BF1206 [NXP]

Dual N-channel dual-gate MOS-FET; 双N沟道双栅MOS -FET
BF1206
型号: BF1206
厂家: NXP    NXP
描述:

Dual N-channel dual-gate MOS-FET
双N沟道双栅MOS -FET

文件: 总21页 (文件大小:187K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DISCRETE SEMICONDUCTORS  
DATA SHEET  
andbook, halfpage  
BF1206  
Dual N-channel dual-gate  
MOS-FET  
Product specification  
2003 Nov 17  
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
FEATURES  
PINNING - SOT363  
PIN  
Two low noise gain controlled amplifiers in a single  
package  
DESCRIPTION  
1
2
3
4
5
6
drain (b)  
source  
Superior cross-modulation performance during AGC  
High forward transfer admittance  
gate 1 (b)  
gate 1 (a)  
gate 2  
High forward transfer admittance to input capacitance  
ratio.  
drain (a)  
APPLICATIONS  
Gain controlled low noise amplifiers for VHF and UHF  
applications with 5 V supply voltage, such as digital and  
analog television tuners.  
d (a)  
g2  
g1 (a)  
handbook, halfpage  
6
5
4
DESCRIPTION  
AMP  
a
The BF1206 is a combination of two different dual gate  
MOS-FET amplifiers with shared source and gate 2 leads.  
The source and substrate are interconnected. Internal bias  
circuits enable DC stabilization and a very good  
AMP  
b
1
2
3
cross-modulation performance during AGC. Integrated  
diodes between the gates and source protect against  
excessive input voltage surges. The transistor is  
Top view  
d (b)  
s
g1 (b)  
MAM480  
encapsulated in SOT363 micro-miniature plastic package.  
Marking code: L6-.  
Fig.1 Simplified outline and symbol.  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
Per MOS-FET; unless otherwise specified  
VDS  
ID  
drain-source voltage  
drain current (DC)  
6
V
30  
48  
44  
2.9  
2.2  
mA  
mS  
mS  
pF  
yfs  
forward transfer admittance  
amp. a: ID = 18 mA  
33  
29  
38  
34  
2.4  
1.7  
15  
amp. b: ID = 12 mA  
Cig1-s  
input capacitance at gate 1  
amp. a: ID = 18 mA; f = 1 MHz  
amp. b: ID = 12 mA; f = 1 MHz  
f = 1 MHz  
pF  
Crss  
reverse transfer capacitance  
cross-modulation  
fF  
Xmod  
amp. a: input level for k = 1% at  
40 dB AGC  
102 105  
dBµV  
amp. b: input level for k = 1% at  
40 dB AGC  
100 103  
dBµV  
NF  
noise figure  
amp. a: f = 400 MHz; ID = 18 mA  
amp. b: f = 800 MHz; ID = 12 mA  
amp. a: f = 11 MHz; ID = 18 mA  
amp. b: f = 11 MHz; ID = 12 mA  
1.3  
1.4  
3
1.9  
2.0  
dB  
dB  
dB  
dB  
3.5  
2003 Nov 17  
2
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
CAUTION  
This product is supplied in anti-static packing to prevent damage caused by electrostatic discharge during transport  
and handling. For further information, refer to Philips specs.: SNW-EQ-608, SNW-FQ-302A and SNW-FQ-302B.  
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
BF1206  
plastic surface mounted package; 6 leads  
SOT363  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL PARAMETER CONDITIONS  
