M52734SP [MITSUBISHI]

3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING; 带OSD消隐三通道视频放大
M52734SP
型号: M52734SP
厂家: Mitsubishi Group    Mitsubishi Group
描述:

3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING
带OSD消隐三通道视频放大

消费电路 商用集成电路 音频放大器 视频放大器 光电二极管 局域网
文件: 总13页 (文件大小:102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI ICs (Monitor)  
M52734SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
DESCRIPTION  
PIN CONFIGURATION (TOP VIEW)  
The M52734SP is a semiconductor integrated circuit amplifies  
video signals, having a 3-channel amplifier with a band width of  
130MHz. The circuit also features the OSD mixing function.  
The circuit is most useful with high resolution displays that have  
OSD, and its function are available for each channel, including OSD  
blanking, OSD mixing, wide-band amplification, contrast control  
(main and sub), and brightness control.  
OSD BLK IN  
VCC1 (B)  
1
2
36 OSD ADJUST  
OUTPUT (B)  
VCC2 (B)  
HOLD (B)  
NC  
35  
34  
33  
32  
INPUT (B)  
3
SUB CONTRAST (B)  
OSD IN (B)  
4
5
GND1 (B)  
6
31 GND2 (B)  
FEATURES  
VCC1 (G)  
7
OUTPUT (G)  
VCC2 (G)  
HOLD (G)  
NC  
30  
29  
28  
27  
26  
Frequency band width: RGB................................130MHz (3VP-P)  
INPUT (G)  
8
OSD..............................................50MHz  
SUB CONTRAST (G)  
OSD IN (G)  
9
Input :RGB.............................................................0.7VP-P (typ.)  
OSD...............................................3.0VP-P min.(positive)  
BLK ...............................................3.0VP-P min. (positive)  
Output :RGB...........................................................4.0VP-P (max.)  
OSD...........................................................4.0VP-P (max.)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
GND2 (G)  
GND1 (G)  
25 OUTPUT (R)  
VCC1 (R)  
To adjust contrast, two types of controls are provided, main and  
sub. With the main control, the contrast of the 3-channels can be  
changed simultaneously. Sub controls are used to adjust the  
contrast of a given channel individually.The control terminals can  
be controlled by applying a voltage of 0 to 5V.  
VCC2 (R)  
24  
INPUT (R)  
HOLD (R)  
NC  
SUB CONTRAST (R)  
OSD IN (R)  
23  
22  
21  
20  
GND2 (R)  
NC  
GND1 (R)  
The DC power remains stable at the IC output terminal because  
a feedback circuit is built in.  
MAIN CONTRAST  
CP IN  
19 BRIGHTNESS  
APPLICATION  
Display monitor  
Outline 36P4E  
NC : NO CONNECTION  
RECOMMENDED OPERATING CONDITION  
Supply voltage range....................................................11.5 to 12.5V  
Rated supply voltage................................................................12.0V  
BLOCK DIAGRAM  
OUTPUT (B)  
OSD ADJUST VCC2 (B)  
36 35  
34  
HOLD (B)  
GND2 (B)  
OUTPUT (G)  
30  
VCC2 (G)  
HOLD (G)  
28  
NC  
27  
OUTPUT (R)  
HOLD (R)  
GND2 (R)  
BRIGHTNESS  
NC  
20  
NC  
32  
GND2 (G)  
26  
VCC2 (R)  
NC  
22  
21  
19  
33  
31  
29  
25  
24 23  
B
G
R
Brightness  
Brightness  
Brightness  
B
AMP  
B
Hold  
G
AMP  
G
Hold  
R
AMP  
R
Hold  
B
B
G
G
R
R
OSD Mix  
Blanking  
OSD Mix  
Blanking  
OSD Mix  
Blanking  
B
B
G
Clamp  
G
R
R
Clamp  
Contrast  
Contrast  
Clamp  
Contrast  
16  
17  
18  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
INPUT (R)  
14  
15  
OSD  
BLK IN  
INPUT (B)  
OSD IN  
(B)  
VCC1 (G)  
SUB  
CONTRAST(G)  
GND1 (G)  
OSD IN (R)  
MAIN  
CONTRAST  
VCC1 (B)  
GND1 (B)  
SUB  
CONTRAST(B)  
INPUT (G)  
SUB  
CONTRAST(R)  
GND1 (R)  
CP IN  
