MRF175GV [TE]

N-CHANNEL MOS BROADBAND RF POWER FETs; N沟道MOS宽带射频功率FET
MRF175GV
型号: MRF175GV
厂家: TE CONNECTIVITY    TE CONNECTIVITY
描述:

N-CHANNEL MOS BROADBAND RF POWER FETs
N沟道MOS宽带射频功率FET

晶体 晶体管 射频 CD 放大器 局域网
文件: 总11页 (文件大小:214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
SEMICONDUCTOR TECHNICAL DATA  
by MRF175GU/D  
The RF MOSFET Line  
R
F
P
o
w
e
r
M
R
F
1
7
5
G
U
F
i
e
l
d
-
E
f
f
e
c
t
T
r
a
n
s
i
s
t
o
r
s
M
R
F
1
7
5
G
V
N–Channel Enhancement–Mode  
Designed for broadband commercial and military applications using push pull  
circuits at frequencies to 500 MHz. The high power, high gain and broadband  
performance of these devices makes possible solid state transmitters for FM  
broadcast or TV channel frequency bands.  
200/150 WATTS, 28 V, 500 MHz  
N–CHANNEL MOS  
BROADBAND  
Guaranteed Performance  
RF POWER FETs  
MRF175GV @ 28 V, 225 MHz (“V” Suffix)  
Output Power — 200 Watts  
Power Gain — 14 dB Typ  
Efficiency — 65% Typ  
MRF175GU @ 28 V, 400 MHz (“U” Suffix)  
Output Power — 150 Watts  
Power Gain — 12 dB Typ  
Efficiency — 55% Typ  
D
100% Ruggedness Tested At Rated Output Power  
Low Thermal Resistance  
G
G
Low Crss — 20 pF Typ @ VDS = 28 V  
S
(F LA NG E )  
CASE 375–04, STYLE 2  
D
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
65  
Unit  
Drain–Source Voltage  
Drain–Gate Voltage  
V
DSS  
Vdc  
Vdc  
V
DGR  
65  
(R = 1.0 M)  
GS  
Gate–Source Voltage  
V
±40  
Vdc  
Adc  
GS  
Drain Current — Continuous  
I
26  
D
Total Device Dissipation @ T = 25°C  
P
D
400  
Watts  
C
Derate above 25°C  
2.27  
W/°C  
Storage Temperature Range  
Operating Junction Temperature  
THERMAL CHARACTERISTICS  
T
–65 to +150  
200  
°C  
°C  
stg  
T
J
Characteristic  
Thermal Resistance, Junction to Case  
Symbol  
Max  
Unit  
R
0.44  
°C/W  
θ
JC  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS (1)  
Drain–Source Breakdown Voltage  
(V = 0, I = 50 mA)  
V
65  
Vdc  
mAdc  
(BR)DSS  
GS  
D
Zero Gate Voltage Drain Current  
(V = 28 V, V = 0)  
I
2.5  
1.0  
DSS  
DS  
GS  
Gate–Source Leakage Current  
(V = 20 V, V = 0)  
I
µAdc  
GSS  
GS  
DS  
(continued)  
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and  
packaging MOS devices should be observed.  
REV 8  
1
ELECTRICAL CHARACTERISTICS — continued (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS (1)  
Gate Threshold Voltage (V = 10 V, I = 100 mA)  
V
1.0  
0.1  
2.0  
3.0  
0.9  
3.0  
6.0  
1.5  
Vdc  
Vdc  
DS  
D
GS(th)  
Drain–Source On–Voltage (V = 10 V, I = 5.0 A)  
V
DS(on)  
GS  
D
Forward Transconductance (V = 10 V, I = 2.5 A)  
g
fs  
mhos  
DS  
D
DYNAMIC CHARACTERISTICS (1)  
Input Capacitance (V = 28 V, V = 0, f = 1.0 MHz)  
C
180  
200  
20  
pF  
pF  
pF  
DS  
GS  
iss  
Output Capacitance (V = 28 V, V = 0, f = 1.0 MHz)  
C
oss  
DS  
GS  
Reverse Transfer Capacitance (V = 28 V, V = 0, f = 1.0 MHz)  
C
rss  
DS  
GS  
FUNCTIONAL CHARACTERISTICS — MRF175GV (2) (Figure 1)  