Per MOS-FET; unless otherwise specified  
MIN.  
MAX. UNIT  
VDS  
ID  
drain-source voltage  
drain current (DC)  
gate 1 current  
6
V
30  
mA  
mA  
mA  
mW  
°C  
IG1  
IG2  
Ptot  
Tstg  
Tj  
±10  
±10  
180  
+150  
150  
gate 2 current  
total power dissipation  
storage temperature  
junction temperature  
Ts 107 °C; note 1  
65  
°C  
Note  
1. Ts is the temperature at the soldering point of the source lead.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
VALUE  
UNIT  
K/W  
Rth j-s  
thermal resistance from junction to soldering point  
240  
2003 Nov 17  
3
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
MLE257  
200  
handbook, halfpage  
P
tot  
(mW)  
150  
100  
50  
0
0
50  
100  
150  
200  
T
(°C)  
s
Fig.2 Power derating curve.  
STATIC CHARACTERISTICS  
Tj = 25 °C unless otherwise specified.  
SYMBOL  
Per MOS-FET unless otherwise specified  
V(BR)DSS drain-source breakdown voltage VG1-S = VG2-S = 0; ID = 10 µA  
PARAMETER  
CONDITIONS  
MIN. MAX. UNIT  
6
V
V(BR)G1-SS gate-source breakdown voltage VGS = VDS = 0; IG1-S = 10 mA  
V(BR)G2-SS gate-source breakdown voltage VGS = VDS = 0; IG2-S = 10 mA  
6
10  
10  
1.5  
1.5  
1
V
6
V
V(F)S-G1  
V(F)S-G2  
VG1-S(th)  
VG2-S(th)  
IDSX  
forward source-gate voltage  
forward source-gate voltage  
gate-source threshold voltage  
gate-source threshold voltage  
drain-source current  
VG2-S = VDS = 0; IS-G1 = 10 mA  
VG1-S = VDS = 0; IS-G2 = 10 mA  
VDS = 5 V; VG2-S = 4 V; ID = 100 µA  
VDS = 5 V; VG1-S = 5 V; ID = 100 µA  
0.5  
0.5  
0.3  
0.35  
14  
V
V
V
1
V
amp. a:  
23  
mA  
VG2-S = 4 V; VDS = 5 V; RG = 91 kΩ; note 1  
amp. b:  
9
17  
mA  
VG2-S = 4 V; VDS = 5 V; RG = 150 kΩ; note 1  
IG1-S  
IG2-S  
gate cut-off current  
gate cut-off current  
VG1-S = 5 V; VG2-S = VDS = 0  
VG2-S = 5 V; VG1-S = VDS = 0  
50  
20  
nA  
nA  
Note  
1. RG1 connects gate 1 to VGG = 5 V.  
2003 Nov 17  
4
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
DYNAMIC CHARACTERISTICS AMPLIFIER a  
Common source; Tamb = 25 °C; VG2-S = 4 V; VDS = 5 V; ID = 18 mA; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
33  
TYP. MAX. UNIT  
yfs  
forward transfer admittance pulsed; Tj = 25 °C  
input capacitance at gate 1 f = 1 MHz  
input capacitance at gate 2 f = 1 MHz  
38  
2.4  
3.2  
1.1  
15  
3
48  
2.9  
mS  
pF  
pF  
pF  
fF  
Cig1-ss  
Cig2-ss  
Coss  
Crss  
output capacitance  
f = 1 MHz  
reverse transfer capacitance f = 1 MHz  
30  
NF  
noise figure  
power gain  
f = 11 MHz; GS = 20 mS; BS = 0  
dB  
dB  
dB  
dB  
f = 400 MHz; YS = YS opt  
f = 800 MHz; YS = YS opt  
1.3  
1.6  
35  
1.9  
2.2  
Gtr  
f = 200 MHz; GS = 2 mS; BS = BS opt  
GL = 0.5 mS; BL = BL opt; note 1  
;
;
f = 400 MHz; GS = 2 mS; BS = BS opt  
GL = 1 mS; BL = BL opt; note 1  
30  
23  
dB  
dB  
f = 800 MHz; GS = 3.3 mS; BS = BS opt  
