VND810PEPTR-E [STMICROELECTRONICS]

DOUBLE CHANNEL HIGH SIDE DRIVER; 双通道高侧驱动器
VND810PEPTR-E
型号: VND810PEPTR-E
厂家: ST    ST
描述:

DOUBLE CHANNEL HIGH SIDE DRIVER
双通道高侧驱动器

外围驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总15页 (文件大小:534K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VND810PEP-E  
DOUBLE CHANNEL HIGH SIDE DRIVER  
TARGET SPECIFICATION  
Table 1. General Features  
Figure 1. Package  
TYPE  
R
I
V
CC  
DS(on)  
OUT  
VND810PEP-E 160 m(*)  
3.5 A (*)  
36 V  
(*) Per each channel  
CMOS COMPATIBLE INPUTS  
OPEN DRAIN STATUS OUTPUTS  
ON STATE OPEN LOAD DETECTION  
OFF STATE OPEN LOAD DETECTION  
SHORTED LOAD PROTECTION  
UNDERVOLTAGE AND OVERVOLTAGE  
SHUTDOWN  
PROTECTION AGAINST LOSS OF GROUND  
VERY LOW STAND-BY CURRENT  
REVERSE BATTERY PROTECTION (**)  
IN COMPLIANCE WITH THE 2002/95/EC  
EUROPEAN DIRECTIVE  
PowerSSO-12  
DESCRIPTION  
The VND810PEP-E is a monolithic device designed  
in STMicroelectronics VIPower M0-3 Technology,  
intended for driving any kind of load with one side  
connected to ground.  
Active current limitation combined with thermal  
shutdown and automatic restart protects the  
device against overload. The device detects open  
load condition both in on and off state. Output  
Active V  
pin voltage clamp protects the device  
shorted to V is detected in the off state. Device  
automatically turns off in case of ground pin  
disconnection.  
CC  
CC  
against low energy spikes (see ISO7637 transient  
compatibility table).  
Table 2. Order Codes  
Package  
Tube  
VND810PEP-E  
Tape and Reel  
PowerSSO-12  
VND810PEPTR-E  
Note: (**) See application schematic at page 9  
Rev. 4  
November 2004  
1/15  
This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice.  
VND810PEP-E  
Figure 2. Block Diagram  
Vcc  
Vcc  
CLAMP  
OVERVOLTAGE  
UNDERVOLTAGE  
CLAMP 1  
GND  
OUTPUT1  
OUTPUT2  
INPUT1  
DRIVER 1  
CLAMP 2  
STATUS1  
CURRENT LIMITER 1  
OPENLOAD ON 1  
DRIVER 2  
LOGIC  
OVERTEMP. 1  
CURRENT LIMITER 2  
OPENLOAD ON 2  
INPUT2  
OPENLOAD OFF 1  
STATUS2  
OPENLOAD OFF 2  
OVERTEMP. 2  
Table 3. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
V
V
CC  
DC Supply Voltage  
41  
- 0.3  
- V  
Reverse DC Supply Voltage  
DC Reverse Ground Pin Current  
DC Output Current  
V
CC  
GND  
OUT  
- I  
- 200  
mA  
A
I
Internally Limited  
- 6  
- I  
OUT  
Reverse DC Output Current  
DC Input Current  
A
I
IN  
+/- 10  
mA  
mA  
I
DC Status Current  
+/- 10  
stat  
Electrostatic Discharge (Human Body Model:  
R=1.5KΩ; C=100pF)  
- INPUT  
4000  
4000  
5000  
5000  
V
V
V
V
V
ESD  
- STATUS  
- OUTPUT  
- V  
CC  
P
Power Dissipation T =25°C  
54  
W
°C  
°C  
°C  
tot  
C
T
Junction Operating Temperature  
Case Operating Temperature  
Storage Temperature  
Internally Limited  
- 40 to 150  
j
T
c
T
- 55 to 150  
stg  
2/15  
VND810PEP-E  
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins  
GND  
1
2
3
4
5
6
12  
11  
10  
9
8
7
Vcc  
NC  
OUTPUT1  
OUTPUT1  
OUTPUT2  
OUTPUT2  
Vcc  
INPUT1  
STATUS1  
STATUS2  
INPUT2  
TAB = Vcc  
Connection / Pin Status N.C. Output  
Input  
Floating  
X
X
X
X
X
To Ground  
Through 10Kresistor  
Figure 4. Current and Voltage Conventions  
I
S
V
F1  
(*)  
I
IN1  
V
CC  
V
CC  
INPUT 1  
I
OUT1  
I
STAT1  
V
IN1  
OUTPUT 1  
STATUS 1  
INPUT 2  
V
OUT1  
I
V
IN2  
STAT1  
I
OUT2  
I
V
IN2  
STAT2  
OUTPUT 2  
V
OUT2  
STATUS 2  
GND  
V
STAT2  
I
GND  
