M52733SP [MITSUBISHI]

3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING; 带OSD消隐三通道视频放大
M52733SP
型号: M52733SP
厂家: Mitsubishi Group    Mitsubishi Group
描述:

3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING
带OSD消隐三通道视频放大

消费电路 商用集成电路 音频放大器 视频放大器 光电二极管 局域网
文件: 总12页 (文件大小:117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI ICs (Monitor)  
M52733SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
DESCRIPTION  
PIN CONFIGURATION (TOP VIEW)  
The M52733SP is a semiconductor integrated circuit amplifies  
video signals, having a 3-channel amplifier with a band width of  
130MHz. The circuit also features the OSD blanking function.  
The circuit is most useful with high resolution displays that have  
OSD, and its function are available for each channel, including OSD  
blanking, wide-band amplification, contrast control (main and sub),  
and brightness control.  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
OSD BLK IN  
VCC1 (B)  
GND  
OUTPUT (B)  
VCC2 (B)  
3
INPUT (B)  
4
SUB CONTRAST (B)  
GND1 (B)  
HOLD (B)  
GND2 (B)  
OUTPUT (G)  
VCC2 (G)  
5
6
VCC1 (G)  
FEATURES  
7
INPUT (G)  
Frequency band width: RGB................................130MHz (3VP-P)  
Input :RGB.............................................................0.7VP-P (typ.)  
BLK ...............................................3.0VP-P min. (positive)  
8
SUB CONTRAST (G)  
GND1 (G)  
HOLD (G)  
GND2 (G)  
OUTPUT (R)  
VCC2 (R)  
9
Output :RGB...........................................................4.0VP-P (max.)  
10  
11  
12  
13  
14  
15  
VCC1 (R)  
To adjust contrast, two types of controls are provided, main and  
sub. With the main control, the contrast of the 3-channels can be  
changed simultaneously. Sub controls are used to adjust the  
contrast of a given channel individually.The control terminals can  
be controlled by applying a voltage of 0 to 5V.  
INPUT (R)  
SUB CONTRAST (R)  
GND1 (R)  
HOLD (R)  
NC  
MAIN CONTRAST  
CP IN  
GND2 (R)  
BRIGHTNESS  
The DC power remains stable at the IC output terminal because  
a feedback circuit is built in.  
Outline 30P4B  
APPLICATION  
Display monitor  
NC : NO CONNECTION  
RECOMMENDED OPERATING CONDITION  
Supply voltage range....................................................11.5 to 12.5V  
Rated supply voltage................................................................12.0V  
BLOCK DIAGRAM  
HOLD (B)  
OUTPUT (G)  
HOLD (G)  
23  
OUTPUT (R)  
HOLD (R)  
19  
GND2 (R)  
OUTPUT (B)  
GND  
30  
VCC2 (B)  
28  
VCC2 (G)  
24  
GND2 (G)  
VCC2 (R)  
20  
NC  
18  
BRIGHTNESS  
17 16  
GND2 (B)  
26  
29  
27  
25  
22  
21  
B
G
R
Brightness  
Brightness  
Brightness  
B
AMP  
B
Hold  
G
AMP  
G
Hold  
R
AMP  
R
Hold  
B
G
R
Blanking  
Blanking  
Blanking  
B
B
G
Clamp  
G
R
R
Clamp  
Contrast  
Contrast  
Clamp  
Contrast  
1
2
3
4
5
6
7
8
9
10  
11  
INPUT (R)  
12  
13  
GND1 (R)  
14  
15  
INPUT (B)  
GND1 (B)  
INPUT (G)  
GND1 (G)  
CP IN  
OSD BLK IN  
VCC1 (B)  
SUB CONTRAST  
(B)  
VCC1 (G)  
SUB CONTRAST  
(G)  
VCC1 (R)  
SUB CONTRAST MAIN CONTRAST  
(R)  
1
MITSUBISHI ICs (Monitor)  
M52733SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)  
Symbol  
VCC  
Parameter  
Ratings  
13.0  
Unit  
V
Supply voltage  
Pd  
Power dissipation  
1736  
mW  
°C  
°C  
V
Topr  
Ambient temperature  
-20 to +85  
-40 to +150  
12.0  
Tstg  
Storage temperature  
Vopr  
Recommended supply voltage  
Recommended supply voltage range  
Electrostatic discharge  
Vopr’  
Surge  
11.5 to 12.5  
±200  
V
V
ELECTRICAL CHARACTERISTICS (VCC=12V, Ta=25°C, unless otherwise noted)  
Test conditions  
Limits  
External power supply (V)  
Input  
Pulse input  
Test  
point  
(s)  
Symbol  
Parameter  
Unit  
SW11 SW7 SW3  
R-ch G-ch B-ch  
V4  
5
V14 V16 SW1 SW15 Min.  
Typ.  
83  
Max.  
123  
a
a
a
a
b
SG5  
ICC  
Circuit current  
A
5
5
5
60  
mA  
T.P.29  
T.P.25  
T.P.21  
b
b
b
a
b
SG5  
Vari-  
able  
Vomax  
Vimax  
Output dynamic range  
Maximum input  
5
5
5
5.8  
6.8  
1.8  
9.0  
VP-P  
SG6 SG6 SG6  
T.P.29  
T.P.25  
T.P.21  
b
b
b
a
b
SG5  
2.5  
5
1
2
1
VP-P  
SG6 SG6 SG6  
T.P.29  
T.P.25  
T.P.21  
b
b
b
a
b
SG5  
Gv  
Maximum gain  
15  
0.8  
14  
17  
1
20  
1.2  
17  
dB  
SG6 SG6 SG6  
Gv  
VCR1  
Rrlative maximum gain  
Relative to measured values above  
T.P.29  
T.P.25  
T.P.21  
Contrast control  
characteristics (typical)  
b
b
b
a
b
SG5  
5
4
2
15.5  
dB  
SG6 SG6 SG6  
Contrast control relative  
characteristics (typical)  
VCR1  
Relative to measured values above  
0.8  
0.3  
0.8  
14  
1
0.6  
1
1.2  
0.9  
1.2  
17  
VP-P  
Contrast control  
characteristics  
(minimum)  
T.P.29  
T.P.25  
T.P.21  
b
b
b
a
b
SG5  
VCR2  
5
1
2
SG6 SG6 SG6  
Contrast control relative  
characteristics (minimum)  
VCR2  
VSCR1  
Relative to measured values above  
T.P.29  
T.P.25  
T.P.21  
b
b
b
a
b
SG5  
Sub contrast control  
characteristics (typical)  
4
5
2
15.5  
dB  
SG6 SG6 SG6  
Sub contrast control  
relative characteristics  
(typical)  
VSCR1  
Relative to measured values above  
0.8  
1
1.2  
Sub contrast control  
characteristics  
(minimum)  
T.P.29  
T.P.25  
T.P.21  
b
b
b
a
b
SG5  
VSCR2  
VSCR2  
VSCR3  
1
5
2
0.5  
0.8  
0.8  
0.9  
1
1.3  
1.2  
2.2  
VP-P  
SG6 SG6 SG6  
Sub contrast control relative  
characteristics (minimum)  
Relative to measured values above  
T.P.29  
T.P.25  
T.P.21  
Contrast/sub contrast  
control characteristics  
(typical)  
b
b
b
a
b
SG5  
3
3
2
1.5  
VP-P  
SG6 SG6 SG6  
Contrast/sub contrast  
control relative  
characteristics (typical)  
VSCR3  
Relative to measured values above  
0.8  
1
1.2  
Brightness control  
characteristics  
(maximum)  
T.P.29  
T.P.25  
T.P.21  
a
a
a
a
b
SG5  
VB1  
5
5
4
3.0  
3.6  
0
4.2  
0.3  
V
V
Brightness control relative  
characteristics (maximum)  
VB1  
Relative to measured values above  
-0.3  
2
MITSUBISHI ICs (Monitor)  
M52733SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
ELECTRICAL CHARACTERISTICS (cont.)  
Test conditions  
Limits  
External power supply (V)  
Input  
Pulse input  
Test  
Symbol  
Parameter  
Unit  
point  
SW11 SW7 SW3  
R-ch G-ch B-ch  
V4  
5
V14 V16 SW1 SW15 Min.  
Typ.  
2.3  
0
Max.  
2.9  
0.3  
1.3  
0.3  
3
(s)  
T.P.29  
T.P.25  
T.P.21  
Brightness control  
characteristics (typical)  
a
a
a
a
b
SG5  
VB2  
5
2.5  
1.7  
-0.3  
0.5  
-0.3  
-2.5  
-1  
V
V
Brightness control relative  
characteristics (typical)  
VB2  
VB3  
Relative to measured values above  
Brightness control  
characteristics  
(minimum)  
T.P.29  
T.P.25  
T.P.21  
a
a
a
a
b
SG5  
5
5
1
0.9  
0
V
Brightness control relative  
characteristics (minimum)  
VB3  
FC1  
Relative to measured values above  
V
T.P.29  
T.P.25  
T.P.21  
Frequency  
characteristics 1  
(f=50MHz)  
b
b
b
a
a
5
2.5  
VT  
-1  
dB  
dB  
dB  
SG2 SG2 SG2  
Frequency relative  
characteristics 1 (f=50MHz)  
FC1  
FC1’  
Relative to measured values above  
0
1
Frequency  
characteristics 1  
(f=130MHz;maximum)  
T.P.29  
T.P.25  
T.P.21  
b
b
b
a
a
5
2.5  
VT  
-3  
-2  
3
SG3 SG3 SG3  
Frequency relative  
characteristics 1  
FC1’  
FC2  
Relative to measured values above  
-1  
-3  
-1  
0
0
1
3
dB  
dB  
dB  
dB  
(f=130MHz;maximum)  
Frequency  
characteristics 2  
(f=130MHz; maximum)  
T.P.29  
T.P.25  
T.P.21  
b
b
b
a
a
5
1.5  
VT  
SG3 SG3 SG3  
Frequency relative  
characteristics 2  
(f=130MHz; maximum)  
FC2’  
C.T.1  
Relative to measured values above  
0
1
T.P.29  
T.P.25  
T.P.21  
b
SG2  
a
a
a
a
Crosstalk 1 (f=50MHz)  
5
5
5
5
5
5
5
5
5
5
5
5
5
VT  
VT  
VT  
VT  
VT  
VT  
2
-30  
-20  
T.P.29  
b
SG3  
a
a
a
a
C.T.1’  
C.T.2  
C.T.2’  
C.T.3  
C.T.3’  
Tr  
Crosstalk 1 (f=130MHz) T.P.25  
T.P.21  
-20  
-30  
-20  
-30  
-20  
3
-15  
-20  
-15  
-20  
-15  
7
dB  
dB  
T.P.29  
T.P.25  
T.P.21  
a
b
SG2  
a
a
a
Crosstalk 2 (f=50MHz)  
5
T.P.29  
a
b
SG3  
a
a
a
Crosstalk 2 (f=130MHz) T.P.25  
T.P.21  
5
dB  
T.P.29  
T.P.25  
T.P.21  
a
a
b
SG2  
a
a
Crosstalk 3 (f=50MHz)  
5
dB  
T.P.29  
a
a
b
SG3  
a
a
Crosstalk 3 (f=130MHz) T.P.25  
T.P.21  
5
dB  
T.P.29  
T.P.25  
T.P.21  
b
b
b
a
b
SG5  
Pulse characteristics 1  
Pulse characteristics 2  
3.3  
3.3  
5
nsec  
nsec  
VDC  
µsec  
VDC  
SG4 SG4 SG4  
T.P.29  
T.P.25  
T.P.21  
b
b
b
a
b
SG5  
Tf  
2
4
8
SG4 SG4 SG4  
T.P.29  
T.P.25  
T.P.21  
Clamp pulse threshold  
voltage  
a
a
a
a
b
SG5  
V14th  
W14  
PDCH  
2
1.0  
1.5  
0.1  
0
2.0  
0.5  
0.3  
T.P.29  
T.P.25  
T.P.21  
Clamp pulse minimum  
width  
a
a
a
a
b
SG5  
5
2
T.P.29  
T.P.25  
T.P.21  
Pedestal voltage  
temperatere  
characteristics1  
b
b
b
a
b
SG5  
5
2
-0.3  
SG6 SG6 SG6  
3
MITSUBISHI ICs (Monitor)  
M52733SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
ELECTRICAL CHARACTERISTICS (cont.)  
Test conditions  
Limits  
External power supply (V)  
Input  
Pulse input  
Test  
Symbol  
Parameter  
Unit  
point  
SW11 SW7 SW3  
R-ch G-ch B-ch  
V4  
5
V14 V16 SW1 SW15 Min.  
Typ.  
0
Max.  
0.3  
(s)  
Pedestal voltage  
temperatere  
characteristics2  
T.P.29  
T.P.25  
T.P.21  
b
b
b
a
b
PDCL  
5
5
2
2
-0.3  
1.7  
VDC  
VDC  
SG6 SG6 SG6  
SG5  
T.P.29  
T.P.25  
T.P.21  
BLK input threshold  
voltage  
b
b
b
b
b
V1th  
5
2.5  
3.5  
SG6 SG6 SG6  
SG7 SG5  
ELECTRICAL CHARACTERISTICS TEST METHOD  
1. Because a description of signal input pin and pulse input pin  
switch numbers is already given in Supplementary Table, only  
external power supply switch numbers are included in the notes  
below.  
3. After setting VTR (VTG or VTB), increase the SG6 amplitude  
gradually, starting from 700mV. Measure the amplitude when the  
top and bottom of the waveform output at T.P21 (25 or 29) starts  
becoming distorted synchronously.  
Sub contrast voltages V4, V8 and V12 are always set to the  
same voltage, therefore only V4 is referred to in Supplementary  
Table.  
Vimax Maximum input  
Measuring conditions are the same as those used above, except  
that the setting of V14 is changed to 2.5V as specified in  
Supplementary Table. Increase the input signal amplitude gradually,  
ICC Circuit current  
Measuring conditions are as listed in Supplementary Table.  
starting from 700mVP-P. Measure the amplitude when the output  
signal starts becoming distorted.  
Measured with an ammeter At test point A when SW A is set to b.  
Vomax Output dynamic range  
Gv Maximum gain  
Voltage V16 is varied as described below:  
Gv Relative maximum gain  
1. Increase V16 gradually while inputting SG6 to pin 11 (7 or 3).  
Measure the voltage when the top of the waveform output at  
T.P21 (25 or 29) is distorted. The voltage is called VTR1 (VTG1 or  
VTB1). Next, decrease V16 gradually, and measure the voltage  
when the bottom of the waveform output at T.P29 (25 or 21) is  
distorted. The voltage is called VTR2 (VTG2 or VTB2).  
1. Input SG6 to pin 11 (7 or 3), and read the amplitude at output  
T.P21 (25 or 29). The amplitude is called VOR1 (VOG1 or VOB1) .  
2. Maximum gain GV is calculated by the equation below:  
[VP-P]  
[VP-P]  
VOR1 (VOG1, VOB1)  
0.7  
GV=20LOG  
3. Relative maximum gain G is calculated by the equation below:  
GV=VOR1/VOG1, VOG1/VOB1, VOB1/VOR1  
(V)  
VCR1 Contrast control characteristics (typical)  
5.0  
VCR1 Contrast control relative characteristics (typical)  
1. Measuring conditions are as given in Supplementary Table.  
The setting of V14 is changed to 4V.  
2. Measure the amplitude output at T.P21 (25 or 29).The measured  
value is called VOR2 (VOG2 or VOB2).  
0.0  
3. Contrast control characteristics VCR1 and relative characteristics  
VCR1 are calculated, respectively, by the equations below:  
Waveform Output at T.P21  
(Identical to output at T.P25 and T.P29.)  
2. Voltage VT (VTR, VTG and VTB) is calculated by the equation  
below:  
VOR2 (VOG2, VOB2) [VP-P]  
VCR1=20LOG  
0.7  
[VP-P]  
VTR1 (VTG1, VTB1) + VTR2 (VTG1, VTB1)  
VCR1=VOR2/VOG2, VOG2/VOB2, VOB2/VOR2  
VTR (VTG, VTB)=  
2
Use relevant voltages, depending on the pin at which the  
waveform is output; specifically, use VTR1 when it is output at  
T.P21; VTG1, at T.P25, and VTB, at T.P29.  
4
MITSUBISHI ICs (Monitor)  
M52733SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
VCR2 Contrast control characteristics (minimum)  
VB1 Brightness control characteristics (maximum)  
VCR2 Contrast control relative characteristics (minimum)  
1. Measuring conditions are as given in Supplementary Table.  
The setting of V14 is changed to 1.0V.  
VB1 Brightness control relative characteristics (maximum)  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the output at T.P21 (25 or 29) with a voltmeter.  
The measured value is called VOR7 (VOG7 or VOB7), and is treated  
as VB1.  
2. Measure the amplitude output at T.P21 (25 or 29).The measured  
value is called VOR3 (VOG3 or VOB3), and is treated as VCR2.  
3. Contrast control relative characteristics VCR2 are calculated by  
the equation below:  
3. To obtain brightness control relative characteristics, calculate the  
difference in the output between the channels, using VOR7, VOG7  
and VOB7.  
VCR2=VOR3/VOG3, VOG3/VOB3, VOB3/VOR3  
VB1 =VOR7-VOG7  
=VOG7-VOB7  
[mV]  
VSCR1 Sub contrast control characteristics (typical)  
VSCR1 Sub contrast control relative characteristics (typical)  
1. Set V4, V8 and V12 to 4.0V. Other conditions are as given in  
=VOB7-VOR7  
Supplementary Table.  
2. Measure the amplitude output at T.P21 (25 or 29).The measured  
value is called VOR4 (VOG4 or VOB4).  
VB2 Brightness control characteristics (typical)  
VB2 Brightness control relative characteristics (typical)  
3. Sub contrast control characteristics VSCR1 and relative  
characteristics VSCR1 are calculated, respectively, by the  
equations below:  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the output at T.P21 (25 or 29) with a voltmeter.  
The measured value is called VOR7' (VOG7' or VOB7'), and is  
treated as VB2.  
[VP-P]  
[VP-P]  
VOR4 (VOG4, VOB4)  
0.7  
VSCR1=20LOG  
3. To obtain brightness control relative characteristics (VB2),  
calculate the difference in the output between the channels,  
using VOR7', VOG7', and VOB7'.  
VSCR1=VOR4/VOG4, VOG4/VOB4, VOB4/VOR4  
VSCR2 Sub contrast control characteristics (minimum)  
VSCR2 Sub contrast control relative characteristics (minimum)  
VB2 =VOR7'-VOG7'  
=VOG7'-VOB7'  
[mV]  
1. Set V4, V8 and V12 to 1.0V. Other conditions are as given in  
Supplementary Table.  
=VOB7'-VOR7'  
2. Measure the amplitude output at T.P21 (25 or 29).The measured  
value is called VOR5 (VOG5 or VOB5).  
VB3 Brightness control characteristics (minimum)  
3. Relative characteristics VSCR2 are calculated by the equation  
below:  
VB3 Brightness control relative characteristics (minimum)  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the output at T.P21 (25 or 29) with a voltmeter.  
The measured value is called VOR7" (VOG7" or VOB7"), and is  
treated as VB2.  
VSCR2=VOR5/VOG5, VOG5/VOB5, VOB5/VOR5  
VSCR3 Contrast/sub contrast control characteristics (typical)  
VSCR3 Contrast/sub contrast control relative  
3. To obtain brightness control relative characteristics (VB3),  
calculate the difference in the output between the channels,  
using VOR7", VOG7" and VOB7".  
characteristics (typical)  
1. Set V4, V8, V12 and V14 to 3.0V. Other conditions are as given  
in Supplementary Table.  
2. Measure the amplitude at T.P21 (25 or 29).The measured value  
is called VOR6 (VOG6 or VOB6).  
VB3 =VOR7''-VOG7''  
=VOG7''-VOB7''  
[mV]  
[VP-P]  
[VP-P]  
VOR6 (VOG6, VOB6)  
0.7  
=VOB7''-VOR7''  
VCR3=20LOG  
FC1 Frequency characteristics1 (f=50MHz)  
VCR3=VOR6/VOG6, VOG6/VOB6, VOB6/VOR6  
FC1 Frequency relative characteristics1 (f=50MHz)  
