MRF174 [TE]

N-CHANNEL MOS BROADBAND RF POWER FET; N沟道MOS宽带射频功率场效应管
MRF174
型号: MRF174
厂家: TE CONNECTIVITY    TE CONNECTIVITY
描述:

N-CHANNEL MOS BROADBAND RF POWER FET
N沟道MOS宽带射频功率场效应管

晶体 晶体管 射频 放大器 局域网
文件: 总9页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
SEMICONDUCTOR TECHNICAL DATA  
by MRF174/D  
The RF MOSFET Line  
N–Channel Enhancement–Mode  
Designed primarily for wideband large–signal output and driver stages up to  
200 MHz frequency range.  
Guaranteed Performance at 150 MHz, 28 Vdc  
Output Power = 125 Watts  
Minimum Gain = 9.0 dB  
Efficiency = 50% (Min)  
Excellent Thermal Stability, Ideally Suited For Class A  
Operation  
125 W, to 200 MHz  
N–CHANNEL MOS  
BROADBAND RF POWER  
FET  
Facilitates Manual Gain Control, ALC and Modulation  
Techniques  
100% Tested For Load Mismatch At All Phase Angles  
With 30:1 VSWR  
Low Noise Figure — 3.0 dB Typ at 2.0 A, 150 MHz  
D
G
S
CASE 211–11, STYLE 2  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
65  
Unit  
Vdc  
Vdc  
Drain–Source Voltage  
Drain–Gate Voltage  
V
DSS  
V
DGR  
65  
(R  
= 1.0 M)  
GS  
Gate–Source Voltage  
V
±40  
Vdc  
Adc  
GS  
Drain Current — Continuous  
I
13  
D
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
D
270  
1.54  
Watts  
W/°C  
C
Storage Temperature Range  
Operating Junction Temperature  
THERMAL CHARACTERISTICS  
T
65 to +150  
200  
°C  
°C  
stg  
T
J
Characteristic  
Thermal Resistance, Junction to Case  
Symbol  
Max  
Unit  
R
0.65  
°C/W  
θJC  
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and  
packaging MOS devices should be observed.  
REV 7  
1
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted.)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–Source Breakdown Voltage (V  
= 0, I = 50 mA)  
V
(BR)DSS  
65  
10  
Vdc  
mAdc  
µAdc  
GS  
D
Zero Gate Voltage Drain Current (V  
= 28 V, V  
= 0)  
I
DS  
GS  
= 0)  
DS  
DSS  
GSS  
Gate–Source Leakage Current (V  
= 20 V, V  
I
1.0  
GS  
ON CHARACTERISTICS  
Gate Threshold Voltage (V  
DS  
= 10 V, I = 100 mA)  
V
1.0  
3.0  
2.5  
6.0  
Vdc  
D
GS(th)  
Forward Transconductance (V  
DS  
= 10 V, I = 3.0 A)  
g
fs  
1.75  
mhos  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance (V  
DS  
= 28 V, V  
GS  
= 0, f = 1.0 MHz)  
= 0, f = 1.0 MHz)  
= 0, f = 1.0 MHz)  
C
175  
190  
40  
pF  
pF  
pF  
iss  
Output Capacitance (V  
= 28 V, V  
C
oss  
DS  
GS  
Reverse Transfer Capacitance (V  
= 28 V, V  
GS  
C
rss  
DS  
FUNCTIONAL CHARACTERISTICS (Figure 1)  
Noise Figure  
NF  
9.0  
50  
3.0  
11.8  
60  
dB  
dB  
%
(V  
DD  
= 28 Vdc, I = 2.0 A, f = 150 MHz)  
D
Common Source Power Gain  
G
ps  
(V  
DD  
= 28 Vdc, P  
= 125 W, f = 150 MHz, I  
= 125 W, f = 150 MHz, I  
= 125 W, f = 150 MHz, I  
= 100 mA)  
= 100 mA)  
= 100 mA,  
out  
DQ  
DQ  
DQ  
Drain Efficiency  
(V = 28 Vdc, P  
η
DD  
out  
Electrical Ruggedness  
(V = 28 Vdc, P  
ψ
No Degradation in Output Power  
DD  
out  
VSWR 30:1 at all Phase Angles)  
L4  
R2  
C12  
C13  
+
BIAS  
ADJUST  
R1  
V
= 28 V  
DD  
+
C9  
C10  
C14  
C11  
R3  
D1  
RFC1  
R4  
C3  
C2  
C8  
RF INPUT  
RF OUTPUT  
L1  
C4  
L2  
L3  
C1  
DUT  
C6  
C5  
C7  
C1 — 15 pF Unelco  
L1 — #16 AWG, 1–1/4 Turns, 0.213ID  
C2 — Arco 462, 5.080 pF  
C3 — 100 pF Unelco  
C4 — 25 pF Unelco  
L2 — #16 AWG, Hairpin  
0.25″  
0.062″  
0.47″  
0.2″  
L3 — #14 AWG, Hairpin  
C6 — 40 pF Unelco  
C7 — Arco 461, 2.730 pF  
L4 — 10 Turns #16 AWG Enameled Wire on R1  
C5, C8 — Arco 463, 9.0180 pF  
C9, C11, C14 — 0.1 µF Erie Redcap  
C10 — 50 µF, 50 V  
RFC1 — 18 Turns #16 AWG Enameled Wire, 0.3ID  
R1 — 10 , 2.0 W  
R2 — 1.8 k, 1/2 W  
C12, C13 — 680 pF Feedthru  
D1 — 1N5925A Motorola Zener  
R3 — 10 k, 10 Turn Bourns  
R4 — 10 k, 1/4 W  
Figure 1. 150 MHz Test Circuit  
REV 7  
2
140  
120  
80  
70  
f = 100 MHz  
150 MHz  
f = 100 MHz  
150 MHz  
200 MHz  
200 MHz  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
V
I
DQ  
= 28 V  
= 100 mA  
V
I
DQ  
= 13.5 V  
DD  
DD  
= 100 mA  
12  
0
2
4
6
8
10  
12  
14  
28  
28  
0
2
4
6
8
10  
14  
16  
P , INPUT POWER (WATTS)  
P , INPUT POWER (WATTS)  
in  
in  
Figure 2. Output Power versus Input Power  
Figure 3. Output Power versus Input Power  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
I
= 100 mA  
I
= 100 mA  
DQ  
f = 100 MHz  
DQ  
f = 150 MHz  
P
= 6 W  
4 W  
in  
P
in  
= 12 W  
8 W  
2 W  
4 W  
60  
60  
40  
40  
20  
0
20  
0
12  
14  
16  
18  
20  
22  
24  
26  
12  
14  
16  
18  
V , SUPPLY VOLTAGE (VOLTS)  
DD  
20  
22  
24  
26  
28  
V
, SUPPLY VOLTAGE (VOLTS)  
DD  
Figure 4. Output Power versus Supply Voltage  
Figure 5. Output Power versus Supply Voltage  
160  
140  
120  
100  
80  
22  
20  
18  
16  
14  
12  
10  
8
I
= 100 mA  
DQ  
f = 200 MHz  
P
= 125 W  
= 28 V  
= 100 mA  
out  
P
in  
= 16 W  
12 W  
V
DD  
DQ  
I
8 W  
60  
40  
6
20  
0
4
2
12  
14  
16  
18  
20  
22  
24  
26  
20  
40  
60  
80 100 120 140 160 180 200 220  
f, FREQUENCY (MHz)  
V
, SUPPLY VOLTAGE (VOLTS)  
DD  
Figure 6. Output Power versus Supply Voltage  
Figure 7. Power Gain versus Frequency  
REV 7  
3
160  
140  
120  
100  
80  
5
4
3
2
1
0
f = 150 MHz  
= CONSTANT  
P
in  
V
= 10 V  
DS  
I
V
= 100 mA  
DQ  
= 28 V  
DD  
60  
TYPICAL DEVICE SHOWN, V  
GS(th)  
= 3 V  
40  
20  
0
TYPICAL DEVICE SHOWN, V  
GS(th)  
= 3 V  
–14 –12 –10  
–8  
–6 –4  
–2  
0
2
4
6
1
2
3
4
5
6
V , GATE–SOURCE VOLTAGE (VOLTS)  
GS  
V , GATE–SOURCE VOLTAGE (VOLTS)  
GS  
Figure 8. Output Power versus Gate Voltage  
Figure 9. Drain Current versus Gate Voltage  
(Transfer Characteristics)  