GL = 1 mS; BL = BL opt; note 1  
;
Xmod  
cross-modulation  
input level for k = 1%; fw = 50 MHz;  
funw = 60 MHz; note 2  
at 0 dB AGC  
at 10 dB AGC  
at 40 dB AGC  
90  
dBµV  
dBµV  
dBµV  
92  
105  
102  
Notes  
1. Calculated from measured s-parameters.  
2. Measured in Fig.35 test circuit.  
2003 Nov 17  
5
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
GRAPHS FOR AMPLIFIER a  
MLE258  
MLE259  
30  
32  
handbook, halfpage  
handbook, halfpage  
(1)  
I
D
(1)  
(2)  
(3)  
(2)  
(3)  
I
D
(4)  
(5)  
(mA)  
(mA)  
24  
20  
(4)  
(5)  
16  
8
(6)  
(7)  
10  
(6)  
(7)  
0
0
0
0
0.5  
1
1.5  
2
2
4
6
V
(V)  
V
(V)  
DS  
G1-S  
VDS = 5 V; Tj = 25 °C.  
VG2-S = 4 V; Tj = 25 °C.  
(1) VG2-S = 4 V.  
(5) VG2-S = 2 V.  
(6) VG2-S = 1.5 V.  
(7) G2-S = 1 V.  
(1) VG1-S = 1.5 V.  
(2) VG1-S = 1.4 V.  
(3) VG1-S = 1.3 V.  
(4) VG1-S = 1.2 V.  
(5) VG1-S = 1.1 V.  
(6) VG1-S = 1 V.  
(7) VG1-S = 0.9 V.  
(2) VG2-S = 3.5 V.  
(3)  
VG2-S = 3 V.  
V
(4) VG2-S = 2.5 V.  
Fig.3 Transfer characteristics; typical values;  
amplifier a.  
Fig.4 Output characteristics; typical values;  
amplifier a.  
2003 Nov 17  
6
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
MLE260  
MLE261  
100  
50  
handbook, halfpage  
handbook, halfpage  
(1)  
(2)  
y
I
fs  
G1  
(mS)  
(µA)  
(3)  
(2)  
(1)  
(3)  
(4)  
80  
40  
(4)  
30  
20  
1
60  
40  
(5)  
(5)  
(6)  
(6)  
(7)  
(7)  
20  
0
0
0
0
0.5  
1
1.5  
V
2
10  
20  
30  
I
(mA)  
D
(V)  
G1-S  
VDS = 5 V; Tj = 25 °C.  
VDS = 5 V; Tj = 25 °C.  
(1) G2-S = 4 V.  
(1)  
(2) VG2-S = 3.5 V.  
(3) G2-S = 3 V.  
(4) VG2-S = 2.5 V.  
VG2-S = 4 V.  
(5) VG2-S = 2 V.  
(6) VG2-S = 1.5 V.  
(7) G2-S = 1 V.  
V
(5) VG2-S = 2 V.  
(6) VG2-S = 1.5 V.  
(7) VG2-S = 1 V.  
(2) VG2-S = 3.5 V.  
(3) VG2-S = 3 V.  
(4) VG2-S = 2.5 V.  
V
V
Fig.5 Gate 1 current as a function of gate 1  
voltage; typical values; amplifier a.  
Fig.6 Forward transfer admittance as a function  
of drain current; typical values; amplifier a.  
MLE262  
MLE263  
24  
20  
handbook, halfpage  
handbook, halfpage  
I
D
(mA)  
16  
I
D
(mA)  
16  
12  
8
8
0
4
0
0
10  
20  
30  
40  
I
50  
(µA)  
0
1
2
3
4
5
V
(V)  
GG  
G1  
VDS = 5 V; VG2-S = 4 V; Tj = 25 °C.  
RG1 = 91 k(connected to VGG); see Fig.35.  
VDS = 5 V; VG2-S = 4 V; Tj = 25 °C.  
Fig.7 Drain current as a function of gate 1 current;  
typical values; amplifier a.  
Fig.8 Drain current as a function of gate 1 supply  
voltage (VGG); typical values; amplifier a.  
2003 Nov 17  
7
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
MLE288  
MLE292  
(1)  
40  
20  
handbook, halfpage  
handbook, halfpage  
I
I
D
(mA)  
D
(mA)  
16  
(2)  
(3)  
(1)  
(2)  
32  
(4)  
(5)  
(3)  
(4)  
(5)  
12  
8
24  
(6)  
(7)  
16  
4
8
0
0
0
0
2
3
6
8
2
4
6
V
(V)  
G2-S  
V
= V  
(V)  
DS  
GG  
