M/A-COM RF MOSFETs  
feature a vertical structure with a planar design, thus avoid-  
ing the processing difficulties associated with V–groove  
MOS power FETs.  
M/A-COM Application Note AN211A, FETs in Theory and  
Practice, is suggested reading for those not familiar with the  
construction and characteristics of FETs.  
The major advantages of RF power FETs include high  
gain, low noise, simple bias systems, relative immunity from  
thermal runaway, and the ability to withstand severely mis-  
matched loads without suffering damage. Power output can  
be varied over a wide range with a low power dc control sig-  
nal, thus facilitating manual gain control, ALC and modula-  
tion.  
DC BIAS  
The MRF176G is an enhancement mode FET and, there-  
fore, does not conduct when drain voltage is applied. Drain  
current flows when a positive voltage is applied to the gate.  
RF power FETs require forward bias for optimum perfor-  
mance. The value of quiescent drain current (IDQ) is not criti-  
cal for many applications. The MRF176G was characterized  
at IDQ = 100 mA, each side, which is the suggested minimum  
value of IDQ. For special applications such as linear amplifi-  
cation, IDQ may have to be selected to optimize the critical  
parameters.  
The gate is a dc open circuit and draws no current. There-  
fore, the gate bias circuit may be just a simple resistive divid-  
er network. Some applications may require a more elaborate  
bias system.  
GAIN CONTROL  
Power output of the MRF176G may be controlled from its  
rated value down to zero (negative gain) by varying the dc  
gate voltage. This feature facilitates the design of manual  
gain control, AGC/ALC and modulation systems.  
REV 9  
9
PACKAGE DIMENSIONS  
N O TE S :  
1. D I MEN S IO N I N G A ND TO LE R A N C IN G PE R AN S I  
Y 14. 5M, 198 2.  
U
G
Q RADIUS 2 PL  
M
M
M
B
0
.2  
5
(
0
.
01  
0
)
T
A
2. C O N TR O LL IN G D I MEN S I ON : I N C H .  
1
2
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
33. 79  
9. 40  
4. 83  
5. 47  
1. 27  
10. 92  
2. 59  
0. 11  
4. 83  
21. 46  
1. 52  
9. 91  
MAX  
3 4. 29  
1 0. 41  
5 .8 4  
5 .9 6  
1 .7 7  
11 .1 8  
2 .8 4  
0 .1 5  
5 .3 3  
A
B
C
D
E
G
H
J
1. 330  
0. 370  
0. 190  
0. 215  
0. 050  
0. 430  
0. 102  
0. 004  
0. 185  
0. 845  
0. 060  
0. 390  
1. 350  
0. 410  
0. 230  
0. 235  
0. 070  
0. 440  
0. 112  
0. 006  
0. 215  
0. 875  
0. 070  
0. 410  
–B–  
R
5
3
4
K
D
K
N
Q
R
U
2 2. 23  
1 .7 8  
1 0. 41  
J
N
E
1. 100 ꢀB SC  
27. 94ꢀ BSC  
S
T
Y
L
E
2
:
H
P IN 1. D R AI N  
2. D R AI N  
3. G AT E  
4. G AT E  
5. S OU R C E  
SEATING  
PLANE  
–T–  
–A–  
C
CASE 375–04  
ISSUE D  
Specifications subject to change without notice.  
n North America: Tel. (800) 366-2266, Fax (800) 618-8883  
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298  
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020  
Visit www.macom.com for additional data sheets and product information.  
REV 9  
10  

相关型号:

MRF175GV

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF175GV

N-CHANNEL MOS BROADBAND RF POWER FETs
TE

MRF175GV

RF POWER FIELD-EFFECT TRANSISTOR
ASI

MRF175LU

N-CHANNEL BROADBAND RF POWER FETs
MOTOROLA

MRF175LU

N-CHANNEL BROADBAND RF POWER FETs
TE

MRF175LV

N-CHANNEL BROADBAND RF POWER FETs
MOTOROLA

MRF175LV

N-CHANNEL BROADBAND RF POWER FETs
TE

MRF176

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF176GU

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF176GU

The RF MOSFET Line 200/150W, 500MHz, 50V
TE

MRF176GV

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF176GV

The RF MOSFET Line 200/150W, 500MHz, 50V
TE