(*) V = V  
- V  
during reverse battery condition  
Fn  
CCn  
OUTn  
Table 4. Thermal Data  
Symbol  
Parameter  
Value  
2.3  
Unit  
°C/W  
°C/W  
R
Thermal resistance junction-case  
Thermal resistance junction-ambient  
(MAX)  
(MAX)  
thj-case  
R
61 (*)  
50 (**)  
thj-amb  
2
Note: (*) When mounted on a standard single-sided FR-4 board with 1cm of Cu (at least 35µm thick) connected to all V pins.  
CC  
2
Note: (**) When mounted on a standard single-sided FR-4 board with 8cm of Cu (at least 35µm thick) connected to all V  
pins.  
CC  
3/15  
VND810PEP-E  
ELECTRICAL CHARACTERISTICS (8V<V <36V; -40°C<T <150°C unless otherwise specified)  
CC  
j
(Per each channel)  
Table 5. Power Outputs  
Symbol  
Parameter  
Test Conditions  
Min.  
5.5  
3
Typ.  
13  
4
Max.  
36  
Unit  
V
V
CC  
Operating Supply Voltage  
Undervoltage Shut-down  
Overvoltage Shut-down  
V
USD  
5.5  
V
V
OV  
36  
V
I
I
=1A; T =25°C  
160  
320  
mΩ  
mΩ  
OUT  
j
R
On State Resistance  
ON  
=1A; V >8V  
OUT  
CC  
12  
40  
µA  
Off State; V =13V; V =V  
=0V  
OUT  
CC  
IN  
Off State; V =13V; V =V  
T =25°C  
j
=0V;  
OUT  
CC  
IN  
I
Supply Current  
S
12  
5
25  
7
µA  
mA  
On State; V =13V; V =5V; I  
=0A  
OUT  
CC  
IN  
I
Off State Output Current  
Off State Output Current  
Off State Output Current  
Off State Output Current  
V =V =0V  
OUT  
0
50  
0
µA  
µA  
µA  
µA  
L(off1)  
L(off2)  
L(off3)  
L(off4)  
IN  
I
I
I
V =0V; V  
=3.5V  
-75  
IN  
OUT  
V =V  
=0V; V =13V; T =125°C  
OUT  
5
IN  
CC  
j
V =V  
=0V; V =13V; T =25°C  
OUT  
3
IN  
CC  
j
Table 6. Switching (V =13V)  
CC  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
R =13from V rising edge to  
OUT  
L
IN  
t
Turn-on delay time  
30  
µs  
d(on)  
V
=1.3V  
R =13from V falling edge to  
OUT  
L
IN  
t
Turn-on delay time  
30  
µs  
d(off)  
V
=11.7V  
See  
relative  
diagram  
(dV  
dt)  
/
/
R =13from V  
OUT  
=1.3V to  
OUT  
L
OUT  
Turn-on voltage slope  
Vs  
V
=10.4V  
on  
See  
relative  
diagram  
(dV  
R =13from V  
=11.7V to  
OUT  
OUT  
L
Turn-off voltage slope  
Vs  
dt)  
V
OUT  
=1.3V  
off  
Table 7. V  
Symbol  
- Output Diode  
Parameter  
CC  
Test Conditions  
Min  
Min  
Typ  
Typ  
Max  
Unit  
V
Forward on Voltage  
-I  
=0.5A; T =150°C  
0.6  
V
F
OUT  
j
Table 8. Status Pin  
Symbol  
Parameter  
Test Conditions  
Max  
Unit  
Status Low Output  
Voltage  
V
I
I
= 1.6 mA  
0.5  
V
STAT  
STAT  
Status Leakage Current Normal Operation; V  
= 5V  
= 5V  
10  
100  
8
µA  
LSTAT  
STAT  
Status Pin Input  
Normal Operation; V  
Capacitance  
C
pF  
STAT  
STAT  
I
= 1mA  
6
6.8  
V
V
STAT  
V
Status Clamp Voltage  
SCL  
I
= - 1mA  
-0.7  
STAT  
4/15  
VND810PEP-E  
ELECTRICAL CHARACTERISTICS (continued)  
Table 9. Logic Input  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
V
V
I
Input Low Level  
1.25  
IL  
Low Level Input Current  
Input High Level  
V
V
= 1.25V  
1
µA  
V
IL  
IN  
IN  
V
I
3.25  
IH  
High Level Input Current  
Input Hysteresis Voltage  
= 3.25V  
10  
8
µA  
V
IH  
V
I(hyst)  
0.5  
6
I
I
= 1mA  
6.8  
V
V
IN  
IN  
V
Input Clamp Voltage  
ICL  
= -1mA  
-0.7  
Table 10. Protections (See note 1)  
Symbol  
Parameter  
Test Conditions  
Min.  
150  
135  
7
Typ.  
Max.  
Unit  
°C  
T
Shut-down Temperature  
Reset Temperature  
Thermal Hysteresis  
175  
200  
TSD  
T
°C  
R
T
t
15  
5
°C  
hyst  
Status Delay in Overload  
