VND810SP13TR [STMICROELECTRONICS]

DOUBLE CHANNEL HIGH SIDE DRIVER; 双通道高侧驱动器
VND810SP13TR
型号: VND810SP13TR
厂家: ST    ST
描述:

DOUBLE CHANNEL HIGH SIDE DRIVER
双通道高侧驱动器

外围驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总18页 (文件大小:265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
VND810SP  
DOUBLE CHANNEL HIGH SIDE DRIVER  
TYPE  
R
I
V
CC  
DS(on)  
OUT  
VND810SP  
160 m(*)  
3.5 A (*)  
36 V  
(*) Per each channel  
CMOS COMPATIBLE INPUTS  
OPEN DRAIN STATUS OUTPUTS  
10  
ON STATE OPEN LOAD DETECTION  
OFF STATE OPEN LOAD DETECTION  
SHORTED LOAD PROTECTION  
1
PowerSO-10  
UNDERVOLTAGE AND OVERVOLTAGE  
SHUTDOWN  
PROTECTION AGAINST LOSS OF GROUND  
VERY LOW STAND-BY CURRENT  
ORDER CODES  
TUBE  
PACKAGE  
T&R  
PowerSO-10VND810SP VND810SP13TR  
REVERSE BATTERY PROTECTION (**)  
DESCRIPTION  
combined with thermal shutdown and automatic  
restart protects the device against overload. The  
device detects open load condition both in on and  
off state. Output shorted to VCC is detected in the  
off state. Device automatically turns off in case of  
ground pin disconnection.  
The VND810SP is a monolithic device made by  
using  
STMicroelectronics  
VIPower  
M0-3  
Technology, intended for driving any kind of load  
with one side connected to ground.  
Active VCC pin voltage clamp protects the device  
against low energy spikes (see ISO7637 transient  
compatibility table). Active current limitation  
BLOCK DIAGRAM  
V
cc  
V
cc  
OVERVOLTAGE  
CLAMP  
UNDERVOLTAGE  
GND  
CLAMP 1  
OUTPUT1  
INPUT1  
STATUS1  
DRIVER 1  
CLAMP 2  
CURRENT LIMITER 1  
OPENLOAD ON 1  
DRIVER 2  
LOGIC  
OUTPUT2  
OVERTEMP. 1  
CURRENT LIMITER 2  
OPENLOAD ON 2  
INPUT2  
OPENLOAD OFF 1  
STATUS2  
OPENLOAD OFF 2  
OVERTEMP. 2  
(**) See application schematic at page 8  
July 2002  
1/18  
1
VND810SP  
ABSOLUTE MAXIMUM RATING  
Symbol  
Parameter  
Value  
Unit  
V
V
DC Supply Voltage  
41  
- 0.3  
CC  
- V  
Reverse DC Supply Voltage  
V
CC  
GND  
OUT  
- I  
DC Reverse Ground Pin Current  
- 200  
mA  
A
I
DC Output Current  
Internally Limited  
- 6  
- I  
Reverse DC Output Current  
A
OUT  
I
DC Input Current  
+/- 10  
mA  
mA  
IN  
I
DC Status Current  
+/- 10  
stat  
Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF)  
- INPUT  
4000  
4000  
5000  
5000  
V
V
V
V
V
- STATUS  
- OUTPUT  
ESD  
MAX  
- V  
CC  
Maximum Switching Energy  
(L=1.4mH; R =0; V =13.5V; T  
E
24  
mJ  
=150ºC; I =5A)  
L
bat  
jstart  
L
P
Power Dissipation T =25°C  
52  
W
°C  
°C  
°C  
tot  
C
T
Junction Operating Temperature  
Case Operating Temperature  
Storage Temperature  
Internally Limited  
- 40 to 150  
j
T
c
T
- 55 to 150  
stg  
CONNECTION DIAGRAM (TOP VIEW)  
5
4
3
2
1
OUTPUT 1  
OUTPUT 1  
N.C.  
6
7
GROUND  
INPUT 1  
STATUS 1  
STATUS 2  
INPUT 2  
8
OUTPUT 2  
OUTPUT 2  
9
10  
11  
VCC  
CURRENT AND VOLTAGE CONVENTIONS  
I
S
I
V
IN1  
CC  
V
CC  
INPUT 1  
I
I
STAT1  
V
IN1  
STATUS 1  
INPUT 2  