VG2-S = 4 V; Tj = 25 °C; RG1 = 150 k(connected to VGG); see Fig.35.  
(1) RG1 = 56 k.  
(2) RG1 = 68 k.  
(3) RG1 = 82 k.  
(4) RG1 = 91 k.  
(5) RG1 = 100 k.  
(6) RG1 = 120 k.  
(7) RG1 = 150 k.  
VDS = 5 V; Tj = 25 °C; RG1 = 91 k(connected to VGG); see Fig.35.  
(1)  
(2)  
V
GG = 5 V.  
(4) VGG = 3.5 V.  
(5) GG = 3 V.  
VGG = 4.5 V.  
V
(3) VGG = 4 V.  
Fig.9 Drain current as a function of gate 1 (VGG  
and drain supply voltage; typical values;  
amplifier a.  
)
Fig.10 Drain current as a function of gate 2  
voltage; typical values; amplifier a.  
2003 Nov 17  
8
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
MLE264  
MLE266  
50  
120  
handbook, halfpage  
handbook, halfpage  
I
G1  
(µA)  
V
unw  
(dBµV)  
(1)  
40  
110  
(2)  
(3)  
30  
(4)  
100  
90  
(5)  
20  
1
0
80  
0
0
2
4
6
10  
20  
30  
40  
50  
V
(V)  
G2-S  
gain reduction (dB)  
VDS 5 V; Tj = 25 °C.  
RG1 = 91 k(connected to VGG); see Fig.35.  
(1)  
V
GG = 5 V.  
(4) VGG = 3.5 V.  
(5) VGG = 3 V.  
VDS = 5 V; VGG = 5 V; RG1 = 91 k; f = 50 MHz; f unw = 60 MHz;  
Tamb = 25 °C; see Fig.35.  
(2) VGG = 4.5 V.  
(3) VGG = 4 V.  
Fig.12 Unwanted voltage for 1% cross-modulation  
as a function of gain reduction; typical values;  
amplifier a.  
Fig.11 Gate 1 current as a function of gate 2  
voltage; typical values; amplifier a.  
MLE265  
MLE267  
0
24  
handbook, halfpage  
gain  
handbook, halfpage  
reduction  
I
D
(dB)  
(mA)  
10  
16  
20  
30  
8
0
40  
50  
0
1
2
3
4
0
10  
20  
30  
40  
50  
V
(V)  
gain reduction (dB)  
AGC  
VDS = 5 V; VGG = 5 V; RG1 = 91 k; f = 50 MHz; Tamb = 25 °C;  
VDS = 5 V; VGG = 5 V; RG1 = 91 k; f = 50 MHz; Tamb = 25 °C;  
see Fig.35.  
see Fig.35.  
Fig.13 Typical gain reduction as a function of AGC  
voltage; typical values; amplifier a.  
Fig.14 Drain current as a function of gain  
reduction; typical values; amplifier a.  
2003 Nov 17  
9
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
MLE268  
MLE269  
3
2
3
10  
10  
10  
handbook, halfpage  
handbook, halfpage  
ϕ
y
rs  
Y
is  
(mS)  
rs  
(deg)  
(µS)  
ϕ
rs  
rs  
2
2
10  
10  
10  
b
is  
y
10  
1  
1
10  
g
is  
1  
10  
1
2
3
2
3
10  
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS = 5 V; VG2 = 4 V; ID = 18 mA; Tamb = 25 °C.  
VDS = 5 V; VG2 = 4 V; ID = 18 mA; Tamb = 25 °C.  
Fig.16 Reverse transfer admittance and phase as  
a function of frequency; typical values;  
amplifier a.  
Fig.15 Input admittance as a function of frequency;  
typical values; amplifier a.  
MLE270  
MLE271  
2
2
10  
10  
10  
handbook, halfpage  
handbook, halfpage  
ϕ
Y
fs  
os  
y
fs  
fs  
(deg)  
(mS)  
y
fs  
(mS)  
b
os  
1
10  
10  
−ϕ  
g
os  
1  
10  
2  
1
10  
1  
10  
2
3
2
3
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS = 5 V; VG2 = 4 V; ID = 18 mA; Tamb = 25 °C.  
VDS = 5 V; VG2 = 4 V; ID = 18 mA; Tamb = 25 °C.  
Fig.17 Forward transfer admittance and phase as  
a function of frequency; typical values;  
amplifier a.  
Fig.18 Output admittance as a function of  
frequency; typical values; amplifier a.  
2003 Nov 17  
10  
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
Amplifier a scattering parameters  
VDS = 5 V; VG2-S = 4 V; ID = 18 mA; Tamb = 25 °C  
s11  
s21  
s12  
s22  
f
MAGNITUDE ANGLE MAGNITUDE ANGLE MAGNITUDE ANGLE MAGNITUDE ANGLE  
(MHz)  
(ratio)  
(deg)  
(ratio)  
(deg)  
(ratio)  
(deg)  
(ratio)  
(deg)  
50  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
0.988  
0.984  
0.971  
0.951  
0.926  
0.896  
0.865  
0.832  
0.797  
0.769  
0.732  
4.62  
9.23  
3.72  
3.71  
3.66  
3.58  
3.47  
3.36  
3.23  
3.09  
2.91  
2.83  
2.67  
174.72  
169.42  
159.05  
148.77  
138.74  
129.05  
119.67  
110.43  
101.40  
93.09  
0.0008  
0.0015  
0.0029  
0.0038  
0.0044  
0.0046  
0.0043  
0.0038  
0.0028  
0.0051  
0.0071  
86.73  
84.39  
79.96  
76.62  
74.42  
74.84  
79.73  
92.63  
118.47  
146.61  
159.78  
0.991  
0.989  
0.986  
0.980  
0.973  
0.965  
0.958  
0.951  
0.937  
0.940  
0.937  
2.07  
4.16  
18.33  
27.32  
36.04  
44.50  
52.63  
60.47  
67.66  
75.01  
81.73  
8.24  
12.32  
16.33  
20.25  
24.20  
28.14  
32.14  
35.76  
39.86  
84.05  
Noise data  
VDS = 5 V; VG2-S = 4 V; ID = 18 mA; Tamb = 25 °C  
Γopt  
f
Fmin  
Rn  
(MHz)  
(dB)  
()  
(ratio)  
(deg)  
400  
800  
1.3  
1.6  
0.618  
0.593  
22.7  
44.1  
26.7  
29.7  
2003 Nov 17  
11  
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
DYNAMIC CHARACTERISTICS AMPLIFIER b  
Common source; Tamb = 25 °C; VG2-S = 4 V; VDS = 5 V; ID = 12 mA; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
29  
TYP. MAX. UNIT  
yfs  
forward transfer admittance pulsed; Tj = 25 °C  
input capacitance at gate 1 f = 1 MHz  
input capacitance at gate 2 f = 1 MHz  
34  
44  
2.2  
mS  
pF  
pF  
pF  
fF  
Cig1-ss  
Cig2-ss  
Coss  
Crss  
F
1.7  
4.2  
0.85  
15  
output capacitance  
f = 1 MHz  
reverse transfer capacitance f = 1 MHz  
30  
noise figure  
power gain  
f = 11 MHz; GS = 20 mS; BS = 0  
3.5  
1.3  
1.4  
35  
dB  
dB  
dB  
dB  
f = 400 MHz; YS = YS opt  
f = 800 MHz; YS = YS opt  
1.9  
2
Gtr  
f = 200 MHz; GS = 2 mS; BS = BS opt  
GL = 0.5 mS; BL = BL opt; note 1  
;
;
f = 400 MHz; GS = 2 mS; BS = BS opt  
GL = 1 mS; BL = BL opt; note 1  
31  
27  
dB  
dB  
f = 800 MHz; GS = 3.3 mS; BS = BS opt  
GL = 1 mS; BL = BL opt; note 1  
;
Xmod  
cross-modulation  
input level for k = 1%; fw = 50 MHz;  
funw = 60 MHz; note 2  
at 0 dB AGC  
at 10 dB AGC  
at 40 dB AGC  
90  
dBµV  
dBµV  
dBµV  
90  
103  
100  
Notes  
1. Calculated from measured s-parameters.  
2. Measured in Fig.35 test circuit.  
2003 Nov 17  
12  
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
GRAPHS FOR AMPLIFIER b  
MLE272  
MLE273  
30  
32  
handbook, halfpage  