Common Source Power Gain  
G
12  
55  
14  
65  
dB  
%
ps  
(V = 28 Vdc, P = 200 W, f = 225 MHz, I = 2.0 x 100 mA)  
DD  
out  
DQ  
Drain Efficiency  
η
(V = 28 Vdc, P = 200 W, f = 225 MHz, I = 2.0 x 100 mA)  
DD  
out  
DQ  
Electrical Ruggedness  
(V = 28 Vdc, P = 200 W, f = 225 MHz, I = 2.0 x 100 mA,  
ψ
No Degradation in Output Power  
DD  
out  
DQ  
VSWR 10:1 at all Phase Angles)  
NOTES:  
1. Each side of device measured separately.  
2. Measured in push–pull configuration.  
L
2
R
1
+
C
1
0
2
8
V
B
I
A
S
0
-
6
V
C
8
C
9
-
C
3
C
4
R
2
L
1
D
.
U
.
T
.
T
2
T
1
C
6
C
5
C
1
C
2
C
7
C1 — Arco 404, 8.0–60 pF  
R1 — 100 Ohms, 1/2 W  
R2 — 1.0 k Ohm, 1/2 W  
T1 — 4:1 Impedance Ratio RF Transformer.  
T1 — Can Be Made of 25 Ohm Semirigid Coax,  
T1 — 47–52 Mils O.D.  
C2, C3, C7, C8 — 1000 pF Chip  
C4, C9 — 0.1 µF Chip  
C5 — 180 pF Chip  
C6 — 100 pF and 130 pF Chips in Parallel  
C10 — 0.47 µF Chip, Kemet 1215 or Equivalent  
L1 — 10 Turns AWG #16 Enamel Wire, Close  
L1 — Wound, 1/4I.D.  
T2 — 1:9 Impedance Ratio RF Transformer.  
T2 — Can Be Made of 15–18 Ohms Semirigid  
T2 — Coax, 62–90 Mils O.D.  
L2 — Ferrite Beads of Suitable Material for  
L2 — 1.5ā ā 2.0 µH Total Inductance  
NOTE: For stability, the input transformer T1 should be loaded  
NOTE: with ferrite toroids or beads to increase the common  
NOTE: mode inductance. For operation below 100 MHz. The  
NOTE: same is required for the output transformer.  
Board material — .062fiberglass (G10),  
Two sided, 1 oz. copper, ε ^ 5  
r
Unless otherwise noted, all chip capacitors  
are ATC Type 100 or Equivalent.  
Figure 1. 225 MHz Test Circuit  
REV 8  
2
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
FUNCTIONAL CHARACTERISTICS — MRF175GU (1) (Figure 2)  
Common Source Power Gain  
G
10  
50  
12  
55  
dB  
%
ps  
(V = 28 Vdc, P = 150 W, f = 400 MHz, I = 2.0 x 100 mA)  
DD  
out  
DQ  
Drain Efficiency  
η
(V = 28 Vdc, P = 150 W, f = 400 MHz, I = 2.0 x 100 mA)  
DD  
out  
DQ  
Electrical Ruggedness  
(V = 28 Vdc, P = 150 W, f = 400 MHz, I = 2.0 x 100 mA,  
ψ
No Degradation in Output Power  
DD  
out  
DQ  
VSWR 10:1 at all Phase Angles)  
NOTE:  
1. Measured in push–pull configuration.  
B
A
L
5
L 6  
C
3
1
4
C1 5  
BIA S  
2
8
V
C
1
8
R
1
C
1
0
C
11  
C
1
2
C1 3  
R
2
L
D. U. T.  
C
1
C8  
L
1
Z
1
Z
3
Z
5
B
1
C
3
C
4
C6  
C
5
C7  
B
2
Z
2
Z
4
Z
6
L
2
C
2
C
9
L
4
1
R
3
A
B
0
.
1
8
0
C
1
6
C
7
0
.
2
0
0
B1 — Balun 50 Semi Rigid Coax 0.086O.D. 2Long  
B2 — Balun 50 Semi Rigid Coax 0.141O.D. 2Long  
C1, C2, C8, C9 — 270 pF ATC Chip Cap  
C3, C5, C7 — 1.0–20 pF Trimmer Cap  
C4 — 15 pF ATC Chip Cap  
L1, L2 — Hairpin Inductor #18 Wire  
L3, L4 — 12 Turns #18 Enameled Wire 0.340I.D.  
L5 — Ferroxcube VK200 20/4B  
L6 — 3 Turns #16 Enameled Wire 0.340I.D.  
R1 — 1.0 k1/4 W Resistor  
C6 — 33 pF ATC Chip Cap  
R2, R3 — 10 k1/4 W Resistor  
C10, C12, C13, C16, C17 — 0.01 µF Ceramic Cap  
C11 — 1.0 µF 50 V Tantalum  
C14, C15 — 680 pF Feedthru Cap  
Z1, Z2 — Microstrip Line 0.400x 0.250″  
Z3, Z4 — Microstrip Line 0.870x 0.250″  
Z5, Z6 — Microstrip Line 0.500x 0.250″  
C18 — 20 µF 50 V Tantalum  
Board material — 0.060Teflon–fiberglass,  
ε = 2.55, copper clad both sides, 2 oz. copper.  
r
Figure 2. 400 MHz Test Circuit  
REV 8  
3
TYPICAL CHARACTERISTICS  
4
3
2
1
00 0  
00 0  
00 0  
00 0  
0
1
0
0
V
V
=
=
2
1
0
0
V
V
D
S
S
1
0
D
T
=
°
C
2
5
C
1
0
2
4
6
8
1
0
1
2
1
4
1
6
1
8
2
0
1
1
0
1 0 0  
I
D
,
D
R
A
IN  
C
U
R
R
E
N
T
(
AM  
P
S
)
V ,  
D S  
D
R
AI  
N
-
S
O
U
R
C
E
V
O
L
T
A
G
E
(
V
O
L
T
S
)
Figure 3. Common Source Unity Current Gain  
Frequency versus Drain Current  
Figure 4. DC Safe Operating Area  
5
4
3
2
1
1
.
2
V
=
2
8
V
D
D
1
.
1
1
V
=
1
0
V
D
S
I
D
=
4
A
3
A
2
A
T
Y
P
I
C
A
L
D
E
V
IC  
E
S
H
O
WN  
G
,
V
)
=
3
V
S
(
t
h
0
0
.
9
8
1
00  
mA  
.
1
2
3
4
5
6
-
ā
5
0
2
5
5
0
7
5
1
0
0
1
2
5
1
5
0
1 7 5  
V
G S  
,
G
AT  
E
-
SO  
U
R
C
E
V
O
L
T
A
GE  
(
V
O
LT  
S
)
T ,  
C
C
A
S
E
T
E
M
P
E
R
AT  
U
R°  
C
E
)
(
Figure 5. Drain Current versus Gate Voltage  
(Transfer Characteristics)  
Figure 6. Gate–Source Voltage versus  
Case Temperature  
1
0
0
0
0
V
f
=
0
V
z
G
S
=
1
M
H
5
0
C
os s  
2
0 0  
0 0  
50  
C
i
ss  
1
C
r
s
s
2
1
0
0
0
5
1
0
1
5
2
0
2
5
V
D
,
S
D
R
A
I
N
-
S
O
U
R
C
E
V
O
L
T
A
G
E
(
V
O
L
T
S
)
Figure 7. Capacitance versus Drain–Source Voltage*  
* Data shown applies to each half of MRF175GU/GV.  
REV 8  
4
TYPICAL CHARACTERISTICS  
MRF175GV  
3
2
1
00  
00  
00  
0
3
2
2
2
2
8
4
0
0
0
0
0
I
f
=
2
5
x
1
0
0
mA  
D
Q
P
=
1
2
W
i
n
=
2
2
M
H z  
8
W
1
6
2
8
4
0
0
0
0
0
1
4
W
V
=
2
8
V
D
D
I
f
=
2
x
1
0
0
mA  
D
Q
=
2
2
5
M
H z  
0
1
2
2
4
1
2
1
4
1
6
1
8
2
0
2
2
2
4
2
6
2
8
P
i
,
n
P
OW  
E
R
I
N
P
U
T
(
WAT  
T
S)  
V ,  
D D  
S
U
P
P
LY  
V
O
L
T
A
G
E
(V O LTS )  
Figure 8. Power Input versus Power Output  
Figure 9. Output Power versus Supply Voltage  
MRF175GU  
2
1
0
0
0
2
1
0
0
0
8
P
i
=
1
4
W
8
n
1
1
1
1
6
0
0
0
0
0
0
0
0
0
1
1
1
1
6
0
0
0
0
0
0
0
0
0
f
=
4
00  
MH z  
4
2
0
8
6
4
2
4
2
0
8
6
4
2
5
0
0
MH z  
1
0
W
6
W
V
=
2
8
V
D
S
I
D
=
2
x
)
1
0
0
mA  
Q
f
=
4
0
0
M
H z  
1
2
1
4
1
6
1
8
2
0
2
2
2
4
2
6
2
8
0
5
10  
15  
2
0
2
5
V
D
,
S
U
P
PLY  
V
O
L
T
A
GE  
(
VO  
LT  
S
)
P ,  
i n  
I
N
P
U
T
P
O
WE  
R
(
W
AT  
T
S
D
Figure 10. Output Power versus Supply Voltage  
Figure 11. Output Power versus Input Power  
MRF175GV  
3
2
2
1
0
5
0
5
P
ou t  
=
2
0
0
W
V
D
=
2
8
V
S
I
D
=
2
x
1
0
0
m
A
Q
1
50  
W
1
0
5
5
1
0
2
0
5
0
1
00  
2
0
0
5
0
0
f
,
F
R
E
Q
U
E
N
C
Y
(
M
H
z
)
Figure 12. Power Gain versus Frequency  
REV 8  
5
S
11  
S
21  
S
12  
S
22  
f
|S  
|
φ
–174  
–176  
–176  
–177  
–178  
–178  
–178  
–178  
–179  
–179  
–180  
–180  
180  
|S  
|
φ
|S  
|
φ
|S |  
22  
φ
–177  
–178  
–178  
–178  
–178  
–178  
–179  
–178  
–178  
–178  
–178  
–178  
–178  
–178  
–178  
–178  
–178  
–178  
–178  
–178  
–178  
–178  
–178  
–178  
–179  
–179  
–179  
–179  
–179  
–179  
–179  
–180  
–180  
–180  
180  
MHz  
11  
21  
12  
50  
0.926  
0.924  
0.923  
0.921  
0.918  
0.920  
0.920  
0.921  
0.923  
0.928  
0.929  
0.929  
0.931  
0.931  
0.934  
0.936  
0.934  
0.936  
0.937  
0.941  
0.941  
0.939  
0.937  
0.935  
0.933  
0.923  
0.907  
0.930  
0.933  
0.935  
0.932  
0.933  
0.935  
0.936  
0.935  
0.948  
0.966  
0.969  
0.957  
0.939  
5.43  
3.85  
3.35  
2.94  
2.57  
2.52  
2.47  
2.32  
2.08  
1.93  
1.86  
1.77  
1.68  
1.63  
1.55  
1.48  
1.44  
1.40  
1.34  
1.29  
1.25  
1.20  
1.18  
1.15  
1.12  
1.09  
1.04  
1.01  
0.99  
0.96  
0.92  
0.90  
0.87  
0.85  
0.82  
0.72  
0.64  
0.57  
0.51  
0.45  
81  
0.009  
0.009  
0.008  
0.008  
0.008  
0.007  
0.008  
0.008  
0.005  
0.008  
0.007  
0.009  
0.008  
0.007  
0.008  
0.007  
0.009  
0.008  
0.009  
0.009  
0.010  
0.009  
0.010  
0.010  
0.011  
0.012  
0.013  
0.008  
0.008  
0.009  
0.009  
0.009  
0.009  
0.009  
0.010  
0.009  
0.010  
0.012  
0.013  
0.015  
12  
0.861  
0.869  
0.864  
0.871  
0.875  
0.871  
0.875  
0.877  
0.862  
0.883  
0.887  
0.887  
0.890  
0.894  
0.891  
0.889  
0.888  
0.891  
0.893  
0.894  
0.897  
0.901  
0.904  
0.903  
0.903  
0.906  
0.911  
0.910  
0.912  
0.913  
0.915  
0.917  
0.918  
0.920  
0.921  
0.928  
0.932  
0.935  
0.939  
0.941  
70  
76  
73  
70  
68  
67  
67  
65  
63  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
49  
48  
47  
47  
46  
45  
45  
43  
43  
42  
41  
40  
39  
36  
33  
30  
27  
25  
6
80  
18  
17  
17  
23  
20  
21  
27  
34  
22  
27  
30  
39  
29  
35  
36  
38  
35  
40  
39  
49  
44  
44  
49  
46  
22  
27  
39  
37  
39  
43  
46  
56  
47  
55  
59  
66  
60  
80  
90  
100  
103  
105  
110  
120  
130  
135  
140  
145  
150  
155  
160  
165  
170  
175  
180  
185  
190  
192  
195  
200  
205  
210  
215  
220  
225  
230  
235  
240  
245  
250  
275  
300  
325  
350  
375  
180  
180  
180  
180  
179  
179  
179  
179  
179  
179  
179  
179  
178  
180  
–180  
180  
179  
179  
178  
178  
178  
178  
176  
180  
175  
179  
175  
178  
175  
178  
174  
177  
Table 1. Common Source S–Parameters (VDS = 28 V, ID = 4.5 A) (continued)  
REV 8  
6
S
11  
S
21  
S
12  
S
22  
f
|S  
|
φ
172  
172  
171  
171  
171  
171  
170  
170  
170  
169  
169  
170  
170  
169  
169  
169  
169  
169  
169  
169  
169  
168  
168  
167  
|S  
|
φ
|S  
|
φ
|S |  
22  
φ
176  
176  
176  
176  
176  
176  
176  
175  
175  
177  
177  
177  
177  
177  
177  
177  
177  
176  
176  
176  
176  
176  
176  
175  
MHz  
11  
21  
12  
400  
405  
410  
415  
420  
425  
430  
435  
440  
445  
450  
455  
460  
465  
470  
475  
480  
485  
490  
495  
500  
505  
510  
515  
0.943  
0.945  
0.948  
0.956  
0.963  
0.966  
0.968  
0.970  
0.971  
0.978  
0.978  
0.977  
0.978  
0.977  
0.973  
0.973  
0.970  
0.964  
0.960  
0.957  
0.957  
0.951  
0.948  
0.943  
0.41  
0.40  
0.40  
0.39  
0.38  
0.37  
0.37  
0.36  