I
OUT1  
V
IN2  
STAT1  
OUTPUT 1  
OUTPUT 2  
V
OUT1  
I
V
I
STAT2  
IN2  
OUT2  
STATUS 2  
GND  
V
OUT2  
V
STAT2  
I
GND  
2/18  
1
VND810SP  
THERMAL DATA  
Symbol  
Parameter  
Value  
2.4  
Unit  
°C/W  
°C/W  
R
Thermal Resistance Junction-case  
thj-case  
R
Thermal Resistance Junction-ambient  
52.4 (*)  
thj-amb  
2
(*) When mounted on a standard single-sided FR-4 board with 0.5cm of Cu (at least 35µm thick). Horizontal mounting and no artificial air  
flow.  
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C< Tj < 150°C, unless otherwise specified)  
(Per each channel)  
POWER OUTPUTS  
Symbol  
(**)  
Parameter  
Test Conditions  
Min  
5.5  
3
Typ  
13  
4
Max  
36  
Unit  
V
V
Operating Supply Voltage  
CC  
V
(**) Undervoltage Shut-down  
5.5  
V
USD  
V
(**)  
Overvoltage Shut-down  
36  
V
OV  
I
I
=1A; T=25°C  
160  
320  
40  
mΩ  
mΩ  
µA  
OUT  
OUT  
j
R
On State Resistance  
ON  
=1A; V >8V  
CC  
12  
Off State; V =13V; V =V  
=0V  
CC  
IN  
OUT  
Off State; V =13V; V =V  
Tj=25°C  
=0V;  
CC  
IN  
OUT  
I (**)  
Supply Current  
S
12  
5
25  
7
µA  
mA  
µA  
µA  
µA  
µA  
On State; V =13V; V =5V; I =0A  
OUT  
CC  
IN  
I
Off State Output Current  
Off State Output Current  
Off State Output Current  
Off State Output Current  
V
V
V
V
=V =0V  
OUT  
0
50  
0
L(off1)  
IN  
IN  
IN  
IN  
I
=0V; V  
=3.5V  
-75  
L(off2)  
OUT  
I
=V  
=V  
=0V; Vcc=13V; T =125°C  
5
L(off3)  
OUT  
OUT  
j
I
=0V; Vcc=13V; T =25°C  
3
L(off4)  
j
(**) Per device  
SWITCHING (VCC=13V)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
R =13from V rising edge to  
L
IN  
t
t
Turn-on Delay Time  
Turn-off Delay Time  
30  
µs  
d(on)  
d(off)  
V
=1.3V  
OUT  
R =13from V falling edge to  
L
IN  
30  
µs  
V
=11.7V  
OUT  
See  
relative  
diagram  
dV  
dt  
/
/
R =13from V  
=1.3V to  
OUT  
L
OUT  
Turn-on Voltage Slope  
Turn-off Voltage Slope  
V/µs  
V
=10.4V  
(on)  
OUT  
See  
relative  
diagram  
dV  
dt  
R =13from V  
=11.7V to  
OUT  
L
OUT  
V/µs  
V
=1.3V  
(off)  
OUT  
LOGIC INPUT  
Symbol  
Parameter  
Input Low Level  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
V
1.25  
IL  
I
Low Level Input Current  
Input High Level  
V
V
= 1.25V  
= 3.25V  
1
µA  
V
IL  
IN  
IN  
V
3.25  
IH  
IH  
I
High Level Input Current  
Input Hysteresis Voltage  
10  
8
µA  
V
V
0.5  
6
hyst  
I
I
= 1mA  
6.8  
V
IN  
IN  
V
Input Clamp Voltage  
ICL  
= -1mA  
-0.7  
V
3/18  
1
VND810SP  
ELECTRICAL CHARACTERISTICS (continued)  
STATUS PIN  
Symbol  
Parameter  
Test Conditions  
= 1.6 mA  
STAT  
Min  
Typ  
Max  
0.5  
10  
Unit  
V
V
Status Low Output Voltage I  
Status Leakage Current  
STAT  
I
Normal Operation; V  
= 5V  
µA  
LSTAT  
STAT  
Status Pin Input  
Capacitance  
C
Normal Operation; V  
= 5V  
100  
8
pF  
STAT  
STAT  
I
= 1mA  
6
6.8  
V
V
STAT  
V
Status Clamp Voltage  
I
SCL  
= - 1mA  
-0.7  
STAT  
PROTECTIONS  
Symbol  
Parameter  
Test Conditions  
Min  
150  
135  
7
Typ  
Max  
Unit  
°C  
T
Shut-down Temperature  
Reset Temperature  
Thermal Hysteresis  
175  
200  
TSD  
T
°C  
R
T
15  
5
°C  
hyst  
Status Delay in Overload  
Conditions  
Tj>TTSD  
t
I
20  
µs  
sdl  
lim  
3.5  
7.5  
7.5  
A
A
Current limitation  
5.5V<V <36V  
CC  
Turn-off Output Clamp  
Voltage  
V
I
=1A; L=6mH  
V
-41  
V
-48  
V
-55  
V
demag  
OUT  
CC  
CC  
CC  
OPENLOAD DETECTION  
Symbol  
Parameter  
Openload ON State  
Detection Threshold  
Openload ON State  
Detection Delay  
Test Conditions  
Min  
Typ  
Max  
Unit  
I
V
=5V  
IN  
20  
40  
80  
mA  
OL  
t
I
=0A  
OUT  
200  
µs  
DOL(on)  
Openload OFF State  
Voltage Detection  
Threshold  
V
V
=0V  
IN  
1.5  
2.5  
3.5  
V
OL  
Openload Detection Delay  
at Turn Off  
t
1000  
µs  
DOL(off)  
OPEN LOAD STATUS TIMING (with external pull-up)  
< I  
OVER TEMP STATUS TIMING  
T > T  
I
V
> V  
OL  
OUT  
OL  
OUT  
j
TSD  
V
INn  
V
V
INn  
V
STAT n  
STAT n  
t
t
SDL  
SDL  
t
t
DOL(off)  
DOL(on)  
4/18  
2
1
VND810SP  
Switching time Waveforms  
V
OUTn  
90%  
80%  
dV  
/dt  
OUT (off)  
dV  
/dt  
OUT (on)  
10%  
t
V
INn  
t
d(on)  
t
d(off)  
t
TRUTH TABLE  
CONDITIONS  
INPUT  
OUTPUT  
STATUS  
L
H
L
H
H
H
Normal Operation  
L
H
H
L
X
X
H
) H  
) L  
Current Limitation  
(T < T  
j
TSD  
TSD  
(T > T  
j
L
H
L
L
H
L
Overtemperature  
Undervoltage  
Overvoltage  
L
H
L
L
X
X
L
H
L
L
H
H
L
H
H
H
L
H
Output Voltage > V  
OL  
L
H
L
H
H
L
Output Current < I  
OL  
5/18  
1
VND810SP  
ELECTRICAL TRANSIENT REQUIREMENTS ON VCC PIN  
TEST LEVELS  
ISO T/R 7637/1  
Test Pulse  
I
II  
III  
IV  
Delays and  
Impedance  
1
2
-25 V  
+25 V  
-25 V  
-50 V  
+50 V  
-50 V  
-75 V  
+75 V  
-100 V  
+75 V  
-6 V  
-100 V  
+100 V  
-150 V  
+100 V  
-7 V  
2 ms 10 Ω  
0.2 ms 10 Ω  
0.1 µs 50 Ω  
0.1 µs 50 Ω  
100 ms, 0.01 Ω  
400 ms, 2 Ω  
3a  
3b  
4
+25 V  
-4 V  
+50 V  
-5 V  
5
+26.5 V  
+46.5 V  
+66.5 V  
+86.5 V  
ISO T/R 7637/1  
Test Pulse  
TEST LEVELS RESULTS  
I
II  
III  
C
C
C
C
C
E
IV  
C
C
C
C
C
E
1
2
C
C
C
C
C
C
C
C
C
C
C
E
3a  
3b  
4
5
CLASS  
CONTENTS  
C
E
All functions of the device are performed as designed after exposure to disturbance.  
One or more functions of the device is not performed as designed after exposure and cannot be  
returned to proper operation without replacing the device.  
6/18  
1
1
VND810SP  
Figure 1: Waveforms  
NORMAL OPERATION  
INPUT  
n
OUTPUT VOLTAGE  
n
STATUS  
n
UNDERVOLTAGE  
V
V
USDhyst  
CC  
V
USD  
INPUT  
n
OUTPUT VOLTAGE  
n
STATUS  
n
undefined  
OVERVOLTAGE  
V
>V  
OV  
V
<V  
OV  
CC  
CC  
V
CC  
INPUT  
n
OUTPUT VOLTAGE  
n
STATUS  
n
OPEN LOAD with external pull-up  
INPUT  
n
V
>V  
OL  
OUT  
OUTPUT VOLTAGE  
n
V
OL  
STATUS  
n
OPEN LOAD without external pull-up  
INPUT  
n
OUTPUT VOLTAGE  
n
STATUS  
n
OVERTEMPERATURE  
T
TSD  
T
j
T
R
INPUT  
n
OUTPUT CURRENT  
n
STATUS  
n
7/18  
1
VND810SP  
APPLICATION SCHEMATIC  
+5V +5V  
+5V  
V
CC  
R
prot  
STATUS1  
D
ld  
R
R
µC  
prot  
INPUT1  
OUTPUT1  
prot  
STATUS2  
R
prot  
INPUT2  
OUTPUT2  
GND  
R
GND  
D
V
GND  
GND  
depending on how many devices are ON in the case of  
several high side drivers sharing the same R  
If the calculated power dissipation leads to a large resistor  
or several devices have to share the same resistor then  
the ST suggests to utilize Solution 2 (see below).  
GND PROTECTION NETWORK AGAINST  
REVERSE BATTERY  
.
GND  
Solution 1: Resistor in the ground line (R  
can be used with any type of load.  
only). This  
GND  
The following is an indication on how to dimension the  
Solution 2: A diode (D  
) in the ground line.  
GND  
R
resistor.  
GND  
1) R  
A resistor (R  
GND  
=1kΩ) should be inserted in parallel to  
GND  
600mV / I  
.
S(on)max  
D
if the device will be driving an inductive load.  
GND  
2) R  
≥ (−V ) / (-I  
)
This small signal diode can be safely shared amongst  
several different HSD. Also in this case, the presence of  
the ground network will produce a shift ( 600mV) in the  
input threshold and the status output values if the  
microprocessor ground is not common with the device  
ground. This shift will not vary if more than one HSD  
shares the same diode/resistor network.  
GND  
CC  
GND  
where -I  
is the DC reverse ground pin current and can  
GND  
be found in the absolute maximum rating section of the  
device’s datasheet.  
Power Dissipation in R  
(when V <0: during reverse  
CC  
GND  
battery situations) is:  
2
P = (-V ) /R  
D
CC  
GND  
LOAD DUMP PROTECTION  
This resistor can be shared amongst several different  
HSD. Please note that the value of this resistor should be  
D
is necessary (Voltage Transient Suppressor) if the  
ld  
calculated with formula (1) where I  
becomes the  
load dump peak voltage exceeds V max DC rating. The  
S(on)max  
CC  
sum of the maximum on-state currents of the different  
devices.  
same applies if the device will be subject to transients on  
the V  
line that are greater than the ones shown in the  
CC  
ISO T/R 7637/1 table.  
Please note that if the microprocessor ground is not  
common with the device ground then the R  
will  
GND  
produce a shift (I  
* R  
) in the input thresholds  
S(on)max  
GND  
and the status output values. This shift will vary  
8/18  
1
1
VND810SP  
µC I/Os PROTECTION:  
supply the microprocessor.  
If a ground protection network is used and negative  
The external resistor has to be selected according to the  
following requirements:  
1) no false open load indication when load is connected:  
transient are present on the V line, the control pins will  
CC  
be pulled negative. ST suggests to insert a resistor (R  
)
prot  
in line to prevent the µC I/Os pins to latch-up.  
in this case we have to avoid V  
to be higher than  
OUT  
The value of these resistors is a compromise between  
the leakage current of µC and the current required by the  
HSD I/Os (Input levels compatibility) with the latch-up limit  
of µC I/Os.  
V
; this results in the following condition  
Olmin  
V
=(V /(R +R ))R <V  
PU L PU L Olmin.  
OUT  
2) no misdetection when load is disconnected: in this  
case the V has to be higher than V ; this  
-V  
/I  
R  
(V  
-V -V  
) / I  
CCpeak latchup  
prot  
OHµC IH GND  
IHmax  
OUT  
OLmax  
Calculation example:  
results in the following condition R <(V  
V
)/  
For V  
= - 100V and I  
20mA; V  
4.5V  
PU  
PU– OLmax  
CCpeak  
latchup  
OHµC  
I
.
5kΩ ≤ R  
65k.  
L(off2)  
prot  
Recommended R  
value is 10kΩ.  
Because I  
may significantly increase if V is pulled  
out  
prot  
s(OFF)  
high (up to several mA), the pull-up resistor R  
should  
PU  
OPEN LOAD DETECTION IN OFF STATE  
Off state open load detection requires an external pull-up  
be connected to a supply that is switched OFF when the  
module is in standby.  
resistor (R ) connected between OUTPUT pin and a  
The values of V  
, V  
and I are available in  
L(off2)  
PU  
OLmin  
OLmax  
the Electrical Characteristics section.  
positive supply voltage (V ) like the +5V line used to  
PU  
Open Load detection in off state  
PU  
V batt.  
V
VCC  
PU  
R
DRIVER  
+
L(off2)  
I
INPUT  
LOGIC  
OUT  
+
-
R
STATUS  
OL  
V
L
R
GROUND  
9/18  
1
VND810SP  
High Level Input Current  
Off State Output Current  
IL(off1) (uA)  
Iih (uA)  
1.6  
5
1.44  
4.5  
Off state  
Vin=3.25V  
1.28  
1.12  
0.96  
0.8  
Vcc=36V  
Vin=Vout=0V  
4
3.5  
3
2.5  
2
0.64  
0.48  
0.32  
0.16  
0
1.5  
1
0.5  
0
-50  
-25  
0
25  
50  
75  
100 125 150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (°C)  
Input Clamp Voltage  
Status Leakage Current  
Vicl (V)  
Ilstat (uA)  
8
0.05  
7.8  
Iin=1mA  
7.6  
0.04  
7.4  
7.2  
7
Vstat=5V  
0.03  
6.8  
6.6  
6.4  
6.2  
6
0.02  
0.01  
0
-50  
-25  
0
25  
50  
75  
100 125 150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Status Low Output Voltage  
Status Clamp Voltage  
Vscl (V)  
Vstat (V)  
8
0.8  
7.8  
0.7  
Istat=1mA  
Istat=1.6mA  
7.6  
0.6  
7.4  
7.2  
7
0.5  
0.4  
0.3  
0.2  
0.1  
0
6.8  
6.6  
6.4  
6.2  
6
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
10/18  
1
VND810SP  
On State Resistance Vs Tcase  
On State Resistance Vs VCC  
Ron (mOhm)  
Ron (mOhm)  
400  
400  
350  
350  
Iout=1A  
Iout=1A  
Vcc=8V; 13V & 36V  
300  
300  
Tc= 125ºC  
Tc= 25ºC  
250  
250  
200  
150  
100  
50  
200  
150  
100  
50  
Tc= - 40ºC  
0
0
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
5
10  
15  
20  
25  
30  
35  
40  
Tc (ºC)  
Vcc (V)  
Openload On State Detection Threshold  
Input High Level  
Iol (mA)  
Vih (V)  
60  
3.6  
55  
3.4  
3.2  
3
Vcc=13V  
Vin=5V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
2.8  
2.6  
2.4  
2.2  
2
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Input Low Level  
Input Hysteresis Voltage  
Vil (V)  
Vhyst (V)  
1.5  
2.6  
1.4  
1.3  
1.2  
1.1  
1
