SAA4992H [NXP]

Field and line rate converter with noise reduction; 场和线路速率转换器降噪
SAA4992H
型号: SAA4992H
厂家: NXP    NXP
描述:

Field and line rate converter with noise reduction
场和线路速率转换器降噪

转换器 消费电路 商用集成电路
文件: 总36页 (文件大小:134K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
SAA4992H  
Field and line rate converter with  
noise reduction  
Product specification  
2000 Feb 04  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
CONTENTS  
1
FEATURES  
2
GENERAL DESCRIPTION  
QUICK REFERENCE DATA  
ORDERING INFORMATION  
BLOCK DIAGRAMS  
3
4
5
6
PINNING  
7
FUNCTIONAL DESCRIPTION  
CONTROL REGISTER DESCRIPTION  
LIMITING VALUES  
8
9
10  
11  
12  
13  
13.1  
THERMAL CHARACTERISTICS  
CHARACTERISTICS  
PACKAGE OUTLINE  
SOLDERING  
Introduction to soldering surface mount  
packages  
13.2  
13.3  
13.4  
13.5  
Reflow soldering  
Wave soldering  
Manual soldering  
Suitability of surface mount IC packages for  
wave and reflow soldering methods  
14  
15  
DEFINITIONS  
LIFE SUPPORT APPLICATIONS  
2000 Feb 04  
2
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
1
FEATURES  
2
GENERAL DESCRIPTION  
Upconversion of all 1fH film and video standards up to  
292 active input lines per field  
The SAA4992H is a completely digital monolithic  
integrated circuit which can be used for field and line rate  
conversion of all global TV standards.  
100/120 Hz 2 : 1, 50/60 Hz 1 : 1 and 100/120 Hz 1 : 1  
output formats  
It features improved ‘Natural Motion’ performance and full  
film upconversion for all 50 and 60 Hz film material.  
4 : 1 : 1, 4 : 2 : 2 and 4 : 2 : 2 Differential Pulse Code  
Modulation (DPCM) input colour formats; 4 : 1 : 1 and  
4 : 2 : 2 output colour formats  
It can be configured to emulate the SAA4990H as well as  
the SAA4991WP. For demonstration purposes a split  
screen mode to show the Dynamic Noise Reduction  
(DNR) function and a colour vector overlay is available.  
Full 8-bit accuracy  
Scalable performance by applying 1, 2 or 3 external  
field memories  
The SAA4992H supports a Boundary Scan Test (BST)  
circuit in accordance with IEEE 1149.  
Improved recursive de-interlacing  
Film (25 Hz, 30 Hz) upconversion to 100/120  
movement phases per second  
Variable vertical sharpness enhancement  
Motion compensated 3D dynamic noise reduction  
High quality vertical zoom  
2 Mbaud serial interface (SNERT).  
3
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
MIN.  
3.0  
TYP. MAX. UNIT  
VDD  
IDD  
supply voltage  
3.3  
400  
32  
3.6  
550  
33.3  
70  
V
supply current  
0
mA  
MHz  
°C  
fCLK  
operating clock frequency  
ambient temperature  
Tamb  
4
ORDERING INFORMATION  
PACKAGE  
TYPE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
SAA4992H  
QFP160  
plastic quad flat package; 160 leads (lead length 1.6 mm);  
SOT322-2  
body 28 × 28 × 3.4 mm; high stand-off height  
2000 Feb 04  
3
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  a
FIELD MEMORY 2  
YB7 to YB0  
FIELD MEMORY 3  
YD7 to YD0  
YC0 to YC7  
2 to 9  
YE0 to YE7  
122 to 129  
151, 152,  
111, 112,  
154 to 159  
114 to 119  
COMPRESS  
DECOMPRESS  
45 to 52  
DYNAMIC  
NOISE  
YA0 to YA7  
REDUCTION  
SEQUENCER  
27  
26  
MUX  
MUX  
SNCL  
SNDA  
SNERT  
INTERFACE  
25  
SAA4992H  
SNRST  
DE-INTERLACER  
vectors  
61 to 68  
82 to 89  
CONTROL  
YF7 to YF0  
YG7 to YG0  
MPR  
LEFT  
VERTICAL  
ZOOM  
VERTICAL  
MPR  
PEAKING  
RIGHT  
35  
34  
33  
32  
31  
30  
SPM  
TPM  
ESM  
TCK  
TDO  
TDI  
MOTION ESTIMATOR  
vectors  
BST/TEST  
TMS  
TRST  
TEST  
UPCONVERSION  
79  
CLK32  
MHB645  
The solid lines represent pixel data; the broken lines represent controls.  
Fig.1 Block diagram of the luminance part.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  g
FIELD MEMORY 2  
FIELD MEMORY 3  
UVB3 to UVB0  
147 to 150  
UVC0 to UVC3  
10 to 13  
UVD3 to UVD0  
107 to 110  
UVE0 to UVE3  
130 to 133  
COMPRESS/  
FORMAT  
DECOMPRESS/  
REFORMAT  
37 to 44  
DECOMPRESS/  
REFORMAT  
UVA0 to UVA7  
DNR  
SAA4992H  
vectors  
MPR  
LEFT  
MPR  
RIGHT  
70 to 77  
91 to 98  
UPCONVERSION  
FORMAT  
UVF7 to YVF0  
UVG7 to YVG0  
VERTICAL  
ZOOM  
MHB646  
The solid lines represent pixel data; the broken lines represent controls.  
Fig.2 Block diagram of the chrominance part.  
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
6
PINNING  
SYMBOL  
PIN  
TYPE  
DESCRIPTION(1)(2)  
VSSE  
YC0  
1
2
ground ground of output pads  
input  
input  
input  
input  
input  
input  
input  
input  
input  
input  
input  
input  
bus C luminance input from field memory 2 bit 0 (LSB)  
bus C luminance input from field memory 2 bit 1  
bus C luminance input from field memory 2 bit 2  
bus C luminance input from field memory 2 bit 3  
bus C luminance input from field memory 2 bit 4  
bus C luminance input from field memory 2 bit 5  
bus C luminance input from field memory 2 bit 6  
bus C luminance input from field memory 2 bit 7 (MSB)  
bus C chrominance input from field memory 2 bit 0 (LSB)  
bus C chrominance input from field memory 2 bit 1  
bus C chrominance input from field memory 2 bit 2  
bus C chrominance input from field memory 2 bit 3 (MSB)  
YC1  
3
YC2  
4
YC3  
5
YC4  
6
YC5  
7
YC6  
8
YC7  
9
UVC0  
UVC1  
UVC2  
UVC3  
REC  
VSSE  
VDDE  
VSSI  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
output read enable output for bus C  
ground ground of output pads  
supply supply voltage of output pads  
ground core ground  
VDDI  
supply core supply voltage  
JUMP0  
input  
configuration pin 0; will be stored in register 0B3 e.g. to indicate presence of 3rd field  
memory; should be connected to ground or to VDDI via pull-up resistor; note 3  
JUMP1  
20  
input  
configuration pin 1; will be stored in register 0B5 e.g. to indicate presence of 16-bit  
1st field memory for full 4 : 2 : 2; should be connected to ground or to VDDI via  
pull-up resistor; note 3  
VDDE  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
supply supply voltage of output pads  
supply core supply voltage  
ground core ground  
VDDI  
VSSI  
RAMTST1  
SNRST  
SNDA  
SNCL  
VSSE  
input  
input  
I/O  
test pin 1 for internal RAM testing; connect to ground for normal operation  
SNERT bus reset  
SNERT bus data  
SNERT bus clock  
input  
ground ground of output pads  
RAMTST2  
TEST  
input  
input  
input  
test pin 2 for internal RAM testing; connect to ground for normal operation  
test mode input; if not used it has to be connected to ground  
TRST  
boundary scan test: reset input signal; if not used it has to be connected to ground via  
pull-down resistor; note 3  
TMS  
TDI  
32  
33  
34  
input  
input  
boundary scan test: test mode select; if not used it has to be connected to VDDI via  
pull-up resistor; note 3  
boundary scan test: data input signal; if not used it has to be connected to VDDI via  
pull-up resistor; note 3  
TDO  
output boundary scan test: data output signal  
2000 Feb 04  
6
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
SYMBOL  
PIN  
TYPE  
DESCRIPTION(1)(2)  
TCK  
35  
input  