Conditions  
T >T  
j
TSD  
20  
µs  
SDL  
3.5  
7.5  
7.5  
A
A
I
lim  
Current limitation  
5.5V<V <36V  
CC  
Turn-off Output Clamp  
Voltage  
V
I
=1A; L=6mH  
V
-41  
V
CC  
-48  
V -55  
CC  
V
demag  
OUT  
CC  
Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be  
used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration  
and number of activation cycles.  
Table 11. Openload Detection  
Symbol  
Parameter  
Openload ON State  
Detection Threshold  
Openload ON State  
Detection Delay  
Test Conditions  
Min  
Typ  
Max  
Unit  
I
V =5V  
20  
40  
80  
mA  
OL  
IN  
t
I
=0A  
OUT  
200  
µs  
DOL(on)  
Openload OFF State  
Voltage Detection  
Threshold  
V
OL  
V =0V  
IN  
1.5  
2.5  
3.5  
V
Openload Detection Delay  
at Turn Off  
t
1000  
µs  
DOL(off)  
5/15  
VND810PEP-E  
Figure 5.  
OPEN LOAD STATUS TIMING (with external pull-up)  
OVERTEMP STATUS TIMING  
T > T  
I
< I  
OL  
OUT  
V > V  
OUT OL  
j
TSD  
V
INn  
V
V
INn  
V
STAT n  
STAT n  
t
t
SDL  
SDL  
t
t
DOL(off)  
DOL(on)  
Figure 6. Switching time Waveforms  
V
OUTn  
90%  
80%  
dV  
/dt  
OUT (off)  
dV  
/dt  
OUT (on)  
10%  
t
V
INn  
t
d(on)  
t
d(off)  
t
6/15  
VND810PEP-E  
Table 12. Truth Table  
CONDITIONS  
INPUT  
OUTPUT  
STATUS  
n
n
n
L
H
L
H
H
H
Normal Operation  
Current Limitation  
L
H
H
L
X
X
H
) H  
) L  
(T < T  
(T > T  
j
j
TSD  
TSD  
L
H
L
L
H
L
Overtemperature  
Undervoltage  
Overvoltage  
L
H
L
L
X
X
L
H
L
L
H
H
L
H
H
H
L
H
Output Voltage > V  
OLn  
L
H
L
H
H
L
Output Current < I  
OLn  
Table 13. Electrical Transient Requirements on V Pin  
CC  
TEST LEVELS  
III  
ISO T/R 7637/1  
Test Pulse  
I
II  
IV  
Delays and  
Impedance  
1
2
-25 V  
+25 V  
-25 V  
-50 V  
+50 V  
-50 V  
-75 V  
+75 V  
-100 V  
+75 V  
-6 V  
-100 V  
+100 V  
-150 V  
+100 V  
-7 V  
2 ms 10 Ω  
0.2 ms 10 Ω  
0.1 µs 50 Ω  
0.1 µs 50 Ω  
100 ms, 0.01 Ω  
400 ms, 2 Ω  
3a  
3b  
4
+25 V  
-4 V  
+50 V  
-5 V  
5
+26.5 V  
+46.5 V  
+66.5 V  
+86.5 V  
ISO T/R 7637/1  
Test Pulse  
TEST LEVELS RESULTS  
I
II  
C
C
C
C
C
E
III  
C
C
C
C
C
E
IV  
C
C
C
C
C
E
1
2
C
C
C
C
C
C
3a  
3b  
4
5
CLASS  
CONTENTS  
C
E
All functions of the device are performed as designed after exposure to disturbance.  
One or more functions of the device is not performed as designed after exposure to disturbance  
and cannot be returned to proper operation without replacing the device.  
7/15  
VND810PEP-E  
Figure 7. Waveforms  
NORMAL OPERATION  
INPUT  
n
OUTPUT VOLTAGE  
n
STATUS  
n
UNDERVOLTAGE  
V
V
USDhyst  
CC  
V
USD  
INPUT  
n
OUTPUT VOLTAGE  
n
STATUS  
n
undefined  
OVERVOLTAGE  
V
>V  
CC OV  
V
<V  
CC OV  
V
CC  
INPUT  
n
OUTPUT VOLTAGE  
n
STATUS  
n
OPEN LOAD with external pull-up  
INPUT  
n
V
>V  
OL  
OUT  
OUTPUT VOLTAGE  
n
V
OL  
STATUS  
n
OPEN LOAD without external pull-up  
INPUT  
n
OUTPUT VOLTAGE  
n
STATUS  
n
OVERTEMPERATURE  
T
T
TSD  
R
T
j
INPUT  
n
OUTPUT CURRENT  
n
STATUS  
n
8/15  
VND810PEP-E  
Figure 8. Application Schematic  
+5V  
+5V  
+5V  
V
CC  
R
prot  
STATUS1  
D
ld  
R
prot  
µC  
INPUT1  
OUTPUT1  
R
prot  
STATUS2  
R
prot  
INPUT2  
OUTPUT2  
GND  
R
GND  
D
V
GND  
GND  
the ground network will produce a shift (j600mV) in the  
input threshold and the status output values if the  
microprocessor ground is not common with the device  
ground. This shift will not vary if more than one HSD  
shares the same diode/resistor network.  
Series resistor in INPUT and STATUS lines are also  
required to prevent that, during battery voltage transient,  
the current exceeds the Absolute Maximum Rating.  
GND PROTECTION NETWORK AGAINST  
REVERSE BATTERY  
Solution 1: Resistor in the ground line (R  
can be used with any type of load.  
only). This  
GND  
The following is an indication on how to dimension the  
R
resistor.  
GND  
1) R  
2) R  
600mV / (I  
).  
S(on)max  
)
GND  
GND  
GND  
≥ (−V ) / (-I  
Safest configuration for unused INPUT and STATUS pin  
is to leave them unconnected.  
CC  
where -I  
is the DC reverse ground pin current and can  
GND  
be found in the absolute maximum rating section of the  
LOAD DUMP PROTECTION  
device’s datasheet.  
D
is necessary (Voltage Transient Suppressor) if the  
ld  
Power Dissipation in R  
battery situations) is:  
(when V <0: during reverse  
CC  
GND  
load dump peak voltage exceeds V  
max DC rating.  
CC  
The same applies if the device will be subject to  
2
P = (-V ) /R  
transients on the V  
line that are greater than the ones  
D
CC  
GND  
CC  
shown in the ISO T/R 7637/1 table.  
This resistor can be shared amongst several different  
HSD. Please note that the value of this resistor should be  
µC I/Os PROTECTION:  
calculated with formula (1) where I  
becomes the  
S(on)max  
If a ground protection network is used and negative  
sum of the maximum on-state currents of the different  
transients are present on the V line, the control pins will  
CC  
devices.  
be pulled negative. ST suggests to insert a resistor (R  
in line to prevent the µC I/Os pins to latch-up.  
)
prot  
Please note that if the microprocessor ground is not  
common with the device ground then the R  
will  
GND  
The value of these resistors is a compromise between the  
leakage current of µC and the current required by the  
HSD I/Os (Input levels compatibility) with the latch-up  
limit of µC I/Os.  
produce a shift (I  
* R  
) in the input thresholds  
GND  
S(on)max  
and the status output values. This shift will vary  
depending on many devices are ON in the case of several  
high side drivers sharing the same R  
.
GND  
-V  
/I  
R  
(V  
-V -V  
OHµC IH GND  
) / I  
CCpeak latchup  
prot  
IHmax  
If the calculated power dissipation leads to a large  
resistor or several devices have to share the same  
resistor then the ST suggests to utilize Solution 2 (see  
below).  
Calculation example:  
For V  
= - 100V and I  
20mA; V  
4.5V  
CCpeak  
latchup  
OHµC  
5kΩ ≤ R  
65k.  
prot  
Solution 2: A diode (D  
) in the ground line.  
GND  
Recommended R  
value is 10kΩ.  
prot  
A resistor (R  
GND  
=1kΩ) should be inserted in parallel to  
GND  
D
if the device will be driving an inductive load.  
This small signal diode can be safely shared amongst  
several different HSD. Also in this case, the presence of  
9/15  
VND810PEP-E  
2) no misdetection when load is disconnected: in this  
case the V has to be higher than V ; this  
OPEN LOAD DETECTION IN OFF STATE  
OUT  
OLmax  
results in the following condition R <(V  
V
)/  
PU  
PU– OLmax  
Off state open load detection requires an external pull-up  
I
.
L(off2)  
resistor (R ) connected between OUTPUT pin and a  
PU  
Because I  
may significantly increase if V  
is  
s(OFF)  
out  
positive supply voltage (V ) like the +5V line used to  
PU  
pulled high (up to several mA), the pull-up resistor R  