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.9  
0.8  
0.7  
0.6  
0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
11/18  
1
VND810SP  
Overvoltage Shutdown  
Openload Off State Voltage Detection Threshold  
Vov (V)  
Vol (V)  
50  
5
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
4.5  
Vin=0V  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Turn-on Voltage Slope  
Turn-off Voltage Slope  
dVout/dt(off) (V/ms)  
dVout/dt(on) (V/ms)  
500  
1000  
450  
900  
Vcc=13V  
Rl=13Ohm  
Vcc=13V  
Rl=13Ohm  
400  
800  
350  
700  
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
0
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
-50  
-25  
0
25  
50  
75  
100 125 150 175  
Tc (ºC)  
Tc (ºC)  
ILIM Vs Tcase  
Ilim (A)  
10  
9
8
7
6
5
4
3
2
1
0
Vcc=13V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
12/18  
1
VND810SP  
Maximum turn off current versus load inductance  
ILMAX (A)  
10  
A
B
C
1
0.01  
0.1  
1
10  
100  
L(mH)  
A = Single Pulse at TJstart=150ºC  
B= Repetitive pulse at TJstart=100ºC  
C= Repetitive Pulse at TJstart=125ºC  
Conditions:  
VCC=13.5V  
Values are generated with RL=0Ω  
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed  
the temperature specified above for curves B and C.  
VIN, IL  
Demagnetization  
Demagnetization  
Demagnetization  
t
13/18  
VND810SP  
PowerSO-10THERMAL DATA  
PowerSO-10PC Board  
Layout condition of R and Z measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,  
th  
th  
2
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm ).  
Rthj-amb Vs PCB copper area in open box free air condition  
RTHj_amb (°C/W)  
55  
Tj-Tamb=50°C  
50  
45  
40  
35  
30  
0
2
4
6
8
10  
PCB Cu heatsink area (cm^2)  
14/18  
VND810SP  
PowerSO-10 Thermal Impedance Junction Ambient Single Pulse  
ZTH (°C/W)  
1000  
100  
10  
1
2
0.5 cm  
2
6 cm  
0.1  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
1000  
Time (s)  
Thermal fitting model of a double channel HSD  
in PowerSO-10  
Pulse calculation formula  
ZTHδ = RTH δ + ZTHtp(1 δ)  
δ = tp T  
where  
Thermal Parameter  
2
Area/island (cm )  
R1 (°C/W)  
0.5  
0.35  
1.8  
6
Tj_1  
C1  
R1  
C1  
R1  
C2  
R2  
C3  
R3  
C4  
R4  
C5  
R5  
C6  
R6  
R2 (°C/W)  
R3( °C/W)  
R4 (°C/W)  
R5 (°C/W)  
R6 (°C/W)  
C1 (W.s/°C)  
C2 (W.s/°C)  
C3 (W.s/°C)  
C4 (W.s/°C)  
C5 (W.s/°C)  
C6 (W.s/°C)  
Pd1  
1.1  
C2  
Tj_2  
0.8  
12  
R2  
37  
22  
Pd2  
0.0001  
T_amb  
7.00E-04  
0.008  
0.3  
0.75  
3
5
15/18  
VND810SP  
PowerSO-10MECHANICAL DATA  
mm.  
inch  
TYP.  
DIM.  
MIN.  
TYP  
MAX.  
MIN.  
MAX.  
A
A (*)  
A1  
B
B (*)  
C
C (*)  
D
D1  
E
E2  
E2 (*)  
E4  
E4 (*)  
e
F
F (*)  
H
3.35  
3.4  
3.65  
3.6  
0.132  
0.134  
0.000  
0.016  
0.014  
0.013  
0.009  
0.370  
0.291  
0.366  
0.283  
0.287  
0.232  
0.232  
0.144  
0.142  
0.004  
0.024  
0.021  
0.022  
0.0126  
0.378  
0.300  
0.374  
300  
0.00  
0.40  
0.37  
0.35  
0.23  
9.40  
7.40  
9.30  
7.20  
7.30  
5.90  
5.90  
0.10  
0.60  
0.53  
0.55  
0.32  
9.60  
7.60  
9.50  
7.60  
7.50  
6.10  
6.30  
0.295  
0.240  
0.248  
1.27  
0.50  
0.050  
0.002  
1.25  
1.20  
13.80  
13.85  
1.35  
1.40  
14.40  
14.35  
0.049  
0.047  
0.543  
0.545  
0.053  
0.055  
0.567  
0.565  
H (*)  
h
L
L (*)  
α
1.20  
0.80  
0º  
1.80  
1.10  
8º  
0.047  
0.031  
0º  
0.070  
0.043  
8º  
α (*)  
2º  
8º  
2º  
8º  
(*) Muar only POA P013P  
B
0.10  
E
A B  
10  
H
E
E2  
E4  
1
SEATING  
PLANE  
DETAIL "A"  
e
B
A
C
0.25  
D
=
=
=
=
h
D1  
SEATING  
PLANE  
A
F
A1  
L
A1  
DETAIL "A"  
α
P095A  
16/18  
1
VND810SP  
PowerSO-10SUGGESTED PAD LAYOUT  
TUBE SHIPMENT (no suffix)  
14.6 - 14.9  
CASABLANCA  
MUAR  
B
10.8- 11  
6.30  
C
A
C
A
0.67 - 0.73  
B
1
2
3
10  
9
0.54 - 0.6  
All dimensions are in mm.  
Base Q.ty Bulk Q.ty Tube length (± 0.5)  
8
9.5  
7
4
5
1.27  
A
B
C (± 0.1)  
0.8  
6
Casablanca  
Muar  
50  
50  
1000  
1000  
532  
532  
10.4 16.4  
4.9 17.2  
0.8  
TAPE AND REEL SHIPMENT (suffix “13TR”)  
REEL DIMENSIONS  
Base Q.ty  
Bulk Q.ty  
A (max)  
B (min)  
C (± 0.2)  
F
600  
600  
330  
1.5  
13  
20.2  
24.4  
60  
G (+ 2 / -0)  
N (min)  
T (max)  
30.4  
All dimensions are in mm.  
TAPE DIMENSIONS  
According to Electronic Industries Association  
(EIA) Standard 481 rev. A, Feb 1986  
Tape width  
W
P0 (± 0.1)  
P
24  
4
Tape Hole Spacing  
Component Spacing  
Hole Diameter  
24  
D (± 0.1/-0) 1.5  
Hole Diameter  
D1 (min)  
F (± 0.05)  
K (max)  
1.5  
11.5  
6.5  
2
Hole Position  
Compartment Depth  
Hole Spacing  
P1 (± 0.1)  
All dimensions are in mm.  
End  
Start  
Top  
No components  
500mm min  
Components  
No components  
cover  
tape  
Empty components pockets  
saled with cover tape.  
500mm min  
User direction of feed  
17/18  
1
VND810SP  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a trademark of STMicroelectronics  
2002 STMicroelectronics - Printed in ITALY- All Rights Reserved.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia -  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
18/18  

相关型号:

VND810SPTR-E

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND810TR-E

5A 2 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDSO16, SO-16
STMICROELECTR

VND830

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND830-E

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND83013TR

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND830AEPTR-E

10A BUF OR INV BASED PRPHL DRVR, PDSO24, ROHS COMPLIANT, SSOP-24
STMICROELECTR

VND830ASP

DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY
STMICROELECTR

VND830ASP-E

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND830ASP13TR

DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY
ETC

VND830ASPTR-E

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND830E

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND830E-E

13.5A BUF OR INV BASED PRPHL DRVR, PDSO16, ROHS COMPLIANT, SOP-16
STMICROELECTR