0.36  
0.32  
0.31  
0.31  
0.31  
0.30  
0.29  
0.29  
0.28  
0.28  
0.28  
0.27  
0.27  
0.26  
0.26  
0.25  
23  
0.017  
0.016  
0.016  
0.017  
0.018  
0.018  
0.019  
0.019  
0.019  
0.017  
0.019  
0.019  
0.019  
0.020  
0.021  
0.021  
0.022  
0.022  
0.022  
0.023  
0.023  
0.023  
0.022  
0.022  
75  
0.946  
0.946  
0.944  
0.949  
0.946  
0.947  
0.948  
0.949  
0.952  
0.965  
0.964  
0.965  
0.967  
0.963  
0.966  
0.967  
0.967  
0.963  
0.965  
0.963  
0.963  
0.966  
0.965  
0.966  
22  
22  
21  
21  
20  
20  
19  
19  
17  
17  
17  
16  
16  
15  
15  
15  
14  
14  
14  
13  
13  
13  
13  
71  
68  
74  
72  
70  
72  
75  
73  
71  
70  
73  
70  
73  
71  
72  
71  
74  
73  
71  
71  
70  
68  
72  
Table 1. Common Source S–Parameters (VDS = 28 V, ID = 4.5 A) (continued)  
REV 8  
7
S
11  
S
21  
S
12  
S
22  
f
|S  
|
φ
167  
167  
166  
166  
165  
165  
164  
164  
164  
164  
164  
164  
164  
164  
162  
160  
158  
158  
155  
151  
152  
148  
146  
|S  
|
φ
|S  
|
φ
|S |  
22  
φ
175  
175  
175  
174  
174  
174  
174  
174  
174  
174  
174  
174  
173  
172  
171  
170  
169  
168  
166  
164  
163  
161  
159  
MHz  
11  
21  
12  
520  
525  
530  
535  
540  
545  
550  
555  
560  
565  
570  
575  
600  
625  
650  
675  
700  
750  
800  
850  
900  
950  
1000  
0.940  
0.940  
0.943  
0.944  
0.945  
0.951  
0.952  
0.956  
0.958  
0.962  
0.963  
0.970  
0.973  
0.955  
0.933  
0.928  
0.946  
0.952  
0.907  
0.928  
0.915  
0.869  
0.902  
0.25  
0.25  
0.24  
0.24  
0.23  
0.23  
0.23  
0.23  
0.22  
0.22  
0.22  
0.21  
0.20  
0.19  
0.17  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.11  
0.11  
12  
0.021  
0.022  
0.022  
0.022  
0.022  
0.023  
0.023  
0.023  
0.025  
0.024  
0.024  
0.024  
0.029  
0.030  
0.031  
0.034  
0.034  
0.040  
0.044  
0.049  
0.049  
0.053  
0.055  
68  
0.966  
0.968  
0.965  
0.964  
0.965  
0.969  
0.969  
0.969  
0.968  
0.969  
0.972  
0.972  
0.973  
0.970  
0.966  
0.969  
0.973  
0.969  
0.962  
0.963  
0.955  
0.941  
0.943  
12  
11  
11  
11  
11  
10  
10  
10  
9
74  
67  
69  
69  
70  
72  
70  
70  
70  
71  
70  
71  
69  
69  
69  
67  
67  
65  
55  
52  
49  
44  
9
9
8
8
7
6
6
4
5
5
4
4
4
Table 1. Common Source S–Parameters (VDS = 28 V, ID = 4.5 A) (continued)  
REV 8  
8
INPUT AND OUTPUT IMPEDANCE  
V
=
(
2
8
V
,
=
I
2
x
1
0
0
mA  
D
D
D
Q
Z
i
n
f
Z
Z *  
O L  
i
n
30 0  
M
H
z
O
H
M
S
O
H
M
S
4 00  
2
2
5
P
ou t  
=
1
5
0
W
)
22 5  
4 00  
2
3
4
5
2
0
0
0
5
1
.
9
7
6
3
5
5
0
5
-
j
j
2
0
.
.
3
0
3
.
1
0
-
j
j
j
j
0 .2 5  
f
=
5
00  
MH z  
f
=
5
00  
M
H
z
3 00  
0
0
0
1
.
-
+
+
20  
2
.
.
.
6
0
7
0
0
0
+
+
+
0
1
2
.
.
.
2
2
7
0
0
0
Z *  
O L  
Z
*
O L  
2
2
5
1
1
.
.
j
j
2
4
.
.
2
02  
1
5
0
15 0  
0
01  
1
0
0
1
0
0
(
P
ou t  
=
2
0
0
W)  
Z
*
=
C
o
n
j
u
g
a
t
e
o
f
t
h
e
o
p
t
i
m
u
m
l
o
a
d
O
L
5
0
i
m
p
e
d
an  
c
e
i
n
t
o
w
h
i
c
h
t
h
e
d
e
v
i
c
e
3
0
6
5
3
2
1
.
.
.
.
.
50  
00  
60  
80  
95  
-
-
-
-
-
j
j
j
j
j
5
.
.
.
.
.
1
0
6
.3  
.7  
.6  
.6  
.6  
0
5
0
0
0
-
-
-
-
-
j
j
j
j
j
2
2
2
2
0
.
.
.
.
.
5
7
6
2
6
0
5
5
0
0
5
0
3
0
o
p
e
r
a
t
e
s
a
t
a
g
i
v
e
n
o
u
t
p
u
t
p
o
w
e
r
,
5
0
4
4
3
2
8
0
5
v
o
l
t
a
g
e
a
nd  
f
r
e
q
u
e
n
c
y
.
1
0
0
0
5
2
6
3
04  
3
0
Z
= 1 0  
o
1
2
5
2
0
2
0
2
NOTE: Input and output impedance values given are measured from gate to gate and drain to drain respectively.  
Figure 13. Series Equivalent Input/Output Impedance  
RF POWER MOSFET CONSIDERATIONS  
MOSFET CAPACITANCES  
provided for general information about the device. They are  
not RF design parameters and no attempt should be made to  
use them as such.  
The physical structure of a MOSFET results in capacitors  
between the terminals. The metal oxide gate structure deter-  
mines the capacitors from gate–to–drain (Cgd), and gate–to–  
source (Cgs). The PN junction formed during the fabrication  
of the MOSFET results in a junction capacitance from drain–  
to–source (Cds).  
These capacitances are characterized as input (Ciss), out-  
put (Coss) and reverse transfer (Crss) capacitances on data  
sheets. The relationships between the inter–terminal capaci-  
tances and those given on data sheets are shown below. The  
LINEARITY AND GAIN CHARACTERISTICS  
In addition to the typical IMD and power gain, data pre-  
sented in Figure 3 may give the designer additional informa-  
tion on the capabilities of this device. The graph represents  
the small signal unity current gain frequency at a given drain  
current level. This is equivalent to fT for bipolar transistors.  
Since this test is performed at a fast sweep speed, heating of  
the device does not occur. Thus, in normal use, the higher  
temperatures may degrade these characteristics to some ex-  
tent.  
C
iss can be specified in two ways:  
1. Drain shorted to source and positive voltage at the gate.  
2. Positive voltage of the drain in respect to source and zero  
volts at the gate. In the latter case the numbers are lower.  
However, neither method represents the actual operat-  
ing conditions in RF applications.  
DRAIN CHARACTERISTICS  
One figure of merit for a FET is its static resistance in the  
full–on condition. This on–resistance, VDS(on), occurs in the  
linear region of the output characteristic and is specified un-  
der specific test conditions for gate–source voltage and drain  
current. For MOSFETs, VDS(on) has a positive temperature  
coefficient and constitutes an important design consideration  
at high temperatures, because it contributes to the power  
dissipation within the device.  
D
R
A
I
N
C
g d  
G
A
T
E
C
C
C
=
C
+
C
gs  
i
s
s
g
d
C
=
C
+
C
ds  
d
s
o
s
s
g
d
= C  
g d  
r
s
s
C
g s  
S
O
U
R
C
E
GATE CHARACTERISTICS  
The gate of the MOSFET is a polysilicon material, and is  
electrically isolated from the source by a layer of oxide. The  
input resistance is very high — on the order of 109 ohms —  
resulting in a leakage current of a few nanoamperes.  
The Ciss given in the electrical characteristics table was  
measured using method 2 above. It should be noted that  
iss, Coss, Crss are measured at zero drain current and are  
C
REV 8  
9
Gate control is achieved by applying a positive voltage  
slightly in excess of the gate–to–source threshold voltage,  
DESIGN CONSIDERATIONS  
The MRF175G is a RF power N–channel enhancement  
mode field–effect transistor (FETs) designed for HF, VHF and  
UHF power amplifier applications. M/A-COM RF MOSFETs  
feature a vertical structure with a planar design.  
M/A-COM Application Note AN211A, FETs in Theory and  
Practice, is suggested reading for those not familiar with the  
construction and characteristics of FETs.  
The major advantages of RF power FETs include high  
gain, low noise, simple bias systems, relative immunity from  
thermal runaway, and the ability to withstand severely mis-  
matched loads without suffering damage. Power output can  
be varied over a wide range with a low power dc control sig-  
nal.  
VGS(th)  
.
Gate Voltage Rating — Never exceed the gate voltage  
rating (or any of the maximum ratings on the front page). Ex-  
ceeding the rated VGS can result in permanent damage to  
the oxide layer in the gate region.  
Gate Termination — The gates of this device are essen-  
tially capacitors. Circuits that leave the gate open–circuited  
or floating should be avoided. These conditions can result in  
turn–on of the devices due to voltage build–up on the input  
capacitor due to leakage currents or pickup.  
Gate Protection — These devices do not have an internal  
monolithic zener diode from gate–to–source. If gate protec-  
tion is required, an external zener diode is recommended.  
Using a resistor to keep the gate–to–source impedance  
low also helps damp transients and serves another important  
function. Voltage transients on the drain can be coupled to  
the gate through the parasitic gate–drain capacitance. If the  
gate–to–source impedance and the rate of voltage change  
on the drain are both high, then the signal coupled to the gate  
may be large enough to exceed the gate–threshold voltage  
and turn the device on.  
DC BIAS  
The MRF175G is an enhancement mode FET and, there-  
fore, does not conduct when drain voltage is applied. Drain  
current flows when a positive voltage is applied to the gate.  
RF power FETs require forward bias for optimum perfor-  
mance. The value of quiescent drain current (IDQ) is not criti-  
cal for many applications. The MRF175G was characterized  
at IDQ = 100 mA, each side, which is the suggested minimum  
value of IDQ. For special applications such as linear amplifi-  
cation, IDQ may have to be selected to optimize the critical  
parameters.  
HANDLING CONSIDERATIONS  
When shipping, the devices should be transported only in  
antistatic bags or conductive foam. Upon removal from the  
packaging, careful handling procedures should be adhered  
to. Those handling the devices should wear grounding straps  
and devices not in the antistatic packaging should be kept in  
metal tote bins. MOSFETs should be handled by the case  
and not by the leads, and when testing the device, all leads  
should make good electrical contact before voltage is ap-  
plied. As a final note, when placing the FET into the system it  
is designed for, soldering should be done with grounded  
equipment.  
The gate is a dc open circuit and draws no current. There-  
fore, the gate bias circuit may be just a simple resistive divid-  
er network. Some applications may require a more elaborate  
bias sytem.  
GAIN CONTROL  
Power output of the MRF175G may be controlled from its  
rated value down to zero (negative gain) by varying the dc  
gate voltage. This feature facilitates the design of manual  
gain control, AGC/ALC and modulation systems.  
REV 8  
10  
PACKAGE DIMENSIONS  
N O TE S :  
.
U
G
1
D
I
M
.
N
E
5
T
N
M
R
S
,
O
I
O
N
I
N
G
198 2.  
A
N
D
T
O
L
E
R
A
N
C
I
N
G
P
E
R
AN S I  
Q RADIUS 2 PL  
Y
1
4
M
M
M
B
0
.2  
5
(
0
.
01  
0
)
T
A
2
.
C
O
L
L
I
N
G
D
I
M
E
N
S
I
O
N
:
I
N
C
H
.
1
2
INCHES  
MILLIMETERS  
MIN MAX  
DIM MIN  
MAX  
A
B
C
D
E
G
H
J
1
0
0
0
0
0
0
0
0
0
0
0
.
.
.
.
.
.
.
.
.
.
.
.
3
3
1
2
0
4
1
0
1
8
0
3
3
7
9
1
5
3
0
0
8
4
6
9
0
0
0
5
0
0
2
4
5
5
0
0
1
0
0
0
0
0
.
.
.
.
.
.
.
.
.
.
.
.
3
4
2
2
0
4
5
1
3
3
7
4
0
0
0
5
0
0
2
6
5
5
0
0
3
3
9
4
5
1
0
2
.
.
.
.
.
.
.
7
4
8
4
2
9
5
9
0
3
7
7
2
9
3
1
4
0
5
5
1
.
.
.
.
.
.
.
.
.
.
.
.
29  
41  
8 4  
9 6  
7 7  
1 8  
8 4  
1 5  
3 3  
23  
7 8  
41  
–B–  
R
5
3
4
K
1
2
11  
0
1
1
2
0
5
2
1
0
D
0
0
0
0
0
0
2
8
0
4
0
1
7
7
1
0. 11  
K
N
Q
R
U
4.  
1.  
1.  
9.  
8
4
5
9
3
6
2
1
2
1
J
N
E
1
.
1
0
0
B
S
C
27. 94ꢀ BSC  
H
S
T
Y
P
L
E
2
:
SEATING  
PLANE  
IN  
1
.
D
D R AI  
R
N
A
I
N
–T–  
2
3
4
5
.
.
.
.
–A–  
G
G
A
A
T
T
E
E
C
S
O
U
R
C
E
CASE 375–04  
ISSUE D  
Specifications subject to change without notice.  
n North America: Tel. (800) 366-2266, Fax (800) 618-8883  
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298  
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020  
Visit www.macom.com for additional data sheets and product information.  
REV 8  
11  

相关型号:

MRF175LU

N-CHANNEL BROADBAND RF POWER FETs
MOTOROLA

MRF175LU

N-CHANNEL BROADBAND RF POWER FETs
TE

MRF175LV

N-CHANNEL BROADBAND RF POWER FETs
MOTOROLA

MRF175LV

N-CHANNEL BROADBAND RF POWER FETs
TE

MRF176

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF176GU

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF176GU

The RF MOSFET Line 200/150W, 500MHz, 50V
TE

MRF176GV

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF176GV

The RF MOSFET Line 200/150W, 500MHz, 50V
TE

MRF177

N-CHANNEL BROADBAND RF POWER MOSFET
MOTOROLA

MRF177

N-CHANNEL BROADBAND RF POWER MOSFET
TE

MRF177M

2 CHANNEL, UHF BAND, Si, N-CHANNEL, RF POWER, MOSFET
MOTOROLA