OSD IN (G)  
VCC1 (R)  
1
MITSUBISHI ICs (Monitor)  
M52734SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)  
Symbol  
VCC  
Parameter  
Ratings  
13.0  
Unit  
V
Supply voltage  
Pd  
Power dissipation  
2016  
mW  
°C  
°C  
V
Topr  
Ambient temperature  
-20 to +85  
-40 to +150  
12.0  
Tstg  
Storage temperature  
Vopr  
Recommended supply voltage  
Recommended supply voltage range  
Electrostatic discharge  
Vopr’  
Surge  
11.5 to 12.5  
±200  
V
V
ELECTRICAL CHARACTERISTICS (VCC=12V, Ta=25°C, unless otherwise noted)  
Test conditions  
Limits  
External power supply (V)  
Input  
Pulse input  
SW1  
Test  
point  
(s)  
Symbol  
Parameter  
Unit  
SW13  
R-ch  
SW8 SW3  
G-ch B-ch  
5, 10,  
15  
V4 V17 V19 V36 SW18  
Min.  
70  
Typ.  
100  
Max.  
140  
a
a
a
b
SG5  
a
ICC  
Circuit current  
A
5
5
5
5
5
2
5
mA  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
SG5  
a
Vari-  
able  
Vomax  
Vimax  
Output dynamic range  
Maximum input  
5.8  
1
6.8  
1.8  
9.0  
VP-P  
SG6 SG6 SG6  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
SG5  
a
5
5
2.5  
5
1
2
5
5
VP-P  
SG6 SG6 SG6  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
SG5  
a
Gv  
Maximum gain  
15  
0.8  
14  
17  
1
20  
1.2  
17  
dB  
SG6 SG6 SG6  
Gv  
VCR1  
Relative maximum gain  
Relative to measured values above  
b
T.P.35  
T.P.30  
T.P.25  
Contrast control  
characteristics (typical)  
b
b
b
SG5  
a
5
4
2
5
15.5  
dB  
SG6 SG6 SG6  
Contrast control relative  
characteristics (typical)  
VCR1  
Relative to measured values above  
b
0.8  
0.3  
0.8  
14  
1
0.6  
1
1.2  
0.9  
1.2  
17  
VP-P  
Contrast control  
characteristics  
(minimum)  
T.P.35  
T.P.30  
T.P.25  
b
b
b
a
VCR2  
5
1
2
5
SG6 SG6 SG6  
SG5  
Contrast control relative  
characteristics (minimum)  
VCR2  
VSCR1  
Relative to measured values above  
b
T.P.35  
T.P.30  
T.P.25  
b
b
b
a
Sub contrast control  
characteristics (typical)  
4
5
2
5
15.5  
dB  
SG6 SG6 SG6  
SG5  
Sub contrast control  
relative characteristics  
(typical)  
VSCR1  
Relative to measured values above  
b
0.8  
1
1.2  
Sub contrast control  
characteristics  
(minimum)  
T.P.35  
T.P.30  
T.P.25  
b
b
b
a
VSCR2  
VSCR2  
VSCR3  
1
5
2
5
0.5  
0.8  
0.8  
0.9  
1
1.3  
1.2  
2.2  
VP-P  
SG6 SG6 SG6  
SG5  
Sub contrast control relative  
characteristics (minimum)  
Relative to measured values above  
T.P.35  
T.P.30  
T.P.25  
Contrast/sub contrast  
control characteristics  
(typical)  
b
b
b
b
a
3
3
2
5
1.5  
VP-P  
SG6 SG6 SG6  
SG5  
Contrast/sub contrast  
control relative  
characteristics (typical)  
VSCR3  
Relative to measured values above  
a
0.8  
1
1.2  
Brightness control  
characteristics  
(maximum)  
T.P.35  
T.P.30  
T.P.25  
a
a
b
a
VB1  
5
5
4
5
3.0  
3.6  
0
4.2  
0.3  
V
V
SG5  
Brightness control relative  
characteristics (maximum)  
VB1  
Relative to measured values above  
-0.3  
2
MITSUBISHI ICs (Monitor)  
M52734SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
ELECTRICAL CHARACTERISTICS (cont.)  
Test conditions  
Limits  
External power supply (V)  
Input  
Pulse input  
SW1  
Test  
point  
(s)  
Symbol  
Parameter  
Unit  
SW13  
R-ch  
SW8 SW3  
G-ch B-ch  
5, 10,  
15  
V4 V17 V19 V36 SW18  
Min.  
Typ.  
Max.  
T.P.35  
T.P.30  
T.P.25  
Brightness control  
characteristics (typical)  
a
a
a
b
SG5  
a
VB2  
5
5
2.5  
5
1.7  
-0.3  
0.5  
2.3  
0
2.9  
0.3  
1.3  
0.3  
3
V
V
Brightness control relative  
characteristics (typical)  
VB2  
VB3  
Relative to measured values above  
a
Brightness control  
characteristics  
(minimum)  
T.P.35  
T.P.30  
T.P.25  
a
a
b
SG5  
a
5
5
1
5
0.9  
0
V
Brightness control relative  
characteristics (minimum)  
VB3  
FC1  
Relative to measured values above  
b
-0.3  
-2.5  
V
T.P.35  
T.P.30  
T.P.25  
Frequency  
characteristics 1  
(f=50MHz;maximum)  
b
b
a
a
5
2.5  
VT  
-1  
dB  
SG2 SG2 SG2  
Frequency relative  
characteristics 1  
(f=50MHz;maximum)  
FC1  
FC1’  
Relative to measured values above  
b
-1  
-3  
-1  
-3  
0
-2  
0
1
3
1
3
dB  
dB  
dB  
dB  
Frequency  
characteristics 1  
(f=130MHz;maximum)  
T.P.35  
T.P.30  
T.P.25  
b
b
a
a
5
2.5  
VT  
SG3 SG3 SG3  
Frequency relative  
characteristics 1  
(f=130MHz;maximum)  
FC1’  
FC2  
Relative to measured values above  
b
Frequency  
characteristics 2  
(f=50MHz; maximum)  
T.P.35  
T.P.30  
T.P.25  
b
b
a
a
5
5
5
5
5
5
5
5
5
5
5
5
5
1.5  
1.5  
5
VT  
VT  
VT  
VT  
VT  
VT  
VT  
VT  
2
0
SG2 SG2 SG2  
Frequency relative  
characteristics 2  
(f=130MHz; maximum)  
T.P.35  
T.P.30  
T.P.25  
b
b
b
a
a
FC2’  
C.T.1  
C.T.1’  
C.T.2  
C.T.2’  
C.T.3  
C.T.3’  
Tr  
-1  
0
-30  
-20  
-30  
-20  
-30  
-20  
3
1
-20  
-15  
-20  
-15  
-20  
-15  
7
dB  
dB  
SG3 SG3 SG3  
T.P.35  
T.P.30  
T.P.25  
b
SG2  
a
a
a
a
Crosstalk 1 (f=50MHz)  
T.P.35  
b
SG3  
a
a
a
a
Crosstalk 1 (f=130MHz) T.P.30  
T.P.25  
5
dB  
T.P.35  
T.P.30  
T.P.25  
a
b
a
a
a
Crosstalk 2 (f=50MHz)  
5
dB  
SG2  
T.P.35  
a
b
a
a
a
Crosstalk 2 (f=130MHz) T.P.30  
T.P.25  
5
dB  
SG3  
T.P.35  
T.P.30  
T.P.25  
a
a
b
SG2  
a
a
Crosstalk 3 (f=50MHz)  
5
dB  
T.P.35  
a
a
b
SG3  
a
a
Crosstalk 3 (f=130MHz) T.P.30  
T.P.25  
5
dB  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
a
Pulse characteristics 1  
Pulse characteristics 2  
3.3  
3.3  
5
nsec  
nsec  
VDC  
µsec  
VDC  
SG4 SG4 SG4  
SG5  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
a
Tf  
2
4
8
SG4 SG4 SG4  
SG5  
T.P.35  
T.P.30  
T.P.25  
Clamp pulse threshold  
voltage  
a
a
a
b
a
V14th  
W14  
PDCH  
2
1.0  
1.5  
0.1  
0
2.0  
0.5  
0.3  
SG5  
T.P.35  
T.P.30  
T.P.25  
Clamp pulse minimum  
width  
a
a
a
b
a
5
2
SG5  
T.P.35  
T.P.30  
T.P.25  
Pedestal voltage  
temperatere  
characteristics1  
b
b
b
b
a
5
2
-0.3  
SG6 SG6 SG6  
SG5  
3
MITSUBISHI ICs (Monitor)  
M52734SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
ELECTRICAL CHARACTERISTICS (cont.)  
Test conditions  
Limits  
External power supply (V)  
Input  
Pulse input  
Test  
point  
(s)  
Symbol  
Parameter  
Unit  
SW1  
SW18 5, 10,  
15  
SW8 SW3  
G-ch B-ch  
SW13  
R-ch  
V4 V17 V19 V36  
Min.  
-0.3  
Typ.  
0
Max.  
0.3  
Pedestal voltage  
temperatere  
characteristics2  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
a
PDCL  
OTr  
5
5
5
5
5
5
5
5
2
2
2
2
3
3
4
VDC  
nsec  
nsec  
VP-P  
SG6 SG6 SG6  
SG5  
T.P.35  
T.P.30  
T.P.25  
a
a
a
a
b
OSD pulse  
characteristics1  
4
4
8
8
SG7  
T.P.35  
T.P.30  
T.P.25  
a
a
a
a
b
OSD pulse  
characteristics2  
OTf  
SG7  
OSD adjusting control  
characteristics  
(maximum)  
T.P.35  
T.P.30  
T.P.25  
a
a
a
a
b
Oaj1  
Oaj1  
Oaj2  
Oaj2  
OSDth  
V1th  
3.5  
0.8  
4.0  
1
4.5  
1.2  
0.5  
1.2  
3.5  
3.5  
SG7  
OSD adjusting control  
relative characteristics  
(maximum)  
Relative to measured values above  
a
OSD adjusting control  
characteristics  
(minimum)  
T.P.35  
T.P.30  
T.P.25  
a
a
a
b
5
5
2
0
0
VP-P  
SG7  
OSD adjusting control  
relative characteristics  
(minimum)  
Relative to measured values above  
a
0.8  
1.7  
1.7  
1
T.P.35  
T.P.30  
T.P.25  
OSD input threshold  
voltage  
a
a
a
b
5
5
2
5
2.5  
2.5  
VDC  
VDC  
SG7  
SW1  
only  
b
T.P.35  
T.P.30  
T.P.25  
BLK input threshold  
voltage  
b
b
b
a
5
5
2
5
SG6 SG6 SG6  
SG7  
ELECTRICAL CHARACTERISTICS TEST METHOD  
1. Because a description of signal input pin and pulse input pin  
switch numbers is already given in Supplementary Table, only  
external power supply switch numbers are included in the notes  
below.  
(V)  
5.0  
Sub contrast voltages V4, V9 and V14 are always set to the same  
voltage, therefore only V4 is referred to in Supplementary Table.  
ICC Circuit current  
Measuring conditions are as listed in Supplementary Table.  
0.0  
Measured with an ammeter At test point A when SW1 is set to a.  
Waveform Output at T.P25  
(Identical to output at T.P30 and T.P35.)  
Vomax Output dynamic range  
2. Voltage VT (VTR, VTG and VTB) is calculated by the equation  
below:  
Voltage V19 is varied as described below:  
1. Increase V19 gradually while inputting SG6 to pin 13 (8 or 3).  
Measure the voltage when the top of the waveform output at  
T.P25 (30 or 35) is distorted.The voltage is called VTR1 (VTG1 or  
VTB1). Next, decrease V19 gradually, and measure the voltage  
when the bottom of the waveform output at T.P35 (30 or 25) is  
distorted. The voltage is called VTR2 (VTG2 or VTB2).  
VTR1 (VTG1, VTB1) + VTR2 (VTG1, VTB1)  
VTR (VTG, VTB)=  
2
Use relevant voltages, depending on the pin at which the  
waveform is output; specifically, use VTR1 when it is output at  
T.P25; VTG1, at T.P30, and VTB, at T.P35.  
4
MITSUBISHI ICs (Monitor)  
M52734SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
3. After setting VTR (VTG or VTB), increase the SG6 amplitude  
VSCR1 Sub contrast control characteristics (typical)  
gradually, starting from 700mV. Measure the amplitude when the  
top and bottom of the waveform output at T.P25 (30 or starts  
becoming distorted synchronously.  
VSCR1 Sub contrast control relative characteristics (typical)  
1. Set V4, V9 and V14 to 4.0V. Other conditions are as given in  
Supplementary Table.  
2. Measure the amplitude output at T.P25 (30 or 35).The measured  
value is called VOR4 (VOG4 or VOB4).  
Vimax Maximum input  
Measuring conditions are the same as those used above, except  
3. Sub contrast control characteristics VSCR1 and relative  
characteristics VSCR1 are calculated, respectively, by the  
equations below:  
that the setting of V17 is changed to 2.5V as specified in  
Supplementary Table. Increase the input signal amplitude gradually,  
[VP-P]  
[VP-P]  
VOR4 (VOG4, VOB4)  
0.7  
starting from 700mVP-P. Measure the amplitude when the output  
signal starts becoming distorted.  
VSCR1=20LOG  
VSCR1=VOR4/VOG4, VOG4/VOB4, VOB4/VOR4  
Gv Maximum gain  
VSCR2 Sub contrast control characteristics (minimum)  
Gv Relative maximum gain  
VSCR2 Sub contrast control relative characteristics (minimum)  
1. Input SG6 to pin 13 (8 or 3), and read the amplitude at output  
T.P25 (30 or 35). The amplitude is called VOR1 (VOG1 or VOB1) .  
2. Maximum gain GV is calculated by the equation below:  
1. Set V4, V9 and V14 to 1.0V. Other conditions are as given in  
Supplementary Table.  
2. Measure the amplitude output at T.P25 (30 or 35).The measured  
value is called VOR5 (VOG5 or VOB5).  
[VP-P]  
[VP-P]  
VOR1 (VOG1, VOB1)  
0.7  
GV=20LOG  
3. Relative characteristics VSCR2 are calculated by the equation  
below:  
3. Relative maximum gain G is calculated by the equation below:  
GV=VOR1/VOG1, VOG1/VOB1, VOB1/VOR1  
VSCR2=VOR5/VOG5, VOG5/VOB5, VOB5/VOR5  
VCR1 Contrast control characteristics (typical)  
VSCR3 Contrast/sub contrast control characteristics (typical)  
VCR1 Contrast control relative characteristics (typical)  
VSCR3 Contrast/sub contrast control relative  
1. Measuring conditions are as given in Supplementary Table.  
The setting of V17 is changed to 4V.  
characteristics (typical)  
1. Set V4, V9, V14 and V17 to 3.0V. Other conditions are as given  
in Supplementary Table.  
2. Measure the amplitude output at T.P25 (30 or 35).The measured  
value is called VOR2 (VOG2 or VOB2).  
2. Measure the amplitude at T.P25 (30 or 35).The measured value  
is called VOR6 (VOG6 or VOB6).  
3. Contrast control characteristics VCR1 and relative characteristics  
VCR1 are calculated, respectively, by the equations below:  
[VP-P]  
[VP-P]  
VOR6 (VOG6, VOB6)  
0.7  
[VP-P]  
[VP-P]  
VCR3=20LOG  
VOR2 (VOG2, VOB2)  
0.7  
VCR1=20LOG  
VCR3=VOR6/VOG6, VOG6/VOB6, VOB6/VOR6  
VCR1=VOR2/VOG2, VOG2/VOB2, VOB2/VOR1  
VB1 Brightness control characteristics (maximum)  
VB1 Brightness control relative characteristics (maximum)  
VCR2 Contrast control characteristics (minimum)  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the output at T.P25 (30 or 35) with a voltmeter.  
The measured value is called VOR7 (VOG7 or VOB7), and is treated  
as VB1.  
VCR2 Contrast control relative characteristics (minimum)  
1. Measuring conditions are as given in Supplementary Table.  
The setting of V17 is changed to 1.0V.  
2. Measure the amplitude output at T.P25 (30 or 35).The measured  
value is called VOR3 (VOG3 or VOB3), and is treated as VCR2.  
3. Contrast control relative characteristics VCR2 are calculated by  
the equation below:  
3. To obtain brightness control relative characteristics, calculate the  
difference in the output between the channels, using VOR7, VOG7  
and VOB7.  
VCR2=VOR3/VOG3, VOG3/VOB3, VOB3/VOR3  
VB1=VOR7-VOG7  
=VOG7-VOB7  
[mV]  
=VOB7-VOR7  
5
MITSUBISHI ICs (Monitor)  
M52734SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
VB2 Brightness control characteristics (typical)  
FC2 Frequency characteristics2 (f=50MHz; maximum)  
VB2 Brightness control relative characteristics (typical)  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the output at T.P25 (30 or 35) with a voltmeter.  
The measured value is called VOR7' (VOG7' or VOB7'), and is  
treated as VB2.  
FC2' Frequency relative characteristics2  
(f=130MHz; maximum)  
Measuring conditions and procedure are the same as described in  
FC1, FC1, FC1', FC1', except that CONTRAST (V17) is turned  
down to 1.5V.  
3. To obtain brightness control relative characteristics (VB2),  
calculate the difference in the output between the channels,  
using VOR7', VOG7', and VOB7'.  
C.T.1 Crosstalk1 (f=50MHz)  
C.T.1' Crosstalk1 (f=130MHz)  
1. Measuring conditions are as given in Supplementary Table.  
2. Input SG2 (or SG3) to pin 13 (R-ch) only, and then measure the  
waveform amplitude output at T.P25 (30 or 35). The measured  
value is called VOR, VOG and or VOB respectively.  
VB2 =VOR7'-VOG7'  
=VOG7'-VOB7'  
[mV]  
=VOB7'-VOR7'  
3. Crosstalk C.T. 1 is calculated by the equation below:  
VB3 Brightness control characteristics (minimum)  
VOG or VOB  
VOR  
[VP-P]  
[VP-P]  
[dB]  
C.T.1 =20LOG  
(C.T.1')  
VB3 Brightness control relative characteristics (minimum)  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the output at T.P25 (30 or 35) with a voltmeter.  
The measured value is called VOR7" (VOG7" or VOB7"), and is  
treated as VB2.  
C.T.2 Crosstalk2 (f=50MHz)  
C.T.2' Crosstalk2 (f=130MHz)  
3. To obtain brightness control relative characteristics (VB3),  
calculate the difference in the output between the channels,  
using VOR7", VOG7" and VOB7".  
1. Change the input pin from pin 13 (R-ch) to pin 8 (G-ch), and  
measure the output in the same way as in C.T.1, C.T.1'.  
2. Crosstalk C.T. 2 is calculated by the equation below:  
VOR or VOB  
VOG  
[VP-P]  
[VP-P]  
VB3 =VOR7''-VOG7''  
=VOG7''-VOB7''  
[mV]  
[dB]  
C.T.2 =20LOG  
(C.T.2')  
=VOB7''-VOR7''  
FC1 Frequency characteristics1 (f=50MHz; maximum)  
C.T.3 Crosstalk3 (f=50MHz)  
C.T.3' Crosstalk3 (f=130MHz)  
FC1 Frequency relative characteristics1  
(f=50MHz; maximum)  
1. Change the input pin from pin 13 (R-ch) to pin 3 (B-ch), and  
measure the output in the same way as in C.T.1, C.T.1'.  
2. Crosstalk C.T. 3 is calculated by the equation below:  
FC1' Frequency characteristics1 (f=130MHz; maximum)  
FC1' Frequency relative characteristics1  
(f=130MHz; maximum)  
VOR or VOG  
VOB  
[VP-P]  
[VP-P]  
1. Measuring conditions are as given in Supplementary Table.  
[dB]  
C.T.3 =20LOG  
(C.T.3')  
2. SG1 SG2 and SG3 are input. The amplitude of the waveform  
output at T.P25 (30 or 35) is measured.  
3. Supposing that the measured value is treated as amplitude VOR1  
(VOG1 or VOB1) when SG1 is input, as VOR8 (VOG8 or VOB8) when  
SG2 is input, or as VOR9 (VOG9 or VOB9) when SG3 is input,  
frequency characteristics FC1 and FC1' are calculated as follows:  
VOR8 (VOG8, VOB8)  
VOR1 (VOG1, VOB1)  
[VP-P]  
[VP-P]  
FC1=20LOG  
FC1'=20LOG  
VOR9 (VOG9, VOB9)  
VOR1 (VOG1, VOB1)  
[VP-P]  
[VP-P]  
4. Frequency relative band widths FC1 and FC1' are equal to the  
difference in FC1 and FC1', respectively, between the channels.  
6
MITSUBISHI ICs (Monitor)  
M52734SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
Tr Pulse characteristics1  
Tf Pulse characteristics2  
Oaj1 OSD adjusting control characteristics (maximum)  
Oaj1 OSD adjusting control relative  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the time needed for the input pulse to rise from 10% to  
90% (Tr1) and to fall from 90% to 10% (Tf1) with an active prove.  
3. Measure the time needed for the output pulse to rise from 10%  
to 90% (Tr2) and to fall from 90% to 10% (Tf2) with an active  
prove.  
characteristics (maximum)  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the amplitude at T.P25 (30 or 35).The measured value  
is called VORA (VOGA or VOBA), and is treated as Oaj1.  
3. OSD adjusting control relative characteristics Oaj1 are  
calculated by the equation below:  
4. Pulse characteristics Tr and Tf are calculated by the equation  
below:  
Oaj2 OSD adjusting control characteristics (minimum)  
Oaj2 OSD adjusting control relative  
2
2
Tr (nsec)= (Tr2) -(Tr1)  
characteristics (minimum)  
2
2
Tf (nsec)= (Tf2) -(Tf1)  
1. Measuring conditions are as given in Supplementary Table,  
except that V36 is set to 0V.  
100%  
90%  
2. Measure the amplitude at T.P25 (30 or 35).The measured value  
is called VORB (VOGB or VOBB), and is treated as Oaj2.  
3. OSD adjusting control relative characteristics Oaj2 are  
calculated by the equation below:  
10%  
0%  
OSDth OSD input threshold voltage  
Tf  
Tr  
1. Measuring conditions are as given in Supplementary Table.  
2. Reduce the SG7 input level gradually, monitoring output.  
Measure the SG7 level when the output reaches 0V. The  
measured value is called OSDth.  
V14th Clamp pulse threshold voltage  
1. Measuring conditions are as given in Supplementary Table.  
2. Turn down the SG5 input level gradually, monitoring the output  
(about 2.0 VDC). Measure the SG5 input level when the output  
reaches 0V.  
V1th BLK input threshold voltage  
1. Measuring conditions are as given in Supplementary Table.  
2. Make sure that signals are not being output synchronously with  
SG7 (blanking period).  
W14 Clamp pulse minimum width  
Under the same conditions as given in Note 19, reduce the SG5  
pulse width gradually, monitoring the output. Measure the SG5  
pulse width when the output reaches 0V.  
3. Reduce the SG7 input level gradually, monitoring output.  
Measure the SG7 level when the blanking period disappears.  
The measured value is called V1th.  
PDCH Pedestal voltage temperatere characteristics1  
PDCL Pedestal voltage temperatere characteristics2  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the pedestal voltage at room temperature.  
The measured value is called PDC1.  
3. Measure the pedestal voltage at temperatures of -20°C and  
85°C. The measured value is called, respectively, PDC2 and  
PDC3.  
4. PDCH=PDC1 - PDC2  
PDCL=PDC1 - PDC3  
OTr OSD pulse characteristics1  
OTf OSD pulse characteristics2  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the time needed for the the output pulse to rise from  
10% to 90% (OTr) and to fall from 90% to 10% (OTf) with an  
active prove.  
7
MITSUBISHI ICs (Monitor)  
M52734SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
INPUT SIGNAL  
SG No.  
Signals  
Sine wave of amplitude 0.7VP-P (f=1MHz)  
SG1  
0.7VP-P  
SG2  
SG3  
Sine wave with amplitude of 0.7VP-P (f=50MHz)  
Sine wave with amplitude of 0.7VP-P (f=130MHz)  
Pulse with amplitude of 0.7VP-P (f=1MHz, duty=50%)  
Pulses which are synchronous with SG4 pedestal portion  
SG4  
0.7VP-P  
Pulses which are synchronous with standard video step waveform pedestal portion:  
amplitude, 2.0VP-P; and pulse width, 3.0µs (pulse width and amplitude sometimes variable)  
SG5  
2.0VP-P  
0V  
3.0µs  
3.0µs  
SG6  
Standard  
video step  
waveform  
Video signal with amplitude of 0.7VP-P (f=30kHz, amplitude sometimes variable)  
4V  
SG7  
OSD BLK  
and OSD  
signals  
0V  
Pulses which are synchronous with standard video step waveform’s video portions: amplitude, 4.0VP-P; and pulse width, 25µs  
8
MITSUBISHI ICs (Monitor)  
M52734SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
TEST CIRCUIT  
680  
680  
680  
V19  
V36  
2.2µ  
2.2µ  
2.2µ  
36  
35  
34  
31  
29  
20  
19  
23  
22  
21  
33  
32  
30  
27  
26  
25  
24  
28  
VCC  
NC  
GND  
VCC  
NC  
GND  
VCC  
NC  
GND  
NC  
M52734SP  
VCC  
2
GND  
6
VCC  
7
GND  
11  
GND  
16  
VCC  
12  
1
3
4
5
8
9
10  
13  
14  
15  
17  
18  
V4  
0.01µ  
0.01µ  
0.01µ  
SW1  
a
V9  
V14  
V17  
b
SW18  
a
SW10  
a
SW15  
a
SW13  
SW3  
a
SW5  
a
SW8  
b
a
a
b
b
b
b
b
b
SG7  
SG5  
100µ  
A
a
b
0.01µ  
SG1  
SG2  
SG3  
SG4  
SG6  
SG7  
SWA  
Units Resistance : Ω  
12V  
Capacitance : F  
TYPICAL CHARACTERISTICS  
THERMAL DERATING (MAXIMUM RATING)  
2400  
2016  
2000  
1600  
1200  
800  
400  
-20  
0
25  
50  
75 85 100 125 150  
AMBIENT TEMPERATURE Ta (°C)  
9
MITSUBISHI ICs (Monitor)  
M52734SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
APPLICATION EXAMPLE  
CRT  
110V  
DC CLAMP  
680  
680  
680  
0 to 5V  
0 to 5V  
NC  
32  
NC  
27  
NC  
22  
NC  
20  
36  
35  
34  
33  
31  
30  
29  
28  
26  
25  
24  
23  
21  
19  
M52734SP  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
0 to 5V  
0 to 5V  
0 to 5V  
0 to 5V  
12V  
OSD BLK  
IN  
INPUT  
(B)  
OSD IN  
(B)  
INPUT  
(G)  
OSD IN  
(G)  
INPUT  
(R)  
OSD IN  
(R)  
CLAMP  
Units Resistance : Ω  
Capacitance : F  
10  
MITSUBISHI ICs (Monitor)  
M52734SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
DESCRIPTION OF PIN  
Pin No.  
Name  
DC voltage (V )  
Peripheral circuit of pins  
Description of function  
VCC  
Input pulses of minimum  
3V.  
B-ch  
G-ch  
3 to 5V  
1
1
OSD BLK IN  
1V  
maximum  
Connected to GND if not  
used.  
2.5V  
GND  
0.9mA  
2
7
12  
VCC (B-ch)  
VCC (G-ch)  
VCC (R-ch)  
Apply equivalent  
voltage to 3 channels.  
12  
VCC  
2k  
2k  
Clamped to about 2.5V  
due to clamp pulses  
from pin 18.  
3
8
13  
INPUT (B)  
INPUT (G)  
INPUT (R)  
2.5  
Input at low impedance.  
2.5V  
CP  
GND  
0.24mA  
VCC  
1.5k  
4
9
Subcontrast  
(B)  
Subcontrast  
(G)  
Use at maximum 5V  
for stable operation.  
2.5  
23.5k  
2.5V  
14  
Subcontrast  
(R)  
GND  
VCC  
Input pulses of minimum  
3V.  
3 to 5V  
5
10  
15  
OSD IN (B)  
OSD IN (G)  
OSD IN (R)  
1V  
maximum  
2.2V  
Connected to GND if not  
used.  
GND  
1.1mA  
11  
MITSUBISHI ICs (Monitor)  
M52734SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
DESCRIPTION OF PIN (cont.)  
Pin No.  
Name  
DC voltage (V )  
GND  
Peripheral circuit of pins  
Description of function  
6, 31  
11, 26  
16, 21  
GND (B-ch)  
GND (G-ch)  
GND (R-ch)  
VCC  
1.5k  
Main  
contrast  
Use at maximum 5V for  
stable operation.  
2.2V  
17  
2.5  
23.5k  
GND  
17  
VCC  
41k  
Input pulses of minimum  
2.5V.  
2.5V  
minimum  
18  
CP IN  
18  
0.5V  
maximum  
2.2V  
Input at low impedance.  
GND  
VCC  
20.3k  
B-ch  
G-ch  
19  
Brightness  
19  
GND  
Connected to GND  
usually; otherwise kept  
open.  
20, 22, 27, 32 NC  
VCC  
1k  
23  
28  
33  
Hold (R)  
Hold (G)  
Hold (B)  
A capacity is needed on  
the GND side.  
Variable  
0.2mA  
GND  
12  
MITSUBISHI ICs (Monitor)  
M52734SP  
3-CHANNEL VIDEO AMPLIFICATION WITH OSD BLANKING  
DESCRIPTION OF PIN (cont.)  
Pin No.  
Name  
DC voltage (V )  
Apply 12  
Peripheral circuit of pins  
Description of function  
Used to supply power to  
output emitter follower  
only.  
Apply equivalent voltage  
to 3 channels.  
24  
29  
34  
VCC2 (R)  
VCC2 (G)  
VCC2 (B)  
Pin 24  
Pin 29  
Pin 34  
A resistor is needed on  
the GND side.  
25  
30  
35  
OUTPUT (R)  
OUTPUT (G)  
OUTPUT (B)  
Set discretionally to  
maximum 15mA,  
Variable  
50  
Pin 25  
Pin 30  
Pin 35  
depending on the  
required driving capacity.  
VCC  
65k  
65k  
50k  
1k  
Pulled up directly to VCC  
or open if not used.  
36  
OSD adjust  
Apply at open 5.5V  
10P  
55k  
55k  
GND  
13  

相关型号:

M52737SP

3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING
MITSUBISHI

M52738P

3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING
MITSUBISHI

M52739FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.
MITSUBISHI

M52742ASP

BUS CONTROLLED 3-CHANNEL VIDEO PREAMP FOR CRT DISPLAY MONITOR
MITSUBISHI

M52742ASP

BUS Controlled 3-Channel Video Preamp for CRT Display Monitor
RENESAS

M52742SP

BUS CONTROLLED 3-CHANNEL VIDEO PREAMP FOR CRT DISPLAY MONITOR
MITSUBISHI

M52743

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52743BSP

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52743BSP

I2C BUS Controlled 3-Channel Video Preamplifier
RENESAS

M52743SP

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52744

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52744SP

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI