MRF173CQ [TE]

N-CHANNEL BROADBAND RF POWER MOSFET; N沟道宽带射频功率MOSFET
MRF173CQ
型号: MRF173CQ
厂家: TE CONNECTIVITY    TE CONNECTIVITY
描述:

N-CHANNEL BROADBAND RF POWER MOSFET
N沟道宽带射频功率MOSFET

晶体 晶体管 射频 放大器 局域网
文件: 总6页 (文件大小:120K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
SEMICONDUCTOR TECHNICAL DATA  
by MRF173CQ/D  
The RF MOSFET Line  
R
F
P owe r  
E
M
R
F
1
7
3
C
Q
F
i
e
l
d
f
f
e
c
t
T
r
a
n
s
i
s
t
o
r
N–Channel Enhancement Mode MOSFET  
Designed for broadband commercial and military applications up to 200 MHz  
frequency range. The high–power, high–gain and broadband performance of  
this device makes possible solid state transmitters for FM broadcast or TV  
channel frequency bands.  
80 W, 28 V, 175 MHz  
N–CHANNEL  
BROADBAND  
RF POWER MOSFET  
Guaranteed Performance at 150 MHz, 28 V:  
Output Power = 80 W  
Gain = 11 dB (13 dB Typ)  
Efficiency = 55% Min. (60% Typ)  
Low Thermal Resistance  
D
Ruggedness Tested at Rated Output Power  
Nitride Passivated Die for Enhanced Reliability  
Low Noise Figure — 1.5 dB Typ at 2.0 A, 150 MHz  
Excellent Thermal Stability; Suited for Class A Operation  
G
S
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
65  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
Drain–Source Voltage  
Drain–Gate Voltage  
Gate–Source Voltage  
Drain Current — Continuous  
V
DSS  
V
DGO  
65  
V
GS  
±40  
9.0  
CASE 316–01, STYLE 2  
I
D
Total Device Dissipation @ T = 25°C  
P
D
220  
Watts  
C
Derate above 25°C  
1.26  
W/°C  
Storage Temperature Range  
Operating Temperature Range  
T
–65 to +150  
200  
°C  
°C  
stg  
T
J
THERMAL CHARACTERISTICS  
Characteristic  
Thermal Resistance, Junction to Case  
Symbol  
Max  
Unit  
R
0.8  
°C/W  
θ
JC  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–Source Breakdown Voltage (V = 0 V, V = 0 V)  
I
D
= 50 mA  
V
(BR)DSS  
65  
V
DS  
GS  
Zero Gate Voltage Drain Current (V = 28 V, V = 0 V)  
I
2.0  
1.0  
mA  
µA  
DS  
GS  
DSS  
GSS  
Gate–Source Leakage Current (V = 40 V, V = 0 V)  
I
GS  
DS  
ON CHARACTERISTICS  
Gate Threshold Voltage (V = 10 V, I = 50 mA)  
V
1.0  
3.0  
6.0  
1.4  
V
V
DS  
D
GS(th)  
Drain–Source On–Voltage (V  
, V = 10 V, I = 3.0 A)  
DS(on) GS  
V
DS(on)  
D
Forward Transconductance (V = 10 V, I = 2.0 A)  
g
fs  
1.8  
2.2  
mhos  
DS  
D
(continued)  
NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and  
packaging MOS devices should be observed.  
REV 0  
1
ELECTRICAL CHARACTERISTICS — continued (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
DYNAMIC CHARACTERISTICS  
Input Capacitance (V = 28 V, V = 0 V, f = 1.0 MHz)  
C
110  
105  
10  
pF  
pF  
pF  
DS  
GS  
iss  
Output Capacitance (V = 28 V, V = 0 V, f = 1.0 MHz)  
C
oss  
DS  
GS  
Reverse Transfer Capacitance (V = 28 V, V = 0 V, f = 1.0 MHz)  
C
rss  
DS  
GS  
FUNCTIONAL CHARACTERISTICS  
Noise Figure (V = 28 V, f = 150 MHz, I = 50 mA)  
NF  
11  
1.5  
13  
dB  
dB  
DD  
DQ  
Common Source Power Gain  
G
ps  
(V = 28 V, P = 80 W, f = 150 MHz, I = 50 mA)  
DD  
out  
DQ  
Drain Efficiency (V = 28 V, P = 80 W, f = 150 MHz, I = 50 mA)  
η
55  
60  
%
DD  
out  
DQ  
Electrical Ruggedness  
ψ
No Degradation in Output Power  
(V = 28 V, P = 80 W, f = 150 MHz, I = 50 mA)  
DD  
out  
DQ  
Load VSWR 30:1 at all phase angles  
Series Equivalent Input Impedance  
Z
1.35–j5.15  
2.72–j149  
Ohms  
Ohms  
in  
(V = 28 V, P = 80 W, f = 150 MHz, I = 50 mA)  
DD  
out  
DQ  
Series Equivalent Output Impedance  
(V = 28 V, P = 80 W, f = 150 MHz, I = 50 mA)  
Z
out  
DD  
out  
DQ  
R F C 1  
V
D D  
=
2
8
V
R
2
C
11  
C1 2  
+
V
dc  
+
-
+
-
R
1
C
8
C
9
Z
1
C
1
0
C
1
3
C1 4  
-
R F C 2  
R
F
D
.
U
.
T
.
O
U
T
P
U
T
L
3
L
4
C1 6  
R
F
R
3
IN PU T  
C
1
L
1
L2  
C
1
5
C
4
C
5
C
6
C 7  
C
2
C 3  
C1, C15 — 470 pF Unelco  
C2, C3, C5 — 9–180 pF, Arco 463  
C4, C6 — 15 pF, Unelco  
L3 — #14 AWG Hairpin 0.8long  
L4 — #14 AWG Hairpin 1.1long  
RFC1 — Ferroxcube VK200–19/4B  
C7 — 5–80 pF, Arco 462  
C8, C10, C14, C16 — 0.1 µF  
C9, C13 — 50 µF, 50 Vdc  
RFC2 — 18 Turns #18 AWG Enameled, 0.3ID  
R1 — 10 k, 10 Turns Bourns  
R2 — 1.8 k, 1/4 W  
C11, C12 — 680 pF, Feed Through  
L1 — #16 AWG, 1–1/4 Turns, 0.3ID  
L2 — #16 AWG Hairpin 1long  
R3 — 10 k, 1/2 W  
Z1 — 1N5925A Motorola Zener  
Figure 1. 150 MHz Test Circuit  
REV 0  
2
TYPICAL CHARACTERISTICS  
1
2
0
8
6
0
0
0
0
8
7
6
5
0
0
0
0
f
=
1
0
0
M
H
z
1
5
0
M Hz  
1
f
=
1
00  
M
H
z
2
0
0
M
H
z
1
5
0
M
H
z
4
3
2
0
0
0
2
0
0
M
H
z
4
2
0
0
V
=
2
8
V
D D  
I
=
5
0
m A  
D Q  
V
D D  
=
1
3
.
5
V
1
0
I
=
5
0
m
A
D Q  
0
0
0
2
.
0
4
.
0
6
.
0
8
.0  
1
0
1
2
1 4  
0
1
2
3
4
5
6
7
8
9
1 0  
P ,  
in  
I
N
P
U
T
P
OW  
E
R
(
WAT  
T
S)  
P ,  
i n  
I
N
P
U
T
P
O
WE  
R
(
W
A
T
T
S
)
Figure 2. Output Power versus Input Power  
Figure 3. Output Power versus Input Power  
1
4
0
1
1
1
4
0
0
I
f
=
5
0
m
A
I
=
D Q  
5
0
m A  
1
1
20  
2
D
Q
P
in  
=
4
.
0
W
P
i n  
=
8
.
0
W
=
1
0
0
M
H
z
f
=
1
5
0
M
H
z
0
8
6
0
0
0
00  
8 0  
6 0  
3
.
0
0
W
W
6
.
.
0
0
W
2
1
.
4
2
W
W
.0  
W
.
0
4
2
0
0
4
2
0
0
0
0
1
0
1
2
1
4
1
6
1
8
2
0
2
2
2
4
2
6
2
8
3 0  
1
0
1
2
1
4
1
6
1
8
2
0
2
2
2
4
2
6
2
8
3 0  
V
D D  
,
S
UPP  
LY  
V
O
L
T
A
GE  
(
V
O
L
T
S
)
V
D D  
,
S
U
P
P
L
Y
V
O
L
T
A
G
E
(
V
O
L
T
S
)
Figure 4. Output Power versus Supply Voltage  
Figure 5. Output Power versus Supply Voltage  
2
2
1
1
1
1
1
2
0
8
6
4
2
0
0
0
0
0
1
4
0
I
f
=
5
0
m
A
1
1
2
0
P
V
=
=
8
0
W
V
D
Q
o
u
t
P
=
1
4
W
i
n
=
2
0
0
M
H
z
2
8
D
D
I
D Q  
=
5
0
m
A
0
8
6
0
0
0
1
0
W
6
4
.
0
W
.
0
W
8
.
.
.
.
4
2
0
0
6
4
2
0
2
0
4
0
6
0
8
0
1
0
F
0
R
1
2
E
0
1
Y
4
0
1
(M Hz)  
6
0
1
8
0
2
0
0
2
2
0
1
0
1
2
1
4
1
6
1
8
2
0
2
2
2
4
2
6
2
8
3
0
f
,
E
Q
U
N
C
V
,
S
U
P
P
L
Y
V
O
L
T
A
G
E
(
V
O
L
T
S
)
D
D
Figure 7. Power Gain versus Frequency  
Figure 6. Output Power versus Supply Voltage  
REV 0  
3
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
6
5
4
3
2
1
. 0  
. 0  
. 0  
. 0  
. 0  
. 0  
0
f
=
1
5
0
M Hz  
V
V
=
1
0
V
D S  
P
V
I
=
C O NS TA NT  
V
in  
D S  
=
3
.
0
V
=
2
8
G S (t h)  
=
5
0
m A  
D Q  
V
=
3
.
0
V
G S(t h )  
0
1
.0  
2
.0  
3
.0  
4
.0  
5
.0  
6 .0  
-
1
4
-
12  
-
1
0
-
8
.
0
-
6
.
0
-
4
.
0
-
2
.
0
0
2
.
0
4
.
0
6
.
0
V
G S  
,
G
AT  
E
-
S
O
U
R
C
E
V
O
L
T
A
GE  
(
VO  
L
T
S
)
V
G S  
,
G
AT  
E
-
S
O
U
R
C
E
V
O
L
T
A
G
E
(V O LTS )  
Figure 8. Output Power versus Gate Voltage  
Figure 9. Drain Current versus Gate Voltage  
1
1
1
.
.
.
2
1
0
4
3
3
2
2
6
0
4
0
1 4 0  
C
i ss  
V
D S  
=
2
8
V
1 2 0  
0
0
0
1
0
0
0
0
0
0
V
=
0
V
I
=
3
.
0
A
A
G S  
R
D
F
E
Q
=
1
M
H
z
8
6
4
2
1. 0  
5
0
0
m
A
1
1
8
0
0
0
0
.
9
C
o
s
s
2
6
5
0
mA  
0
0
.
8
C
r s s  
0
0
.
7
-
2
8
2
5
0
2
5
5
0
7
5
1
0
0
1
2
5
1
5
0
1
7
5
0
4
8
1
2
1
6
2
0
2
4
V
D S  
,
D
R
AI  
N
-
S
O
U
R
C
E
V
O
L
T
A
G
E
(
V
O
L
T
S
)
T
,
C
A
S
E
T
E
M
P
E
R
A
T
U
R
E
°
)
(
C
C
Figure 10. Gate–Source Voltage versus  
Case Temperature  
Figure 11. Capacitance versus Drain Voltage  
1
0
0
5
.
2
1
0
.
.
.
0
0
5
T
=
°
C
2
5
C
0
0
.
.
2
1
1
.
0
2
.
0
4
.
0
6
.
0
1
0
2
0
4
0
6
0
1
0
0
V
D S  
,
D
R
AI  
N
-
S
O
U
R
C
E
V
O
L
T
A
G
E
(
V
O
L
T
S
)
Figure 12. DC Safe Operating Area  
REV 0  
4
DESIGN CONSIDERATIONS  
applications. The MRF173CQ was characterized at IDQ =  
The MRF173CQ is a RF MOSFET power N–channel en-  
hancement mode field–effect transistor (FET) designed for  
VHF power amplifier applications. M/A-COM's RF MOSFETs  
feature a vertical structure with a planar design, thus avoid-  
ing the processing difficulties associated with V–groove pow-  
er FETs.  
M/A-COM Application Note AN211A, FETs in Theory and  
Practice, is suggested reading for those not familiar with the  
construction and characteristics of FETs.  
50 mA, which is the suggested minimum value of IDQ. For  
special applications such as linear amplification, IDQ may  
have to be selected to optimize the critical parameters.  
The gate is a dc open circuit and draws no current. There-  
fore, the gate bias circuit may generally be just a simple re-  
sistive divider network. Some special applications may  
require a more elaborate bias system.  
GAIN CONTROL  
Power output of the MRF173CQ may be controlled from its  
rated value down to zero (negative gain) by varying the dc  
gate voltage. This feature facilitates the design of manual gain  
control, AGC/ALC and modulation systems. (see Figure 8.)  
The major advantages of RF power FETs include high  
gain, low noise, simple bias systems, relative immunity from  
thermal runaway, and the ability to withstand severely mis-  
matched loads without suffering damage. Power output can  
be varied over a wide range with a low power dc control sig-  
nal, thus facilitating manual gain control, ALC and modula-  
tion.  
AMPLIFIER DESIGN  
Impedance matching networks similar to those used with  
bipolar VHF transistors are suitable for MRF173CQ. See  
M/A-COM Application Note AN721, Impedance Matching  
Networks Applied to RF Power Transistors. The higher input  
impedance of RF MOSFETs helps ease the task of broad-  
band network design. Both small–signal scattering parame-  
ters and large–signal impedances are provided. While the  
s–parameters will not produce an exact design solution for  
high power operation, they do yield a good first approxima-  
tion. This is an additional advantage of RF MOS power FETs.  
DC BIAS  
The MRF173CQ is an enhancement mode FET and,  
therefore, does not conduct when drain voltage is ap-  
plied. Drain current flows when a positive voltage is ap-  
plied to the gate. See Figure 9 for a typical plot of drain  
current versus gate voltage. RF power FETs require for-  
ward bias for optimum performance. The value of quies-  
cent drain current (IDQ ) is not critical for many  
REV 0  
5
PACKAGE DIMENSIONS  
F
D
4
N O TE S :  
1. F LAN G E I S I SO LAT ED I N A LL S TY LE S.  
R
Q
K
3
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
0. 960  
0. 490  
MAX  
0. 990  
0. 510  
0. 300  
0. 220  
0. 120  
0. 210  
0. 730  
0. 006  
0. 440  
0. 160  
0. 170  
0. 130  
0. 130  
0. 495  
A
24. 38  
12. 45  
5. 97  
5. 33  
2. 16  
5. 08  
18. 29  
0. 10  
10. 29  
3. 81  
3. 81  
2. 92  
3. 05  
11. 94  
25. 14  
12. 95  
1
B
C
D
E
F
7. 62 0. 235  
5. 58 0. 210  
3. 04 0. 085  
5. 33 0. 200  
2
H
J
18. 54  
0. 720  
L
0. 15 0. 004  
11. 17 0. 405  
4. 06 0. 150  
4. 31 0. 150  
K
L
B
C
J
N
Q
R
U
3. 30  
3. 30 0. 120  
12. 57 0. 470  
0. 115  
E
N
H
A
S TY LE 2:  
P IN 1. B AS E  
U
2. C O LLE C TO R  
3. B AS E  
4. E MIT T ER  
CASE 316–01  
ISSUE D  
Specifications subject to change without notice.  
n North America: Tel. (800) 366-2266, Fax (800) 618-8883  
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298  
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020  
Visit www.macom.com for additional data sheets and product information.  
REV 0  
6

相关型号:

MRF174

N-CHANNEL MOS BROADBAND RF POWER FET
MOTOROLA

MRF174

N-CHANNEL MOS BROADBAND RF POWER FET
TE

MRF175GU

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF175GU

N-CHANNEL MOS BROADBAND RF POWER FETs
TE

MRF175GU

RF POWER FIELD-EFFECT TRANSISTOR
ASI

MRF175GU1111

N-CHANNEL MOS BROADBAND RF POWER FETs
TE

MRF175GV

N-CHANNEL MOS BROADBAND RF POWER FETs
MOTOROLA

MRF175GV

N-CHANNEL MOS BROADBAND RF POWER FETs
TE

MRF175GV

RF POWER FIELD-EFFECT TRANSISTOR
ASI

MRF175LU

N-CHANNEL BROADBAND RF POWER FETs
MOTOROLA

MRF175LU

N-CHANNEL BROADBAND RF POWER FETs
TE

MRF175LV

N-CHANNEL BROADBAND RF POWER FETs
MOTOROLA