SAA4995WP-T [NXP]

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other;
SAA4995WP-T
型号: SAA4995WP-T
厂家: NXP    NXP
描述:

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other

消费电路 商用集成电路
文件: 总16页 (文件大小:110K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
SAA4995WP  
PANorama-IC (PAN-IC)  
1997 Jun 10  
Preliminary specification  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
FEATURES  
GENERAL DESCRIPTION  
Horizontal sample rate conversion in both zoom and  
compress direction, with a sample rate conversion factor  
between 0.5 and 2 (in 384 steps)  
The PAN-IC is an add-on IC to be used, for example,  
between analog-to-digital conversion and a serial (field)  
memory. The device performs the following tasks:  
Dynamic sample rate conversion for panorama mode  
display e.g. 4 : 3 material on a 16 : 9 display  
Linear horizontal sample rate conversion in both zoom  
and compress direction, with a sample rate conversion  
factor between 0.5 and 2  
Dynamic sample rate conversion for amaronap mode  
display of e.g. 16 : 9 material on a 4 : 3 display  
Dynamic sample rate conversion for panorama mode  
display of e.g. 4 : 3 material on a 16 : 9 display  
Operates with 1fh and 2fh  
Dynamic sample rate conversion for amaronap mode  
display of e.g. 16 : 9 material on a 4 : 3 display.  
Programmable via microcontroller SNERT  
(Synchronous No parity Eight bit Receive Transmit) bus.  
The PAN-IC has the ability to increase the data rate from  
the ADC to a maximum of twice the data rate at the output.  
To achieve this a clock rate at twice the normal output  
clock rate is needed to write data to the memory.  
All actions to generate a lower data rate, produces disable  
cycles in Write Enable (WE).  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
5.5  
UNIT  
VDD  
IDD  
supply voltage  
supply current  
4.5  
5
V
110  
mA  
MHz  
°C  
fCLK  
Tamb  
operating clock frequency  
33  
70  
operating ambient temperature  
0
ORDERING INFORMATION  
TYPE NUMBER  
PACKAGE  
NAME  
DESCRIPTION  
VERSION  
SAA4995WP  
PLCC44 plastic leaded chip carrier; 44 leads  
SOT187-2  
1997 Jun 10  
2
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
BLOCK DIAGRAM  
V
V
V
V
DD4 GND4  
CL16  
5
CLK  
31  
DD1 GND1  
10 12  
DD2 GND2  
15 16  
DD3 GND3  
33 30  
6
32  
Y
Y
I7  
I0  
O7  
to  
37 to 44  
29 to 22  
SECAM  
NOTCH  
VPD  
FRONT-END  
VPD  
BACK-END  
to  
Y
MUX  
Y
O0  
CL16  
CLK  
notch  
U
V
/U  
V
U
/V  
I1 I0  
O0 O1  
1 to 4  
21 to 18  
VPD  
FRONT-END  
VPD  
BACK-END  
and  
and  
/V  
/U  
I1 I0  
O0 O1  
SAA4995WP  
CL16  
CLK  
UV  
Y  
'0'  
C
1
MUX  
INTEGRATOR  
INTEGRATOR  
DTO  
+
C
2
C
0
17  
14  
WE  
O
7
WE  
I
LINE CONTROL  
WE  
od  
13  
11  
CL16  
CLK  
T1  
T0  
34  
35  
36  
SNDA  
SNCL  
VRST  
C0  
C1  
C2  
SNERT BUS INTERFACE  
8
9
MGK176  
TEST  
SCANIN  
Fig.1 Block diagram.  
3
1997 Jun 10  
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
PINNING  
SYMBOL  
YO2  
PIN  
DESCRIPTION  
SYMBOL  
UI1  
PIN  
DESCRIPTION  
U input bit 1  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
luminance output bit 2  
1
2
YO3  
luminance output bit 3  
luminance output bit 4  
luminance output bit 5  
luminance output bit 6  
luminance output bit 7  
ground 3  
UI0  
U input bit 0  
YO4  
VI1  
3
V input bit 1  
YO5  
VI0  
4
V input bit 0  
YO6  
CL16  
VDD4  
WEI  
TEST  
SCANIN  
VDD1  
T0  
5
half system clock  
supply voltage 4  
write enable input  
test mode switch  
input for scan chain  
supply voltage 1  
test mode switch 0  
ground 1  
YO7  
6
GND3  
CLK  
GND4  
VDD3  
SNDA  
7
system clock  
8
ground 4  
9
supply voltage 3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
data input from interface  
SNERT bus  
GND1  
T1  
SNCL  
VRST  
35  
36  
clock input from interface  
SNERT bus  
test mode switch 1  
write enable odd samples  
supply voltage 2  
ground 2  
WEod  
VDD2  
GND2  
WEO  
VO0  
reset input in the vertical  
blanking interval  
YI7  
YI6  
YI5  
YI4  
YI3  
YI2  
YI1  
YI0  
37  
38  
39  
40  
41  
42  
43  
44  
luminance input bit 7  
luminance input bit 6  
luminance input bit 5  
luminance input bit 4  
luminance input bit 3  
luminance input bit 2  
luminance input bit 1  
luminance input bit 0  
write enable output  
V output bit 0  
VO1  
V output bit 1  
UO0  
U output bit 0  
UO1  
U output bit 1  
YO0  
luminance output bit 0  
luminance output bit 1  
YO1  
1997 Jun 10  
4
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
7
8
39  
38  
37  
36  
WE  
Y
Y
Y
I
I5  
I6  
I7  
TEST  
9
SCANIN  
10  
11  
12  
V
VRST  
DD1  
T0  
35 SNCL  
34 SDNA  
GND1  
SAA4995WP  
T1 13  
33 V  
DD3  
32 GND4  
31 CLK  
WE  
V
14  
od  
15  
DD2  
GND2 16  
30 GND3  
WE 17  
O
29 Y  
O7  
MGK175  
Fig.2 Pin configuration.  
In the centre of the line a high quality compression (e.g.  
with a factor 43) has to be made. Towards the sides of the  
line, more and more expansion and compression  
respectively is made. The sample rate conversion factor  
over a line will have a bathtub shape, with parameters  
illustrated in Fig.3:  
FUNCTIONAL DESCRIPTION  
The PAN-IC is an add-on IC to be used, for example,  
between analog-to-digital conversion and a serial (field)  
memory. The device performs the following tasks:  
Linear horizontal sample rate conversion in both zoom  
and compress direction, with a sample rate conversion  
factor between 0.5 and 2  
X0l and X0r, where in-between a constant data rate is  
maintained (area I) and starting points from where a  
curve can be programmed for its 2nd derivative (in  
areas II and V)  
Dynamic sample rate conversion for panorama mode  
display of e.g. 4 : 3 material on a 16 : 9 display  
Dynamic sample rate conversion for amaronap mode  
X1l and X1r, points from where a new curve can be  
display of e.g. 16 : 9 material on a 4 : 3 display.  
programmed for its 2nd derivative (for areas III and IV)  
X2l corresponds to the first sample in the output data  
stream, defined by start of WEI  
The PAN-IC has the ability to increase the data rate from  
the ADC (maximum 16 MHz in a 16/32 MHz concept) to a  
maximum of twice the data rate. For this, a 32 MHz clock  
rate is needed to write to the memory. All actions to  
generate a lower data rate produces disable cycles in write  
enable.  
X2r corresponds to the last sample in the output data  
stream, defined by the programmed number of samples  
C1, which controls the second derivatives of the data  
rate in areas II and V  
In panorama and amaronap modes, the sample rate  
conversion factor is modulated along the video line.  
C2, which controls the second derivatives of the data  
rate in areas III and IV.  
1997 Jun 10  
5
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
There is an offset in the programmed number of samples  
compared to the effective number of samples per line.  
Interpolation function  
The interpolation for phase positions between the original  
samples, is achieved with a variable phase delay filter with  
10 taps for luminance signals and 4 taps for chrominance  
signals. For luminance the PAN-IC supplies samples up to  
32 MHz. For chrominance the PAN-IC supplies each  
U and V samples with a data rate of 8 MHz (max).  
Effective number of Y samples = 4 × (programmed  
number of samples + 1)  