PU  
supply the microprocessor.  
The external resistor has to be selected according to the  
following requirements:  
should be connected to a supply that is switched OFF  
when the module is in standby.  
The values of V  
, V  
and I  
are available in  
L(off2)  
OLmin  
OLmax  
1) no false open load indication when load is connected:  
the Electrical Characteristics section.  
in this case we have to avoid V  
to be higher than  
OUT  
V
; this results in the following condition  
Olmin  
V =(V /(R +R ))R <V  
OUT PU L PU L Olmin.  
Figure 9. Open Load detection in off state  
V batt.  
VPU  
VCC  
RPU  
DRIVER  
IL(off2)  
INPUT  
+
LOGIC  
OUT  
+
-
R
STATUS  
VOL  
RL  
GROUND  
10/15  
VND810PEP-E  
PowerSSO-12 Thermal Data  
Figure 10. PowerSSO-12 PC Board  
Layout condition of R and Z measurements (PCB FR4 area= 78mm x 78mm, PCB thickness=2mm,  
th  
th  
2
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm ).  
Figure 11. R  
Vs PCB copper area in open box free air condition  
thj-amb  
RTHj_amb(°C/W)  
70  
65  
60  
55  
50  
45  
0
1
2
3
4
5
6
7
8
9
PCB Cu heatsink area (cm^2)  
11/15  
VND810PEP-E  
Figure 12. PowerSSO-12 Thermal Impedance Junction Ambient Single Pulse  
ZTH (°C/W)  
100  
Footprint  
2
8 cm  
10  
1
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Time (s)  
Figure 13. Thermal fitting model of a double  
channel HSD in PowerSSO-12  
Pulse calculation formula  
ZTHδ = RTH ⋅ δ + ZTHtp(1 – δ)  
δ = tp T  
where  
Table 14. Thermal Parameter  
2
Area/island (cm )  
Footprint  
0.1  
8
R1/R7 (°C/W)  
R2/R3/R8 (°C/W)  
R4 (°C/W)  
1.5  
8
R5 (°C/W)  
28  
18  
22  
R6 (°C/W)  
30  
C1/C7 (W.s/°C)  
C2/C8 (W.s/°C)  
C3 (W.s/°C)  
C4 (W.s/°C)  
C5 (W.s/°C)  
C6 (W.s/°C)  
0.0001  
0.0007  
0.015  
0.1  
0.15  
3
0.017  
5
12/15  
VND810PEP-E  
PACKAGE MECHANICAL  
Table 15. PowerSSO-12™ Mechanical Data  
millimeters  
Typ  
Symbol  
Min  
Max  
A
A1  
A2  
B
1.250  
0.000  
1.100  
0.230  
0.190  
4.800  
3.800  
1.620  
0.100  
1.650  
0.410  
0.250  
5.000  
4.000  
C
D
E
e
0.800  
H
5.800  
0.250  
0.400  
0º  
6.200  
0.500  
1.270  
8º  
h
L
k
X
1.900  
3.600  
2.500  
4.200  
0.100  
Y
ddd  
Figure 14. PowerSSO-12™ Package Dimensions  
13/15  
VND810PEP-E  
REVISION HISTORY  
Table 16. Revision History  
Date  
Revision  
Description of Changes  
Oct. 2004  
Nov. 2004  
Nov. 2004  
Nov. 2004  
1
2
3
4
- First Issue  
- PowerSSO-12 Thermal Charact. insertion  
- PC Board copper area correction  
- Thermal data correction.  
14/15  
VND810PEP-E  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
15/15  

相关型号:

VND810PTR-E

暂无描述
STMICROELECTR

VND810SP

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND810SP-E

Double channel high-side driver
STMICROELECTR

VND810SP13TR

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND810SPTR-E

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND810TR-E

5A 2 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDSO16, SO-16
STMICROELECTR

VND830

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND830-E

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND83013TR

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VND830AEPTR-E

10A BUF OR INV BASED PRPHL DRVR, PDSO24, ROHS COMPLIANT, SSOP-24
STMICROELECTR

VND830ASP

DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY
STMICROELECTR

VND830ASP-E

DOUBLE CHANNEL HIGH SIDE DRIVER
STMICROELECTR