1000  
900  
800  
700  
600  
1.2  
1.1  
V
= 0 V  
GS  
f = 1 MHz  
V
= 28 V  
3 A  
DD  
I = 4 A  
D
1
500  
400  
300  
200  
100  
0
2 A  
100 mA  
150  
C
oss  
0.9  
C
iss  
C
rss  
0.8  
0
4
8
12  
16  
20  
24  
28  
25  
0
25  
50  
75  
100  
125  
175  
V , DRAIN–SOURCE VOLTAGE (VOLTS)  
DS  
T , CASE TEMPERATURE (°C)  
C
Figure 10. Gate–Source Voltage versus  
Case Temperature  
Figure 11. Capacitance versus Drain Voltage  
20  
10  
6
4
T = 25°C  
C
2
1
0.6  
0.4  
0.2  
1
2
4
6
10  
20  
40 60  
100  
V , DRAIN–SOURCE VOLTAGE (VOLTS)  
DS  
Figure 12. DC Safe Operating Area  
REV 7  
4
S
11  
S
21  
S
12  
S
22  
f
(MHz)  
|S  
11  
|
φ
|S  
21  
|
φ
|S  
12  
|
φ
|S  
22  
|
φ
2.0  
5.0  
10  
0.932  
0.923  
0.921  
0.921  
0.921  
0.921  
0.922  
0.923  
0.924  
0.925  
0.927  
0.930  
0.930  
0.931  
0.942  
0.936  
0.938  
0.938  
0.940  
0.942  
0.942  
0.952  
0.950  
0.942  
0.943  
0.946  
0.952  
0.958  
0.956  
0.960  
0.956  
0.955  
133  
74.0  
31.6  
112  
0.011  
0.011  
0.011  
0.011  
0.011  
0.012  
0.012  
0.012  
0.013  
0.013  
0.014  
0.016  
0.018  
0.019  
0.019  
0.021  
0.021  
0.022  
0.023  
0.024  
0.026  
0.027  
0.029  
0.030  
0.032  
0.033  
0.035  
0.036  
0.038  
0.039  
0.042  
0.043  
23  
0.835  
0.886  
0.896  
0.899  
0.900  
0.901  
0.902  
0.903  
0.904  
0.906  
0.907  
0.910  
0.912  
0.914  
0.919  
0.921  
0.922  
0.923  
0.923  
0.924  
0.928  
0.929  
0.934  
0.933  
0.939  
0.941  
0.943  
0.946  
0.943  
0.946  
0.944  
0.947  
151  
160  
170  
175  
177  
177  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
177  
177  
177  
177  
177  
178  
178  
98  
93  
88  
86  
83  
81  
79  
77  
75  
73  
71  
70  
68  
67  
66  
65  
64  
63  
61  
60  
59  
57  
56  
56  
55  
54  
53  
52  
52  
51  
50  
12  
10  
12  
16  
21  
26  
30  
34  
39  
43  
45  
46  
47  
49  
50  
53  
53  
54  
56  
59  
58  
61  
61  
62  
64  
64  
65  
67  
68  
68  
68  
168  
174  
177  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
178  
177  
177  
177  
177  
177  
177  
177  
177  
177  
177  
177  
177  
177  
177  
16.0  
20  
8.00  
30  
5.32  
40  
3.98  
50  
3.17  
60  
2.63  
70  
2.24  
80  
1.95  
90  
1.72  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
270  
280  
290  
300  
1.50  
1.31  
1.19  
1.10  
1.01  
0.936  
0.879  
0.830  
0.780  
0.737  
0.705  
0.668  
0.626  
0.592  
0.566  
0.545  
0.523  
0.500  
0.481  
0.460  
0.443  
Table 1. Common Source Scattering Parameters  
= 28 V, I = 3.0 A  
V
DS  
D
REV 7  
5
+j50  
+90°  
+j25  
+j100  
+60°  
+120°  
300  
250  
+j150  
+30°  
+150°  
+j10  
200  
150  
100  
50  
f = 30 MHz  
+j250  
+j500  
.05  
10  
25  
50  
100 150  
250 500  
300  
.04  
.03  
.02  
.01  
0
180°  
0°  
f = 30 MHz  
j500  
j250  
j150  
j10  
30°  
–150°  
j100  
j25  
60°  
–120°  
90°  
j50  
Figure 13. S , Input Reflection Coefficient  
11  
Figure 14. S , Reverse Transmission Coefficient  
12  
versus Frequency  
versus Frequency  
V
= 28 V, I = 3.0 A  
V
= 28 V, I = 3.0 A  
DS  
D
DS  
D
+j50  
+90°  
f = 30 MHz  
+j25  
+j100  
+60°  
+120°  
+j150  
50  
+30°  
+150°  
+j10  
0
+j250  
+j500  
100  
150  
300  
25  
50  
100 150  
250 500  
f = 30 MHz  
300  
5
4
3
2
1
180°  
0°  
j500  
j250  
j150  
j10  
30°  
–150°  
j100  
j25  
60°  
–120°  
j50  
90°  
Figure 15. S , Forward Transmission Coefficient  
21  
Figure 16. S , Output Reflection Coefficient  
22  
versus Frequency  
versus Frequency  
V
= 28 V, I = 3.0 A  
V
= 28 V, I = 3.0 A  
DS D  
DS  
D
REV 7  
6
150  
30  
f = 200 MHz  
f = 200 MHz  
100  
150  
100  
P
out  
= 125 W, V = 28 V  
DD  
DQ  
Z
in  
I
= 100 mA  
Z
*
OL  
f
Z
in  
Ohms  
Z *  
OL  
Ohms  
MHz  
30  
Z = 10 Ω  
o
30  
2.90 – j3.95 2.95 – j3.90  
1.25 – j2.90 1.85 – j1.05  
1.18 – j1.40 1.72 – j0.05  
1.30 – j0.90 1.70 + j0.25  
100  
150  
200  
Z
* = Conjugate of the optimum load impedance  
* = into which the device output operates at a  
* = given output power, voltage and frequency.  
OL  
Z
OL  
Z
OL  
Figure 17. Series Equivalent Input/Output Impedance, Z , Z  
in OL  
*
REV 7  
7
DESIGN CONSIDERATIONS  
terized at I  
= 100 mA, which is the suggested minimum  
. For special applications such as linear amplifi-  
may have to be selected to optimize the critical  
DQ  
The MRF174 is a RF power N–Channel enhancement  
mode field–effect transistor (FET) designed especially for  
UHF power amplifier and oscillator applications. M/A-COM RF  
MOSFETs feature a vertical structure with a planar design,  
thus avoiding the processing difficulties associated with V–  
groove vertical power FETs.  
M/A-COM Application Note AN211A, FETs in Theory and  
Practice, is suggested reading for those not familiar with the  
construction and characteristics of FETs.  
value of I  
DQ  
cation, I  
DQ  
parameters.  
The gate is a dc open circuit and draws no current. There-  
fore, the gate bias circuit may generally be just a simple re-  
sistive divider network. Some special applications may  
require a more elaborate bias system.  
GAIN CONTROL  
Power output of the MRF174 may be controlled from its  
rated value down to zero (negative gain) by varying the dc  
gate voltage. This feature facilitates the design of manual  
gain control, AGC/ALC and modulation systems. (See  
Figure 8.)  
The major advantages of RF power FETs include high  
gain, low noise, simple bias systems, relative immunity from  
thermal runaway, and the ability to withstand severely mis-  
matched loads without suffering damage. Power output can  
be varied over a wide range with a low power dc control sig-  
nal, thus facilitating manual gain control, ALC and modula-  
tion.  
AMPLIFIER DESIGN  
Impedance matching networks similar to those used with  
bipolar UHF transistors are suitable for MRF174. See  
M/A-COM Application Note AN721, Impedance Matching Net-  
works Applied to RF Power Transistors. The higher input  
impedance of RF MOSFETs helps ease the task of broad-  
band network design. Both small signal scattering parame-  
ters and large signal impedances are provided. While the  
s–parameters will not produce an exact design solution for  
high power operation, they do yield a good first approxima-  
tion. This is an additional advantage of RF MOS power FETs.  
DC BIAS  
The MRF174 is an enhancement mode FET and, there-  
fore, does not conduct when drain voltage is applied. Drain  
current flows when a positive voltage is applied to the gate.  
See Figure 9 for a typical plot of drain current versus gate  
voltage. RF power FETs require forward bias for optimum  
performance. The value of quiescent drain current (I  
not critical for many applications. The MRF174 was charac-  
) is  
DQ  
REV 7  
8
PACKAGE DIMENSIONS  
A
U
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
M
1
INCHES  
DIM MIN MAX  
0.990 24.39  
MILLIMETERS  
M
Q
MIN  
MAX  
25.14  
12.95  
6.98  
5.96  
2.79  
4.52  
0.17  
–––  
4
A
B
C
D
E
0.960  
0.465  
0.229  
0.216  
0.084  
0.144  
0.003  
0.435  
0.510  
0.275  
0.235  
0.110  
0.178  
0.007  
–––  
11.82  
5.82  
5.49  
2.14  
3.66  
0.08  
11.05  
R
B
H
J
2
3
K
M
Q
R
U
D
45 NOM  
45 NOM  
K
0.115  
0.246  
0.720  
0.130  
0.255  
0.730 18.29  
2.93  
6.25  
3.30  
6.47  
18.54  
J
STYLE 2:  
PIN 1. SOURCE  
C
H
E
SEATING  
PLANE  
2. GATE  
3. SOURCE  
4. DRAIN  
CASE 211–11  
ISSUE N  
Specifications subject to change without notice.  
n North America: Tel. (800) 366-2266, Fax (800) 618-8883  
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298  
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020  
Visit www.macom.com for additional data sheets and product information.  
REV 7  
9

相关型号:

MRF175GU

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF175GU

N-CHANNEL MOS BROADBAND RF POWER FETs
TE

MRF175GU

RF POWER FIELD-EFFECT TRANSISTOR
ASI

MRF175GU1111

N-CHANNEL MOS BROADBAND RF POWER FETs
TE

MRF175GV

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF175GV

N-CHANNEL MOS BROADBAND RF POWER FETs
TE

MRF175GV

RF POWER FIELD-EFFECT TRANSISTOR
ASI

MRF175LU

N-CHANNEL BROADBAND RF POWER FETs
MOTOROLA

MRF175LU

N-CHANNEL BROADBAND RF POWER FETs
TE

MRF175LV

N-CHANNEL BROADBAND RF POWER FETs
MOTOROLA

MRF175LV

N-CHANNEL BROADBAND RF POWER FETs
TE

MRF176

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA