BF1205 [NXP]

Dual N-channel dual gate MOS-FET; 双N沟道双栅MOS -FET
BF1205
型号: BF1205
厂家: NXP    NXP
描述:

Dual N-channel dual gate MOS-FET
双N沟道双栅MOS -FET

文件: 总24页 (文件大小:186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DISCRETE SEMICONDUCTORS  
DATA SHEET  
andbook, halfpage  
BF1205  
Dual N-channel dual gate  
MOS-FET  
Product specification  
2003 Sep 30  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
FEATURES  
PINNING - SOT363  
PIN  
Two low noise gain controlled amplifiers in a single  
package. One with a fully integrated bias and one with a  
partly integrated bias  
DESCRIPTION  
1
2
3
4
5
6
gate 1 (a)  
gate 2  
Internal switch reduces the number of external  
components  
gate 1 (b)  
drain (b)  
source  
Superior cross-modulation performance during AGC  
High forward transfer admittance  
drain (a)  
High forward transfer admittance to input capacitance  
ratio.  
APPLICATIONS  
d (a)  
s
d (b)  
handbook, halfpage  
Gain controlled low noise amplifiers for VHF and UHF  
applications with 5 V supply voltage, such as digital and  
analog television tuners and professional  
communications equipment.  
6
5
4
AMP  
a
AMP  
b
DESCRIPTION  
1
2
3
The BF1205 is a combination of two equal dual gate  
MOS-FET amplifiers with shared source and gate 2 leads  
and an integrated switch. The integrated switch is  
operated by the gate 1 bias of amplifier b. The source and  
substrate are interconnected. Internal bias circuits enable  
DC stabilization and a very good cross-modulation  
performance during AGC. Integrated diodes between the  
gates and source protect against excessive input voltage  
surges. The transistor is encapsulated in SOT363  
micro-miniature plastic package.  
Top view  
g1 (a)  
g2  
g1 (b)  
MGX429  
Marking code: L4-.  
Fig.1 Simplified outline and symbol.  
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
BF1205  
Plastic surface mounted package; 6 leads  
SOT363  
2003 Sep 30  
2
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
Per MOS-FET; unless otherwise specified  
VDS  
ID  
drain-source voltage  
drain current (DC)  
10  
V
30  
mA  
mW  
Ptot  
total power dissipation  
Ts 102 °C; temperature at the  
200  
soldering point of the source lead  
yfs  
forward transfer admittance  
input capacitance at gate 1  
ID = 12 mA  
26  
31  
40  
2.3  
2.5  
mS  
pF  
Cig1-ss  
amp. a: f = 1 MHz  
amp. b: f = 1 MHz  
f = 1 MHz  
1.8  
2.0  
20  
pF  
Crss  
NF  
reverse transfer capacitance  
noise figure  
fF  
amp. a: f = 800 MHz  
amp. b: f = 800 MHz  
1.2  
1.4  
102  
1.9  
2.1  
dB  
dB  
Xmod  
cross-modulation  
amp. a: input level for k = 1% at  
40 dB AGC  
98  
dBµV  
amp. b: input level for k = 1% at  
40 dB AGC  
100 105  
dBµV  
°C  
Tj  
junction temperature  
150  
CAUTION  
This product is supplied in anti-static packing to prevent damage caused by electrostatic discharge during transport  
and handling. For further information, refer to Philips specs.: SNW-EQ-608, SNW-FQ-302A and SNW-FQ-302B.  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
MAX. UNIT  
Per MOS-FET; unless otherwise specified  
VDS  
ID  
drain-source voltage  
drain current (DC)  
gate 1 current  
10  
V
30  
mA  
mA  
mA  
mW  
°C  
IG1  
IG2  
Ptot  
Tstg  
Tj  
±10  
±10  
200  
+150  
150  
gate 2 current  
total power dissipation  
storage temperature  
junction temperature  
Ts 102 °C; note  
65  
°C  
Note  
1. Ts is the temperature at the soldering point of the source lead.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
VALUE  
UNIT  
K/W  
Rth j-s  
thermal resistance from junction to soldering point  
240  
2003 Sep 30  
3
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGS359  
250  
handbook, halfpage  
P
tot  
(mW)  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
T
(°C)  
s
Fig.2 Power derating curve.  
STATIC CHARACTERISTICS  
Tj = 25 °C; per MOS-FET; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
MAX. UNIT  
V(BR)DSS  
drain-source breakdown voltage  
amp. a: VG1-S = VG2-S = 0 V; ID = 10 µA 10  
V
amp. b: VG1-S = VG2-S = 0 V; ID = 10 µA  
VGS = VDS = 0 V; IG1-S = 10 mA  
VGS = VDS = 0 V; IG2-S = 10 mA  
VG2-S = VDS = 0 V; IS-G1 = 10 mA  
VG1-S = VDS = 0 V; IS-G2 = 10 mA  
VDS = 5 V; VG2-S = 4 V; ID = 100 µA  
VDS = 5 V; VG1-S = 5 V; ID = 100 µA  
7
V
V(BR)G1-SS gate-source breakdown voltage  
V(BR)G2-SS gate-source breakdown voltage  
6
10  
10  
1.5  
1.5  
1
V
6
V
V(F)S-G1  
V(F)S-G2  
VG1-S(th)  
VG2-S(th)  
IDSX  
forward source-gate voltage  
forward source-gate voltage  
gate-source threshold voltage  
gate-source threshold voltage  
drain-source current  
0.5  
0.5  
0.3  
0.4  
8
V
V
V
1.0  
16  
V
amp. a: VG2-S = 4 V; VDS = 5 V;  
mA  
RG1 = 150 k; note 1  
amp. b: VG2-S = 4 V; VDS = 5 V;  
8
16  
mA  
RG1 = 150 k; note 2  
IG1-S  
gate cut-off current  
gate cut-off current  
amp. a: VG1-S = 5 V; VG2-S = VDS = 0 V  
amp. b: VG1-S = 5 V; VG2-S = VDS = 0 V  
VG2-S = 4 V; VG1-S = VDS = 0 V  
50  
50  
20  
nA  
nA  
nA  
IG2-S  
Note  
1. RG1 connects gate 1 (b) to VGG = 0 V (see Fig.4).  
2. RG1 connects gate 1 (b) to VGG = 5 V (see Fig.4).  
2003 Sep 30  
4
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX430  
16  
handbook, halfpage  
I
D
(mA)  
(1)  
(2)  
handbook, halfpage  
12  
g1 (a)  
d (a)  
s
g2  
(3)  
8
g1 (b)  
d (b)  
R
G1  
4
V
MGX431  
GG  
(4)  
(5)  
(6)  
0
0
1
2
3
4
5
V
(V)  
GG  
(1) ID (b); RG1 = 120 k.  
(2) ID (b); RG1 = 150 k.  
(4) ID (a); RG1 = 180 k.  
(5) ID (a); RG1 = 150 k.  
(3)  
ID (b); RG1 = 180 k.  
(6) ID (a); RG1 = 120 k.  
VGG = 5 V: amplifier a is OFF; amplifier b is ON.  
VGG = 0 V: amplifier a is ON; amplifier b is OFF.  
Fig.3 Drain currents of MOS-FET a and b as  
functions of VGG (see Fig.4).  
Fig.4 Functional diagram  
2003 Sep 30  
5
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
DYNAMIC CHARACTERISTICS AMPLIFIER a  
Common source; Tamb = 25 °C; VG2-S = 4 V; VDS = 5 V; ID = 12 mA; note 1  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
26  
TYP. MAX. UNIT  
yfs  
forward transfer admittance  
input capacitance at gate 1  
input capacitance at gate 2  
output capacitance  
Tj = 25 °C  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
31  
40  
2.3  
mS  
pF  
pF  
pF  
fF  
Cig1-ss  
Cig2-ss  
Coss  
Crss  
1.8  
3.3  
0.75  
20  
reverse transfer capacitance  
power gain  
Gtr  
f = 200 MHz; GS = 2 mS; BS = BS(opt)  
GL = 0.5 mS; BL = BL(opt)  
;
;
31  
35  
39  
dB  
f = 400 MHz; GS = 2 mS; BS = BS(opt)  
GL = 1 mS; BL = BL(opt)  
27  
22  
31  
26  
35  
30  
dB  
dB  
f = 800 MHz; GS = 3.3 mS; BS = BS(opt)  
;
GL = 1 mS; BL = BL(opt)  
NF  
noise figure  
f = 10.7 MHz; GS = 20 mS; BS = 0  
f = 400 MHz; YS = YS(opt)  
4
dB  
1.1  
1.2  
1.7  
1.9  
dB  
f = 800 MHz; YS = YS(opt)  
dB  
Xmod  
cross-modulation  
input level for k = 1% at 0 dB AGC;  
fw = 50 MHz; funw = 60 MHz; note 2  
90  
dBµV  
input level for k = 1% at 10 dB AGC;  
fw = 50 MHz; funw = 60 MHz; note 2  
90  
dBµV  
dBµV  
input level for k = 1% at 40 dB AGC;  
fw = 50 MHz; funw = 60 MHz; note 2  
98  
102  
Notes  
1. For the MOS-FET not in use: VG1-S (b) = 0 V; VDS (b) = 0 V.  
2. Measured in Fig.13 test circuit.  
2003 Sep 30  
6
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
GRAPHS FOR AMPLIFIER a  
MGX432  
MGX433  
(1)  
20  
24  
handbook, halfpage  
handbook, halfpage  
(3)  
(2)  
(4)  
I
(5)  
(6)  
D
(mA)  
I
D
(mA)  
(1)  
15  
(2)  
(3)  
16  
10  
5
(4)  
(5)  
8
(6)  
(7)  
(7)  
0
0
0
0
0.4  
0.8  
1.2  
1.6  
2
2
4
6
8
10  
(V)  
V
(V)  
V
DS  
G1-S  
(1) VG1-S (a) = 1.4 V.  
(2) VG1-S (a) = 1.3 V.  
(3) VG1-S (a) = 1.2 V.  
(4) VG1-S (a) = 1.1 V.  
(5) VG1-S (a) = 1 V.  
(6) VG1-S (a) = 0.9 V.  
(7) VG1-S (a) = 0.8 V.  
(1) VG2-S = 4 V.  
(5) VG2-S = 2 V.  
(2) VG2-S = 3.5 V.  
(3) VG2-S = 3 V.  
(4) VG2-S = 2.5 V.  
(6) VG2-S = 1.5 V.  
(7) VG2-S = 1 V.  
VDS (a) = 5 V; VG1-S (b) = VDS (b) = 0 V; Tj = 25 °C.  
VG2-S = 4 V; VG1-S (b) = VDS (b) = 0 V; Tj = 25 °C.  
Fig.5 Transfer characteristics; typical values;  
amplifier a.  
Fig.6 Output characteristics; typical values;  
amplifier a.  
2003 Sep 30  
7
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX434  
MGX435  
40  
12  
handbook, halfpage  
handbook, halfpage  
y
(1) (2)  
fs  
(mS)  
I
(a)  
D
(mA)  
(3)  
(4)  
30  
8
20  
10  
0
4
0
(5)  
0
4
8
12  
16  
I
20  
(mA)  
0
10  
20  
30  
40  
(b) (µA)  
I
D
D
(1) VG2-S = 4 V.  
(4) VG2-S = 2.5 V.  
(5) VG2-S = 2 V.  
(2) VG2-S = 3.5 V.  
(3) VG2-S = 3 V.  
VDS (a) = 5 V; VG2-S = 4 V; VDS (b) = 5 V; VG1-S (b) = 0 V; Tj = 25 °C.  
VDS (a) = 5 V; VG1-S (b) = VDS (b) = 0 V; Tj = 25 °C.  
Fig.8 Drain current as a function of internal G1  
current (current in pin drain (b) if MOS-FET  
(b) is switched off); typical values; amplifier a.  
Fig.7 Forward transfer admittance as a function  
of drain current; typical values; amplifier a.  
2003 Sep 30  
8
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX436  
MGX437  
12  
120  
(1)  
handbook, halfpage  
I
handbook, halfpage  
D
(mA)  
10  
(2)  
(3)  
V
unw  
(dBµV)  
(4)  
(5)  
110  
8
6
4
2
100  
90  
0
0
80  
0
2
4
6
20  
40  
gain reduction (dB)  
60  
V
= V  
(V)  
DS  
GG  
(1) VDS (b) = 5 V.  
(2) VDS (b) = 4.5 V.  
(3) VDS (b) = 4 V.  
(4) VDS (b) = 3.5 V.  
(5) VDS (b) = 3 V.  
VDS (a) = VDS (b) = 5 V; VG1-S (b) = 0 V; f w = 50 MHz;  
VDS (a) = 5 V; VG1-S (b) = 0 V; Gate 1 (a) = open; Tj = 25 °C.  
f unw = 60 MHz; Tamb = 25 °C; see Fig.13.  
Fig.9 Drain current as a function of gate 2 and  
drain supply voltage; typical values;  
amplifier a.  
Fig.10 Unwanted voltage for 1% cross-modulation  
as a function of gain reduction; typical values;  
amplifier a.  
2003 Sep 30  
9
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX438  
MGX439  
0
16  
handbook, halfpage  
handbook, halfpage  
I
gain  
reduction  
(dB)  
D
(mA)  
12  
20  
40  
60  
8
4
0
0
0
1
2
3
4
20  
40  
60  
V
(V)  
AGC  
gain reduction (dB)  
VDS (a) = VDS (b) = 5 V; VG1-S (b) = 0 V; f = 50 MHz; Tamb = 25 °C;  
see Fig.13.  
VDS (a) = VDS (b) = 5 V; VG1-S (b) = 0 V; f = 50 MHz; see Fig.13.  
Fig.11 Gain reduction as a function of AGC  
voltage; typical values; amplifier a.  
Fig.12 Drain current as a function of gain  
reduction; typical values; amplifier a.  
V
(a)  
h
DS  
5 V  
V
AGC  
4.7 nF  
L1  
2.2 µH  
10 kΩ  
4.7 nF  
4.7 nF  
4.7 nF  
g1 (a)  
d (a)  
R
R
GEN  
50 Ω  
L
50 Ω  
g2  
s
50 Ω  
BF1205  
V
i
4.7 nF  
g1 (b)  
d (b)  
L2  
2.2 µH  
50 Ω  
R
G1  
150 kΩ  
4.7 nF  
V
V
(b)  
GG  
0 V  
DS  
5 V  
MGX440  
Fig.13 Cross-modulation test set-up for amplifier a.  
10  
2003 Sep 30  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX442  
MGX441  
2
2
2
10  
10  
10  
handbook, halfpage  
handbook, halfpage  
y
is  
(mS)  
y
ϕ
|
|
fs  
fs  
(mS)  
(deg)  
10  
y
|
|
fs  
b
is  
1
10  
10  
g
is  
ϕ
1  
fs  
10  
2  
10  
1
10  
1  
2
3
2
3
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS (a) = 5 V; VG2-S (a) = 4 V; VDS (b) = VG1-S (b) = 0 V;  
ID (a) = 12 mA.  
VDS (a) = 5 V; VG2-S (a) = 4 V; VDS (b) = VG1-S (b) = 0 V;  
ID (a) = 12 mA.  
Fig.15 Forward transfer admittance and phase as  
a function of frequency; typical values;  
amplifier a.  
Fig.14 Input admittance as a function of frequency;  
typical values; amplifier a.  
MGX443  
3
MGX444  
10  
3
10  
10  
handbook, halfpage  
handbook, halfpage  
ϕ
rs  
y
y
|
|
rs  
os  
(deg)  
(µS)  
(mS)  
ϕ
b
rs  
2
2
os  
10  
10  
1
y
|
|
g
rs  
os  
1  
10  
1  
10  
10  
10  
2  
1
10  
2
3
2
3
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS (a) = 5 V; VG2-S (a) = 4 V; VDS (b) = VG1-S (b) = 0 V;  
ID (a) = 12 mA.  
VDS (a) = 5 V; VG2-S (a) = 4 V; VDS (b) = VG1-S (b) = 0 V;  
ID (a) = 12 mA.  
Fig.16 Reverse transfer admittance and phase as  
a function of frequency; typical values;  
amplifier a.  
Fig.17 Output admittance as a function of  
frequency; typical values; amplifier a.  
2003 Sep 30  
11  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
Scattering parameters: amplifier a  
VDS (a) = 5 V; VG2-S = 4 V; ID (a) = 12 mA; VDS (b) = 0 V; VG-1S (b) = 0 V; Tamb = 25 °C  
s11  
s21  
s12  
s22  
f
MAGNITUDE ANGLE MAGNITUDE ANGLE MAGNITUDE ANGLE MAGNITUDE ANGLE  
(MHz)  
(ratio)  
(deg)  
(ratio)  
(deg)  
(ratio)  
(deg)  
(ratio)  
(deg)  
50  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
0.997  
0.995  
0.988  
0.976  
0.963  
0.944  
0.924  
0.900  
0.874  
0.846  
0.817  
3.70  
7.37  
3.15  
3.15  
3.12  
3.09  
3.04  
2.99  
2.94  
2.87  
2.81  
2.73  
2.65  
175.99  
171.92  
163.99  
156.06  
148.32  
140.52  
132.88  
125.30  
117.79  
110.29  
102.91  
0.00067  
0.00132  
0.00262  
0.00373  
0.00471  
0.00557  
0.00624  
0.00669  
0.00701  
0.00705  
0.00688  
86.39  
84.34  
79.71  
75.29  
71.43  
66.89  
63.52  
60.09  
59.58  
52.42  
49.17  
0.992  
0.991  
0.990  
0.988  
0.985  
0.982  
0.978  
0.975  
0.972  
0.968  
0.965  
1.38  
2.83  
14.64  
21.85  
28.95  
35.98  
42.90  
49.77  
56.61  
63.18  
69.84  
5.62  
8.40  
11.15  
13.88  
16.65  
19.35  
22.08  
24.87  
27.63  
Noise data  
V
DS (a) = 5 V; VG2-S = 4 V; ID (a) = 12 mA; VDS (b) = 0 V; VG-1S (b) = 0 V; Tamb = 25 °C  
GAMMA OPT  
(ratio)  
f
F MIN  
(dB)  
Rn  
()  
(MHz)  
(deg)  
400  
800  
1.1  
1.2  
0.719  
0.628  
16.16  
32.7  
31.18  
29.74  
DYNAMIC CHARACTERISTICS AMPLIFIER b  
Common source; Tamb = 25 °C; VG2-S = 4 V; VDS = 5 V; ID = 12 mA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
26  
TYP. MAX. UNIT  
yfs  
forward transfer admittance  
input capacitance at gate 1  
input capacitance at gate 2  
output capacitance  
Tj = 25 °C  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
31  
40  
2.5  
mS  
pF  
pF  
pF  
fF  
Cig1-ss  
Cig2-ss  
Coss  
Crss  
2.0  
3.3  
0.85  
20  
reverse transfer capacitance  
power gain  
Gtr  
f = 200 MHz; GS = 2 mS; BS = BS(opt)  
GL = 0.5 mS; BL = BL(opt); note 1  
;
;
30  
34  
38  
dB  
f = 400 MHz; GS = 2 mS; BS = BS(opt)  
GL = 1 mS; BL = BL(opt); note 1  
27  
22  
31  
26  
35  
30  
dB  
dB  
f = 800 MHz; GS = 3.3 mS; BS = BS(opt)  
;
GL = 1 mS; BL = BL(opt); note 1  
NF  
noise figure  
f = 10.7 MHz; GS = 20 mS; BS = 0  
f = 400 MHz; YS = YS(opt)  
4
dB  
dB  
dB  
1.3  
1.4  
1.9  
2.1  
f = 800 MHz; YS = YS(opt)  
2003 Sep 30  
12  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
SYMBOL  
PARAMETER  
cross-modulation  
CONDITIONS  
MIN.  
90  
TYP. MAX. UNIT  
Xmod  
input level for k = 1% at 0 dB AGC;  
fw = 50 MHz; funw = 60 MHz; note 2  
dBµV  
dBµV  
dBµV  
input level for k = 1% at 10 dB AGC;  
fw = 50 MHz; funw = 60 MHz; note 2  
92  
105  
input level for k = 1% at 40 dB AGC;  
fw = 50 MHz; funw = 60 MHz; note 2  
100  
Notes  
1. For the MOS-FET not in use: VG1-S (a) = 0; VDS (a) = 0.  
2. Measured in test circuit Fig.30.  
GRAPHS FOR AMPLIFIER b  
MGX445  
MGX446  
20  
24  
handbook, halfpage  
handbook, halfpage  
(3)  
(4)  
I
(5)  
D
(mA)  
(2)  
(1)  
I
D
(mA)  
(1)  
15  
(2)  
(3)  
16  
(6)  
10  
5
(4)  
(5)  
8
(6)  
(7)  
(7)  
0
0
0
0
0.4  
0.8  
1.2  
1.6  
V
2
(V)  
2
4
6
8
10  
(V)  
V
DS  
G1-S  
(1) VG2-S = 4 V.  
(5) VG2-S = 2 V.  
(1) VG1-S (b) = 1.4 V.  
(2) VG1-S (b) = 1.3 V.  
(3) VG1-S (b) = 1.2 V.  
(5) VG1-S (b) = 1 V.  
(2) VG2-S = 3.5 V.  
(6) VG2-S = 1.5 V.  
(6) VG1-S (b) = 0.9 V.  
(7) VG1-S (b) = 0.8 V.  
(3)  
VG2-S = 3 V.  
(7) VG2-S = 1 V.  
(4) VG2-S = 2.5 V.  
(4)  
VG1-S (b) = 1.1 V.  
VDS (b) = 5 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 °C.  
VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 °C.  
Fig.18 Transfer characteristics; typical values;  
amplifier b.  
Fig.19 Output characteristics; typical values;  
amplifier b.  
2003 Sep 30  
13  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX448  
MGX447  
60  
40  
handbook, halfpage  
handbook, halfpage  
(2)  
(1)  
(3)  
(4)  
y
(1) (2)  
fs  
(mS)  
I
G1  
(µA)  
(3)  
(4)  
30  
(5)  
40  
20  
10  
20  
(6)  
(7)  
(5)  
0
0
0
0
0.4  
0.8  
1.2  
1.6  
G1-S  
2
4
8
12  
16  
I
20  
(mA)  
V
(V)  
D
(1) VG2-S = 4 V.  
(5) VG2-S = 2 V.  
(1)  
V
G2-S = 4 V.  
(4) VG2-S = 2.5 V.  
(5) VG2-S = 2 V.  
(2) VG2-S = 3.5 V.  
(3) VG2-S = 3 V.  
(4) VG2-S = 2.5 V.  
(6) VG2-S = 1.5 V.  
(7) VG2-S = 1 V.  
(2) VG2-S = 3.5 V.  
(3) VG2-S = 3 V.  
VDS (b) = 5 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 °C.  
VDS (b) = 5 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 °C.  
Fig.20 Gate 1 current as a function of gate 1  
voltage; typical values; amplifier b.  
Fig.21 Forward transfer admittance as a function  
of drain current; typical values; amplifier b.  
2003 Sep 30  
14  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX449  
MGX450  
20  
16  
handbook, halfpage  
handbook, halfpage  
I
D
(mA)  
16  
I
D
(mA)  
12  
12  
8
8
4
4
0
0
0
0
10  
20  
30  
40  
I
50  
(µA)  
1
2
3
4
5
V
(V)  
G1  
GG  
VDS (b) = 5 V; VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V;  
Tj = 25 °C; RG1 (b) = 150 k(connected to VGG); see Fig.4.  
VDS (b) = 5 V; VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 °C.  
Fig.22 Drain current as a function of gate 1 current;  
typical values; amplifier b.  
Fig.23 Drain current as a function of gate 1 supply  
voltage (VGG); typical values; amplifier b.  
2003 Sep 30  
15  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX451  
MGX452  
20  
16  
(1)  
handbook, halfpage  
handbook, halfpage  
I
D
(mA)  
16  
I
D
(mA)  
(2)  
(1)  
(2)  
(3)  
(4)  
12  
(3)  
(4)  
(5)  
(5)  
(6)  
12  
8
8
4
(7)  
(8)  
4
0
0
0
0
2
4
6
(V)  
2
4
6
V
= V  
V
(V)  
GG  
DS  
G2-S  
(1)  
(2)  
R
G1 (b) = 68 k.  
G1 (b) = 82 k.  
(5) RG1 (b) = 150 k.  
(6) G1 (b) = 180 k.  
R
R
(3) RG1 (b) = 100 k.  
(4) RG1 (b) = 120 k.  
(7) RG1 (b) = 220 k.  
(8) RG1 (b) = 270 k.  
(1)  
(2) VGG = 4.5 V.  
(3) GG = 4.0 V.  
V
GG = 5.0 V.  
(4) VGG = 3.5 V.  
(5) VGG = 3.0 V.  
V
VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 °C;  
RG1 (b) = 150 k(connected to VGG); see Fig.4.  
VDS (b) = 5 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 °C;  
RG1 (b) = 150 k(connected to VGG); see Fig.4.  
Fig.24 Drain current as a function of gate 1 (VGG  
and drain supply voltage; typical values;  
amplifier b.  
)
Fig.25 Drain current as a function of gate 2  
voltage; typical values; amplifier b.  
2003 Sep 30  
16  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX454  
MGX453  
30  
120  
handbook, halfpage  
handbook, halfpage  
V
unw  
I
(1)  
G1  
(µA)  
(dBµV)  
(2)  
(3)  
(4)  
(5)  
110  
20  
100  
90  
10  
80  
0
0
20  
40  
60  
0
2
4
6
V
(V)  
G2-S  
gain reduction (dB)  
(1)  
V
GG = 5.0 V.  
(4) VGG = 3.5 V.  
(5) VGG = 3.0 V.  
(2) VGG = 4.5 V.  
(3) VGG = 4.0 V.  
VDS (b) = 5 V; VGG = 5 V; VDS (a) = VG1-S (a) = 0 V;  
RG1 (b) = 150 k(connected to VGG); fw = 50 MHz;  
funw = 60 MHz; Tamb = 25 °C; see Fig.30.  
VDS (b) = 5 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 °C;  
RG1 (b) = 150 k(connected to VGG); see Fig.4.  
Fig.27 Unwanted voltage for 1% cross-modulation  
as a function of gain reduction; typical values;  
amplifier b.  
Fig.26 Gate 1 current as a function of gate 2  
voltage; typical values; amplifier b.  
2003 Sep 30  
17  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX455  
MGX456  
16  
0
handbook, halfpage  
handbook, halfpage  
I
gain  
reduction  
(dB)  
D
(mA)  
12  
20  
40  
60  
8
4
0
0
0
1
2
3
4
20  
40  
60  
V
(V)  
gain reduction (dB)  
AGC  
VDS (b) = 5 V; VGG = 5 V; VDS (a) = VG1-S (a) = 0 V;  
RG1 (b) = 150 k(connected to VGG); f = 50 MHz;  
Tamb = 25 °C; see Fig.30.  
VDS (b) = 5 V; VGG = 5 V; VDS (a) = VG1-S (a) = 0 V;  
RG1 (b) = 150 k(connected to VGG); f = 50 MHz;  
Tamb = 25 °C; see Fig.30.  
Fig.28 Typical gain reduction as a function of AGC  
voltage; amplifier b.  
Fig.29 Drain current as a function of gain  
reduction; typical values; amplifier b.  
2003 Sep 30  
18  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
V
(a)  
DS  
5 V  
V
AGC  
4.7 nF  
L1  
2.2 µH  
10 kΩ  
4.7 nF  
g1 (a)  
d (a)  
4.7 nF  
50 Ω  
g2  
s
BF1205  
4.7 nF  
g1 (b)  
d (b)  
R
R
GEN  
50 Ω  
L2  
2.2 µH  
L
50 Ω  
50 Ω  
R
G1  
150 kΩ  
V
i
4.7 nF  
V
V
(b)  
GG  
5 V  
DS  
5 V  
MDB813  
Fig.30 Cross-modulation test set-up for amplifier b.  
MGX458  
MGX457  
2
2
2
10  
10  
10  
handbook, halfpage  
handbook, halfpage  
y
is  
y
ϕ
|
|
fs  
fs  
(mS)  
(mS)  
(deg)  
y
|
|
fs  
10  
10  
10  
b
g
is  
is  
1
ϕ
fs  
1  
1
10  
1  
10  
2
3
2
3
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS (b) = 5 V; VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V;  
ID (b) = 12 mA.  
VDS (b) = 5 V; VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V;  
ID (b)= 12 mA.  
Fig.32 Forward transfer admittance and phase as  
a function of frequency; typical values;  
amplifier b.  
Fig.31 Input admittance as a function of frequency;  
typical values; amplifier b.  
2003 Sep 30  
19  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX459  
3
MGX460  
10  
3
10  
10  
handbook, halfpage  
handbook, halfpage  
ϕ
rs  
y
y
|
|
os  
rs  
(deg)  
(mS)  
(µS)  
b
g
os  
ϕ
2
2
rs  
10  
1
10  
os  
y
|
|
rs  
1  
10  
1  
10  
10  
2  
10  
1
10  
2
3
2
3
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS (b) = 5 V; VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V;  
ID (b) = 12 mA.  
VDS (b) = 5 V; VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V;  
ID (b) = 12 mA.  
Fig.33 Reverse transfer admittance and phase as  
a function of frequency; typical values;  
amplifier b.  
Fig.34 Output admittance as a function of  
frequency; typical values; amplifier b.  
2003 Sep 30  
20  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
Scattering parameters: amplifier b  
VDS (b) = 5 V; VG2-S = 4 V; ID (b) = 12 mA; VDS (a) = 0 V; VG1-S (a) = 0 V; Tamb = 25 °C  
s11  
s21  
s12  
s22  
f
MAGNITUDE ANGLE MAGNITUDE ANGLE MAGNITUDE ANGLE MAGNITUDE ANGLE  
(MHz)  
(ratio)  
(deg)  
(ratio)  
(deg)  
(ratio)  
(deg)  
(ratio)  
(deg)  
50  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
0.987  
0.985  
0.978  
0.968  
0.956  
0.941  
0.924  
0.905  
0.884  
0.861  
0.837  
3.76  
7.38  
3.12  
3.11  
3.09  
3.06  
3.01  
2.95  
2.89  
2.83  
2.75  
2.67  
2.59  
175.87  
171.77  
163.72  
155.67  
147.79  
139.86  
132.06  
124.31  
116.69  
108.97  
101.39  
0.00071  
0.00136  
0.00272  
0.00396  
0.00509  
0.00616  
0.00710  
0.00791  
0.00848  
0.00900  
0.00941  
85.43  
86.06  
84.25  
82.63  
81.35  
79.46  
78.57  
77.88  
76.72  
76.55  
76.67  
0.991  
0.989  
0.988  
0.986  
0.983  
0.973  
0.975  
0.972  
0.968  
0.964  
0.959  
1.56  
3.11  
14.63  
21.82  
28.92  
35.99  
42.93  
49.89  
56.57  
63.36  
70.05  
6.16  
9.17  
12.17  
15.16  
18.15  
21.07  
24.08  
27.03  
30.02  
Noise data  
VDS (b) = 5 V; VG2-S = 4 V; ID (b) = 12 mA; VDS (a) = 0 V; VG1-S (a) = 0 V; Tamb = 25 °C  
F MIN  
(dB)  
f
F MIN  
(dB)  
Rn  
()  
(MHz)  
(ratio)  
(deg)  
400  
800  
1.3  
1.4  
0.662  
0.578  
16.76  
33.97  
31.55  
30.53  
2003 Sep 30  
21  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
PACKAGE OUTLINE  
Plastic surface mounted package; 6 leads  
SOT363  
D
B
E
A
X
y
H
v
M
A
E
6
5
4
Q
pin 1  
index  
A
A
1
1
2
3
c
e
1
b
L
p
w
M B  
p
e
detail X  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
1
UNIT  
A
b
c
D
E
e
e
H
L
Q
v
w
y
p
p
1
E
max  
0.30  
0.20  
1.1  
0.8  
0.25  
0.10  
2.2  
1.8  
1.35  
1.15  
2.2  
2.0  
0.45  
0.15  
0.25  
0.15  
mm  
0.1  
1.3  
0.65  
0.2  
0.2  
0.1  
REFERENCES  
JEDEC  
EUROPEAN  
PROJECTION  
OUTLINE  
VERSION  
ISSUE DATE  
IEC  
EIAJ  
97-02-28  
SOT363  
SC-88  
2003 Sep 30  
22  
Philips Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2003 Sep 30  
23  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2003  
SCA75  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
R77/01/pp24  
Date of release: 2003 Sep 30  
Document order number: 9397 750 11784  

相关型号:

BF1205,115

BF1205 - Dual N-channel dual-gate MOSFET TSSOP 6-Pin
NXP

BF1205,135

BF1205 - Dual N-channel dual-gate MOSFET TSSOP 6-Pin
NXP

BF1205C

Dual N-channel dual gate MOS-FET
NXP

BF1205C,115

BF1205C - Dual N-channel dual-gate MOSFET TSSOP 6-Pin
NXP

BF1205C_15

Dual N-channel dual gate MOS-FET
JMNIC

BF1205C_2015

Dual N-channel dual gate MOS-FET
JMNIC

BF1205_15

Dual N-channel dual gate MOS-FET
JMNIC

BF1205_2015

Dual N-channel dual gate MOS-FET
JMNIC

BF1206

Dual N-channel dual-gate MOS-FET
NXP

BF1206F

Dual N-channel dual gate MOSFET
NXP

BF1206F_15

Dual N-channel dual gate MOSFET
JMNIC

BF1206F_2015

Dual N-channel dual gate MOSFET
JMNIC