Effective number of UV samples = 1 × (programmed  
number of samples + 1)  
SECAM Y notch  
Processing control in the PAN-IC  
A notch filter at the Y input of the PAN-IC can be switched  
on. The purpose of this filter is to prevent artefacts from  
scan velocity modulation with SECAM inputs. The notch  
filter is an FIR filter with coefficients (1 0 3 0 3 0 1).  
When fs = 16 MHz, the notch frequency is 4 MHz; the  
maximum gain of the filter is +3 dB at 2 and 6 MHz.  
The compress factor (see Fig.4) at any position in the lines  
is a function of the dynamically changing DTO-increment.  
When DTOincr = 255, the sample rate is divided by 2; when  
DTOincr = 0, the sample rate in the PAN-IC remains  
unchanged; when DTOincr = 128, the sample rate is  
doubled.  
Timing  
Control of number of samples per line  
The inputs are related to CL16 (half system clock). This  
clock is used for reference in the PAN-IC from the CL16  
pin. The system clock must have a fixed phase relationship  
to the CL16 enable signal (one clock system).  
Three possibilities exist for the relationship between the  
end of WEI and the required number of samples per line for  
storage in the field memory:  
WEI negative edge coincides with the required last  
sample in the line; standard operation.  
Relationship of WE to video data  
WEI negative edge is reached before the present last  
sample in the line was required; extra dummy WE cycles  
will be generated at the maximum rate (zoom factor 2)  
to arrive at the required number of samples per line.  
WE inputs and outputs may be used with either coincident  
or advanced WE to video timing (see Fig.5). The advanced  
WE to video timing is applicable to field memories, such as  
the SAA4955TJ. The input and output WEs of the PAN-IC  
can be programmed separately to either timing by the  
in-phase and out-phase bits.  
The required number of samples per line is reached  
before WEI negative edge; the DTO calculations will  
continue until the required number of samples is  
reached, but without generation of WE cycles.  
Odd/even sample distribution  
The PAN-IC usually delivers a complete YUV data stream  
to one receiving device, e.g. a field memory. Optionally, a  
data stream can be split into odd and even samples, to be  
received by two receiving devices.  
The programmed number of samples per line is thus  
always realized, independent of all other controls (unless  
the line period becomes insufficient to store up to the last  
sample in a line). When using odd/even sample  
distribution, the programmed number of samples refers to  
the number of samples in each data stream.  
Consequently, the total number of samples is twice as  
many.  
The relationship between Y and UV samples is then  
non-trivial (see Tables 1 to 4).  
1997 Jun 10  
6
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
NO SPLITTING INTO ODD AND EVEN SAMPLE STREAM  
Table 1 Normal output YUV data stream  
E
Y0  
O
E
O
E
O
E
O
E
O
E
O
E
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
Y9  
Y10  
Y11  
Y12  
0
0
0
0
4
4
4
4
8
8
8
8
12  
UV76  
UV54  
UV32  
UV10  
UV76  
UV54  
UV32  
UV10  
UV76  
UV54  
UV32  
UV10  
UV76  
SPLITTING INTO ODD AND EVEN SAMPLE STREAM  
Keeps corresponding parts of the UV samples in one stream (UV0, UV8, etc. in even stream and UV4, UV12, etc. in odd  
stream): The odd data stream misses two samples at the start of a line and has two dummy samples at the end of the  
line, to keep the UV format correct and maintain the same line length as for the even stream (In the odd stream, the last  
two Y samples and the last U and V samples of a line are not valid).  