FC1' Frequency characteristics1 (f=130MHz; maximum)  
FC1' Frequency relative characteristics1  
(f=130MHz; maximum)  
1. Measuring conditions are as given in Supplementary Table.  
2. SG2 and SG3 are input.The amplitude of the waveform output at  
T.P21 (25 or 29) is measured by the same procedure as in GV,  
GV.  
5
MITSUBISHI ICs (Monitor)  
M52733SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
3. Supposing that the measured value is treated as amplitude VOR1  
Tr Pulse characteristics1  
(VOG1 or VOB1) when SG1 is input, as VOR8 (VOG8 or VOB8) when  
SG2 is input, or as VOR9 (VOG9 or VOB9) when SG3 is input,  
frequency characteristics FC1 and FC1' are calculated as follows:  
Tf Pulse characteristics2  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the time needed for the input pulse to rise from 10% to  
90% (Tr1) and to fall from 90% to 10% (Tf1) with an active prove.  
3. Measure the time needed for the output pulse to rise from 10%  
to 90% (Tr2) and to fall from 90% to 10% (Tf2) with an active  
prove.  
VOR8 (VOG8, VOB8)  
VOR1 (VOG1, VOB1)  
[VP-P]  
[VP-P]  
FC1=20LOG  
FC1'=20LOG  
VOR9 (VOG9, VOB9)  
VOR1 (VOG1, VOB1)  
[VP-P]  
[VP-P]  
4. Pulse characteristics Tr and Tf are calculated by the equation  
below:  
2
2
4. Frequency relative band widths FC1 and FC1' are equal to the  
Tr (nsec)= (Tr2) -(Tr1)  
2
2
difference in FC1 and FC1', respectively, between the channels.  
Tf (nsec)= (Tf2) -(Tf1)  
FC2 Frequency characteristics2 (f=130MHz; maximum)  
100%  
90%  
FC2' Frequency relative characteristics2  
(f=130MHz; maximum)  
Measuring conditions and procedure are the same as described in  
FC1, FC1, FC1', FC1', except that CONTRAST (V14) is turned  
down to 1.5V.  
10%  
0%  
Tf  
Tr  
C.T.1 Crosstalk1 (f=50MHz)  
C.T.1' Crosstalk1 (f=130MHz)  
V14th Clamp pulse threshold voltage  
1. Measuring conditions are as given in Supplementary Table.  
2. Input SG2 (or SG3) to pin 11 (R-ch) only, and then measure the  
waveform amplitude output at T.P21 (25 or 29). The measured  
value is called VOR, VOG and or VOB respectively.  
1. Measuring conditions are as given in Supplementary Table.  
2. Turn down the SG5 input level gradually, monitoring the output  
(about 2.0 VDC). Measure the SG5 input level when the output  
reaches 0V.  
3. Crosstalk C.T. 1 is calculated by the equation below:  
VOG or VOB  
VOR  
[VP-P]  
[VP-P]  
[dB]  
C.T.1 =20LOG  
(C.T.1')  
W14 Clamp pulse minimum width  
Under the same conditions as given in V14th, reduce the SG5 pulse  
width gradually, monitoring the output. Measure the SG5 pulse  
width when the output reaches 0V.  
C.T.2 Crosstalk2 (f=50MHz)  
C.T.2' Crosstalk2 (f=130MHz)  
1. Change the input pin from pin 11 (R-ch) to pin 7 (G-ch), and  
measure the output in the same way as in C.T.1, C.T.1'.  
2. Crosstalk C.T. 2 is calculated by the equation below:  
PDCH Pedestal voltage temperatere characteristics1  
PDCL Pedestal voltage temperatere characteristics2  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the pedestal voltage at room temperature.  
The measured value is called PDC1.  
3. Measure the pedestal voltage at temperatures of -20°C and  
85°C. The measured value is called, respectively, PDC2 and  
PDC3.  
VOR or VOB  
VOG  
[VP-P]  
[VP-P]  
[dB]  
C.T.2 =20LOG  
(C.T.2')  
C.T.3 Crosstalk3 (f=50MHz)  
C.T.3' Crosstalk3 (f=130MHz)  
4. PDCH=PDC1 - PDC2  
1. Change the input pin from pin 11 (R-ch) to pin 3 (B-ch), and  
measure the output in the same way as in C.T.1, C.T.1'.  
2. Crosstalk C.T. 3 is calculated by the equation below:  
PDCL=PDC1 - PDC3  
V1th BLK input threshold voltage  
VOR or VOG  
VOB  
[VP-P]  
[VP-P]  
1. Measuring conditions are as given in Supplementary Table.  
2. Make sure that signals are not being output synchronously with  
SG7 (blanking period).  
[dB]  
C.T.3 =20LOG  
(C.T.3')  
3. Reduce the SG7 input level gradually, monitoring output.  
Measure the SG7 level when the blanking period disappears.  
The measured value is called V1th.  
6
MITSUBISHI ICs (Monitor)  
M52733SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
INPUT SIGNAL  
SG No.  
Signals  
Sine wave of amplitude 0.7VP-P (f=1MHz)  
SG1  
0.7VP-P  
SG2  
SG3  
Sine wave with amplitude of 0.7VP-P (f=50MHz)  
Sine wave with amplitude of 0.7VP-P (f=130MHz)  
Pulse with amplitude of 0.7VP-P (f=30kHz, duty=50%)  
Pulses which are synchronous with SG4 pedestal portion  
SG4  
0.7VP-P  
Pulses which are synchronous with standard video step waveform pedestal portion:  
amplitude, 2.0VP-P; and pulse width, 3.0µs (pulse width and amplitude sometimes variable)  
SG5  
2.0VP-P  
0V  
3.0µs  
3.0µs  
SG6  
Standard  
video step  
waveform  
Video signal with amplitude of 0.7VP-P (f=30kHz, amplitude sometimes variable)  
4V  
SG7  
OSD BLK  
signals  
0V  
Pulses which are synchronous with standard video step waveform’s video portions: amplitude, 4.0VP-P; and pulse width, 25µs  
7
MITSUBISHI ICs (Monitor)  
M52733SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
TEST CIRCUIT  
680  
680  
680  
V16  
2.2µ  
2.2µ  
2.2µ  
28  
25  
23  
30  
29  
27  
26  
24  
21  
20  
19  
18  
17  
16  
22  
GND  
NC  
VCC  
VCC  
GND  
VCC  
GND  
M52733SP  
VCC  
2
GND  
5
VCC  
6
GND  
9
VCC  
10  
GND  
13  
4
1
3
8
11  
12  
14  
15  
7
0.01µ  
0.01µ  
0.01µ  
V4  
V8  
V12  
V14  
SW1  
a
b
SW15  
b
SW11  
b
SW3  
b
SW7  
b
a
a
a
a
SG7  
SG4  
0.01µ  
100µ  
A
SG1  
a
b
SG2  
SG3  
SG4  
SG6  
SWA  
Units Resistance : Ω  
12V  
Capacitance : F  
TYPICAL CHARACTERISTICS  
THERMAL DERATING (MAXIMUM RATING)  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
-20  
0
25  
50  
75 85 100 125 150  
AMBIENT TEMPERATURE Ta (°C)  
8
MITSUBISHI ICs (Monitor)  
M52733SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
APPLICATION EXAMPLE 1  
CRT  
110V  
DC CLAMP  
50k  
50k  
50k  
14k  
14k  
14k  
200  
200  
200  
OSD IN  
0 to 5V  
680  
680  
680  
NC  
18  
30  
29  
25  
23  
28  
27  
26  
24  
21  
20  
19  
17  
16  
22  
M52733SP  
4
6
1
2
3
5
8
9
10  
11  
12  
13  
14  
15  
7
0 to 5V  
0 to 5V  
0 to 5V  
0 to 5V  
12V  
OSD BLK  
IN  
INPUT  
(B)  
INPUT  
(G)  
INPUT  
(R)  
CLAMP  
Units Resistance : Ω  
Capacitance : F  
9
MITSUBISHI ICs (Monitor)  
M52733SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
APPLICATION EXAMPLE 2  
CRT  
110V  
DC CLAMP  
OSD IN  
0 to 5V  
680  
680  
680  
NC  
18  
30  
29  
25  
23  
28  
27  
26  
24  
21  
20  
19  
17  
16  
22  
M52733SP  
4
6
1
2
3
5
8
9
10  
11  
12  
13  
14  
15  
7
0 to 5V  
0 to 5V  
0 to 5V  
0 to 5V  
12V  
OSD BLK  
IN  
INPUT  
(B)  
INPUT  
(G)  
INPUT  
(R)  
CLAMP  
Units Resistance : Ω  
Capacitance : F  
10  
MITSUBISHI ICs (Monitor)  
M52733SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
DESCRIPTION OF PIN  
Pin No.  
Name  
DC voltage (V )  
Peripheral circuit of pins  
Description of function  
VCC  
Input pulses of minimum  
3V.  
B-ch  
G-ch  
3 to 5V  
1
1
OSD BLK IN  
1V  
maximum  
Connected to GND if not  
used.  
2.5V  
GND  
0.9mA  
2
6
10  
VCC (B-ch)  
VCC (G-ch)  
VCC (R-ch)  
Apply equivalent  
voltage to 3 channels.  
12  
VCC  
2k  
2k  
Clamped to about 2.5V  
due to clamp pulses  
from pin 18.  
3
7
11  
INPUT (B)  
INPUT (G)  
INPUT (R)  
2.5  
Input at low impedance.  
2.5V  
CP  
GND  
0.24mA  
VCC  
4
8
Subcontrast  
(B)  
Subcontrast  
(G)  
Subcontrast  
(R)  
Main  
1.5k  
Use at maximum 5V  
for stable operation.  
2.5  
23.5k  
2.5V  
12  
14  
GND  
contrast  
5, 26  
9, 22  
13, 17  
30  
GND (B-ch)  
GND (G-ch)  
GND (R-ch)  
GND  
GND  
VCC  
41k  
Input pulses of minimum  
2.5V.  
2.5V  
minimum  
15  
CP IN  
18  
0.5V  
maximum  
2.2V  
Input at low impedance.  
GND  
11  
MITSUBISHI ICs (Monitor)  
M52733SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
DESCRIPTION OF PIN (CONT.)  
Pin No.  
Name  
DC voltage (V )  
Peripheral circuit of pins  
20.3k  
Description of function  
VCC  
B-ch  
G-ch  
Main  
brightness  
16  
19  
GND  
VCC  
1k  
19  
23  
27  
Hold (R)  
Hold (G)  
Hold (B)  
A capacity is needed on  
the GND side.  
Variable  
0.2mA  
GND  
Used to supply power to  
output emitter follower  
only.  
Apply equivalent voltage  
to 3 channels.  
20  
24  
28  
VCC2 (R)  
VCC2 (G)  
VCC2 (B)  
Pin 20  
Pin 24  
Pin 28  
Apply 12  
Variable  
A resistor is needed on  
the GND side.  
21  
25  
29  
OUTPUT (R)  
OUTPUT (G)  
OUTPUT (B)  
Set discretionally to  
maximum 15mA,  
50  
Pin 21  
Pin 25  
Pin 29  
depending on the  
required driving capacity.  
12  

相关型号:

M52734

3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING
MITSUBISHI

M52734SP

3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING
MITSUBISHI

M52737SP

3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING
MITSUBISHI

M52738P

3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING
MITSUBISHI

M52739FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.
MITSUBISHI

M52742ASP

BUS CONTROLLED 3-CHANNEL VIDEO PREAMP FOR CRT DISPLAY MONITOR
MITSUBISHI

M52742ASP

BUS Controlled 3-Channel Video Preamp for CRT Display Monitor
RENESAS

M52742SP

BUS CONTROLLED 3-CHANNEL VIDEO PREAMP FOR CRT DISPLAY MONITOR
MITSUBISHI

M52743

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52743BSP

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52743BSP

I2C BUS Controlled 3-Channel Video Preamplifier
RENESAS

M52743SP

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI