BF1205,115 [NXP]

BF1205 - Dual N-channel dual-gate MOSFET TSSOP 6-Pin;
BF1205,115
型号: BF1205,115
厂家: NXP    NXP
描述:

BF1205 - Dual N-channel dual-gate MOSFET TSSOP 6-Pin

文件: 总25页 (文件大小:204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DISCRETE SEMICONDUCTORS  
DATA SHEET  
andbook, halfpage  
BF1205  
Dual N-channel dual gate  
MOS-FET  
Product specification  
2003 Sep 30  
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
FEATURES  
PINNING - SOT363  
PIN  
Two low noise gain controlled amplifiers in a single  
package. One with a fully integrated bias and one with a  
partly integrated bias  
DESCRIPTION  
1
2
3
4
5
6
gate 1 (a)  
gate 2  
Internal switch reduces the number of external  
components  
gate 1 (b)  
drain (b)  
source  
Superior cross-modulation performance during AGC  
High forward transfer admittance  
drain (a)  
High forward transfer admittance to input capacitance  
ratio.  
APPLICATIONS  
d (a)  
s
d (b)  
handbook, halfpage  
Gain controlled low noise amplifiers for VHF and UHF  
applications with 5 V supply voltage, such as digital and  
analog television tuners and professional  
communications equipment.  
6
5
4
AMP  
a
AMP  
b
DESCRIPTION  
1
2
3
The BF1205 is a combination of two equal dual gate  
MOS-FET amplifiers with shared source and gate 2 leads  
and an integrated switch. The integrated switch is  
operated by the gate 1 bias of amplifier b. The source and  
substrate are interconnected. Internal bias circuits enable  
DC stabilization and a very good cross-modulation  
performance during AGC. Integrated diodes between the  
gates and source protect against excessive input voltage  
surges. The transistor is encapsulated in SOT363  
micro-miniature plastic package.  
Top view  
g1 (a)  
g2  
g1 (b)  
MGX429  
Marking code: L4-.  
Fig.1 Simplified outline and symbol.  
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
BF1205  
Plastic surface mounted package; 6 leads  
SOT363  
2003 Sep 30  
2
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
Per MOS-FET; unless otherwise specified  
VDS  
ID  
drain-source voltage  
drain current (DC)  
10  
V
30  
mA  
mW  
Ptot  
total power dissipation  
Ts 102 C; temperature at the  
200  
soldering point of the source lead  
yfs  
forward transfer admittance  
input capacitance at gate 1  
ID = 12 mA  
26  
31  
40  
2.3  
2.5  
mS  
pF  
Cig1-ss  
amp. a: f = 1 MHz  
amp. b: f = 1 MHz  
f = 1 MHz  
1.8  
2.0  
20  
pF  
Crss  
NF  
reverse transfer capacitance  
noise figure  
fF  
amp. a: f = 800 MHz  
amp. b: f = 800 MHz  
1.2  
1.4  
102  
1.9  
2.1  
dB  
dB  
Xmod  
cross-modulation  
amp. a: input level for k = 1% at  
40 dB AGC  
98  
dBV  
amp. b: input level for k = 1% at  
40 dB AGC  
100 105  
dBV  
C  
Tj  
junction temperature  
150  
CAUTION  
This product is supplied in anti-static packing to prevent damage caused by electrostatic discharge during transport  
and handling.  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
MAX. UNIT  
Per MOS-FET; unless otherwise specified  
VDS  
ID  
drain-source voltage  
drain current (DC)  
gate 1 current  
10  
V
30  
mA  
mA  
mA  
mW  
C  
IG1  
IG2  
Ptot  
Tstg  
Tj  
10  
10  
200  
+150  
150  
gate 2 current  
total power dissipation  
storage temperature  
junction temperature  
Ts 102 C; note  
65  
C  
Note  
1. Ts is the temperature at the soldering point of the source lead.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
VALUE  
UNIT  
K/W  
Rth j-s  
thermal resistance from junction to soldering point  
240  
2003 Sep 30  
3
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGS359  
250  
handbook, halfpage  
P
tot  
(mW)  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
T
(°C)  
s
Fig.2 Power derating curve.  
STATIC CHARACTERISTICS  
Tj = 25 C; per MOS-FET; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
MAX. UNIT  
V(BR)DSS  
drain-source breakdown voltage  
amp. a: VG1-S = VG2-S = 0 V; ID = 10 A 10  
amp. b: VG1-S = VG2-S = 0 V; ID = 10 A 7  
V
V
V(BR)G1-SS gate-source breakdown voltage  
V(BR)G2-SS gate-source breakdown voltage  
VGS = VDS = 0 V; IG1-S = 10 mA  
VGS = VDS = 0 V; IG2-S = 10 mA  
VG2-S = VDS = 0 V; IS-G1 = 10 mA  
VG1-S = VDS = 0 V; IS-G2 = 10 mA  
VDS = 5 V; VG2-S = 4 V; ID = 100 A  
VDS = 5 V; VG1-S = 5 V; ID = 100 A  
6
10  
10  
1.5  
1.5  
1
V
6
V
V(F)S-G1  
V(F)S-G2  
VG1-S(th)  
VG2-S(th)  
IDSX  
forward source-gate voltage  
forward source-gate voltage  
gate-source threshold voltage  
gate-source threshold voltage  
drain-source current  
0.5  
0.5  
0.3  
0.4  
8
V
V
V
1.0  
16  
V
amp. a: VG2-S = 4 V; VDS = 5 V;  
mA  
RG1 = 150 k; note 1  
amp. b: VG2-S = 4 V; VDS = 5 V;  
8
16  
mA  
RG1 = 150 k; note 2  
IG1-S  
gate cut-off current  
gate cut-off current  
amp. a: VG1-S = 5 V; VG2-S = VDS = 0 V  
amp. b: VG1-S = 5 V; VG2-S = VDS = 0 V  
VG2-S = 4 V; VG1-S = VDS = 0 V  
50  
50  
20  
nA  
nA  
nA  
IG2-S  
Note  
1. RG1 connects gate 1 (b) to VGG = 0 V (see Fig.4).  
2. G1 connects gate 1 (b) to VGG = 5 V (see Fig.4).  
R
2003 Sep 30  
4
 