Table 2 Even YUV data stream  
E
Y0  
E
E
E
E
E
E
Y2  
Y4  
Y6  
Y8  
Y10  
Y12  
0
0
0
0
8
8
12  
UV76  
UV54  
UV32  
UV10  
UV76  
UV54  
UV32  
Table 3 Odd YUV data stream  
O
O
Y7  
O
Y9  
O
Y11  
Y5  
4
4
4
4
UV76  
UV54  
UV32  
UV10  
The even and odd data streams given in Tables 2 and 3 can be distributed to two receiving devices with input enable  
facilities. A separate input signal for each of the receiving devices must then be applied while the even YUV data stream  
and odd YUV data stream are again combined.  
COMBINED ODD/EVEN OUTPUT YUV DATA STREAM  
Table 4 Distribution with odd/even input enable signals  
E
E
E
E
O
E
O
E
O
E
Y0  
Y2  
Y4  
Y5  
Y6  
Y7  
Y8  
Y9  
Y10  
Y11  
Y12  
0
0
0
4
0
4
8
4
8
4
8
UV76  
UV54  
UV32  
UV76  
UV10  
UV54  
UV75  
UV32  
UV54  
UV10  
UV32  
1997 Jun 10  
7
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
active period  
area:  
IV  
V
I
II  
III  
sample  
rate  
C
C
2
2
C
C
1
1
C
0
positions:  
X
X
X
X
X
X
2r  
2I  
1I  
0I  
0r  
1r  
MGK177  
Fig.3 Panorama mode.  
MGK178  
2
compress  
factor  
1
0.5  
256  
128  
0
256  
DTO  
incr  
Fig.4 Compress factor.  
8
1997 Jun 10  
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
CL16  
WE  
I
with in-phase = 0  
with in-phase = 1  
WE  
I
YUV  
I
CLK  
WE /WE  
O
od  
od  
with out-phase = 0  
with out-phase = 1  
WE /WE  
O
YUV  
O
MGK179  
Fig.5 WE timing.  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VDD  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
0.5  
MAX.  
+6.5  
UNIT  
V
Vi, Vo  
Io/out  
P/out  
Tstg  
input and output voltages  
0.5  
VDD + 0.5  
20  
V
output current per output pin  
power dissipation per output pin  
storage temperature  
mA  
100  
mW  
°C  
°C  
V
55  
40  
+140  
+85  
Tamb  
VESD  
operating ambient temperature  
electrostatic handling for all pins  
note 1  
note 2  
±2000  
±300  
V
Notes  
1. Human body model: C = 100 pF, R = 1.5 k, V = 2 kV.  
2. Machine model: C = 200 pF, R = 0 , V = 300 V.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth j-a  
PARAMETER  
thermal resistance from junction to ambient in free air  
VALUE  
UNIT  
50  
K/W  
1997 Jun 10  
9
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
CHARACTERISTICS  
V
DD = 5.0 V; Tamb = 25 °C; unless otherwise specified.  
SYMBOL PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
4.5  
TYP.  
MAX.  
UNIT  
VDD  
IDD  
5
5.5  
V
supply current  
110  
mA  
MHz  
MHz  
V
fCLK  
fCL16  
VIL  
operating frequency (CLK)  
operating frequency (CL16)  
LOW level input voltage  
HIGH level input voltage  
input capacitance  
33  
12fCLK  
0.8  
VDD  
15  
0.4  
VIH  
2.0  
V
Ci  
10  
pF  
V
VOL  
VOH  
tsu(i)(D)  
LOW level output voltage  
HIGH level output voltage  
Io = 4 mA  
Io = 4 mA  
2.6  
8
3.4  
V
input set-up time with respect to CL16 except pins SNDA, SNCL,  
ns  
rising edge  
VRST and CLK; see Fig.6  
th(i)(CL16)  
input hold time with respect to CL16  
rising edge  
except pins SNDA, SNCL,  
VRST and CLK; see Fig.6  
0
7
3
ns  
ns  
ns  
tsu(i)(CL16) input set-up time with respect to CLK  
rising edge  
see Fig.6  
see Fig.6  
CL = 7 pF  
th(i)(CL16)  
input hold time with respect to CLK  
rising edge  
th(o)  
td  
output hold time with respect to CLK  
5
0
ns  
ns  
°C  
°C  
output delay time with respect to CLK CL = 15 pF  
operating ambient temperature  
19  
70  
125  
Tamb  
Tj  
junction temperature  
CLK  
t
t
h(i)(CL16)  
h(i)(CL16)  
t
t
su(i)(CL16)  
su(i)(CL16)  
CL16  
data  
input  
t
su(i)(D)  
t
h(i)(D)  
data  
output  
data valid  
data valid  
MGK180  
t
h(o)  
t
d
Fig.6 Clock timing.  
1997 Jun 10  
10  
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
MICROCONTROLLER BUS TIMING (SNERT BUS)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
MAX. UNIT  
Tcy(SNCL) SNCL cycle time  
see Fig.7  
see Fig.7  
see Fig.7  
see Fig.7  
see Fig.7  
1
µs  
ns  
ns  
ns  
ns  
tsu(i)  
th(i)  
th(o)(D)  
td  
input data set-up time  
input data hold time  
output data hold time  
output data delay time  
90  
50  
0
700  
T
SNCL  
cy(SNCL)  
t
t
su(i)  
h(i)  
SNDA  
(receiver  
mode)  
LSB  
t
d
SNDA  
(transmitter  
mode)  
data  
valid  
data  
valid  
data  
valid  
data  
valid  
data  
valid  
MGK181  
t
h(o)(D)  
Fig.7 SNERT bus interface timing.  
MICROCONTROLLER BUS CONTROL (SNERT BUS)  
The following control table applies (Table 5), for control via the microcontroller bus (SNERT bus, consisting of SNCL,  
SNDA and VRST signals). Data communication is by writing to the PAN-IC (address 40H to 48H) and reading from it  
(address 49H)  
Table 5 SNERT-bus control  
ADDRESS  
(HEX)  
BIT  
POSITION  
FUNCTION  
# OF BITS  
REMARKS  
40  
41  
42  
43  
44  
X1l  
8
7 : 0  
7 : 0  
7 : 0  
7 : 0  
7 : 0  
definition of X1l with a resolution of 4 samples; see Fig.3 and  
note 1  
X0l  
X0r  
X1r  
8
8
8
8
definition of X0l with a resolution of 4 samples; see Fig.3 and  
note 1  
definition of X0r with a resolution of 4 samples; see Fig.3 and  
note 1  
definition of X1r with a resolution of 4 samples; see Fig.3 and  
note 1  
output samples  
per line  
resolution of 4 luminance samples; actual #  
samples = (programmed # samples + 1) × 4; note 2  
1997 Jun 10  
11  
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
ADDRESS  
BIT  
POSITION  
FUNCTION  
# OF BITS  
REMARKS  
(HEX)  
45  
C0  
8
6
7 : 0  
constant DTOincr value for area I, MSB extended by zoom bit  
at address 48 (twos complement value); see Figs 3 and 4  
46  
47  
C1  
5 : 0  
2nd derivatives for DTOincr for areas II and V  
(twos complement value); see Figs 3 and 4  
distribution  
C2  
1
6
6
enables odd/even sample distribution; see Tables 1 to 4  
5 : 0  
2nd derivatives for DTOincr for areas III and IV  
(twos complement value)  
test 1  
notch  
1
6
7
test bit, must be logic 0 in normal operation  
1
SECAM Y notch on/off (logic 1 = on, logic 0 = off)  
logic 1 = zoom, logic 0 = compress in area I  
logic 1 = shifted relation WE_IN to input data; see Fig.5  
logic 1 = shifted relation WEO/WEod to output data; see Fig.5  
circuitry is initialized at VRST pulse  
48  
zoom bit  
in-phase  
out-phase  
init  
1
0
1
1
1
2
1
3
vrst_xfer  
keep  
1
4
new settings are activated at VRST pulse  
1
5
compression curve is kept from last active line in field  
test bit, must be logic 0 in normal operation  
test 2  
1
1
6
adapt  
7
adapt bit, must be logic 0 in normal operation  
PAN-IC identifies by pulling all bits LOW (hardware cluck)  
49  
Notes  
identify read  
8 read bits  
7 : 0  
1. For a symmetrical bathtub curve Xnl + Xnr = output samples per line + 1.  
2. WEI falling edge delay to the WEO latest sample should not be equal to the pipeline delay. This can be controlled  
with the WEI length via the microcontroller.  
TEST  
The test mode can be chosen via pins TEST, T0 and T1.  
Table 6 Test modes  
PIN NAME  
MODE  
TEST  
T1  
T0  
Functional test  
Test mode on  
0
1
X(1)  
X(1)  
X(1)  
X(1)  
Note  
1. X = don’t care.  
1997 Jun 10  
12  
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
PACKAGE OUTLINE  
PLCC44: plastic leaded chip carrier; 44 leads  
SOT187-2  
e
e
E
D
y
X
A
39  
29  
Z
E
b
28  
p
40  
b
1
w
M
44  
1
H
E
E
pin 1 index  
A
A
1
A
4
e
(A )  
3
6
18  
k
1
β
L
p
k
detail X  
7
17  
v
M
A
e
Z
D
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)  
(1)  
(1)  
A
min.  
A
max.  
k
1
max.  
Z
Z
E
(1)  
(1)  
1
4
D
UNIT  
mm  
A
A
b
D
E
e
e
e
H
H
k
L
p
v
w
y
β
b
D
E
D
E
3
p
1
max. max.  
4.57  
4.19  
0.81 16.66 16.66  
0.66 16.51 16.51  
16.00 16.00 17.65 17.65 1.22  
14.99 14.99 17.40 17.40 1.07  
1.44  
1.02  
0.53  
0.33  
0.51  
0.51 0.25 3.05  
0.020 0.01 0.12  
1.27  
0.05  
0.18 0.18 0.10 2.16 2.16  
o
45  
0.180  
0.165  
0.032 0.656 0.656  
0.026 0.650 0.650  
0.630 0.630 0.695 0.695 0.048  
0.590 0.590 0.685 0.685 0.042  
0.057  
0.040  
0.021  
0.013  
inches  
0.020  
0.007 0.007 0.004 0.085 0.085  
Note  
1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-02-25  
SOT187-2  
112E10  
MO-047AC  
1997 Jun 10  
13  
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
SOLDERING  
Introduction  
Wave soldering  
Wave soldering techniques can be used for all PLCC  
packages if the following conditions are observed:  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
The package footprint must incorporate solder thieves at  
the downstream corners.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Reflow soldering  
Reflow soldering techniques are suitable for all PLCC  
packages.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
The choice of heating method may be influenced by larger  
PLCC packages (44 leads, or more). If infrared or vapour  
phase heating is used and the large packages are not  
absolutely dry (less than 0.1% moisture content by  
weight), vaporization of the small amount of moisture in  
them can cause cracking of the plastic body. For more  
information, refer to the Drypack chapter in our “Quality  
Reference Handbook” (order code 9398 510 63011).  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Repairing soldered joints  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
1997 Jun 10  
14  
Philips Semiconductors  
Preliminary specification  
PANorama-IC (PAN-IC)  
SAA4995WP  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of this specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1997 Jun 10  
15  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Czech Republic: see Austria  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South America: Rua do Rocio 220, 5th floor, Suite 51,  
04552-903 São Paulo, SÃO PAULO - SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 829 1849  
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 481 7730  
Hungary: see Austria  
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.  
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Indonesia: see Singapore  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,  
Internet: http://www.semiconductors.philips.com  
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1997  
SCA54  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
547047/20/01/pp16  
Date of release: 1997 Jun 10  
Document order number: 9397 750 01609  

相关型号:

SAA4995WP/V1

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other
NXP

SAA4995WPA

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other
NXP

SAA4995WPA-T

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other
NXP

SAA4996H

Motion Adaptive Colour Plus And Control IC MACPACIC for PALplus
NXP

SAA4997H

VErtical Reconstruction IC VERIC for PALplus
NXP

SAA4998H

Field and line rate converter with noise reduction and embedded memory
NXP

SAA4998H

Consumer Circuit, PQFP100,
PHILIPS

SAA5191

Teletext video processor
NXP

SAA5231

Teletext video processor
NXP

SAA5231N

IC TELETEXT DECODER, PDIP28, Teletext IC
NXP

SAA5232T

IC TELETEXT AND VPS/PDC DECODER, PDSO24, Teletext IC
NXP

SAA5232T-T

IC TELETEXT AND VPS/PDC DECODER, PDSO24, Teletext IC
NXP