MMBTA93LT1 [ONSEMI]

High Voltage Transistors(PNP Silicon); 高压晶体管( PNP硅)
MMBTA93LT1
型号: MMBTA93LT1
厂家: ONSEMI    ONSEMI
描述:

High Voltage Transistors(PNP Silicon)
高压晶体管( PNP硅)

晶体 晶体管 高压
文件: 总6页 (文件大小:104K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MMBTA92LT1/D  
SEMICONDUCTOR TECHNICAL DATA  
COLLECTOR  
3
PNP Silicon  
*Motorola Preferred Device  
1
BASE  
2
EMITTER  
3
MAXIMUM RATINGS  
Rating  
Symbol  
MMBTA92  
–300  
MMBTA93  
–200  
Unit  
Vdc  
1
2
CollectorEmitter Voltage  
CollectorBase Voltage  
V
CEO  
V
CBO  
V
EBO  
–300  
–200  
Vdc  
CASE 31808, STYLE 6  
SOT23 (TO236AB)  
EmitterBase Voltage  
–5.0  
–5.0  
Vdc  
Collector Current — Continuous  
DEVICE MARKING  
I
C
–500  
mAdc  
MMBTA92LT1 = 2D; MMBTA93LT1 = 2E  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
Unit  
(1)  
Total Device Dissipation FR–5 Board,  
= 25°C  
Derate above 25°C  
P
225  
mW  
D
T
A
1.8  
556  
300  
mW/°C  
°C/W  
mW  
Thermal Resistance, Junction to Ambient  
Total Device Dissipation  
R
JA  
D
P
(2)  
Alumina Substrate,  
Derate above 25°C  
T = 25°C  
A
2.4  
417  
mW/°C  
°C/W  
°C  
Thermal Resistance, Junction to Ambient  
Junction and Storage Temperature  
R
JA  
T , T  
J
–55 to +150  
stg  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
OFF CHARACTERISTICS  
(3)  
CollectorEmitter Breakdown Voltage  
V
V
V
Vdc  
(BR)CEO  
(BR)CBO  
(BR)EBO  
(I = –1.0 mAdc, I = 0)  
MMBTA92  
MMBTA93  
–300  
–200  
C
B
CollectorBase Breakdown Voltage  
(I = –100 Adc, I = 0)  
Vdc  
MMBTA92  
MMBTA93  
–300  
–200  
C
E
EmitterBase Breakdown Voltage  
(I = –100 Adc, I = 0)  
–5.0  
Vdc  
E
C
Collector Cutoff Current  
I
µAdc  
CBO  
(V  
CB  
(V  
CB  
= –200 Vdc, I = 0)  
MMBTA92  
MMBTA93  
–0.25  
–0.25  
E
= –160 Vdc, I = 0)  
E
Emitter Cutoff Current  
(V = –3.0 Vdc, I = 0)  
I
–0.1  
µAdc  
EBO  
EB  
C
1. FR–5 = 1.0 x 0.75 x 0.062 in.  
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.  
3. Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%.  
Thermal Clad is a trademark of the Bergquist Company  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 1  
Motorola, Inc. 1998  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
(3)  
ON CHARACTERISTICS  
DC Current Gain  
h
FE  
(I = –1.0 mAdc, V  
= –10 Vdc)  
CE  
= –10 Vdc)  
CE  
Both Types  
Both Types  
25  
40  
C
(I = –10 mAdc, V  
C
(I = –30 mAdc, V  
C
= –10 Vdc)  
MMBTA92  
MMBTA93  
25  
25  
CE  
CollectorEmitter Saturation Voltage  
(I = –20 mAdc, I = –2.0 mAdc)  
V
V
Vdc  
Vdc  
CE(sat)  
MMBTA92  
MMBTA93  
–0.5  
–0.5  
C
B
Base–Emitter Saturation Voltage  
(I = –20 mAdc, I = –2.0 mAdc)  
–0.9  
BE(sat)  
C
B
SMALLSIGNAL CHARACTERISTICS  
CurrentGain — Bandwidth Product  
f
50  
MHz  
pF  
T
(I = –10 mAdc, V  
= –20 Vdc, f = 100 MHz)  
C
CE  
Collector–Base Capacitance  
(V = –20 Vdc, I = 0, f = 1.0 MHz)  
C
cb  
MMBTA92  
MMBTA93  
6.0  
8.0  
CB  
E
3. Pulse Test: Pulse Width  
300 s, Duty Cycle  
2.0%.  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
300  
250  
V
= 10 Vdc  
CE  
T
= +125°C  
J
200  
150  
100  
25°C  
–55°C  
50  
0
0.1  
1.0  
10  
100  
I
, COLLECTOR CURRENT (mA)  
C
Figure 1. DC Current Gain  
100  
10  
150  
130  
C
@ 1MHz  
ib  
110  
90  
C
cb  
@ 1MHz  
70  
50  
30  
1.0  
0.1  
T
= 25°C  
= 20 Vdc  
J
V
CE  
F = 20 MHz  
10  
0.1  
1.0  
10  
, REVERSE VOLTAGE (VOLTS)  
100  
1000  
11  
I , COLLECTOR CURRENT (mA)  
C
13  
15  
17  
19  
21  
1
3
5
7
9
V
R
Figure 2. Capacitance  
Figure 3. Current–Gain — Bandwidth  
1.4  
1.2  
1.0  
V
@ 25  
°
C, I /I = 10  
CE(sat)  
CE(sat)  
CE(sat)  
BE(sat)  
C B  
V
V
V
@ 125  
@ –55  
°C, I /I = 10  
C B  
°
C, I /I = 10  
C B  
@ 25  
°
C, I /I = 10  
C B  
C, I /I = 10  
C B  
0.8  
0.6  
V
@ 125  
@ –55  
°
BE(sat)  
BE(sat)  
V
°
C, I /I = 10  
C B  
V
V
V
@ 25  
°
C, V  
= 10 V  
BE(on)  
BE(on)  
BE(on)  
CE  
C, V  
0.4  
0.2  
0.0  
@ 125  
@ –55  
°
°
= 10 V  
= 10 V  
CE  
C, V  
CE  
0.1  
1.0  
10  
100  
I
, COLLECTOR CURRENT (mA)  
C
Figure 4. ”ON” Voltages  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–23 package,  
P
can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE DIMENSIONS  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. MAXIUMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
A
L
3
INCHES  
MIN MAX  
MILLIMETERS  
S
C
B
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.35  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.69  
1.02  
2.64  
0.60  
1
2
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0140 0.0285  
0.0350 0.0401  
0.0830 0.1039  
0.0177 0.0236  
V
G
K
L
S
H
J
D
V
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
CASE 318–08  
ISSUE AE  
SOT–23 (TO–236AB)  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; SPD, Strategic Planning Office, 141,  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488  
Customer Focus Center: 1–800–521–6274  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
Motorola Fax Back System  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
– http://sps.motorola.com/mfax/  
HOME PAGE: http://motorola.com/sps/  
MMBTA92LT1/D  

相关型号:

MMBTA93LT1G

High Voltage Transistors PNP Silicon
ONSEMI

MMBTA94

SOT-23-3L Plastic-Encapsulate Transistors
AVICTEK

MMBTA94

High-Voltage PNP Transistor Surface Mount
WEITRON

MMBTA94

HIGH VOLTAGE TRANSISTOR
UTC

MMBTA94

PNP Silicon Epitaxial Planar Transistor
SEMTECH

MMBTA94

TRANSISTOR(PNP)
HTSEMI

MMBTA94

Surface mount High Voltage Transistors
DIOTEC

MMBTA94

Epitaxial Transistor
SECOS

MMBTA94

PNP Silicon High Voltage Transistor
MCC

MMBTA94

TRANSISTOR (PNP)
WINNERJOIN

MMBTA94

PNP Transistors
KEXIN

MMBTA94-3_15

PNP Transistors
KEXIN