 
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX430  
16  
handbook, halfpage  
I
D
(mA)  
(1)  
(2)  
handbook, halfpage  
12  
g1 (a)  
d (a)  
s
g2  
(3)  
8
g1 (b)  
d (b)  
R
G1  
4
V
MGX431  
GG  
(4)  
(5)  
(6)  
0
0
1
2
3
4
5
V
(V)  
GG  
(1) ID (b); RG1 = 120 k.  
(2) ID (b); RG1 = 150 k.  
(3) ID (b); RG1 = 180 k.  
(4) ID (a); RG1 = 180 k.  
(5) ID (a); RG1 = 150 k.  
(6) ID (a); RG1 = 120 k.  
VGG = 5 V: amplifier a is OFF; amplifier b is ON.  
VGG = 0 V: amplifier a is ON; amplifier b is OFF.  
Fig.3 Drain currents of MOS-FET a and b as  
functions of VGG (see Fig.4).  
Fig.4 Functional diagram  
2003 Sep 30  
5
 
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
DYNAMIC CHARACTERISTICS AMPLIFIER a  
Common source; Tamb = 25 C; VG2-S = 4 V; VDS = 5 V; ID = 12 mA; note 1  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
26  
TYP. MAX. UNIT  
yfs  
Cig1-ss  
Cig2-ss  
Coss  
Crss  
forward transfer admittance  
input capacitance at gate 1  
input capacitance at gate 2  
output capacitance  
Tj = 25 C  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
31  
40  
2.3  
mS  
pF  
pF  
pF  
fF  
1.8  
3.3  
0.75  
20  
reverse transfer capacitance  
power gain  
Gtr  
f = 200 MHz; GS = 2 mS; BS = BS(opt)  
GL = 0.5 mS; BL = BL(opt)  
;
;
31  
35  
39  
dB  
f = 400 MHz; GS = 2 mS; BS = BS(opt)  
GL = 1 mS; BL = BL(opt)  
27  
22  
31  
26  
35  
30  
dB  
dB  
f = 800 MHz; GS = 3.3 mS; BS = BS(opt)  
;
GL = 1 mS; BL = BL(opt)  
NF  
noise figure  
f = 10.7 MHz; GS = 20 mS; BS = 0  
f = 400 MHz; YS = YS(opt)  
4
dB  
1.1  
1.2  
1.7  
1.9  
dB  
f = 800 MHz; YS = YS(opt)  
dB  
Xmod  
cross-modulation  
input level for k = 1% at 0 dB AGC;  
fw = 50 MHz; funw = 60 MHz; note 2  
90  
dBV  
input level for k = 1% at 10 dB AGC;  
fw = 50 MHz; funw = 60 MHz; note 2  
90  
dBV  
dBV  
input level for k = 1% at 40 dB AGC;  
fw = 50 MHz; funw = 60 MHz; note 2  
98  
102  
Notes  
1. For the MOS-FET not in use: VG1-S (b) = 0 V; VDS (b) = 0 V.  
2. Measured in Fig.13 test circuit.  
2003 Sep 30  
6
 
 
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
GRAPHS FOR AMPLIFIER a  
MGX432  
MGX433  
20  
24  
handbook, halfpage  
handbook, halfpage  
(3)  
(2)  
(4)  
I
(5)  
(6)  
D
(mA)  
I
(1)  
D
(mA)  
(1)  
15  
(2)  
(3)  
16  
10  
5
(4)  
(5)  
8
(6)  
(7)  
(7)  
0
0
0
0
0.4  
0.8  
1.2  
1.6  
2
2
4
6
8
10  
(V)  
V
(V)  
V
DS  
G1-S  
(1) VG1-S (a) = 1.4 V.  
(2) G1-S (a) = 1.3 V.  
(5) VG1-S (a) = 1 V.  
(6) G1-S (a) = 0.9 V.  
(7) VG1-S (a) = 0.8 V.  
(1)  
(2) VG2-S = 3.5 V.  
(3) G2-S = 3 V.  
(4) VG2-S = 2.5 V.  
V
G2-S = 4 V.  
(5) VG2-S = 2 V.  
(6) VG2-S = 1.5 V.  
(7) G2-S = 1 V.  
V
V
(3) VG1-S (a) = 1.2 V.  
(4) VG1-S (a) = 1.1 V.  
V
V
VDS (a) = 5 V; VG1-S (b) = VDS (b) = 0 V; Tj = 25 C.  
VG2-S = 4 V; VG1-S (b) = VDS (b) = 0 V; Tj = 25 C.  
Fig.5 Transfer characteristics; typical values;  
amplifier a.  
Fig.6 Output characteristics; typical values;  
amplifier a.  
2003 Sep 30  
7
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX434  
MGX435  
40  
12  
handbook, halfpage  
handbook, halfpage  
y
(1) (2)  
fs  
(mS)  
I
(a)  
D
(mA)  
(3)  
(4)  
30  
8
20  
10  
0
4
0
(5)  
0
4
8
12  
16  
I
20  
(mA)  
0
10  
20  
30  
40  
(b) (μA)  
I
D
D
(1)  
V
G2-S = 4 V.  
(4) VG2-S = 2.5 V.  
(5) VG2-S = 2 V.  
(2) VG2-S = 3.5 V.  
(3) VG2-S = 3 V.  
VDS (a) = 5 V; VG2-S = 4 V; VDS (b) = 5 V; VG1-S (b) = 0 V; Tj = 25 C.  
VDS (a) = 5 V; VG1-S (b) = VDS (b) = 0 V; Tj = 25 C.  
Fig.8 Drain current as a function of internal G1  
current (current in pin drain (b) if MOS-FET  
(b) is switched off); typical values; amplifier a.  
Fig.7 Forward transfer admittance as a function  
of drain current; typical values; amplifier a.  
2003 Sep 30  
8
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX436  
MGX437  
12  
120  
(1)  
handbook, halfpage  
I
handbook, halfpage  
D
(mA)  
10  
(2)  
(3)  
V
unw  
(dBμV)  
(4)  
(5)  
110  
8
6
4
2
100  
90  
0
0
80  
0
2
4
6
20  
40  
gain reduction (dB)  
60  
V
= V  
(V)  
DS  
GG  
(1) VDS (b) = 5 V.  
(2) VDS (b) = 4.5 V.  
(3) VDS (b) = 4 V.  
(4) VDS (b) = 3.5 V.  
(5) VDS (b) = 3 V.  
VDS (a) = VDS (b) = 5 V; VG1-S (b) = 0 V; f w = 50 MHz;  
unw = 60 MHz; Tamb = 25 C; see Fig.13.  
VDS (a) = 5 V; VG1-S (b) = 0 V; Gate 1 (a) = open; Tj = 25 C.  
f
Fig.9 Drain current as a function of gate 2 and  
drain supply voltage; typical values;  
amplifier a.  
Fig.10 Unwanted voltage for 1% cross-modulation  
as a function of gain reduction; typical values;  
amplifier a.  
2003 Sep 30  
9
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX438  
MGX439  
0
16  
handbook, halfpage  
handbook, halfpage  
I
gain  
reduction  
(dB)  
D
(mA)  
12  
20  
40  
60  
8
4
0
0
0
1
2
3
4
20  
40  
60  
V
(V)  
AGC  
gain reduction (dB)  
VDS (a) = VDS (b) = 5 V; VG1-S (b) = 0 V; f = 50 MHz; Tamb = 25 C;  
see Fig.13.  
VDS (a) = VDS (b) = 5 V; VG1-S (b) = 0 V; f = 50 MHz; see Fig.13.  
Fig.11 Gain reduction as a function of AGC  
voltage; typical values; amplifier a.  
Fig.12 Drain current as a function of gain  
reduction; typical values; amplifier a.  
V
(a)  
h
DS  
5 V  
V
AGC  
4.7 nF  
L1  
2.2 μH  
10 kΩ  
4.7 nF  
4.7 nF  
4.7 nF  
g1 (a)  
d (a)  
R
R
GEN  
50 Ω  
L
50 Ω  
g2  
s
50 Ω  
BF1205  
V
i
4.7 nF  
g1 (b)  
d (b)  
L2  
2.2 μH  
50 Ω  
R
G1  
150 kΩ  
4.7 nF  
V
V
(b)  
GG  
0 V  
DS  
5 V  
MGX440  
Fig.13 Cross-modulation test set-up for amplifier a.  
10  
2003 Sep 30  
 