boundary scan test: clock input signal; if not used it has to be connected to VDDI via  
pull-up resistor; note 3  
VSSE  
UVA0  
UVA1  
UVA2  
UVA3  
UVA4  
UVA5  
UVA6  
UVA7  
YA0  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
ground ground of output pads  
bus A chrominance input from field memory 1 bit 0 (LSB)  
input  
input  
input  
input  
input  
input  
input  
input  
input  
input  
input  
input  
input  
input  
input  
input  
bus A chrominance input from field memory 1 bit 1  
bus A chrominance input from field memory 1 bit 2  
bus A chrominance input from field memory 1 bit 3  
bus A chrominance input from field memory 1 bit 4  
bus A chrominance input from field memory 1 bit 5  
bus A chrominance input from field memory 1 bit 6  
bus A chrominance input from field memory 1 bit 7 (MSB)  
bus A luminance input from field memory 1 bit 0 (LSB)  
bus A luminance input from field memory 1 bit 1  
bus A luminance input from field memory 1 bit 2  
bus A luminance input from field memory 1 bit 3  
bus A luminance input from field memory 1 bit 4  
bus A luminance input from field memory 1 bit 5  
bus A luminance input from field memory 1 bit 6  
bus A luminance input from field memory 1 bit 7 (MSB)  
YA1  
YA2  
YA3  
YA4  
YA5  
YA6  
YA7  
REA  
VSSE  
VSSI  
output read enable output for bus A  
ground ground of output pads  
ground core ground  
VDDI  
VDDI  
VSSI  
supply core supply voltage  
supply core supply voltage  
ground core ground  
VSSE  
REF  
YF7  
ground ground of output pads  
input  
read enable input for bus F and G  
output bus F luminance output bit 7 (MSB)  
output bus F luminance output bit 6  
output bus F luminance output bit 5  
output bus F luminance output bit 4  
output bus F luminance output bit 3  
output bus F luminance output bit 2  
output bus F luminance output bit 1  
output bus F luminance output bit 0 (LSB)  
supply supply voltage of output pads  
output bus F chrominance output bit 7 (MSB)  
output bus F chrominance output bit 6  
output bus F chrominance output bit 5  
output bus F chrominance output bit 4  
output bus F chrominance output bit 3  
YF6  
YF5  
YF4  
YF3  
YF2  
YF1  
YF0  
VDDE  
UVF7  
UVF6  
UVF5  
UVF4  
UVF3  
2000 Feb 04  
7
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
SYMBOL  
PIN  
TYPE  
DESCRIPTION(1)(2)  
UVF2  
UVF1  
UVF0  
VSSE  
CLK32  
VSSI  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
output bus F chrominance output bit 2  
output bus F chrominance output bit 1  
output bus F chrominance output bit 0 (LSB)  
ground ground of output pads  
input  
system clock input  
ground core ground  
VSSE  
YG7  
ground ground of output pads  
output bus G luminance output bit 7 (MSB)  
output bus G luminance output bit 6  
output bus G luminance output bit 5  
output bus G luminance output bit 4  
output bus G luminance output bit 3  
output bus G luminance output bit 2  
output bus G luminance output bit 1  
output bus G luminance output bit 0 (LSB)  
supply supply voltage of output pads  
output bus G chrominance output bit 7 (MSB)  
output bus G chrominance output bit 6  
output bus G chrominance output bit 5  
output bus G chrominance output bit 4  
output bus G chrominance output bit 3  
output bus G chrominance output bit 2  
output bus G chrominance output bit 1  
output bus G chrominance output bit 0 (LSB)  
ground ground of output pads  
YG6  
YG5  
YG4  
YG3  
YG2  
YG1  
YG0  
VDDE  
UVG7  
UVG6  
UVG5  
UVG4  
UVG3  
UVG2  
UVG1  
UVG0  
VSSE  
VSSI  
100 ground core ground  
VDDI  
101 supply core supply voltage  
VDDE  
VDDI  
102 supply supply voltage of output pads  
103 supply core supply voltage  
VSSI  
104 ground core ground  
VSSE  
WED  
UVD3  
UVD2  
UVD1  
UVD0  
YD7  
105 ground ground of output pads  
106 output write enable output for bus D  
107 output bus D chrominance output to field memory 3 bit 3 (MSB)  
108 output bus D chrominance output to field memory 3 bit 2  
109 output bus D chrominance output to field memory 3 bit 1  
110 output bus D chrominance output to field memory 3 bit 0 (LSB)  
111 output bus D luminance output to field memory 3 bit 7 (MSB)  
112 output bus D luminance output to field memory 3 bit 6  
113 supply supply voltage of output pads  
YD6  
VDDE  
YD5  
114 output bus D luminance output to field memory 3 bit 5  
115 output bus D luminance output to field memory 3 bit 4  
YD4  
2000 Feb 04  
8
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
SYMBOL  
PIN  
TYPE  
DESCRIPTION(1)(2)  
YD3  
YD2  
YD1  
YD0  
VSSE  
VSSE  
YE0  
YE1  
YE2  
YE3  
YE4  
YE5  
YE6  
YE7  
UVE0  
UVE1  
UVE2  
UVE3  
REE  
VSSE  
n.c.  
116 output bus D luminance output to field memory 3 bit 3  
117 output bus D luminance output to field memory 3 bit 2  
118 output bus D luminance output to field memory 3 bit 1  
119 output bus D luminance output to field memory 3 bit 0 (LSB)  
120 ground ground of output pads  
121 ground ground of output pads  
122 input  
123 input  
124 input  
125 input  
126 input  
127 input  
128 input  
129 input  
130 input  
131 input  
132 input  
133 input  
bus E luminance input from field memory 3 bit 0 (LSB)  
bus E luminance input from field memory 3 bit 1  
bus E luminance input from field memory 3 bit 2  
bus E luminance input from field memory 3 bit 3  
bus E luminance input from field memory 3 bit 4  
bus E luminance input from field memory 3 bit 5  
bus E luminance input from field memory 3 bit 6  
bus E luminance input from field memory 3 bit 7 (MSB)  
bus E chrominance input from field memory 3 bit 0 (LSB)  
bus E chrominance input from field memory 3 bit 1  
bus E chrominance input from field memory 3 bit 2  
bus E chrominance input from field memory 3 bit 3 (MSB)  
134 output read enable output for bus E  
135 ground ground of output pads  
136  
not connected  
VSSI  
137 ground core ground  
VDDI  
n.c.  
138 supply core supply voltage  
139  
140  
not connected  
not connected  
n.c.  
VDDE  
VDDI  
VSSI  
141 supply supply voltage of output pads  
142 supply core supply voltage  
143 ground core ground  
n.c.  
144  
not connected  
VSSE  
WEB  
UVB3  
UVB2  
UVB1  
UVB0  
YB7  
YB6  
VDDE  
YB5  
YB4  
YB3  
145 ground ground of output pads  
146 output write enable output for bus B  
147 output bus B chrominance output to field memory 2 bit 3 (MSB)  
148 output bus B chrominance output to field memory 2 bit 2  
149 output bus B chrominance output to field memory 2 bit 1  
150 output bus B chrominance output to field memory 2 bit 0 (LSB)  
151 output bus B luminance output to field memory 2 bit 7 (MSB)  
152 output bus B luminance output to field memory 2 bit 6  
153 supply supply voltage of output pads  
154 output bus B luminance output to field memory 2 bit 5  
155 output bus B luminance output to field memory 2 bit 4  
156 output bus B luminance output to field memory 2 bit 3  
2000 Feb 04  
9
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
SYMBOL  
PIN  
TYPE  
DESCRIPTION(1)(2)  
YB2  
YB1  
YB0  
VSSE  
157 output bus B luminance output to field memory 2 bit 2  
158 output bus B luminance output to field memory 2 bit 1  
159 output bus B luminance output to field memory 2 bit 0 (LSB)  
160 ground ground of output pads  
Notes  
1. Not used input pins (e.g. bus E) should be connected to ground.  
2. Because of the noisy characteristic of the output pad supply it is recommended not to connect the core supply and  
the output pad supply directly at the device. The output pad supply should be buffered as close as possible to the  
device.  
3. The external pull-up resistor should be 47 k.  
2000 Feb 04  
10  
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
V
V
SSE  
1
2
3
4
5
6
7
8
9
120  
SSE  
YC0  
119 YD0  
118 YD1  
117 YD2  
116 YD3  
115 YD4  
114 YD5  
YC1  
YC2  
YC3  
YC4  
YC5  
YC6  
YC7  
V
113  
DDE  
112 YD6  
UVC0 10  
UVC1 11  
UVC2 12  
UVC3 13  
REC 14  
111 YD7  
110 UVD0  
109 UVD1  
108 UVD2  
107 UVD3  
106 WED  
V
V
15  
16  
17  
18  
SSE  
V
V
V
V
V
V
V
105  
104  
103  
102  
101  
100  
99  
DDE  
SSE  
SSI  
V
SSI  
DDI  
V
DDI  
DDE  
DDI  
SSI  
JUMP0 19  
JUMP1 20  
SAA4992H  
V
21  
22  
23  
DDE  
V
DDI  
SSE  
V
98 UVG0  
97 UVG1  
96 UVG2  
95 UVG3  
94 UVG4  
93 UVG5  
92 UVG6  
91 UVG7  
SSI  
RAMTST1 24  
SNRST 25  
SNDA 26  
SNCL 27  
V
28  
SSE  
RAMTST2 29  
TEST 30  
TRST 31  
TMS 32  
TDI 33  
V
90  
DDE  
89 YG0  
88 YG1  
87 YG2  
86 YG3  
85 YG4  
84 YG5  
83 YG6  
82 YG7  
TDO 34  
TCK 35  
V
36  
SSE  
UVA0 37  
UVA1 38  
UVA2 39  
UVA3 40  
V
81  
SSE  
MHB647  
Fig.3 Pin configuration.  
2000 Feb 04  
11  
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
7
FUNCTIONAL DESCRIPTION  
Table 1 Clock cycle references  
The FAL (fal_top) module builds the functional top level of  
the SAA4992H. It connects the luminance data path (KER,  
kernel), the chrominance data path (COL, colour) and the  
luminance (de)compression (YDP, Y-DPCM) with  
SAA4992H inputs and outputs as well as controlling logic  
(LSE, line sequencer; SNE, SNERT interface). Outside of  
fal_top there are only the pad cells, boundary scan test  
cells, the boundary scan test controller, the clock tree, the  
test enable tree and the input port registers.  
SIGNAL  
LATENCY  
RE_F  
0
RE_C and  
RE_E  
63 cycles + REceShift  
YC, YE, UVC  
and UVE  
63 cycles  
RE_A  
94 cycles + REaShift  
94 cycles  
YA and UVA  
Figure 4 shows a simplified block diagram of fal_top. It  
displays the flow of pixel data (solid lines) and controls  
(broken lines) between the modules inside.  
YF, YG, UVF  
and UVG  
148 cycles + 3 input lines  
WE_B and  
WE_D  
160 cycles + 4 input lines + WEbdShift  
160 cycles + 4 input lines  
Basic functionality of the modules in fal_top is as follows:  
KER (kernel): Y (luminance) data path  
YB, YD, UVB  
and UVD  
COL (colour): UV (chrominance) data path  
YDP (Y-DPCM): compression (and decompression) of  
luminance output (and input) data by Differential Pulse  
Code Modulation (DPCM)  
There is an algorithmic delay of 3 lines between input and  
output data. Therefore, the main data output on the  
F and G bus begins while the fourth input line is read.  
Writing to the B and D bus starts one input line later.  
The read and write enable signals RE_A, WE_B, RE_C,  
WE_D and RE_E can be shifted by control registers  
REaShift, WEbdShift and REceShift, which are  
implemented in the line sequencer.  
LSE (line sequencer): generate line frequent control  
signals  
SNE: Synchronous No parity Eight bit Reception and  
Transmission (SNERT) interface to a microcontroller.  
The SNERT interface operates in a slave receive and  
transmit mode for communication with a microprocessor,  
which resides on peripheral circuits (e.g. SAA4978H)  
together with a SNERT master. The SNERT interface  
transforms serial data from the microprocessor (via the  
SNERT bus) into parallel data to be written into the  
SAA4992Hs write registers and parallel data from  
SAA4992Hs read registers into serial data to be sent to the  
microprocessor. The SNERT bus consists of 3 signals:  
The fal_top module itself reads the following control  
register bits(addresses):  
NrofFMs (017)  
MatrixOn (026)  
MemComp and MemDecom (026).  
NrofFMs and MatrixOn are used to enable the D and G  
output bus, respectively. MemComp and MemDecom are  
connected to YDP to control luminance data compression  
and decompression. These control register signals are not  
displayed in Fig.4. Further information on the control  
registers is given in Chapter 8.  
1. SNCL: used as serial clock signal, generated by the  
master  
2. SNDA: used as bidirectional data line  
3. SNRST: used as a reset signal, generated by the  
microprocessor to indicate the start of a transmission.  
The processing of a video field begins on the rising edge  
of the RE_F input signal. As indicated in Fig.4, the  
SAA4992H expects its inputs and generates its outputs at  
the following clock cycles after RE_F (see Table 1).  
2000 Feb 04  
12  
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
external field memories  
WE_B,  
WE_D  
RE_C,  
RE_W  
UVB,  
UVD  
UVC,  
UVE  
YB,  
YD  
YC,  
YE  
160  
cycles  
63  
cycles  
160  
63  
160  
63  
cycles cycles cycles cycles  
fal_top  
UVA  
94 cycles  
YDP  
COL  
UVF, UVG  
148 cycles  
SNDA  
SNE  
LSE  
RE_A  
RE_F  
94 cycles  
0 cycles  
YF, YG  
148 cycles  
KER  
YA  
94 cycles  
MHB648  
The solid lines represent pixel data; the broken lines represent controls.  
Fig.4 Block diagram of fal_top.  
2000 Feb 04  
13  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
8
CONTROL REGISTER DESCRIPTION  
SNERT  
ADDRESS  
HEX  
READ/  
WRITE(1)  
NAME  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
DNR/peaking/colour  
Kstep10  
Kstep0  
Kstep1  
Kstep32  
Kstep2  
Kstep3  
Kstep54  
Kstep4  
Kstep5  
Kstep76  
Kstep6  
010  
011  
012  
013  
write; S  
write; S  
write; S  
write; S  
X X X X set LUT value: k = 116 if difference below (0 to 15)  
set LUT value: k = 18 if difference below (0 to 15)  
X X X X  
X X X X  
X X X X  
X X X X set LUT value: k = 28 if difference below (0 to 30 in multiples of 2)  
set LUT value: k = 38 if difference below (0 to 30 in multiples of 2)  
X X X X set LUT value: k = 48 if difference below (0 to 60 in multiples of 4)  
set LUT value: k = 58 if difference below (0 to 60 in multiples of 4)  
X X X X set LUT value: k = 68 if difference below (0, 8, 16, 24, 32, 40, 48, 56,  
64, 72, 80, 88, 96, 104, 112 or 120)  
Kstep7  
X X X X  
set LUT value: k = 78 if difference below (0, 8, 16, 24, 32, 40, 48, 56,  
64, 72, 80, 88, 96, 104, 112 or 120)  
Gain_fix_y  
014  
015  
016  
write; S  
write; S  
write; S  
FixvalY  
X X X X set fixed Y value; used when FixY = 1 or in left part of split screen  
(0, 116 to 14 16 or 1616)  
GainY  
FixY  
X X X  
X
set gain in difference signal for adaptive DNR Y (18, 14, 12, 1, 2 or 4)  
select fixed Y (adaptive or fixed) (full screen)  
Gain_fix_uv  
FixvalUV  
X X X X set fixed UV value; used when FixUV = 1 or in left part of split screen  
(0, 116 to 14 16 or 1616)  
GainUV  
FixUV  
X X X  
X
set gain in difference signal for adaptive DNR UV (18, 14, 12, 1, 2 or 4)  
select fixed UV (adaptive or fixed) (full screen)  
Peak_Vcomp  
VecComp  
X X X set degree of horizontal vector compensation in Y DNR:  
(0, 18, 28, 38, 48, 58, 68 or 78) of the vector  
PeakCoef  
X X X X  
set vertical peaking level: (0, +2, +3.5, +5, +6, x, x, x, x, x, x, x, x,  
12, 6 or 2.5) dB  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SNERT  
READ/  
NAME  
ADDRESS  
HEX  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
WRITE(1)  
DNR_Colour_mode  
017  
write; S  
ColourIn  
X X select colour input format: (4 : 1 : 1, 4 : 2 : 2, 4 : 2 : 2 DPCM or  
4 : 2 : 2)  
ColourOut  
NrofFMs  
ColOvl  
X
select colour output format: (4 : 1 : 1 or 4 : 2 : 2)  
set number of field memories connected: (1 or 2/3)  
X
X
select vector overlay on colour output: (vector overlay or colour  
from video path)  
SlaveUVtoY  
DnrSplit  
X
slave UV noise reduction to K factor of Y: (separate or slaved)  
select split screen mode for DNR: (normal or split screen)  
X
DnrHpon  
X
switch DNR high-pass on (DNR only active on low frequent spectrum:  
(all through DNR or high bypassed)  
Vertical zoom  
Zoom1  
018  
write; F  
ZoomSt98  
X X zoom line step bits 9 and 8; line step = vertical distance between  
successive output lines; usable range = 0 to 2 frame lines;  
resolution 1256 frame line  
ZoomPo98  
X X  
zoom start position bits 9 and 8; start position = vertical position of the  
top display line; usable range = 1 to 3 frame lines; resolution 1256  
frame line  
Zoom2  
019  
01A  
01B  
write; F  
write; F  
write; F  
ZoomSt70  
Zoom3  
X X X X X X X X zoom line step bits 7 to 0 (see above)  
X X X X X X X X zoom start position bits 7 to 0 (see above)  
ZoomPo70  
Zoom4  
ZoomEnVal  
X X X X zoom run in value = number of lines without zoom active  
(0 to 15 lines)  
ZoomDiVal  
X X X X  
zoom run out value = number of lines without zoom active  
(8 to +7 lines)  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SNERT  
READ/  
NAME  
ADDRESS  
HEX  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
WRITE(1)  
De-interlacer  
Proscan1  
01C  
write; S  
KlfLim  
X X X X limitation of recursion factor in calculation of original line positions:  
(1 to 16); 1 limits to almost full recursion, 16 limits to no recursion  
KlfOfs  
X X X X  
The transfer curve of the de-interlacing filter coefficient is determined  
by the difference (Diff) between a line in the input field and the  
counterpart in the previous field shifted over the estimated motion  
vector. KlfOfs determines the bias of the transfer curve for the original  
input line, such that coefficient = KlfOfs + F(Diff), where the function F  
is calculated in the SAA4992H. The bias can take a value in the range  
(0 to 15), representing decreasing filter strength.  
Proscan2  
01D  
01E  
write; S  
write; S  
PlfLim  
X X X X limitation of recursion factor in calculation of interpolated line  
positions: (1 to 16); 1 limits to almost full recursion, 16 limits to no  
recursion  
PlfOfs  
Proscan3  
PeakLim  
X X X X  
see KlfOfs; this offset applies to interpolated lines  
X X X X Maximum that the peaked pixel is allowed to deviate from original pixel  
value: deviation (0 to 30 in steps of 2). Above this deviation, the  
peaked pixel is clipped to (original pixel + or PeakLim).  
PenInd  
X X X X  
index to PenMed table (256, 128, 64, 32, 16, 8, 4, 0, 4, 8, 16,  
24, 32, 64, 128 or 255); penalty for applying (vertical/temporal)  
median, in favour of applying vertical average within new field  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SNERT  
READ/  
NAME  
Proscan4  
ADDRESS  
HEX  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
WRITE(1)  
01F  
write; F  
PlfThr  
X X X Multiplier threshold at which to switch the lower limit of the filter  
coefficient for interpolated lines. Above this threshold, the differences  
corresponding to the two neighbouring lines are used as clipping  
parameters, below this threshold, the interpolated line difference is  
used as clipping level. This parameter can be used to optimize the  
de-interlacing quality in slowly moving edges; it is not likely to have  
effect if PlfLim is high.  
ProDiv  
X X  
Scaling factor to control the strength of the filtering for the interpolated  
lines. A value 0 means no scaling (normal filtering), while 3 means  
scaling by factor 8 (very strong filtering). This parameter can be used  
to adjust the de-interlacing to varying level of noise in the input picture;  
use higher scaling for higher noise.  
UseVec  
KplOff  
X
Enables use of estimated vectors to shift pixels from previous frame to  
the current time (null vector or estimated vectors). It is best  
switched to ‘null vector’, if vectors are unreliable.  
X
disable all recursion in calculating pixels for frame memory (recursive  
or non recursive); to be true SAA4991WP and digital scan emulation  
modes  
General  
NrBlks  
NrBlks  
020  
write; S  
X X X X X X number of blocks in active video (6 to 53, corresponds to  
96 to 848 pixels), to be set as 116 (number of active pixels per  
line + 15); take remarks on TotalPxDiv8 into consideration  
TotalLnsAct98  
TotalLnsAct70  
TotalPxDiv8  
X X  
total number of output lines (bits 9 and 8)  
021  
022  
write; S  
write; S  
X X X X X X X X total number of output lines (bits 7 to 0)  
X X X X X X X X Total number of pixels per line divided-by-8 (80 to 128, corresponds to  
640 to 1024 pixels). The horizontal blanking interval is calculated as  
TotalPxDiv8 2 × NrBlks and has to be in the range from 12 to 124  
(corresponds to 96 to 992 pixels). Conclusion: TotalPxDiv8 has to be  
set to 12 + 2 × NrBlks < TotalPxDiv8 < 124 + 2 × NrBlks and NrBlks  
TotalPxDiv8 124  
-----------------------------------------------  
2
TotalPxDiv8 12  
--------------------------------------------  
2
has to be set to  
< NrBlks <  
REaShift  
023  
write; S  
X X X shift of REa signal in number of pixels (0, +1, +2, +3, 4, 3, 2 or 1)  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SNERT  
READ/  
NAME  
ADDRESS  
HEX  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
WRITE(1)  
WEbdREceShift  
024  
write; S  
WEbdShift  
X X X shift of WEb and WEd signal in number of pixels  
(0, +1, +2, +3, 4, 3, 2 or 1)  
REceShift  
X X X  
shift of REc and REe signal in number of pixels  
(0, +1, +2, +3, 4, 3, 2 or 1)  
POR  
025  
026  
write; S  
write; F  
X power-on reset command, to be set high temporarily during start-up  
(normal or reset); note 3  
Mode control  
Control1  
EstMode  
X Set estimator mode; 0 = line alternating use of left and right estimator:  
use in progressive scan except with vertical compress. 1 = field  
alternating use of left and right estimator: use in field doubling and  
progressive scan with vertical compress.  
FilmMode  
UpcMode  
X
set film mode; 0 = video camera mode; 1 = film mode  
X X  
select upconversion quality; 00 = full, 01 = economy (DPCM),  
10 = SAA4991WP, 11 = SAA4990H  
MatrixOn  
X
set matrix output mode; 1 = double output, disabling vertical peaking;  
0 = normal single output mode  
EmbraceOn  
X
Master enable for embrace mode (off or on); SwapMpr in control2  
should be at ‘swap’ position to really cross-switch FM1 and FM3 field  
outputs. Should be set to logic 0 except in film mode and FM3 is  
present, or in SAA4991WP film mode and MemComp bit is active.  
MemComp  
X
set memory compression (luminance DPCM) (off or on)  
set memory decompression (luminance DPCM) (off or on)  
MemDecom  
X
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SNERT  
READ/  
NAME  
Control2  
ADDRESS  
HEX  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
WRITE(1)  
027  
write; F  
QQcurr  
X Quincunx phase of current field (in TPM) (phase0 or phase1); this  
needs to toggle each time a new field comes from FM1. In phase0 the  
estimator operates on a checker-board pattern that starts with the left  
upper block; in phase1 the other blocks are estimated.  
QQprev  
FldStat  
X
quincunx phase of previous field (in TPM) (phase0 or phase1); this is  
the value of QQcur during the last estimate written into the temporal  
prediction memory  
X
Field status (same input field or new input field); reflects whether  
the output of FM1 is a new or a repeated field. This bit will toggle field  
by field in field doubling mode and is continuously HIGH in progressive  
output mode.  
FieldWeYUV  
X
enable writing FM2 and FM3 for both luminance and chrominance  
(recirculation of data for luminance alone can be controlled with  
OrigFmEnY and IntpFmEnY in Control3) (off or on)  
OddFM1  
SwapMpr  
X
odd input field (even or odd), this is to be set equal to the detected  
field interlace for the field that comes out of FM1  
X
Swap multi port RAMs (normal or swap); this bit needs to be set to  
get real frame data at the temporal position from FM1. If swapped, the  
current field (FM1) will be stored in the right line memory tree, while  
the original lines from the stored frame (FM2/3) are stored in the left  
memory tree. Should be set only in film mode if FM3 is present;  
EmbraceOn must be set as well.  
VecOffs  
X X  
Set vertical vector offset (0, +1, or 1) frame lines; vertical offset of  
the right line memory tree with respect to the left line memory tree.  
A higher offset value means: on the right memory tree access to less  
delayed video lines is taken; in interlaced video operation, the vertical  
offset will be 1 with an odd field on the left side and +1 with an even  
field on the left. With non-interlaced input, vertical offset should be  
constantly 0. In film mode, vertical offset is dynamically switched  
between +1, 0 and 1.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SNERT  
READ/  
NAME  
Control3  
ADDRESS  
HEX  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
WRITE(1)  
028  
write; F  
OddLeft  
X interlace (even or odd) phase of the field which is written to the left  
line memory tree (left MPRAM)  
OrigFmEnY  
X
enables writing luminance from de-interlacer in original field memory  
(FM2), otherwise recirculation of luminance that is just read from FM2  
(recirculate or update)  
IntpFmEnY  
FillTPM  
X
enables writing luminance from de-interlacer in interpolated field  
memory (FM3), otherwise recirculation of luminance that is just read  
from FM3 (recirculate or update)  
X
Enables writing in temporal prediction memory (keep or update);  
FillTPM should be set to ‘keep’ in SAA4991WP/film mode, in those  
output fields where FM1 and FM2 contain the same motion phase.  
FillTPM should be set to ‘update’ in all other situations.  
VertOffsDNR  
X X  
Set vertical vector offset of DNR (0, +1, or 1) frame lines; vertical  
offset of the right line memory tree with respect to the left line memory  
tree, before the swap action. A higher offset value means: on the right  
memory tree access to less delayed video lines is taken; in interlaced  
video operation, the vertical offset will be 1 with an odd field on the  
left side and +1 with an even field on the left. With non-interlaced  
input, vertical offset should be constantly logic 0; in film mode, vertical  
offset is dynamically switched between +1, 0 and 1. It should be  
noted that the signal OddFM1 is used to determine this offset.  
Upconversion  
Upconv1  
029  
02A  
write; F  
UpcShFac  
X X X X X X temporal interpolation factor used in luminance upconverter; value  
ranges from 0 (for current field position) to 32 (for previous field  
position)  
Upconv2  
write  
S
YVecClip  
X X X value used for coring the vertical vector component before application  
in the upconverter; range: 0 to 3.5 in steps of 0.5 line; should remain  
at logic 0 in normal operation  
RollBack  
F
X X X X X  
roll back factor ranging from 0 (use 0% of estimated vectors) to 16  
(use 100% of estimated vectors)  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SNERT  
READ/  
NAME  
Upconv3  
ADDRESS  
HEX  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
WRITE(1)  
02B  
write; S  
MelzLfbm  
X SAA4991WP type local fallback method instead of more robust local  
fallback (complex or SAA4991WP type fallback)  
Melzmemc  
X
SAA4991WP film mode memory control (normal or SAA4991WP  
type); should be set in SAA4991WP film mode to ensure that only  
original lines are selected as output when UpcShFac is 0 or 32  
MelDeint  
MixCtrl  
X
use (as in SAA4991WP) horizontal motion compensated median for  
upconverter de-interlacing (normal or SAA4991WP type  
de-interlacing)  
X X X  
Upconverter sensitivity:  
0 to 3: smoothness dependent weighting between vector shifted  
pixels and static pixels. 0 = sensitive to unsmoothness for taking more  
of the static pixels ‘conservative’, up to 3 = hardly sensitive to  
unsmoothness for taking more of static pixels ‘confident in vector  
shifting’.  
4 to 7: static weighting between vector shifted pixels and static pixels.  
4 = take most of vector shifted pixels ‘confident in vector shifting’, up to  
7 = take most of the static pixels ‘conservative’.  
UpcColShiFac  
0C4  
02C  
write; F  
write; S  
X X X X X X temporal interpolation factor used in chrominance upconverter; value  
ranges from 0 (for current field position) to 32 (for previous field  
position)  
Motion estimator  
Motest1  
PenOdd  
X X X additional penalty on vector candidates with odd vertical component  
(0, 8, 16, 32, 64, 128, 256 or 511)  
SpcThr  
BmsThr  
X X X  
Active when EstMode = 0; replace the spatial prediction of one  
estimator (left or right) by that of the other if the match error of the  
former exceeds that of the latter by more than (0, 8, 16, 32, 64, 128,  
256 or 511). A higher threshold means the two estimators are very  
independent.  
X X  
Active when EstMode = 0; select as estimated vector the output of the  
right estimator unless its match error exceeds that of the left estimator  
by more than (0, 8, 16 or 32). This parameter should normally be set  
to logic 0.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SNERT  
READ/  
NAME  
ADDRESS  
HEX  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
WRITE(1)  
Motest2  
02D  
write; S  
TavLow  
X If the difference between the current vector and the previous one in  
the same spatial location is within a small window, then the two  
vectors are averaged to improve temporal consistency. TavLow is the  
lower threshold of this window (1 or 2).  
TavUpp  
MedEns  
X X  
see above; TavUpp is the upper threshold (0, 4, 8 or 16)  
X X  
scaling factor to reduce all sizes of update vectors in the ensemble  
with medium sized vector templates (1, 12, 14 or 18)  
LarEns  
X X  
scaling factor to reduce all sizes of update vectors in the ensemble  
with large sized vector templates (1, 12, 14 or 18)  
Motest3  
02E  
write; F  
MotShiFac  
X X X X X X Motion estimator shift factor, being the temporal position used in the  
estimator at which the matching is done; value 32 for matching at  
previous field position down to 0 for matching at current field position.  
Keeping MotShiFac equal to UpShiFac in the next upconverted output  
field estimates for minimum matching errors (minimum Halo’s).  
MotShiFac at value 16 gives the largest natural vector range (twice as  
large as with value 0 or 32). Going above the range with  
MotShiFac 16 is dealt with in SAA4992H by shifting towards 16, but  
for the horizontal and vertical component separately (consequence is  
that vector candidates tend to rotate towards the diagonal directions).  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SNERT  
READ/  
NAME  
ADDRESS  
HEX  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
WRITE(1)  
Motest4  
02F  
write; S  
PenRng  
X Penalty for vectors estimated on the first row and the first column (if  
left estimator is used) or the right column (if right estimator is used),  
whenever the spatial prediction candidate is selected (16 or 64).  
For noisy pictures, this register could be set to logic 1 to improve  
border processing in the estimator.  
CndSet  
X
choice of candidate set (left or right) for which data (Candidate1 to  
Candidate8) is written in this field (becomes active in next field); see  
note 3  
ErrThr  
ErrHbl  
X X X  
threshold on block match error for considering a block to be bad  
(16, 32, 64, 128, 256, 512, 1024 or 2032)  
X X  
number of horizontally adjacent blocks that have to be all bad before  
considering an occurrence of a burst error (1, 2, 4 or 8) (counting of  
burst errors is read out with BlockErrCnt, address 0A8)  
TstMod  
Candidate1  
Candidat1  
X
to be kept to logic 1 for normal operation  
090  
091  
092  
write; S  
write; S  
write; S  
X X X selection Candidate1 (SpatLeft, SpatRight, TemporalRight,  
TemporalLeft, TemporalCentre, Null, Panzoom or Max)  
Update1  
X X  
X X  
X X  
update for Candidate1 (zero update, medium update, large update  
or zero update)  
Penalty1  
Candidate2  
Candidat2  
X X X  
X X X  
X X X  
penalty for Candidate1 (0, 8, 16, 32, 64, 128, 256 or 511)  
X X X selection Candidate2 (SpatLeft, SpatRight, TemporalRight,  
TemporalLeft, TemporalCentre, Null, Panzoom or Max)  
Update2  
update for Candidate2 (zero update, medium update, large update  
or zero update)  
Penalty2  
Candidate3  
Candidat3  
penalty for Candidate2 (0, 8, 16, 32, 64, 128, 256 or 511)  
X X X selection Candidate3 (SpatLeft, SpatRight, TemporalRight,  
TemporalLeft, TemporalCentre, Null, Panzoom or Max)  
Update3  
Penalty3  
update for Candidate3 (zero update, medium update, large update  
or zero update)  
penalty for Candidate3 (0, 8, 16, 32, 64, 128, 256 or 511)  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SNERT  
READ/  
NAME  
Candidate4  
ADDRESS  
HEX  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
WRITE(1)  
093  
094  
095  
096  
097  
098  
write; S  
Candidat4  
X X X selection Candidate4 (SpatLeft, SpatRight, TemporalRight,  
TemporalLeft, TemporalCentre, Null, Panzoom or Max)  
Update4  
X X  
X X  
X X  
X X  
X X  
update for Candidate4 (zero update, medium update, large update  
or zero update)  
Penalty4  
Candidate5  
Candidat5  
X X X  
X X X  
X X X  
X X X  
X X X  
penalty for Candidate4 (0, 8, 16, 32, 64, 128, 256 or 511)  
write; S  
write; S  
write; S  
write; S  
write; S  
X X X selection Candidate5 (SpatLeft, SpatRight, TemporalRight,  
TemporalLeft, TemporalCentre, Null, Panzoom or Max)  
Update5  
update for Candidate5 (zero update, medium update, large update  
or zero update)  
Penalty5  
Candidate6  
Candidat6  
penalty for Candidate5 (0, 8, 16, 32, 64, 128, 256 or 511)  
X X X selection Candidate6 (SpatLeft, SpatRight, TemporalRight,  
TemporalLeft, TemporalCentre, Null, Panzoom or Max)  
Update6  
update for Candidate6 (zero update, medium update, large update  
or zero update)  
Penalty6  
Candidate7  
Candidat7  
penalty for Candidate6 (0, 8, 16, 32, 64, 128, 256 or 511)  
X X X selection Candidate7 (SpatLeft, SpatRight, TemporalRight,  
TemporalLeft, TemporalCentre, Null, Panzoom or Max)  
Update7  
update for Candidate7 (zero update, medium update, large update  
or zero update)  
Penalty7  
Candidate8  
Candidat8  
penalty for Candidate7 (0, 8, 16, 32, 64, 128, 256 or 511)  
X X X selection Candidate8 (SpatLeft, SpatRight, TemporalRight,  
TemporalLeft, TemporalCentre, Null, Panzoom or Max)  
Update8  
update for Candidate8 (zero update, medium update, large update  
or zero update)  
Penalty8  
penalty for Candidate8 (0, 8, 16, 32, 64, 128, 256 or 511)  
PZpositionLeftUppX  
X X X X X X X position of LeftUpp measurement point for pan-zoom calculations  
(resolution: 16 pixels)  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SNERT  
READ/  
NAME  
ADDRESS  
HEX  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
WRITE(1)  
PZpositionLeftUppY  
099  
write; S  
X X X X X X X Y position of LeftUpp measurement point for pan-zoom calculations  
(resolution: 4 lines)  
PZpositionRightLowX 09A  
PZpositionRightLowY 09B  
write; S  
write; S  
X X X X X X X position of RightLow measurement point for pan-zoom calculations  
(resolution: 16 pixels)  
X X X X X X X Y position of RightLow measurement point for pan-zoom calculations  
(resolution: 4 lines)  
PZvectorStartX  
PZvectorDeltaX  
PZvectorStartY  
PZvectorDeltaY  
09C  
09D  
09E  
09F  
write; F  
write; F  
write; F  
write; F  
X X X X X X X X X start value of pan-zoom vectors  
X X X X X X X X X delta value of pan-zoom vectors  
X X X X X X X X Y start value of pan-zoom vectors  
X X X X X X X X Y delta value of pan-zoom vectors  
Read data; note 3  
GlobalMSEmsb  
GlobalMSElsb  
0A0  
0A1  
read; F  
read; F  
X X X X X X X X Global Mean Square Error (MSE) = summation within a field period of  
squared differences in comparing vector shifted video from frame  
X X X X X X X X  
memory (FM2/3) with new field input (FM1) in those lines coinciding  
with new field lines. The window for the measurement is kept at  
40 pixels horizontal and 20 field lines vertical from the border of the  
video. Measurements is only done in fields where the de-interlacer is  
active, otherwise reading is zero. In field doubling mode, MSE is zero  
at the end of every new input field.  
GlobalMTImsb  
GlobalMTIlsb  
0A2  
0A3  
read; F  
read; F  
X X X X X X X X Global Motion Trajectory Inconsistency (MTI) = summation within a  
field period of squared differences comparing shifted video from frame  
X X X X X X X X  
memory (FM2/3 output) with filtered data that is rewritten to the frame  
memory (FM2/3 input) in those lines coinciding with new field lines.  
The window for the measurement is kept at 40 pixels horizontal and  
20 field lines vertical from the border of the video. Measurement is  
done only in fields where de-interlacer is active, otherwise reading is  
zero; in field doubling mode, MTI is zero at the end of every new input  
field.  
GlobalACTmsb  
GlobalACTlsb  
VectTempCons  
0A4  
0A5  
0A6  
read; F  
read; F  
read; F  
X X X X X X X X global activity (ACT) = summation over a field period of the horizontal  
plus the vertical components of the vectors of all blocks  
X X X X X X X X  
X X X X X X X X Vector temporal consistency = summation over a field period of  
absolute differences of horizontal plus vertical components of vectors  
newly estimated for each block compared with those vectors  
estimated in the previous run at the same spatial block position.  
It should be noted that a lower figure implies better consistency.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SNERT  
READ/  
NAME  
ADDRESS  
HEX  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
WRITE(1)  
VectSpatCons  
0A7  
read; F  
X X X X X X X X Vector spatial consistency = summation over a field period of absolute  
differences of horizontal and vertical components of vectors compared  
with those of the neighbour blocks (L, R, U and D); in the comparison,  
all vector data is used from the previous estimator run. It should be  
noted that a lower figure implies better consistency  
BlockErrCnt  
LeastErrSum  
0A8  
0A9  
read; F  
read; F  
X X X X X X X X burst error count (number of burst errors)  
X X X X X X X X least error sum (summation over a field period of the smallest match  
error that the estimator has found for each block: indicates reliability of  
the estimation process)  
YvecRangeErrCntmsb 0AA  
read; F  
X X X X X X X X Y vector range error count (number of vectors that have a vertical  
component that is out of range for upconversion at the chosen  
temporal position) (15 to 8)  
YvecRangeErrCntlsb 0AB  
read; F  
read; F  
write; F  
X X X X X X X X Y vector range error count (7 to 0)  
RefLineCountPrev  
RefLineCountNew  
0AC  
0AD  
X X X X X X X X read out of (number of input (run-) lines 40) used in previous field  
X X X X X X X X Write of [number of input (run-) lines 40] to be used in new field  
(actual maximum number of input lines in normal operation: 292;  
register value 252). Nominally this is to be set as an exact copy of the  
value read from RefLineCountPrev before a new field starts. In case  
the effective number of input (run-) lines has increased,  
RefLineCountNew should, for one field, be set to 255. This will occur  
e.g. with decreasing vertical zoom magnification or changing from  
525 lines video standard to 625 lines standard. If this is not done, a  
deadlock will occur with too few lines processed correctly by the  
motion estimator.  
PanZoomVec0-X  
PanZoomVec0-Y  
FalconIdent  
0B0  
0B1  
read; F  
read  
S
X X X X X X X X pan-zoom vector 0 (8-bit X value)  
0
SAA4992H identification: fixed bit, reading this bit as zero means  
SAA4992H is present  
PanZoomVec0-Y  
PanZoomVec1-X  
PanZoomVec1-Y  
StatusJump0  
F
X X X X X X X pan-zoom vector 0 (7-bit Y value)  
X X X X X X X X pan-zoom vector 1 (8-bit X value)  
0B2  
0B3  
read; F  
read  
S
X
read out of configuration pin JUMP0  
PanZoomVec1-Y  
PanZoomVec2-X  
F
X X X X X X X pan-zoom vector 1 (7-bit Y value)  
0B4  
read; F  
X X X X X X X X pan-zoom vector 2 (8-bit X value)  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SNERT  
READ/  
NAME  
ADDRESS  
HEX  
7
6
5
4
3
2
1
0
DESCRIPTION(2)  
WRITE(1)  
PanZoomVec2-Y  
StatusJump1  
0B5  
read  
S
X
read out of configuration pin JUMP1  
X X X X X X X pan-zoom vector 2 (7-bit Y value)  
PanZoomVec2-Y  
PanZoomVec3-X  
PanZoomVec3-Y  
PanZoomVec4-X  
PanZoomVec4-Y  
PanZoomVec5-X  
PanZoomVec5-Y  
PanZoomVec6-X  
PanZoomVec6-Y  
PanZoomVec7-X  
PanZoomVec7-Y  
PanZoomVec8-X  
PanZoomVec8-Y  
EggSliceRgtMSB  
EggSliceRgtLSB  
EggSliceMixMSB  
EggSliceMixLSB  
F
0B6  
0B7  
0B8  
0B9  
0BA  
0BB  
0BC  
0BD  
0BE  
0BF  
0AE  
0AF  
0C0  
0C1  
0C2  
0C3  
read; F  
read; F  
read; F  
read; F  
read; F  
read; F  
read; F  
read; F  
read; F  
read; F  
read; F  
read; F  
read; F  
read; F  
read; F  
read; F  
X X X X X X X X pan-zoom vector 2 (8-bit X value)  
X X X X X X X pan-zoom vector 3 (7-bit Y value)  
X X X X X X X X pan-zoom vector 4 (8-bit X value)  
X X X X X X X pan-zoom vector 4 (7-bit Y value)  
X X X X X X X X pan-zoom vector 5 (8-bit X value)  
X X X X X X X pan-zoom vector 5 (7-bit Y value)  
X X X X X X X X pan-zoom vector 6 (8-bit X value)  
X X X X X X X pan-zoom vector 6 (7-bit Y value)  
X X X X X X X X pan-zoom vector 7 (8-bit X value)  
X X X X X X X pan-zoom vector 7 (7-bit Y value)  
X X X X X X X X pan-zoom vector 8 (8-bit X value)  
X X X X X X X pan-zoom vector 8 (7-bit Y value)  
X X X X X X X X result of right pixels egg-slice detector (15 to 8)  
X X X X X X X X result of right pixels egg-slice detector (7 to 0)  
X X X X X X X X result of mixed pixels egg-slice detector (15 to 8)  
X X X X X X X X result of mixed pixels egg-slice detector (7 to 0)  
Notes  
1. S means semi static, used at initialization or mode changes; F means field frequent, in general updated in each display field.  
2. Selectable items are marked bold.  
3. Almost all of the R(ead) and W(rite) registers of SAA4992H are double buffered. The Write registers are latched by a signal called New_field.  
New_field gets set, when RE_f rises after RSTR (New_field is effectively at the start of active video). The Read registers are latched by a signal  
called Reg_upd. Reg_upd gets set, when half the number of active pixels of the fourth line of vertical blanking have entered the SAA4992H  
(Reg_upd will effectively be active 3 and a halve lines after the RE_a, RE_c and RE_e have ended). The only exceptional registers, which are not  
double buffered, are:  
a) Write register 025: power_on_reset  
b) Write register 02F, bit 1: CndSet  
c) Read register 0B0 to 0BF, 0AE and 0AF: pan_zoom_vectors, including FalconIdent (= 0), jump0 and jump1.  
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
9
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL PARAMETER  
VDD  
IDD  
Io  
MIN.  
MAX.  
UNIT  
supply voltage  
supply current  
output current  
0.5  
+3.6  
600  
2.0  
V
mA  
mA  
V
Vi  
input voltage for all I/O pins  
storage temperature  
0.5  
55  
0
+3.6  
+150  
125  
Tstg  
Tj  
°C  
°C  
junction temperature  
10 THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-a)  
Rth(j-c)  
PARAMETER  
thermal resistance from junction to ambient in free air  
thermal resistance from junction to case  
CONDITIONS  
VALUE  
UNIT  
27  
K/W  
K/W  
2.9  
11 CHARACTERISTICS  
DD = 3.0 to 3.6 V; Tamb = 0 to 70 °C; unless otherwise specified.  
V
SYMBOL PARAMETER  
General  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDD  
IDD  
VOH  
VOL  
VIH  
VIL  
supply voltage  
supply current  
3.0  
3.3  
3.6  
V
400  
550  
mA  
V
HIGH-level output voltage  
LOW-level output voltage  
HIGH-level input voltage  
LOW-level input voltage  
LOW-level output current  
output load capacitance  
input capacitance  
2.4  
0.4  
3.6  
0.8  
2
V
2.0  
0
V
V
IOL  
mA  
pF  
pF  
µA  
Co(L)  
Ci  
50  
8
ILI  
input leakage current  
1
Outputs; note 1; see Fig.5  
IOZ  
output current in 3-state mode  
0.5 < Vo < 3.6  
1
µA  
td(o)  
th(o)  
SR  
output delay time  
output hold time  
slew rate  
21  
ns  
4
ns  
300  
700  
mV/ns  
Inputs; note 2; see Fig.5  
tsu(i) input set-up time  
th(i) input hold time  
8
2
ns  
ns  
2000 Feb 04  
28  
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Input CLK32; see Fig.5  
tr  
rise time  
fall time  
4
ns  
tf  
4
ns  
%
δ
duty factor  
cycle time  
40  
30  
60  
39  
Tcy  
ns  
SNERT interface; see Fig.7  
tSNRSTH  
td(SNRST-SNCL  
Tcy(SNCL)  
tsu(i)(SNCL)  
th(i)(SNCL)  
th(o)  
SNRST pulse HIGH time  
500  
200  
0.5  
53  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
)
delay SNRST pulse to SNCL LOW time  
SNCL cycle time  
1
input set-up time to SNCL  
input hold time to SNCL  
output hold time  
10  
30  
td(o)  
output delay time  
330  
to(en)  
output enable time  
210  
BST interface; see Fig.6  
Tcy(BST)  
tsu(i)(BST)  
th(i)(BST)  
th(o)(BST)  
td(o)(BST)  
BST cycle time  
3
6
4
1
µs  
ns  
ns  
ns  
ns  
input set-up time  
input hold time  
output hold time  
output delay time  
30  
Notes  
1. Timing characteristics are measured with CL = 15 pF; IOL = 2 mA; RL = 2 k.  
2. All inputs except SNERT, CLK32 and BST.  
2000 Feb 04  
29  
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
t
t
r
f
90%  
10%  
90%  
10%  
CLOCK  
1.5 V  
INPUT  
DATA  
MHB175  
t
t
su(i)  
h(i)  
OUTPUT  
DATA  
data  
valid  
data transition  
period  
t
h(o)  
t
d(o)  
Fig.5 Data input/output timing diagram.  
T
cy(BST)  
TCK  
TDI, TMS  
TDO  
MHB649  
t
t
su(i)(BST)  
h(o)(BST)  
h(i)(BST)  
t
t
d(o)(BST)  
Fig.6 Boundary scan test interface timing diagram.  
30  
2000 Feb 04  
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
SNCL  
write sequence:  
SNDA  
a0  
a0  
a1  
a1  
a2  
a2  
a3  
a3  
a4  
a4  
a5  
a5  
a6  
a6  
a7  
a7  
w0  
w1  
w2  
w3  
w4  
w5  
w6  
w7  
read sequence:  
SNDA  
driven by  
master  
r0  
r1  
r2  
r3  
r4  
r5  
r6  
r7  
SNDA  
driven by  
SAA4992H  
SNCL  
50%  
50%  
50%  
t
t
h(i)(SNCL)  
su(i)(SNCL)  
a6  
write sequence:  
SNDA  
a7  
w0  
w1  
read sequence:  
SNDA  
driven by  
master  
a6  
a7  
t
t
h(o)  
o(en)  
SNDA  
driven by  
SAA4992H  
r0  
r1  
t
t
d(o)  
MHB650  
d(o)  
Fig.7 SNERT interface timing diagram.  
2000 Feb 04  
31  
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
Table 2 YUV formats; note 1  
4 : 2 : 2 DPCM  
FORMAT(2)  
I/O PIN(1)  
4 : 1 : 1 FORMAT(2)  
4 : 2 : 2 FORMAT  
YX7  
YX6  
Y07  
Y06  
Y05  
Y04  
Y03  
Y02  
Y01  
Y00  
U07  
U06  
V07  
V06  
X
Y17  
Y16  
Y15  
Y14  
Y13  
Y12  
Y11  
Y10  
U05  
U04  
V05  
V04  
X
Y27  
Y26  
Y25  
Y24  
Y23  
Y22  
Y21  
Y20  
U03  
U02  
V03  
V02  
X
Y37  
Y36  
Y35  
Y34  
Y33  
Y32  
Y31  
Y30  
U01  
U00  
V01  
V00  
X
Y07  
Y06  
Y05  
Y04  
Y03  
Y02  
Y01  
Y00  
U07  
U06  
U05  
U04  
U03  
U02  
U01  
U00  
Y17  
Y16  
Y15  
Y14  
Y13  
Y12  
Y11  
Y10  
V07  
V06  
V05  
V04  
V03  
V02  
V01  
V00  
Y07  
Y06  
Y05  
Y04  
Y03  
Y02  
Y01  
Y00  
UC03  
UC02  
UC01  
UC00  
X
Y17  
Y16  
Y15  
Y14  
Y13  
Y12  
Y11  
Y10  
VC03  
VC02  
VC01  
VC00  
X
YX5  
YX4  
YX3  
YX2  
YX1  
YX0  
UVX7  
UVX6  
UVX5  
UVX4  
UVX3  
UVX2  
UVX1  
UVX0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Notes  
1. Index X refers to different I/O buses:  
a) X = A: input from 1st field memory  
b) X = B: output to 2nd field memory  
c) X = C: input from 2nd field memory  
d) X = D: output to 3rd field memory  
e) X = E: input from 3rd field memory  
f) X = F: main output  
g) X = G: 2nd output for matrix purposes.  
The first index digit defines the sample number, the second defines the bit number.  
2. X = don’t care or not available.  
2000 Feb 04  
32  
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
12 PACKAGE OUTLINE  
QFP160: plastic quad flat package;  
160 leads (lead length 1.6 mm); body 28 x 28 x 3.4 mm; high stand-off height  
SOT322-2  
y
X
A
120  
121  
81  
80  
Z
E
e
A
2
H
A
E
E
A
(A )  
3
1
θ
w M  
p
L
p
b
L
pin 1 index  
detail X  
41  
160  
1
40  
Z
w M  
D
v M  
A
b
p
e
D
B
H
v M  
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
E
p
D
E
max.  
7o  
0o  
0.50 3.60  
0.25 3.20  
0.38 0.23 28.1 28.1  
0.22 0.13 27.9 27.9  
31.45 31.45  
30.95 30.95  
1.03  
0.73  
1.5  
1.1  
1.5  
1.1  
mm  
4.07  
0.25  
0.13 0.1  
0.65  
1.6  
0.3  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
99-11-03  
00-01-19  
SOT322-2  
135E12  
MS-022  
2000 Feb 04  
33  
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
13 SOLDERING  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
13.1 Introduction to soldering surface mount  
packages  
For packages with leads on two sides and a pitch (e):  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
13.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
13.4 Manual soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
13.3 Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
2000 Feb 04  
34  
Philips Semiconductors  
Product specification  
Field and line rate converter with noise  
reduction  
SAA4992H  
13.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
14 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
15 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
2000 Feb 04  
35  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
753504/01/pp36  
Date of release: 2000 Feb 04  
Document order number: 9397 750 06587  

相关型号:

SAA4993H

Field and line rate converter with noise reduction
NXP

SAA4994H

Field and line rate converter with noise reduction
NXP

SAA4995WP

PANorama-IC PAN-IC
NXP

SAA4995WP-T

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other
NXP

SAA4995WP/V1

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other
NXP

SAA4995WPA

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other
NXP

SAA4995WPA-T

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other
NXP

SAA4996H

Motion Adaptive Colour Plus And Control IC MACPACIC for PALplus
NXP

SAA4997H

VErtical Reconstruction IC VERIC for PALplus
NXP

SAA4998H

Field and line rate converter with noise reduction and embedded memory
NXP

SAA4998H

Consumer Circuit, PQFP100,
PHILIPS

SAA5191

Teletext video processor
NXP