handbook, halfpage  
(1)  
I
D
(2)  
(3)  
I
(4)  
(5)  
D
(mA)  
(mA)  
(1)  
(2)  
(3)  
24  
20  
16  
8
(6)  
(7)  
(4)  
(5)  
10  
(6)  
(7)  
0
0
0
0
0.5  
1
1.5  
2
2
4
6
V
(V)  
V
(V)  
DS  
G1-S  
VDS = 5 V; Tj = 25 °C.  
(1) G2-S = 4 V.  
VG2-S = 4 V; Tj = 25 °C.  
(1) VG1-S = 1.5 V.  
(2) VG1-S = 1.4 V.  
(3) VG1-S = 1.3 V.  
(4) VG1-S = 1.2 V.  
(5) VG1-S = 1.1 V.  
V
(5) VG2-S = 2 V.  
(6) VG1-S = 1 V.  
(2) VG2-S = 3.5 V.  
(3) VG2-S = 3 V.  
(4) VG2-S = 2.5 V.  
(6) VG2-S = 1.5 V.  
(7) VG2-S = 1 V.  
(7) VG1-S = 0.9 V.  
Fig.19 Transfer characteristics; typical values;  
amplifier b.  
Fig.20 Output characteristics; typical values;  
amplifier b.  
2003 Nov 17  
13  
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
MLE274  
MLE275  
100  
50  
handbook, halfpage  
handbook, halfpage  
(1)  
(2)  
y
I
fs  
G1  
(mS)  
(µA)  
(2)  
(1)  
(3)  
80  
40  
(3)  
(4)  
(4)  
(5)  
30  
20  
10  
60  
40  
(5)  
(6)  
(6)  
(7)  
20  
0
(7)  
0
0
0
0.5  
1
1.5  
V
2
10  
20  
30  
I
(mA)  
D
(V)  
G1-S  
VDS = 5 V; Tj = 25 °C.  
VDS = 5 V; Tj = 25 °C.  
(1) G2-S = 4 V.  
(1) VG2-S = 4 V.  
(2) VG2-S = 3.5 V.  
(3) VG2-S = 3 V.  
(5) VG2-S = 2 V.  
(6) VG2-S = 1.5 V.  
(7) VG2-S = 1 V.  
V
(5) VG2-S = 2 V.  
(6) VG2-S = 1.5 V.  
(7) VG2-S = 1 V.  
(2) VG2-S = 3.5 V.  
(3) VG2-S = 3 V.  
(4) VG2-S = 2.5 V.  
(4)  
VG2-S = 2.5 V.  
Fig.21 Gate 1 current as a function of gate 1  
voltage; typical values; amplifier b.  
Fig.22 Forward transfer admittance as a function  
of drain current; typical values; amplifier b.  
MLE276  
MLE277  
24  
12  
handbook, halfpage  
handbook, halfpage  
I
I
D
D
(mA)  
(mA)  
16  
8
8
0
4
0
0
10  
20  
30  
40  
I
50  
(µA)  
0
1
2
3
4
5
V
(V)  
GG  
G1  
VDS = 5 V; VG2-S = 4 V; Tj = 25 °C.  
RG1 = 150 k(connected to VGG); see Fig.35.  
VDS = 5 V; VG2-S = 4 V; Tj = 25 °C.  
Fig.23 Drain current as a function of gate 1 current;  
typical values; amplifier b.  
Fig.24 Drain current as a function of gate 1 supply  
voltage (VGG); typical values; amplifier b.  
2003 Nov 17  
14  
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
MLE278  
MLE279  
24  
16  
handbook, halfpage  
handbook, halfpage  
I
D
I
(1)  
(2)  
(3)  
(4)  
D
(1)  
(2)  
(mA)  
(mA)  
12  
(3)  
(4)  
16  
(5)  
(5)  
(6)  
8
4
(7)  
8
0
0
0
0
2
4
6
8
2
4
6
V
(V)  
G2-S  
V
= V  
(V)  
DS  
GG  
VG2-S = 4 V; Tj = 25 °C.  
RG1 = 150 k(connected to VGG); see Fig.35.  
VDS = 5 V; Tj = 25 °C.  
RG1 = 150 k(connected to VGG); see Fig.35.  
(1)  
(2) RG1 = 220 k.  
(3) G1 = 180 k.  
(4) RG1 = 150 k.  
R
G1 = 270 k.  
(5) RG1 = 120 k.  
(6) RG1 = 100 k.  
R
(7) RG1 = 82 k.  
(1) VGG = 5 V.  
(2) VGG = 4.5 V.  
(3) VGG = 4 V.  
(4) VGG = 3.5 V.  
(5) VGG = 3 V.  
Fig.25 Drain current as a function of gate 1 (VGG  
and drain supply voltage; typical values;  
amplifier b.  
)
Fig.26 Drain current as a function of gate 2  
voltage; typical values; amplifier b.  
2003 Nov 17  
15  
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
MLE280  
MLE282  
30  
120  
handbook, halfpage  
handbook, halfpage  
V
unw  
I
(1)  
(2)  
(3)  
G1  
(µA)  
(dBµV)  
110  
20  
(4)  
(5)  
100  
90  
10  
0
80  
0
0
2
4
6
10  
20  
30  
40  
50  
V
(V)  
gain reduction (dB)  
G2-S  
VDS 5 V; Tj = 25 °C.  
RG1 = 150 k(connected to VGG); see Fig.35.  
(1)  
V
GG = 5 V.  
(4) VGG = 3.5 V.  
(5) VGG = 3 V.  
VDS = 5 V; VGG = 5 V; RG1 = 150 k; f = 50 MHz; f unw = 60 MHz;  
Tamb = 25 °C; see Fig.35.  
(2) VGG = 4.5 V.  
(3) VGG = 4 V.  
Fig.28 Unwanted voltage for 1% cross-modulation  
as a function of gain reduction; typical values;  
amplifier b.  
Fig.27 Gate 1 current as a function of gate 2  
voltage; typical values; amplifier b.  
MLE281  
MLE283  
0
16  
handbook, halfpage  
handbook, halfpage  
gain  
I
reduction  
D
(dB)  
(mA)  
10  
12  
20  
30  
8
4
0
40  
50  
0
1
2
3
4
0
10  
20  
30  
40  
50  
V
(V)  
gain reduction (dB)  
AGC  
VDS = 5 V; VGG = 5 V; RG1 = 150 k; f = 50 MHz; Tamb = 25 °C;  
VDS = 5 V; VGG = 5 V; RG1 = 150 k; f = 50 MHz; Tamb = 25 °C;  
see Fig.35.  
see Fig.35.  
Fig.29 Typical gain reduction as a function of AGC  
voltage; typical values; amplifier b.  
Fig.30 Drain current as a function of gain  
reduction; typical values; amplifier b.  
2003 Nov 17  
16  
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
MLE284  
MLE285  
3
2
3
10  
10  
10  
handbook, halfpage  
handbook, halfpage  
Y
is  
ϕ
y
rs  
rs  
(mS)  
10  
(deg)  
(µS)  
ϕ
rs  
rs  
2
2
10  
10  
b
is  
1
y
g
10  
1  
10  
is  
1  
10  
2  
10  
1
2
3
2
3
10  
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS = 5 V; VG2 = 4 V; ID = 12 mA; Tamb = 25 °C.  
VDS = 5 V; VG2 = 4 V; ID = 12 mA; Tamb = 25 °C.  
Fig.32 Reverse transfer admittance and phase as  
a function of frequency; typical values;  
amplifier b.  
Fig.31 Input admittance as a function of frequency;  
typical values; amplifier b.  
MLE286  
MLE287  
2
2
2
10  
10  
10  
handbook, halfpage  
handbook, halfpage  
ϕ
Y
fs  
os  
y
(deg)  
(mS)  
fs  
y
fs  
(mS)  
b
os  
10  
10  
10  
g
os  
−ϕ  
1
fs  
1  
1
10  
1  
10  
2
3
2
3
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS = 5 V; VG2 = 4 V; ID = 12 mA; Tamb = 25 °C.  
VDS = 5 V; VG2 = 4 V; ID = 12 mA; Tamb = 25 °C.  
Fig.33 Forward transfer admittance and phase as  
a function of frequency; typical values;  
amplifier b.  
Fig.34 Output admittance as a function of  
frequency; typical values; amplifier b.  
2003 Nov 17  
17  
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
V
AGC  
R1  
10 kΩ  
C1  
4.7 nF  
C3  
4.7 nF  
R
50 Ω  
L1  
2.2 µH  
L
C2  
DUT  
C4  
4.7 nF  
R
GEN  
50 Ω  
R2  
50 Ω  
R
G1  
4.7 nF  
V
V
V
I
GG  
DS  
MGS315  
Fig.35 Cross-modulation test set-up (for one MOS-FET).  
Amplifier b scattering parameters  
VDS = 5 V; VG2-S = 4 V; ID = 12 mA; Tamb = 25 °C  
s11  
s21  
s12  
s22  
f
MAGNITUDE ANGLE MAGNITUDE ANGLE MAGNITUDE ANGLE MAGNITUDE ANGLE  
(MHz)  
(ratio)  
(deg)  
(ratio)  
(deg)  
(ratio)  
(deg)  
(ratio)  
(deg)  
50  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
0.991  
0.989  
0.982  
0.973  
0.961  
0.947  
0.933  
0.919  
0.905  
0.890  
0.881  
3.43  
6.84  
3.44  
3.43  
3.41  
3.38  
3.34  
3.29  
3.23  
3.16  
3.09  
3.02  
2.94  
176.33  
172.66  
165.44  
158.20  
151.04  
144.02  
137.12  
130.22  
123.22  
116.84  
110.20  
0.0008  
0.0015  
0.0029  
0.0041  
0.0051  
0.0058  
0.0062  
0.0063  
0.0065  
0.0055  
0.0058  
86.54  
84.92  
80.95  
77.63  
74.43  
71.86  
70.28  
70.72  
72.37  
75.91  
89.82  
0.988  
0.987  
0.985  
0.982  
0.978  
0.973  
0.969  
0.965  
0.960  
0.958  
0.958  
1.69  
3.38  
13.61  
20.37  
27.05  
33.68  
40.17  
46.54  
52.86  
58.60  
64.34  
6.72  
10.08  
13.46  
16.83  
20.25  
23.68  
27.22  
30.57  
34.14  
Noise data  
VDS = 5 V; VG2-S = 4 V; ID = 12 mA; Tamb = 25 °C  
Γopt  
f
Fmin  
Rn  
(MHz)  
(dB)  
()  
(ratio)  
0.648  
0.604  
(deg)  
14.4  
31.1  
400  
800  
1.3  
1.4  
28.8  
27.9  
2003 Nov 17  
18  
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
PACKAGE OUTLINE  
Plastic surface mounted package; 6 leads  
SOT363  
D
B
E
A
X
y
H
v
M
A
E
6
5
4
Q
pin 1  
index  
A
A
1
1
2
3
c
e
1
b
L
p
w
M B  
p
e
detail X  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
1
UNIT  
A
b
c
D
E
e
e
H
L
Q
v
w
y
p
p
1
E
max  
0.30  
0.20  
1.1  
0.8  
0.25  
0.10  
2.2  
1.8  
1.35  
1.15  
2.2  
2.0  
0.45  
0.15  
0.25  
0.15  
mm  
0.1  
1.3  
0.65  
0.2  
0.2  
0.1  
REFERENCES  
JEDEC  
EUROPEAN  
PROJECTION  
OUTLINE  
VERSION  
ISSUE DATE  
IEC  
EIAJ  
97-02-28  
SOT363  
SC-88  
2003 Nov 17  
19  
Philips Semiconductors  
Product specification  
Dual N-channel dual-gate MOS-FET  
BF1206  
DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2003 Nov 17  
20  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2003  
SCA75  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
R77 20p/01/pp21  
Date of release: 2003 Nov 17  
Document order number: 9397 750 12005  

相关型号:

BF1206F

Dual N-channel dual gate MOSFET
NXP

BF1206F_15

Dual N-channel dual gate MOSFET
JMNIC

BF1206F_2015

Dual N-channel dual gate MOSFET
JMNIC

BF1206_15

Dual N-channel dual-gate MOS-FET
JMNIC

BF1206_2015

Dual N-channel dual-gate MOS-FET
JMNIC

BF1207

Dual N-channel dual gate MOSFET
NXP

BF1207,115

Dual N-channel dual-gate MOSFET TSSOP 6-Pin
NXP

BF1207_15

Dual N-channel dual gate MOSFET
JMNIC

BF1207_2015

Dual N-channel dual gate MOSFET
JMNIC

BF1208

Dual N-channel dual gate MOSFET
NXP

BF1208,115

BF1208 - Dual N-channel dual-gate MOSFET SOT 6-Pin
NXP

BF1208D

Dual N-channel dual gate MOSFET
NXP