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX442  
MGX441  
2
2
2
10  
10  
10  
handbook, halfpage  
handbook, halfpage  
y
is  
(mS)  
y
ϕ
|
|
fs  
fs  
(mS)  
(deg)  
10  
y
|
|
fs  
b
is  
1
10  
10  
g
is  
ϕ
1  
fs  
10  
2  
10  
10  
1
10  
1  
2
3
2
3
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS (a) = 5 V; VG2-S (a) = 4 V; VDS (b) = VG1-S (b) = 0 V;  
D (a) = 12 mA.  
I
VDS (a) = 5 V; VG2-S (a) = 4 V; VDS (b) = VG1-S (b) = 0 V;  
D (a) = 12 mA.  
I
Fig.15 Forward transfer admittance and phase as  
a function of frequency; typical values;  
amplifier a.  
Fig.14 Input admittance as a function of frequency;  
typical values; amplifier a.  
MGX443  
MGX444  
3
10  
3
10  
10  
handbook, halfpage  
handbook, halfpage  
ϕ
(deg)  
rs  
y
y
|
|
rs  
(μS)  
os  
(mS)  
ϕ
b
rs  
2
2
os  
10  
10  
1
y
|
|
g
rs  
os  
1  
10  
1  
10  
10  
2  
10  
1
10  
10  
2
3
2
3
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS (a) = 5 V; VG2-S (a) = 4 V; VDS (b) = VG1-S (b) = 0 V;  
D (a) = 12 mA.  
VDS (a) = 5 V; VG2-S (a) = 4 V; VDS (b) = VG1-S (b) = 0 V;  
D (a) = 12 mA.  
I
I
Fig.16 Reverse transfer admittance and phase as  
a function of frequency; typical values;  
amplifier a.  
Fig.17 Output admittance as a function of  
frequency; typical values; amplifier a.  
2003 Sep 30  
11  
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
Scattering parameters: amplifier a  
V
DS (a) = 5 V; VG2-S = 4 V; ID (a) = 12 mA; VDS (b) = 0 V; VG-1S (b) = 0 V; Tamb = 25 C  
s11 s21 s12  
s22  
f
MAGNITUDE ANGLE MAGNITUDE ANGLE MAGNITUDE ANGLE MAGNITUDE ANGLE  
(MHz)  
(ratio)  
(deg)  
(ratio)  
(deg)  
(ratio)  
(deg)  
(ratio)  
(deg)  
50  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
0.997  
0.995  
0.988  
0.976  
0.963  
0.944  
0.924  
0.900  
0.874  
0.846  
0.817  
3.70  
7.37  
3.15  
3.15  
3.12  
3.09  
3.04  
2.99  
2.94  
2.87  
2.81  
2.73  
2.65  
175.99  
171.92  
163.99  
156.06  
148.32  
140.52  
132.88  
125.30  
117.79  
110.29  
102.91  
0.00067  
0.00132  
0.00262  
0.00373  
0.00471  
0.00557  
0.00624  
0.00669  
0.00701  
0.00705  
0.00688  
86.39  
84.34  
79.71  
75.29  
71.43  
66.89  
63.52  
60.09  
59.58  
52.42  
49.17  
0.992  
0.991  
0.990  
0.988  
0.985  
0.982  
0.978  
0.975  
0.972  
0.968  
0.965  
1.38  
2.83  
14.64  
21.85  
28.95  
35.98  
42.90  
49.77  
56.61  
63.18  
69.84  
5.62  
8.40  
11.15  
13.88  
16.65  
19.35  
22.08  
24.87  
27.63  
Noise data  
V
DS (a) = 5 V; VG2-S = 4 V; ID (a) = 12 mA; VDS (b) = 0 V; VG-1S (b) = 0 V; Tamb = 25 C  
GAMMA OPT  
(ratio)  
f
F MIN  
(dB)  
Rn  
()  
(MHz)  
(deg)  
400  
800  
1.1  
1.2  
0.719  
0.628  
16.16  
32.7  
31.18  
29.74  
DYNAMIC CHARACTERISTICS AMPLIFIER b  
Common source; Tamb = 25 C; VG2-S = 4 V; VDS = 5 V; ID = 12 mA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
26  
TYP. MAX. UNIT  
yfs  
Cig1-ss  
Cig2-ss  
Coss  
Crss  
forward transfer admittance  
input capacitance at gate 1  
input capacitance at gate 2  
output capacitance  
Tj = 25 C  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
31  
40  
2.5  
mS  
pF  
pF  
pF  
fF  
2.0  
3.3  
0.85  
20  
reverse transfer capacitance  
power gain  
Gtr  
f = 200 MHz; GS = 2 mS; BS = BS(opt)  
GL = 0.5 mS; BL = BL(opt); note 1  
;
;
30  
34  
38  
dB  
f = 400 MHz; GS = 2 mS; BS = BS(opt)  
GL = 1 mS; BL = BL(opt); note 1  
27  
22  
31  
26  
35  
30  
dB  
dB  
f = 800 MHz; GS = 3.3 mS; BS = BS(opt)  
;
GL = 1 mS; BL = BL(opt); note 1  
NF  
noise figure  
f = 10.7 MHz; GS = 20 mS; BS = 0  
f = 400 MHz; YS = YS(opt)  
4
dB  
dB  
dB  
1.3  
1.4  
1.9  
2.1  
f = 800 MHz; YS = YS(opt)  
2003 Sep 30  
12  
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
SYMBOL  
PARAMETER  
cross-modulation  
CONDITIONS  
MIN.  
90  
TYP. MAX. UNIT  
Xmod  
input level for k = 1% at 0 dB AGC;  
fw = 50 MHz; funw = 60 MHz; note 2  
dBV  
dBV  
dBV  
input level for k = 1% at 10 dB AGC;  
fw = 50 MHz; funw = 60 MHz; note 2  
92  
105  
input level for k = 1% at 40 dB AGC;  
fw = 50 MHz; funw = 60 MHz; note 2  
100  
Notes  
1. For the MOS-FET not in use: VG1-S (a) = 0; VDS (a) = 0.  
2. Measured in test circuit Fig.30.  
GRAPHS FOR AMPLIFIER b  
MGX445  
MGX446  
20  
24  
handbook, halfpage  
handbook, halfpage  
(3)  
(4)  
I
(5)  
D
(mA)  
(2)  
(1)  
I
D
(mA)  
(1)  
15  
(2)  
(3)  
16  
(6)  
10  
5
(4)  
(5)  
8
(6)  
(7)  
(7)  
0
0
0
0
0.4  
0.8  
1.2  
1.6  
V
2
(V)  
2
4
6
8
10  
(V)  
V
DS  
G1-S  
(1) VG2-S = 4 V.  
(2) G2-S = 3.5 V.  
(3) VG2-S = 3 V.  
(4) G2-S = 2.5 V.  
(5) VG2-S = 2 V.  
(6) G2-S = 1.5 V.  
(7) VG2-S = 1 V.  
(1) VG1-S (b) = 1.4 V.  
(2) VG1-S (b) = 1.3 V.  
(5) VG1-S (b) = 1 V.  
(6) VG1-S (b) = 0.9 V.  
(7) G1-S (b) = 0.8 V.  
V
V
(3)  
V
G1-S (b) = 1.2 V.  
V
V
(4) VG1-S (b) = 1.1 V.  
VDS (b) = 5 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 C.  
VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 C.  
Fig.18 Transfer characteristics; typical values;  
amplifier b.  
Fig.19 Output characteristics; typical values;  
amplifier b.  
2003 Sep 30  
13  
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX448  
MGX447  
60  
40  
handbook, halfpage  
handbook, halfpage  
(2)  
(1)  
(3)  
(4)  
y
(1) (2)  
fs  
(mS)  
I
G1  
(μA)  
(3)  
(4)  
30  
(5)  
40  
20  
10  
20  
(6)  
(7)  
(5)  
0
0
0
0
0.4  
0.8  
1.2  
1.6  
G1-S  
2
4
8
12  
16  
I
20  
(mA)  
V
(V)  
D
(1) VG2-S = 4 V.  
(5) VG2-S = 2 V.  
(6) G2-S = 1.5 V.  
(7) VG2-S = 1 V.  
(1)  
V
G2-S = 4 V.  
(4) VG2-S = 2.5 V.  
(5) VG2-S = 2 V.  
(2)  
(3) VG2-S = 3 V.  
(4) VG2-S = 2.5 V.  
V
G2-S = 3.5 V.  
V
(2) VG2-S = 3.5 V.  
(3) VG2-S = 3 V.  
VDS (b) = 5 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 C.  
VDS (b) = 5 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 C.  
Fig.20 Gate 1 current as a function of gate 1  
voltage; typical values; amplifier b.  
Fig.21 Forward transfer admittance as a function  
of drain current; typical values; amplifier b.  
2003 Sep 30  
14  
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX449  
MGX450  
20  
16  
handbook, halfpage  
handbook, halfpage  
I
D
(mA)  
16  
I
D
(mA)  
12  
12  
8
8
4
4
0
0
0
0
10  
20  
30  
40  
I
50  
(μA)  
1
2
3
4
5
V
(V)  
G1  
GG  
VDS (b) = 5 V; VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V;  
Tj = 25 C; RG1 (b) = 150 k(connected to VGG); see Fig.4.  
VDS (b) = 5 V; VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 C.  
Fig.22 Drain current as a function of gate 1 current;  
typical values; amplifier b.  
Fig.23 Drain current as a function of gate 1 supply  
voltage (VGG); typical values; amplifier b.  
2003 Sep 30  
15  
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX451  
MGX452  
20  
16  
(1)  
handbook, halfpage  
handbook, halfpage  
I
D
(mA)  
16  
I
D
(mA)  
(2)  
(1)  
(2)  
(3)  
(3)  
(4)  
12  
(4)  
(5)  
(5)  
(6)  
12  
8
8
4
(7)  
(8)  
4
0
0
0
0
2
4
6
(V)  
2
4
6
V
= V  
V
(V)  
GG  
DS  
G2-S  
(1) RG1 (b) = 68 k.  
(2) RG1 (b) = 82 k.  
(3) RG1 (b) = 100 k.  
(4) RG1 (b) = 120 k.  
(5) RG1 (b) = 150 k.  
(6) RG1 (b) = 180 k.  
(7) RG1 (b) = 220 k.  
(8) RG1 (b) = 270 k.  
(1)  
V
GG = 5.0 V.  
(4) VGG = 3.5 V.  
(5) VGG = 3.0 V.  
(2) VGG = 4.5 V.  
(3) VGG = 4.0 V.  
VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 C;  
G1 (b) = 150 k(connected to VGG); see Fig.4.  
R
VDS (b) = 5 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 C;  
G1 (b) = 150 k(connected to VGG); see Fig.4.  
R
Fig.24 Drain current as a function of gate 1 (VGG  
and drain supply voltage; typical values;  
amplifier b.  
)
Fig.25 Drain current as a function of gate 2  
voltage; typical values; amplifier b.  
2003 Sep 30  
16  
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX454  
MGX453  
30  
120  
handbook, halfpage  
handbook, halfpage  
V
unw  
I
(1)  
G1  
(μA)  
(dBμV)  
(2)  
(3)  
(4)  
(5)  
110  
20  
100  
90  
10  
80  
0
0
20  
40  
60  
0
2
4
6
V
(V)  
G2-S  
gain reduction (dB)  
(1) VGG = 5.0 V.  
(2) VGG = 4.5 V.  
(4) VGG = 3.5 V.  
(5) VGG = 3.0 V.  
VDS (b) = 5 V; VGG = 5 V; VDS (a) = VG1-S (a) = 0 V;  
G1 (b) = 150 k(connected to VGG); fw = 50 MHz;  
unw = 60 MHz; Tamb = 25 C; see Fig.30.  
(3)  
VGG = 4.0 V.  
R
f
VDS (b) = 5 V; VDS (a) = VG1-S (a) = 0 V; Tj = 25 C;  
G1 (b) = 150 k(connected to VGG); see Fig.4.  
R
Fig.27 Unwanted voltage for 1% cross-modulation  
as a function of gain reduction; typical values;  
amplifier b.  
Fig.26 Gate 1 current as a function of gate 2  
voltage; typical values; amplifier b.  
2003 Sep 30  
17  
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX455  
MGX456  
16  
0
handbook, halfpage  
handbook, halfpage  
I
gain  
reduction  
(dB)  
D
(mA)  
12  
20  
40  
60  
8
4
0
0
0
1
2
3
4
20  
40  
60  
V
(V)  
gain reduction (dB)  
AGC  
VDS (b) = 5 V; VGG = 5 V; VDS (a) = VG1-S (a) = 0 V;  
G1 (b) = 150 k(connected to VGG); f = 50 MHz;  
amb = 25 C; see Fig.30.  
VDS (b) = 5 V; VGG = 5 V; VDS (a) = VG1-S (a) = 0 V;  
G1 (b) = 150 k(connected to VGG); f = 50 MHz;  
amb = 25 C; see Fig.30.  
R
T
R
T
Fig.28 Typical gain reduction as a function of AGC  
voltage; amplifier b.  
Fig.29 Drain current as a function of gain  
reduction; typical values; amplifier b.  
2003 Sep 30  
18  
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
V
(a)  
DS  
5 V  
V
AGC  
4.7 nF  
L1  
2.2 μH  
10 kΩ  
4.7 nF  
g1 (a)  
d (a)  
4.7 nF  
50 Ω  
g2  
s
BF1205  
4.7 nF  
g1 (b)  
d (b)  
R
R
GEN  
50 Ω  
L2  
2.2 μH  
L
50 Ω  
50 Ω  
R
G1  
150 kΩ  
V
i
4.7 nF  
V
V
(b)  
GG  
5 V  
DS  
5 V  
MDB813  
Fig.30 Cross-modulation test set-up for amplifier b.  
MGX458  
MGX457  
2
2
2
10  
10  
10  
handbook, halfpage  
handbook, halfpage  
y
is  
y
ϕ
(deg)  
|
|
fs  
fs  
(mS)  
(mS)  
y
|
|
fs  
10  
10  
10  
b
g
is  
is  
1
ϕ
fs  
1  
10  
1
10  
1  
10  
2
3
2
3
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS (b) = 5 V; VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V;  
D (b) = 12 mA.  
I
VDS (b) = 5 V; VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V;  
D (b)= 12 mA.  
I
Fig.32 Forward transfer admittance and phase as  
a function of frequency; typical values;  
amplifier b.  
Fig.31 Input admittance as a function of frequency;  
typical values; amplifier b.  
2003 Sep 30  
19  
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
MGX459  
MGX460  
3
10  
3
10  
10  
handbook, halfpage  
handbook, halfpage  
ϕ
(deg)  
rs  
y
y
|
|
os  
rs  
(μS)  
(mS)  
b
g
os  
ϕ
2
2
rs  
10  
1
10  
os  
y
|
|
rs  
1  
10  
1  
10  
10  
2  
10  
10  
1
10  
2
3
2
3
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS (b) = 5 V; VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V;  
D (b) = 12 mA.  
I
VDS (b) = 5 V; VG2-S = 4 V; VDS (a) = VG1-S (a) = 0 V;  
D (b) = 12 mA.  
I
Fig.33 Reverse transfer admittance and phase as  
a function of frequency; typical values;  
amplifier b.  
Fig.34 Output admittance as a function of  
frequency; typical values; amplifier b.  
2003 Sep 30  
20  
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
Scattering parameters: amplifier b  
V
DS (b) = 5 V; VG2-S = 4 V; ID (b) = 12 mA; VDS (a) = 0 V; VG1-S (a) = 0 V; Tamb = 25 C  
s11 s21 s12  
s22  
f
MAGNITUDE ANGLE MAGNITUDE ANGLE MAGNITUDE ANGLE MAGNITUDE ANGLE  
(MHz)  
(ratio)  
(deg)  
(ratio)  
(deg)  
(ratio)  
(deg)  
(ratio)  
(deg)  
50  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
0.987  
0.985  
0.978  
0.968  
0.956  
0.941  
0.924  
0.905  
0.884  
0.861  
0.837  
3.76  
7.38  
3.12  
3.11  
3.09  
3.06  
3.01  
2.95  
2.89  
2.83  
2.75  
2.67  
2.59  
175.87  
171.77  
163.72  
155.67  
147.79  
139.86  
132.06  
124.31  
116.69  
108.97  
101.39  
0.00071  
0.00136  
0.00272  
0.00396  
0.00509  
0.00616  
0.00710  
0.00791  
0.00848  
0.00900  
0.00941  
85.43  
86.06  
84.25  
82.63  
81.35  
79.46  
78.57  
77.88  
76.72  
76.55  
76.67  
0.991  
0.989  
0.988  
0.986  
0.983  
0.973  
0.975  
0.972  
0.968  
0.964  
0.959  
1.56  
3.11  
14.63  
21.82  
28.92  
35.99  
42.93  
49.89  
56.57  
63.36  
70.05  
6.16  
9.17  
12.17  
15.16  
18.15  
21.07  
24.08  
27.03  
30.02  
Noise data  
V
DS (b) = 5 V; VG2-S = 4 V; ID (b) = 12 mA; VDS (a) = 0 V; VG1-S (a) = 0 V; Tamb = 25 C  
F MIN  
(dB)  
f
F MIN  
(dB)  
Rn  
()  
(MHz)  
(ratio)  
(deg)  
400  
800  
1.3  
1.4  
0.662  
0.578  
16.76  
33.97  
31.55  
30.53  
2003 Sep 30  
21  
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
PACKAGE OUTLINE  
Plastic surface-mounted package; 6 leads  
SOT363  
D
B
E
A
X
y
H
v
M
A
E
6
5
4
Q
pin 1  
index  
A
A
1
1
2
3
c
e
1
b
L
p
w
M B  
p
e
detail X  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
1
UNIT  
A
b
c
D
E
e
e
H
L
Q
v
w
y
p
p
1
E
max  
0.30  
0.20  
1.1  
0.8  
0.25  
0.10  
2.2  
1.8  
1.35  
1.15  
2.2  
2.0  
0.45  
0.15  
0.25  
0.15  
mm  
0.1  
1.3  
0.65  
0.2  
0.2  
0.1  
REFERENCES  
JEDEC JEITA  
EUROPEAN  
PROJECTION  
OUTLINE  
VERSION  
ISSUE DATE  
IEC  
04-11-08  
06-03-16  
SOT363  
SC-88  
2003 Sep 30  
22  
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
DATA SHEET STATUS  
DOCUMENT  
STATUS(1)  
PRODUCT  
STATUS(2)  
DEFINITION  
Objective data sheet  
Development  
This document contains data from the objective specification for product  
development.  
Preliminary data sheet  
Product data sheet  
Qualification  
Production  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Notes  
1. Please consult the most recently issued document before initiating or completing a design.  
2. The product status of device(s) described in this document may have changed since this document was published  
and may differ in case of multiple devices. The latest product status information is available on the Internet at  
URL http://www.nxp.com.  
DEFINITIONS  
Right to make changes NXP Semiconductors  
reserves the right to make changes to information  
published in this document, including without limitation  
specifications and product descriptions, at any time and  
without notice. This document supersedes and replaces all  
information supplied prior to the publication hereof.  
Product specification The information and data  
provided in a Product data sheet shall define the  
specification of the product as agreed between NXP  
Semiconductors and its customer, unless NXP  
Semiconductors and customer have explicitly agreed  
otherwise in writing. In no event however, shall an  
agreement be valid in which the NXP Semiconductors  
product is deemed to offer functions and qualities beyond  
those described in the Product data sheet.  
Suitability for use NXP Semiconductors products are  
not designed, authorized or warranted to be suitable for  
use in life support, life-critical or safety-critical systems or  
equipment, nor in applications where failure or malfunction  
of an NXP Semiconductors product can reasonably be  
expected to result in personal injury, death or severe  
property or environmental damage. NXP Semiconductors  
accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at  
the customer’s own risk.  
DISCLAIMERS  
Limited warranty and liability Information in this  
document is believed to be accurate and reliable.  
However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to  
the accuracy or completeness of such information and  
shall have no liability for the consequences of use of such  
information.  
Applications Applications that are described herein for  
any of these products are for illustrative purposes only.  
NXP Semiconductors makes no representation or  
warranty that such applications will be suitable for the  
specified use without further testing or modification.  
In no event shall NXP Semiconductors be liable for any  
indirect, incidental, punitive, special or consequential  
damages (including - without limitation - lost profits, lost  
savings, business interruption, costs related to the  
removal or replacement of any products or rework  
charges) whether or not such damages are based on tort  
(including negligence), warranty, breach of contract or any  
other legal theory.  
Customers are responsible for the design and operation of  
their applications and products using NXP  
Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or  
customer product design. It is customer’s sole  
responsibility to determine whether the NXP  
Notwithstanding any damages that customer might incur  
for any reason whatsoever, NXP Semiconductors’  
aggregate and cumulative liability towards customer for  
the products described herein shall be limited in  
accordance with the Terms and conditions of commercial  
sale of NXP Semiconductors.  
Semiconductors product is suitable and fit for the  
customer’s applications and products planned, as well as  
for the planned application and use of customer’s third  
party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks  
associated with their applications and products.  
2003 Sep 30  
23  
 
 
NXP Semiconductors  
Product specification  
Dual N-channel dual gate MOS-FET  
BF1205  
NXP Semiconductors does not accept any liability related  
to any default, damage, costs or problem which is based  
on any weakness or default in the customer’s applications  
or products, or the application or use by customer’s third  
party customer(s). Customer is responsible for doing all  
necessary testing for the customer’s applications and  
products using NXP Semiconductors products in order to  
avoid a default of the applications and the products or of  
the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this  
respect.  
Export control This document as well as the item(s)  
described herein may be subject to export control  
regulations. Export might require a prior authorization from  
national authorities.  
Quick reference data The Quick reference data is an  
extract of the product data given in the Limiting values and  
Characteristics sections of this document, and as such is  
not complete, exhaustive or legally binding.  
Non-automotive qualified products Unless this data  
sheet expressly states that this specific NXP  
Semiconductors product is automotive qualified, the  
product is not suitable for automotive use. It is neither  
qualified nor tested in accordance with automotive testing  
or application requirements. NXP Semiconductors accepts  
no liability for inclusion and/or use of non-automotive  
qualified products in automotive equipment or  
applications.  
Limiting values Stress above one or more limiting  
values (as defined in the Absolute Maximum Ratings  
System of IEC 60134) will cause permanent damage to  
the device. Limiting values are stress ratings only and  
(proper) operation of the device at these or any other  
conditions above those given in the Recommended  
operating conditions section (if present) or the  
Characteristics sections of this document is not warranted.  
Constant or repeated exposure to limiting values will  
permanently and irreversibly affect the quality and  
reliability of the device.  
In the event that customer uses the product for design-in  
and use in automotive applications to automotive  
specifications and standards, customer (a) shall use the  
product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and  
specifications, and (b) whenever customer uses the  
product for automotive applications beyond NXP  
Semiconductors’ specifications such use shall be solely at  
customer’s own risk, and (c) customer fully indemnifies  
NXP Semiconductors for any liability, damages or failed  
product claims resulting from customer design and use of  
the product for automotive applications beyond NXP  
Semiconductors’ standard warranty and NXP  
Terms and conditions of commercial sale NXP  
Semiconductors products are sold subject to the general  
terms and conditions of commercial sale, as published at  
http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an  
individual agreement is concluded only the terms and  
conditions of the respective agreement shall apply. NXP  
Semiconductors hereby expressly objects to applying the  
customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Semiconductors’ product specifications.  
No offer to sell or license Nothing in this document  
may be interpreted or construed as an offer to sell products  
that is open for acceptance or the grant, conveyance or  
implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
2003 Sep 30  
24  
NXP Semiconductors  
provides High Performance Mixed Signal and Standard Product  
solutions that leverage its leading RF, Analog, Power Management,  
Interface, Security and Digital Processing expertise  
Customer notification  
This data sheet was changed to reflect the new company name NXP Semiconductors, including new legal  
definitions and disclaimers. No changes were made to the technical content, except for package outline  
drawings which were updated to the latest version.  
Contact information  
For additional information please visit: http://www.nxp.com  
For sales offices addresses send e-mail to: salesaddresses@nxp.com  
© NXP B.V. 2010  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
R77/01/pp25  
Date of release: 2003 Sep 30  

相关型号:

BF1205,135

BF1205 - Dual N-channel dual-gate MOSFET TSSOP 6-Pin
NXP

BF1205C

Dual N-channel dual gate MOS-FET
NXP

BF1205C,115

BF1205C - Dual N-channel dual-gate MOSFET TSSOP 6-Pin
NXP

BF1205C_15

Dual N-channel dual gate MOS-FET
JMNIC

BF1205C_2015

Dual N-channel dual gate MOS-FET
JMNIC

BF1205_15

Dual N-channel dual gate MOS-FET
JMNIC

BF1205_2015

Dual N-channel dual gate MOS-FET
JMNIC

BF1206

Dual N-channel dual-gate MOS-FET
NXP

BF1206F

Dual N-channel dual gate MOSFET
NXP

BF1206F_15

Dual N-channel dual gate MOSFET
JMNIC

BF1206F_2015

Dual N-channel dual gate MOSFET
JMNIC

BF1206_15

Dual N-channel dual-gate MOS-FET
JMNIC