VND830AEPTR-E [STMICROELECTRONICS]

10A BUF OR INV BASED PRPHL DRVR, PDSO24, ROHS COMPLIANT, SSOP-24;
VND830AEPTR-E
型号: VND830AEPTR-E
厂家: ST    ST
描述:

10A BUF OR INV BASED PRPHL DRVR, PDSO24, ROHS COMPLIANT, SSOP-24

光电二极管
文件: 总26页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VND830AEP-E  
Double channel high side driver  
Features  
Type  
RDS(on)  
IOUT  
VCC  
VND830AEP-E  
1. Per each channel.  
60mΩ(1)  
6A(1)  
36V  
PowerSSO-24  
DC short circuit current: 6A  
CMOS compatible inputs  
Proportional load current sense  
Description  
The VND830AEP-E is a monolithic device made  
using| STMicroelectronics VIPower™ M0-3  
Technology. The VND830AEP-E is intended for  
driving any type of multiple load with one side  
connected to ground.  
Undervoltage and overvoltage shutdown  
Overvoltage clamp  
Thermal shutdown  
Current limitation  
The Active VCC pin voltage clamp protects the  
device against low energy spikes (see ISO7637  
transient compatibility table).  
Very low standby power dissipation  
Protection against loss of ground and loss of  
VCC  
Reverse battery protection(a)  
This device has two channels in high side  
configuration; each channel has an analog sense  
output on which the sensing current is  
proportional (according to a known ratio) to the  
corresponding load current. Built-in thermal  
shutdown and outputs current limitation protect  
the chip from over temperature and short circuit.  
The device automatically turns off in the case  
where the ground pin becomes disconnected.  
In compliance with the 2002/95/EC european  
directive  
a. See Application schematic on page 16  
Table 1.  
Device summary  
Package  
Order codes  
Tape and reel  
Tube  
PowerSSO-24  
VND830AEP-E  
VND830AEPTR-E  
September 2013  
Doc ID 11038 Rev 4  
1/26  
www.st.com  
1
 
Contents  
VND830AEP-E  
Contents  
1
2
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1  
2.2  
2.3  
2.4  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1  
GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 16  
3.1.1  
3.1.2  
Solution 1: a resistor in the ground line (RGND only) . . . . . . . . . . . . . . 16  
Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . 17  
3.2  
3.3  
3.4  
Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
MCU I/O protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Maximum demagnetization energy (V = 13.5V) . . . . . . . . . . . . . . . . . . 18  
CC  
4
5
Package and PC board thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.1  
PowerSSO-24 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.1  
5.2  
5.3  
ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PowerSSO-24 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2/26  
Doc ID 11038 Rev 4  
VND830AEP-E  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal data (per island) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Power output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
V
CC - output diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Switching (VCC = 13V; Tj = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Electrical transient requirements (part 1/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Electrical transient requirements (part 2/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Electrical transient requirements (part 3/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PowerSSO-24 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Doc ID 11038 Rev 4  
3/26  
List of figures  
VND830AEP-E  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
IOUT/ISENSE versus IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Off-state output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
High level input current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 10. Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 11. Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 12. Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 13. ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 14. On-state resistance vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 15. Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 16. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 17. On-state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 18. Input low level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 19. Application schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 20. Maximum turn-off current versus load inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 21. PowerSSO-24 PC board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 22. Rthj-amb vs PCB copper area in open box free air condition (one channel ON) . . . . . . . . 19  
Figure 23. PowerSSO-24 thermal impedance junction ambient single pulse (one channel ON). . . . . 20  
Figure 24. Thermal fitting model of a double channel HSD in PowerSSO-24 . . . . . . . . . . . . . . . . . . . 20  
Figure 25. PowerSSO-24 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 26. PowerSSO-24 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 27. PowerSSO-24 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4/26  
Doc ID 11038 Rev 4  
VND830AEP-E  
Block diagram and pin description  
1
Block diagram and pin description  
Figure 1.  
Block diagram  
V
CC  
OVERVOLTAGE  
UNDERVOLTAGE  
V
CLAMP  
CC  
PwCLAMP 1  
DRIVER 1  
OUTPUT 1  
I
INPUT 1  
LIM1  
V
dslim1  
Ot1  
LOGIC  
Ot1  
I
OUT1  
CURRENT  
SENSE 1  
K
INPUT 2  
GND  
PwCLAMP 2  
DRIVER 2  
OUTPUT 2  
I
LIM2  
OVERTEMP. 1  
V
dslim2  
Ot2  
I
Ot2  
OUT2  
CURRENT  
SENSE 2  
OVERTEMP. 2  
K
Figure 2.  
Configuration diagram (top view)  
V
GND  
NC  
OUTPUT2  
OUTPUT2  
OUTPUT2  
OUTPUT2  
OUTPUT2  
OUTPUT2  
OUTPUT1  
OUTPUT1  
OUTPUT1  
OUTPUT1  
OUTPUT1  
OUTPUT1  
CC  
INPUT2  
NC  
INPUT1  
NC  
C.SENSE1  
NC  
C.SENSE2  
NC  
V
CC  
TAB = V  
CC  
Table 2.  
Suggested connections for unused and not connected pins  
Connection / pin  
Current sense  
N.C.  
Output  
Input  
Floating  
X
X
X
Through 1KΩ  
Through 10KΩ  
To ground  
X
resistor  
resistor  
Doc ID 11038 Rev 4  
5/26  
Electrical specifications  
VND830AEP-E  
2
Electrical specifications  
2.1  
Absolute maximum ratings  
Stressing the device above the rating listed in the “Absolute maximum ratings” table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality document.  
Table 3.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
DC supply voltage  
41  
- 0.3  
V
V
- VCC Reverse DC supply voltage  
- IGND DC reverse ground pin current  
- 200  
mA  
A
IOUT  
IR  
DC output current  
Internally limited  
- 6  
Reverse DC output current  
DC input current  
A
IIN  
+/- 10  
mA  
- 3  
15  
V
V
VCSENSE Current sense maximum voltage  
Electrostatic discharge (human body model:R=1.5KΩ; C=100pF)  
– Input  
4000  
2000  
5000  
5000  
V
V
V
V
VESD  
– Current sense  
– Output  
– VCC  
Maximum switching energy  
EMAX  
153  
8.3  
mJ  
W
(L = 2.2mH; RL = 0Ω; Vbat = 13.5V; Tjstart = 150°C; IL = 10A)  
Ptot  
Tj  
Power dissipation (per island) at Tlead = 25°C  
Junction operating temperature  
Case operating temperature  
Internally limited °C  
Tc  
- 40 to 150  
- 55 to 150  
°C  
°C  
Tstg  
Storage temperature  
2.2  
Thermal data  
Table 4.  
Symbol  
Thermal data (per island)  
Parameter  
Max. value  
Unit  
Rthj-case Thermal resistance junction-case  
1.7  
°C/W  
°C/W  
Rthj-amb Thermal resistance junction-ambient (one chip ON)  
55(1)  
2
1. When mounted on a standard single-sided FR-4 board with 0.5cm of Cu (at least 35 µm thick) connected  
to all Vcc pins. Horizontal mounting and no artificial air flow.  
6/26  
Doc ID 11038 Rev 4  
VND830AEP-E  
Electrical specifications  
2.3  
Electrical characteristics  
Values specified in this section are for 8V < VCC < 36V; -40°C < Tj < 150°C, unless  
otherwise stated.  
Figure 3.  
Current and voltage conventions  
IS  
VCC  
VF1 (*)  
VCC  
IOUT1  
IIN1  
OUTPUT1  
INPUT1  
VOUT1  
ISENSE1  
VIN1  
CURRENT SENSE 1  
OUTPUT2  
VSENSE1  
IOUT2  
IIN2  
VIN2  
VOUT2  
INPUT2  
ISENSE2  
CURRENT SENSE 2  
GROUND  
VSENSE2  
IGND  
Note:  
V
Fn = VCCn - VOUTn during reverse battery condition.  
Table 5.  
Symbol  
Power output  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VCC  
VUSD  
VOV  
Operating supply voltage  
Undervoltage shutdown  
Overvoltage shutdown  
5.5  
3
13  
4
36  
V
V
5.5  
36  
V
IOUT = 2A; Tj = 25°C  
IOUT = 2A; Tj = 125°C  
60  
mΩ  
RON  
On-state resistance  
120 mΩ  
VCLAMP Clamp voltage  
ICC = 20mA  
41  
48  
12  
55  
V
Off-state; VCC = 13V;  
V
IN = VOUT = 0V  
40  
µA  
Off-state; VCC = 13V;  
IN = VOUT = 0V; Tj = 25°C  
IS  
Supply current  
V
12  
25  
µA  
On-state; VCC = 13V; VIN = 5V;  
OUT = 0A; RSENSE= 3.9KΩ  
I
7
mA  
µA  
VIN = VOUT = 0V; VCC = 36V;  
Tj = 125°C  
IL(off1) Off-state output current  
IL(off3) Off-state output current  
IL(off4) Off-state output current  
0
50  
VIN = VOUT = 0V; VCC = 13V;  
Tj = 125°C  
5
3
µA  
µA  
VIN = VOUT = 0V; VCC = 13V;  
Tj = 25°C  
Doc ID 11038 Rev 4  
7/26  
Electrical specifications  
VND830AEP-E  
Table 6.  
Symbol  
Protections  
Parameter  
Test conditions  
VCC = 13V  
Min. Typ. Max. Unit  
6
10  
15  
15  
A
A
Ilim  
Current limitation  
5.5V < VCC < 36V  
TTSD  
TR  
Shutdown temperature  
Reset temperature  
Thermal hysteresis  
150  
135  
7
175  
200  
°C  
°C  
°C  
Thyst  
15  
IOUT = 2A; VIN = 0V;  
L = 6mH  
VCC - VCC - VCC  
-
Vdemag Turn-off output clamp voltage  
VON  
V
41  
48  
55  
Output voltage drop limitation IOUT = 10mA  
50  
mV  
Note:  
To ensure long term reliability under heavy overload or short circuit conditions, protection  
and related diagnostic signals must be used together with a proper software strategy. If the  
device is subjected to abnormal conditions, this software must limit the duration and number  
of activation cycles.  
Table 7.  
Symbol  
VCC - output diode  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
0.6  
VF  
Forward on voltage  
- IOUT = 1.3A; Tj = 150°C  
V
Table 8.  
Symbol  
Switching (VCC = 13V; Tj = 25°C)  
Parameter  
Test conditions  
Min.  
Typ.  
Max. Unit  
RL = 6.5Ω from VIN rising  
edge to VOUT = 1.3V (see  
Figure 5)  
td(on)  
Turn-on delay time  
30  
µs  
RL = 6.5Ω from VIN falling  
edge to VOUT = 11.7V  
td(off)  
Turn-off delay time  
30  
µs  
(see Figure 5)  
RL = 6.5Ω from VOUT = 1.3V to  
VOUT = 10.4V (see Figure 5)  
See  
Figure 10  
dVOUT/dt(on) Turn-on voltage slope  
dVOUT/dt(off) Turn-off voltage slope  
V/µs  
V/µs  
RL = 6.5Ω from VOUT = 11.7V  
to VOUT = 1.3V (see Figure 5)  
See  
Figure 12  
Table 9.  
Symbol  
Logic inputs  
Parameter  
Test conditions  
Min.  
Typ.  
Max. Unit  
VIL  
IIL  
Input low level  
1.25  
V
µA  
V
Low level input current  
Input high level  
VIN = 1.25V  
VIN = 3.25V  
1
VIH  
IIH  
3.25  
High level input current  
10  
µA  
8/26  
Doc ID 11038 Rev 4  
VND830AEP-E  
Electrical specifications  
Table 9.  
Symbol  
Logic inputs (continued)  
Parameter  
Test conditions  
Min.  
Typ.  
Max. Unit  
VI(hyst) Input hysteresis voltage  
VICL Input clamp voltage  
0.5  
6
V
IIN = 1mA  
IIN = -1mA  
6.8  
8
V
V
- 0.7  
Table 10. Current sense  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
IOUT1 or IOUT2 = 0.05A;  
K0  
IOUT SENSE  
/I  
600 1300 2000  
VSENSE = 0.5V; other channels  
open; Tj = -40°C...150°C  
IOUT1 or IOUT2 = 0.25A;  
K1  
IOUT SENSE  
/I  
1000 1400 1900  
V
SENSE = 0.5V; other channels  
open; Tj = -40°C...150°C  
IOUT1 or IOUT2 = 0.25A;  
dK1/K1 Current sense ratio drift  
-10  
+10  
%
%
%
V
SENSE = 0.5V; other channels  
open; Tj = -40°C...150°C  
IOUT1 or IOUT2 = 1.6A;  
1280 1500 1800  
1300 1500 1780  
VSENSE = 4V; other channels  
open; Tj = -40°C  
K2  
IOUT/ISENSE  
Tj = 25°C...150°C  
IOUT1 or IOUT2 = 1.6A;  
dK2/K2 Current sense ratio drift  
-6  
+6  
V
SENSE = 4V; other channels  
open; Tj = -40°C...150°C  
IOUT1 or IOUT2 = 2.5A;  
1280 1500 1680  
1340 1500 1600  
V
SENSE = 4V; other channels  
K3  
IOUT/ISENSE  
open; Tj = -40°C  
Tj = 25°C...150°C  
I
OUT1 or IOUT2 = 2.5A;  
dK3/K3 Current sense ratio drift VSENSE = 4V; other channels  
open; Tj = -40°C...150°C  
-6  
+6  
VIN = 0V; IOUT = 0A; VSENSE = 0V;  
Tj = -40°C...150°C  
IN = 5V; IOUT = 0A; VSENSE = 0V;  
0
0
5
µA  
µA  
Analog sense leakage  
current  
ISENSE  
V
Tj = -40°C...150°C  
10  
VCC = 5.5V; IOUT1,2 = 1.3A;  
RSENSE = 10kΩ  
VCC > 8V, IOUT1,2 = 2.5A;  
2
4
V
Max. analog sense  
output voltage  
VSENSE  
RSENSE = 10kΩ  
V
V
Sense voltage in over  
temperature conditions  
VSENSEH  
VCC = 13V; RSENSE = 3.9kΩ  
5.5  
Doc ID 11038 Rev 4  
9/26  
Electrical specifications  
VND830AEP-E  
Table 10. Current sense (continued)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Analog sense output  
RVSENSEH impedance in over  
temperature condition  
V
CC = 13V; Tj > TTSD  
;
400  
Ω
All channels open  
Current sense delay  
response  
(1)  
tDSENSE  
To 90% ISENSE  
500  
µs  
1. Current sense signal delay after positive input slope.  
Figure 4.  
IOUT/ISENSE versus IOUT  
Iout/Isense  
2250  
2000  
1750  
1500  
1250  
1000  
750  
max Tj= -40ºC  
max Tj=25...150ºC  
typical value  
min Tj= -40ºC  
min Tj=25...150ºC  
500  
0
0.5  
1
1.5  
2
2.5  
3
Iout (A)  
10/26  
Doc ID 11038 Rev 4  
VND830AEP-E  
Electrical specifications  
Figure 5.  
Switching characteristics  
VOUT  
90%  
80%  
tr  
dVOUT/dt(off)  
dVOUT/dt(on)  
10%  
tf  
t
ISENSE  
90%  
t
tDSENSE  
td(on)  
INPUT  
td(off)  
t
Table 11.  
Truth table  
Conditions  
Input  
Output  
Sense  
L
L
0
Normal operation  
Overtemperature  
Undervoltage  
H
H
Nominal  
L
L
L
0
H
VSENSEH  
L
L
L
0
0
H
L
L
L
0
0
Overvoltage  
H
L
H
H
L
L
L
0
Short circuit to GND  
(TJ < TTSD) 0  
(TJ > TTSD) 0  
L
H
H
0
Short circuit to VCC  
H
< Nominal  
Negative output voltage clamp  
L
L
0
Doc ID 11038 Rev 4  
11/26  
Electrical specifications  
VND830AEP-E  
Table 12. Electrical transient requirements (part 1/3)  
ISO T/R  
7637/1  
Test level  
I
II  
III  
IV  
Delays and impedance  
Test pulse  
1
2
- 25V  
+ 25V  
- 25V  
- 50V  
+ 50V  
- 50V  
- 75V  
+ 75V  
- 100V  
+ 75V  
- 6V  
- 100V  
+ 100V  
- 150V  
+ 100V  
- 7V  
2ms, 10Ω  
0.2ms, 10Ω  
0.1µs, 50Ω  
0.1µs, 50Ω  
100ms, 0.01Ω  
400ms, 2Ω  
3a  
3b  
4
+ 25V  
- 4V  
+ 50V  
- 5V  
5
+ 26.5V  
+ 46.5V  
+ 66.5V  
+ 86.5V  
Table 13. Electrical transient requirements (part 2/3)  
ISO T/R  
7637/1  
Test level  
I
II  
III  
IV  
Test pulse  
1
2
C
C
C
C
C
C
C
C
C
C
C
E
C
C
C
C
C
E
C
C
C
C
C
E
3a  
3b  
4
5
Table 14. Electrical transient requirements (part 3/3)  
Class  
Contents  
All functions of the device are performed as designed after exposure to  
disturbance.  
C
One or more functions of the device is not performed as designed after exposure  
and cannot be returned to proper operation without replacing the device.  
E
12/26  
Doc ID 11038 Rev 4  
VND830AEP-E  
Electrical specifications  
Figure 6.  
Waveforms  
NORMAL OPERATION  
INPUT  
n
LOAD CURRENT  
n
SENSE  
n
UNDERVOLTAGE  
V
CC  
VUSDhyst  
VUSD  
INPUT  
n
LOAD CURRENT  
n
SENSE  
n
OVERVOLTAGE  
VOV  
VCC < VOV  
V
CC  
VCC > VOV  
INPUT  
n
LOAD CURRENT  
n
SENSE  
n
SHORT TO GROUND  
INPUT  
n
LOAD CURRENT  
n
LOAD VOLTAGE  
n
SENSE  
n
SHORT TO V  
CC  
INPUT  
n
LOAD VOLTAGE  
n
LOAD CURRENT  
n
SENSE  
n
<Nominal  
<Nominal  
OVERTEMPERATURE  
TTSD  
TR  
T
j
INPUT  
n
LOAD CURRENT  
n
VSENSEH  
SENSE  
ISENSE=  
n
RSENSE  
Doc ID 11038 Rev 4  
13/26  
Electrical specifications  
VND830AEP-E  
2.4  
Electrical characteristics curves  
Figure 7.  
Off-state output current  
Figure 8.  
High level input current  
IL(off1) (uA)  
Iih (uA)  
5
4.5  
4
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Vin=3.25V  
Off state  
Vcc=13V  
Vin=Vout=0V  
3.5  
3
2.5  
2
1.5  
1
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (ºC)  
Figure 9.  
Input clamp voltage  
Figure 10. Turn-on voltage slope  
dVout/dt(on)  
900  
Vicl (V)  
8
7.8  
7.6  
7.4  
7.2  
7
800  
Iin=1mA  
Vcc=13V  
RI=6.5Ohm  
700  
600  
500  
400  
300  
200  
100  
6.8  
6.6  
6.4  
6.2  
6
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125 150  
175  
Tc (ºC)  
Tc (°C)  
Figure 11. Overvoltage shutdown  
Figure 12. Turn-off voltage slope  
Vov (V)  
50  
dVout/dt(off) (V/ms)  
500  
450  
47.5  
45  
Vcc=13V  
Rl=6.5Ohm  
400  
350  
42.5  
40  
300  
250  
200  
150  
100  
50  
37.5  
35  
32.5  
30  
0
-50  
-25  
0
25  
50  
75  
100 125 150  
175  
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
Tc (ºC)  
Tc (ºC)  
14/26  
Doc ID 11038 Rev 4  
VND830AEP-E  
Electrical specifications  
Figure 13. ILIM vs Tcase  
Figure 14. On-state resistance vs VCC  
Ilim (A)  
20  
Ron (mOhm)  
100  
Tc=150ºC  
17.5  
90  
80  
70  
60  
50  
40  
30  
20  
Vcc=13V  
15  
Iout=5A  
12.5  
10  
7.5  
5
Tc=25ºC  
Tc= -40ºC  
2.5  
0
-50  
-25  
0
25  
50  
75  
100 125 150  
175  
5
10  
15  
20  
25  
30  
35  
40  
Tc (°C)  
Vcc (V)  
Figure 15. Input high level  
Figure 16. Input hysteresis voltage  
Vhyst (V)  
1.5  
Vih (V)  
3.6  
1.4  
3.4  
Vcc=13V  
1.3  
Vcc=13V  
3.2  
1.2  
1.1  
1
3
2.8  
2.6  
2.4  
2.2  
2
0.9  
0.8  
0.7  
0.6  
0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (ºC)  
Figure 17. On-state resistance vs Tcase  
Figure 18. Input low level  
Vil (V)  
2.6  
Ron (mOhm)  
100  
90  
2.4  
Iout=5A  
Vcc=8V & 36V  
Vcc=13V  
2.2  
80  
70  
2
1.8  
1.6  
1.4  
1.2  
1
60  
50  
40  
30  
20  
10  
0
-50  
-25  
0
25  
50  
75  
100 125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (ºC)  
Tc (°C)  
Doc ID 11038 Rev 4  
15/26  
Application information  
VND830AEP-E  
3
Application information  
Figure 19. Application schematic  
+5V  
Rprot  
INPUT1  
V
CC  
Dld  
OUTPUT1  
Rprot  
CURRENT SENSE1  
INPUT2  
μC  
Rprot  
Rprot  
CURRENT SENSE2  
GND  
OUTPUT2  
RGND  
RSENSE1  
VGND  
RSENSE2  
DGND  
3.1  
GND protection network against reverse battery  
This section provides two solutions for implementing a ground protection network against  
reverse battery.  
3.1.1  
Solution 1: a resistor in the ground line (R  
only)  
GND  
This can be used with any type of load.  
The following show how to dimension the RGND resistor:  
1. RGND 600mV / 2 (IS(on)max  
2. RGND ≥ ( - VCC) / (- IGND  
)
)
where - IGND is the DC reverse ground pin current and can be found in the absolute  
maximum rating section of the device datasheet.  
Power dissipation in RGND (when VCC < 0 during reverse battery situations) is:  
PD = (- VCC)2/ RGND  
This resistor can be shared amongst several different HSDs. Please note that the value of  
this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the  
maximum on-state currents of the different devices.  
Please note that, if the microprocessor ground is not shared by the device ground, then the  
R
GND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output  
values. This shift will vary depending on how many devices are ON in the case of several  
high side drivers sharing the same RGND  
.
16/26  
Doc ID 11038 Rev 4  
VND830AEP-E  
Application information  
If the calculated power dissipation requires the use of a large resistor, or several devices  
have to share the same resistor, then ST suggests using solution 2 below.  
3.1.2  
Solution 2: a diode (D  
) in the ground line  
GND  
A resistor (RGND = 1kΩ) should be inserted in parallel to DGND if the device will be driving an  
inductive load. This small signal diode can be safely shared amongst several different HSD.  
Also in this case, the presence of the ground network will produce a shift (j600mV) in the  
input threshold and the status output values if the microprocessor ground is not common  
with the device ground. This shift will not vary if more than one HSD shares the same  
diode/resistor network. Series resistor in INPUT and STATUS lines are also required to  
prevent that, during battery voltage transient, the current exceeds the Absolute Maximum  
Rating. Safest configuration for unused INPUT and STATUS pin is to leave them  
unconnected.  
3.2  
3.3  
Load dump protection  
Dld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the  
V
CC maximum DC rating. The same applies if the device is subject to transients on the VCC  
line that are greater than those shown in the ISO T/R 7637/1 table.  
MCU I/O protection  
If a ground protection network is used and negative transients are present on the VCC line,  
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to  
prevent the µC I/O pins from latching up.  
The value of these resistors is a compromise between the leakage current of µC and the  
current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC  
I/Os:  
- VCCpeak / Ilatchup Rprot (VOHμC - VIH - VGND) / IIHmax  
Example  
For the following conditions:  
V
CCpeak = - 100V  
Ilatchup 20mA  
VOHμC 4.5V  
5kΩ ≤ Rprot 65kΩ.  
Recommended values are:  
R
prot = 10kΩ  
Doc ID 11038 Rev 4  
17/26  
Application information  
VND830AEP-E  
3.4  
Maximum demagnetization energy (V = 13.5V)  
CC  
Figure 20. Maximum turn-off current versus load inductance  
LMAX (A)  
I
100  
A
10  
B
C
1
0.1  
1
10  
L(mH)  
A = single pulse at TJstart = 150ºC  
B= repetitive pulse at TJstart = 100ºC  
C= repetitive pulse at TJstart = 125ºC  
VIN, IL  
Demagnetization  
Demagnetization  
Demagnetization  
t
Note:  
Values are generated with RL = 0Ω.  
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse  
must not exceed the temperature specified above for curves B and C.  
18/26  
Doc ID 11038 Rev 4  
VND830AEP-E  
Package and PC board thermal data  
4
Package and PC board thermal data  
4.1  
PowerSSO-24 thermal data  
Figure 21. PowerSSO-24 PC board  
Note:  
Layout condition of Rth and Zth measurements (PCB FR4 area= 78 mm x 78 mm, PCB  
thickness=2 mm, Cu thickness=70 mm (front and back side), Copper areas: from minimum  
pad lay-out to 8 cm2).  
Figure 22. Rthj-amb vs PCB copper area in open box free air condition (one channel ON)  
RTHj_amb(°C/W)  
60  
55  
50  
45  
40  
0
1
2
3
4
5
6
7
8
9
PCB Cu heatsink area (cm^2)  
Doc ID 11038 Rev 4  
19/26  
Package and PC board thermal data  
VND830AEP-E  
Figure 23. PowerSSO-24 thermal impedance junction ambient single pulse (one  
channel ON)  
ZTH(°C/W)  
100  
10  
1
Footprint  
8 cm2  
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Time (s)  
Figure 24. Thermal fitting model of a double channel HSD in PowerSSO-24 (b)  
Equation 1: pulse calculation formula  
= R ⋅ δ + Z (1 δ)  
:
Z
THδ  
TH  
THtp  
where δ = tP/T  
b. The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded  
protections (power limitation or thermal cycling during thermal shutdown) are not triggered.  
20/26  
Doc ID 11038 Rev 4  
VND830AEP-E  
Package and PC board thermal data  
Table 15. Thermal parameters  
Area/island (cm2)  
R1 = R7 (°C/W)  
R2 = R8 (°C/W)  
R3 (°C/W)  
Footprint  
0.1  
8
22  
5
0.9  
1
R4 (°C/W)  
4
R5 (°C/W)  
13.5  
37  
R6 (°C/W)  
C1 = C7 (W.s/°C)  
C2 = C8 (W.s/°C)  
C3 (W.s/°C)  
0.0006  
0.0025  
0.025  
0.08  
0.7  
C4 (W.s/°C)  
C5 (W.s/°C)  
C6 (W.s/°C)  
3
Doc ID 11038 Rev 4  
21/26  
Package and packing information  
VND830AEP-E  
5
Package and packing information  
®
5.1  
ECOPACK packages  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
5.2  
PowerSSO-24 mechanical data  
Figure 25. PowerSSO-24 package dimensions  
22/26  
Doc ID 11038 Rev 4  
 
VND830AEP-E  
Table 16. PowerSSO-24 mechanical data(1) (2)  
Package and packing information  
Millimeters  
Typ.  
Symbol  
Min.  
Max.  
A
A2  
a1  
b
2.45  
2.35  
0.10  
0.51  
0.32  
10.50  
7.60  
2.15  
0
0.33  
0.23  
10.10  
7.40  
c
D(3)  
E(3)  
e
0.8  
8.8  
2.3  
e3  
F
G
G1  
H
0.1  
0.06  
10.5  
0.4  
10.1  
h
k
0°  
8°  
L
0.55  
0.85  
O
Q
S
1.2  
0.8  
2.9  
3.65  
1
T
U
N
10º  
4.7  
X
4.1  
6.5  
4.9(4)  
7.1  
5.5(4)  
Y
1. No intrusion allowed inwards the leads.  
2. Flash or bleeds on exposed die pad shall not exceed 0.4 mm per side  
3. “D and E” do not include mold flash or protusions. Mold flash or protusions shall not exceed 0.15 mm.  
4. Variations for small window leadframe option.  
Doc ID 11038 Rev 4  
23/26  
 
Package and packing information  
VND830AEP-E  
5.3  
Packing information  
Figure 26. PowerSSO-24 tube shipment (no suffix)  
Base Q.ty  
Bulk Q.ty  
Tube length (± 0.5)  
49  
1225  
532  
3.5  
C
B
A
B
13.8  
0.6  
C (± 0.1)  
All dimensions are in mm.  
A
Figure 27. PowerSSO-24 tape and reel shipment (suffix “TR”)  
Reel dimensions  
Base Q.ty  
1000  
Bulk Q.ty  
A (max)  
B (min)  
C (± 0.2)  
F
1000  
330  
1.5  
13  
20.2  
24.4  
100  
30.4  
G (+ 2 / -0)  
N (min)  
T (max)  
Tape dimensions  
According to Electronic Industries Association  
(EIA) Standard 481 rev. A, Feb 1986  
Tape width  
W
24  
4
Tape Hole Spacing  
Component Spacing  
Hole Diameter  
P0 (± 0.1)  
P
12  
D (± 0.05)  
D1 (min)  
F (± 0.1)  
K (max)  
P1 (± 0.1)  
1.55  
1.5  
11.5  
2.85  
2
Hole Diameter  
Hole Position  
Compartment Depth  
Hole Spacing  
End  
All dimensions are in mm.  
Start  
No components  
500mm min  
Top  
cover  
tape  
No components Components  
500mm min  
Empty components pockets  
saled with cover tape.  
User direction of feed  
24/26  
Doc ID 11038 Rev 4  
VND830AEP-E  
Revision history  
6
Revision history  
Table 17. Document revision history  
Date  
Revision  
Changes  
04-Feb-2005  
1
Initial release.  
Document reformatted and restructured.  
Added list of contents, tables and figures.  
Added ECOPACK® packages information.  
Update PowerSSO-24 mechanical data.  
27-Nov-2008  
2
Updated Figure 16: PowerSSO-24 mechanical data:  
– Deleted A (min) value  
– Changed A (max) value from 2.50 to 2.45  
– Changed A2 (max) value from 2.40 to 2.35  
– Updated k values  
01-Jul-2009  
23-Sep-2013  
3
4
– Changed L (min) value from 0.6 to 0.55  
– Changed L (max) value from1 to 0.85  
Updated disclaimer.  
Doc ID 11038 Rev 4  
25/26  
VND830AEP-E  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE  
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)  
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS  
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT  
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS  
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY  
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE  
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
26/26  
Doc ID 11038 Rev 4  

相关型号:

VND830ASP

DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY
STMICROELECTR

VND830ASP-E

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND830ASP13TR

DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY
ETC

VND830ASPTR-E

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND830E

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND830E-E

13.5A BUF OR INV BASED PRPHL DRVR, PDSO16, ROHS COMPLIANT, SOP-16
STMICROELECTR

VND830ETR-E

13.5A BUF OR INV BASED PRPHL DRVR, PDSO16, ROHS COMPLIANT, SOP-16
STMICROELECTR

VND830LSP

Double channel high-side driver
STMICROELECTR

VND830LSP-E

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND830LSP13TR

DOUBLE CHANNEL HIGH SIDE DRIVER
ETC

VND830MSP

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND830MSP-E

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR