M52737SP [MITSUBISHI]

3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING; 3路视频前置放大器, OSD的混合,回扫消隐
M52737SP
型号: M52737SP
厂家: Mitsubishi Group    Mitsubishi Group
描述:

3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING
3路视频前置放大器, OSD的混合,回扫消隐

放大器 局域网
文件: 总15页 (文件大小:121K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
DESCRIPTION  
PIN CONFIGURATION (TOP VIEW)  
The M52737SP is a semiconductor integrated circuit amplifies  
video signals, having a 3-channel amplifier with a band width of  
150MHz. The circuit also features the OSD mixing function.  
The circuit is most useful with high-resolution displays that have  
OSD, and its function are available for each channel, including OSD  
blanking, OSD mixing, retrace blanking, wide-band amplification,  
contrast control (main and sub), and brightness control.  
BLK IN (FOR OSD)  
VCC1 (B)  
1
2
36 OSD ADJUST  
OUTPUT (B)  
VCC2 (B)  
HOLD (B)  
NC  
35  
34  
33  
32  
INPUT (B)  
3
SUB CONTRAST (B)  
OSD IN (B)  
4
5
GND1 (B)  
6
31 GND2 (B)  
FEATURES  
VCC1 (G)  
7
OUTPUT (G)  
VCC2 (G)  
HOLD (G)  
NC  
30  
29  
28  
27  
26  
Frequency band width: RGB................................150MHz (3VP-P)  
INPUT (G)  
8
OSD..............................................50MHz  
SUB CONTRAST (G)  
OSD IN (G)  
9
Input :RGB.............................................................0.7VP-P (typ.)  
OSD...............................................3.0VP-P min.(positive)  
BLK (for OSD)...............................3.0VP-P min. (positive)  
Retrace BLK..................................3.0VP-P min. (positive)  
Output :RGB...........................................................4.5VP-P (max.)  
OSD...........................................................4.5VP-P (max.)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
GND2 (G)  
GND1 (G)  
25 OUTPUT (R)  
VCC1 (R)  
VCC2 (R)  
24  
INPUT (R)  
To adjust contrast and OSD Adj, for each, two types of controls  
are provided, main and sub.With the main control, the contrast or  
OSD Adj of the 3-channels can be changed simultaneously. Sub  
controls are used to adjust the contrast of a given channel  
individually.The control terminals can be controlled by applying a  
voltage of 0 to 5V.  
HOLD (R)  
SUB CONTRAST (R)  
OSD IN (R)  
23  
22  
21  
20  
NC  
GND2 (R)  
GND1 (R)  
BLK IN (FOR RETRACE)  
MAIN CONTRAST  
CP IN  
The DC power remains stable at the IC output terminal because  
19 BRIGHTNESS  
a feedback circuit is built in.  
Outline 36P4E  
APPLICATION  
Display monitor  
NC : NO CONNECTION  
RECOMMENDED OPERATING CONDITION  
Supply voltage range....................................................11.5 to 12.5V  
Rated supply voltage................................................................12.0V  
BLOCK DIAGRAM  
OUTPUT (B)  
HOLD (B)  
33  
GND2 (B)  
OUTPUT (G)  
31 30 29  
VCC2 (G)  
HOLD (G)  
28  
NC  
27  
OUTPUT (R)  
HOLD (R)  
BLK IN (FOR RETRACE)  
OSD ADJUST  
36 35  
VCC2 (B)  
34  
NC  
32  
GND2 (G)  
26  
VCC2 (R)  
24  
NC GND2 (R)  
21  
BRIGHTNESS  
19  
20  
25  
23  
22  
B-ch  
BLK  
G-ch  
BLK  
R-ch  
BLK  
B
G
R
Brightness  
Brightness  
Brightness  
B
AMP  
B
Hold  
G
AMP  
G
Hold  
R
R
AMP  
Hold  
B
B OSD  
Blanking  
G
G OSD  
Blanking  
R
R OSD  
OSD Mix  
Blanking  
OSD Mix  
OSD Mix  
B
B
G
Clamp  
G
R
R
Clamp  
Contrast  
Contrast  
Clamp  
Contrast  
16  
17  
MAIN  
18  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
INPUT (R)  
14  
15  
BLK IN  
(FOR OSD)  
INPUT (B)  
OSD IN  
(B)  
VCC1 (G)  
SUB  
CONTRAST(G)  
INPUT (G)  
GND1 (G)  
OSD IN (R)  
CONTRAST  
GND1 (R) CP IN  
SUB  
SUB  
CONTRAST(R)  
VCC1 (B)  
GND1 (B)  
CONTRAST(B)  
OSD IN (G)  
VCC1 (R)  
1
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)  
Symbol  
VCC  
Parameter  
Ratings  
13.0  
Unit  
V
Supply voltage  
Pd  
Power dissipation  
2403  
mW  
°C  
°C  
V
Topr  
Ambient temperature  
-20 to +85  
-40 to +150  
12.0  
Tstg  
Storage temperature  
Vopr  
Recommended supply voltage  
Recommended supply voltage range  
Electrostatic discharge  
Vopr’  
Surge  
11.5 to 12.5  
±200  
V
V
ELECTRICAL CHARACTERISTICS (VCC=12V, Ta=25°C, unless otherwise noted)  
Test conditions  
Limits  
External power supply (V)  
Input  
Pulse input  
Test  
point  
(s)  
Symbol  
Parameter  
Unit  
SW1,  
SW18 5, 10, SW20  
15  
SW8 SW3  
G-ch B-ch  
SW13  
R-ch  
V4 V17 V19 V36  
Min.  
72  
Typ.  
93  
Max.  
115  
a
a
a
b
a
a
ICC  
Circuit current  
A
5
5
5
5
5
2
mA  
SG4  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
a
a
Vari-  
able  
Vomax  
Vimax  
Output dynamic range  
Maximum input  
6.2  
1
7.7  
1.6  
9.2  
VP-P  
SG5 SG5 SG5  
SG4  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
a
a
5
5
2.5  
5
2
2
VP-P  
SG5 SG5 SG5  
SG4  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
a
a
Gv  
Maximum gain  
16.4  
0.8  
17.8  
1
19.4  
1.2  
dB  
SG5 SG5 SG5  
SG4  
Gv  
VCR1  
Relative maximum gain  
Relative to measured values above  
T.P.35  
T.P.30  
T.P.25  
Contrast control  
characteristics (typical)  
b
b
b
b
a
a
5
4
2
14.5  
16.0  
17.5  
dB  
SG5 SG5 SG5  
SG4  
Contrast control relative  
characteristics (typical)  
VCR1  
Relative to measured values above  
0.8  
0.4  
1
0.7  
1
1.2  
1.0  
VP-P  
Contrast control  
characteristics  
(minimum)  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
SG4  
a
a
VCR2  
5
1
2
SG5 SG5 SG5  
Contrast control relative  
characteristics (minimum)  
VCR2  
VSCR1  
Relative to measured values above  
0.8  
1.2  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
SG4  
a
a
Sub contrast control  
characteristics (typical)  
4
5
2
14.5  
16.0  
17.5  
dB  
SG5 SG5 SG5  
Sub contrast control  
relative characteristics  
(typical)  
VSCR1  
Relative to measured values above  
0.8  
1
1.2  
Sub contrast control  
characteristics  
(minimum)  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
SG4  
a
a
VSCR2  
VSCR2  
VSCR3  
1
5
2
0.5  
0.8  
1.1  
0.9  
1
1.3  
1.2  
2.5  
VP-P  
SG5 SG5 SG5  
Sub contrast control relative  
characteristics (minimum)  
Relative to measured values above  
T.P.35  
T.P.30  
T.P.25  
Contrast/sub contrast  
control characteristics  
(typical)  
b
b
b
b
SG4  
a
a
3
3
2
1.8  
VP-P  
SG5 SG5 SG5  
Contrast/sub contrast  
control relative  
characteristics (typical)  
VSCR3  
Relative to measured values above  
0.8  
1
1.2  
Brightness control  
characteristics  
(maximum)  
T.P.35  
T.P.30  
T.P.25  
a
a
a
b
SG4  
a
a
VB1  
5
5
4
3.0  
3.6  
0
4.2  
0.3  
V
V
Brightness control relative  
characteristics (maximum)  
VB1  
Relative to measured values above  
-0.3  
2
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
ELECTRICAL CHARACTERISTICS (cont.)  
Test conditions  
Limits  
Typ.  
External power supply (V)  
Input  
Pulse input  
SW1,  
Test  
point  
(s)  
Symbol  
Parameter  
Unit  
SW8 SW3  
G-ch B-ch  
SW13  
R-ch  
SW18  
SW20  
5, 10,  
15  
V4 V17 V19 V36  
Min.  
Max.  
T.P.35  
T.P.30  
T.P.25  
Brightness control  
characteristics (typical)  
a
a
a
b
SG4  
a
a
VB2  
5
5
2
1.2  
-0.3  
0.3  
-0.3  
-2  
1.8  
0
2.4  
0.3  
1.1  
0.3  
2.5  
V
V
Brightness control relative  
characteristics (typical)  
VB2  
VB3  
Relative to measured values above  
Brightness control  
characteristics  
(minimum)  
T.P.35  
T.P.30  
T.P.25  
a
a
a
b
SG4  
a
a
5
5
1
0.7  
0
V
Brightness control relative  
characteristics (minimum)  
VB3  
FC1  
Relative to measured values above  
V
T.P.35  
T.P.30  
T.P.25  
Frequency  
characteristics 1  
(f=50MHz;maximum)  
b
b
b
c
a
a
Vari-  
able  
5
0
dB  
SG1 SG1 SG1  
Frequency relative  
characteristics 1  
FC1  
FC1’  
Relative to measured values above  
-1  
-3  
-1  
-3  
0
-2.0  
0
1
3
1
3
dB  
(f=50MHz;maximum)  
Frequency  
characteristics 1  
(f=150MHz;maximum)  
T.P.35  
T.P.30  
T.P.25  
b
b
b
c
a
a
Vari-  
able  
5
SG2 SG2 SG2  
Frequency relative  
characteristics 1  
(f=150MHz;maximum)  
FC1’  
FC2  
Relative to measured values above  
Frequency  
characteristics 2  
(f=150MHz; maximum)  
T.P.35  
T.P.30  
T.P.25  
b
b
b
c
a
a
Vari-  
able  
5
0
dB  
SG2 SG2 SG2  
Frequency relative  
characteristics 2  
(f=150MHz; maximum)  
FC2  
C.T.1  
C.T.1’  
C.T.2  
C.T.2’  
C.T.3  
C.T.3’  
Tr  
Relative to measured values above  
-1  
0
-30  
-20  
-30  
-20  
-30  
-20  
2.5  
2.5  
1.5  
0.5  
0
1
-20  
-15  
-20  
-15  
-20  
-15  
T.P.35  
T.P.30  
T.P.25  
b
SG1  
a
a
c
a
a
Crosstalk 1 (f=50MHz)  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
dB  
T.P.35  
b
SG2  
a
a
c
a
a
Crosstalk 1 (f=150MHz) T.P.30  
T.P.25  
dB  
T.P.35  
T.P.30  
T.P.25  
a
b
SG1  
a
c
a
a
Crosstalk 2 (f=50MHz)  
dB  
T.P.35  
a
b
SG2  
a
c
a
a
Crosstalk 2 (f=150MHz) T.P.30  
T.P.25  
dB  
T.P.35  
T.P.30  
T.P.25  
a
a
b
c
a
a
Crosstalk 3 (f=50MHz)  
dB  
SG1  
T.P.35  
a
a
b
c
a
a
Crosstalk 3 (f=150MHz) T.P.30  
T.P.25  
dB  
SG2  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
SG4  
a
a
Vari- Vari-  
able able  
Pulse characteristics 1  
Pulse characteristics 2  
nsec  
nsec  
VDC  
µsec  
VDC  
SG3 SG3 SG3  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
SG4  
a
a
Vari- Vari-  
able able  
Tf  
SG3 SG3 SG3  
T.P.35  
T.P.30  
T.P.25  
Clamp pulse threshold  
voltage  
b
b
b
b
SG4  
a
a
V14th  
W14  
PDCH  
5
5
5
2
2
2
1.0  
0.2  
-0.3  
2.5  
SG5 SG5 SG5  
T.P.35  
T.P.30  
T.P.25  
Clamp pulse minimum  
width  
b
b
b
b
SG4  
a
a
SG5 SG5 SG5  
T.P.35  
T.P.30  
T.P.25  
Pedestal voltage  
temperature  
characteristics1  
b
b
b
b
SG4  
a
a
0.3  
SG5 SG5 SG5  
3
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
ELECTRICAL CHARACTERISTICS (cont.)  
Test conditions  
Limits  
Typ.  
External power supply (V)  
Input  
Pulse input  
SW1,  
Test  
point  
(s)  
Symbol  
Parameter  
Unit  
SW8 SW3  
G-ch B-ch  
SW13  
R-ch  
SW18  
SW20  
5, 10,  
15  
V4 V17 V19 V36  
Min.  
-0.3  
Max.  
0.3  
Pedestal voltage  
temperature  
characteristics2  
T.P.35  
T.P.30  
T.P.25  
b
b
b
b
a
a
PDCL  
OTr  
5
5
5
5
5
5
5
5
2
0
3.5  
3.5  
4.6  
1
VDC  
nsec  
nsec  
VP-P  
SG5 SG5 SG5  
SG4  
T.P.35  
T.P.30  
T.P.25  
SW1...a  
other...b  
OSD pulse  
characteristics1  
a
a
a
b
a
Vari- Vari-  
able able  
8
8
SG4  
SG6  
T.P.35  
T.P.30  
T.P.25  
SW1...a  
other...b  
OSD pulse  
characteristics2  
a
a
a
b
a
Vari- Vari-  
able able  
OTf  
SG4  
SG6  
OSD adjusting control  
characteristics  
(maximum)  
T.P.35  
T.P.30  
T.P.25  
a
a
a
b
b
a
Oaj1  
Oaj1  
Oaj2  
Oaj2  
OSDth  
V1th  
HBLK  
HVth  
2
4
3.9  
0.8  
5.3  
1.2  
0.5  
1.2  
3.5  
3.5  
0.5  
2.5  
SG4 SG6  
OSD adjusting control  
relative characteristics  
(maximum)  
Relative to measured values above  
OSD adjusting control  
characteristics  
(minimum)  
T.P.35  
T.P.30  
T.P.25  
a
a
a
b
b
a
5
5
2
0
0
VP-P  
SG4 SG6  
OSD adjusting control  
relative characteristics  
(minimum)  
Relative to measured values above  
0.8  
1.7  
1.7  
1
T.P.35  
T.P.30  
T.P.25  
SW1...a  
other...b  
OSD input threshold  
voltage  
a
a
a
b
a
5
5
5
5
5
5
5
5
2
2
2
2
5
5
0
0
2.5  
2.5  
0.2  
1.5  
VDC  
VDC  
VDC  
VDC  
SG4  
SG6  
T.P.35  
T.P.30  
T.P.25  
SW1...b  
BLK input threshold  
voltage  
b
b
b
b
a
SG6  
SG5 SG5 SG5  
SG4  
other...a  
T.P.35  
T.P.30  
T.P.25  
a
a
a
a
a
b
SG7  
Retrace BLK voltage  
T.P.35  
T.P.30  
T.P.25  
a
a
a
a
a
b
SG7  
Retrace BLK input  
threshold voltage  
0.5  
ELECTRICAL CHARACTERISTICS TEST METHOD  
1. Because a description of signal input pin and pulse input pin  
switch numbers is already given in Supplementary Table, only  
external power supply switch numbers are included in the notes  
below.  
2. Increase V19 gradually, and measure the voltage when the top  
of the waveform output at T.P25 (30 or 35) is distorted. The  
voltage is called VOHR (VOHG or VOHB).  
3. Voltage VOMAX is calculated by the equation below:  
VOMAX=VOHR (VOHG, VOHB)-VOLR (VOLG, VOLB)  
Sub contrast voltages V4, V9 and V14 are always set to the same  
voltage, therefore only V4 is referred to in Supplementary Table.  
(V)  
ICC Circuit current  
Measuring conditions are as listed in Supplementary Table.  
5.0  
Measured with an ammeter At test point A when SWA is set to b.  
Vomax Output dynamic range  
Voltage V19 is varied as described below:  
1. Decrease V19 gradually while inputting SG5 to pin 13 (8 or 3).  
Measure the voltage when the bottom of the waveform output at  
T.P25 (30 or 35) is distorted.The voltage is called VOLR (VOLG or  
VOLB).  
0.0  
Waveform Output at T.P25  
(Identical to output at T.P30 and T.P35.)  
4
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
Vimax Maximum input  
VSCR2 Sub contrast control characteristics (minimum)  
Voltage V17 is changed to 2.5V, and increase the input signal  
amplitude gradually, starting from 700mVP-P.  
Measure the amplitude when the output signal starts becoming  
distorted.  
VSCR2 Sub contrast control relative characteristics (minimum)  
1. Set V4, V9 and V14 to 1.0V. Other conditions are as given in  
Supplementary Table.  
2. Measure the amplitude output at T.P25 (30 or 35).The measured  
value is called VOR5 (VOG5 or VOB5), and is treated as VSCR2.  
3. Relative characteristics VSCR2 are calculated by the equation  
below:  
Gv Maximum gain  
Gv Relative maximum gain  
1. Input SG5 to pin 13 (8 or 3), and read the amplitude at output  
T.P25 (30 or 35). The amplitude is called VOR1 (VOG1 or VOB1) .  
2. Maximum gain GV is calculated by the equation below:  
VSCR2=VOR5/VOG5, VOG5/VOB5, VOB5/VOR5  
VSCR3 Contrast/sub contrast control characteristics (typical)  
VSCR3 Contrast/sub contrast control relative  
[VP-P]  
[VP-P]  
VOR1 (VOG1, VOB1)  
0.7  
GV=20LOG  
characteristics (typical)  
1. Set V4, V9, V14 and V17 to 3.0V. Other conditions are as given  
in Supplementary Table.  
3. Relative maximum gain G is calculated by the equation below:  
GV=VOR1/VOG1, VOG1/VOB1, VOB1/VOR1  
2. Measure the amplitude at T.P25 (30 or 35).The measured value  
is called VOR6 (VOG6 or VOB6). and is treated as VSCR3.  
3. Relative sub contrast control characteristics VSCR3 is  
VSCR3=VOR6/VOG6, VOG6/VOB6, VOB6/VOR6  
VCR1 Contrast control characteristics (typical)  
VCR1 Contrast control relative characteristics (typical)  
1. Measuring conditions are as given in Supplementary Table.  
The setting of V17 is changed to 4V.  
VB1 Brightness control characteristics (maximum)  
2. Measure the amplitude output at T.P25 (30 or 35).The measured  
value is called VOR2 (VOG2 or VOB2).  
VB1 Brightness control relative characteristics (maximum)  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the output at T.P25 (30 or 35) with a voltmeter.  
The measured value is called VOR7 (VOG7 or VOB7), and is treated  
as VB1.  
3. Contrast control characteristics VCR1 and relative characteristics  
VCR1 are calculated, respectively, by the equations below:  
[VP-P]  
[VP-P]  
VOR2 (VOG2, VOB2)  
0.7  
VCR1=20LOG  
3. To obtain brightness control relative characteristics, calculate the  
difference in the output between the channels, using VOR7, VOG7  
and VOB7.  
VCR1=VOR2/VOG2, VOG2/VOB2, VOB2/VOR2  
VCR2 Contrast control characteristics (minimum)  
VCR2 Contrast control relative characteristics (minimum)  
VB1 =VOR7-VOG7  
=VOG7-VOB7  
[V]  
1. Set V17 to 1.0V. Other conditions are as given in Supplementary  
Table.  
=VOB7-VOR7  
2. Measure the amplitude output at T.P25 (30or 35). The measured  
value is called VOR3 (VOG3 or VOB3), and is treated as VCR2.  
3. Contrast control relative characteristics VCR2 are calculated by  
the equation below:  
VB2 Brightness control characteristics (typical)  
VB2 Brightness control relative characteristics (typical)  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the output at T.P25 (30 or 35) with a voltmeter.  
The measured value is called VOR7' (VOG7' or VOB7'), and is  
treated as VB2.  
VOR2=VOR3/VOG3, VOG3/VOB3, VOB3/VOR3  
VSCR1 Sub contrast control characteristics (typical)  
VSCR1 Sub contrast control relative characteristics (typical)  
3. To obtain brightness control relative characteristics (VB2),  
calculate the difference in the output between the channels,  
using VOR7', VOG7', and VOB7'.  
1. Set V4, V9 and V14 to 4.0V. Other conditions are as given in  
Supplementary Table.  
2. Measure the amplitude output at T.P25 (30 or 35).The measured  
value is called VOR4 (VOG4 or VOB4).  
VB2 =VOR7'-VOG7'  
=VOG7'-VOB7'  
[V]  
3. Sub contrast control characteristics VSCR1 and relative  
characteristics VSCR1 are calculated, respectively, by the  
equations below:  
=VOB7'-VOR7'  
[VP-P]  
[VP-P]  
VOR4 (VOG4, VOB4)  
0.7  
VSCR1=20LOG  
VSCR1=VOR4/VOG4, VOG4/VOB4, VOB4/VOR4  
5
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
VB3 Brightness control characteristics (minimum)  
C.T.1 Crosstalk1 (f=50MHz)  
C.T.1' Crosstalk1 (f=150MHz)  
VB3 Brightness control relative characteristics (minimum)  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the output at T.P25 (30 or 35) with a voltmeter.  
The measured value is called VOR7" (VOG7" or VOB7"), and is  
treated as VB2.  
1. Measuring conditions are as given in Supplementary Table.  
2. Input SG1 (or SG2) to pin 13 (R-ch) only, and then measure the  
waveform amplitude output at T.P25 (30 or 35). The measured  
value is called VOR, VOG and or VOB respectively.  
3. To obtain brightness control relative characteristics (VB3),  
calculate the difference in the output between the channels,  
using VOR7", VOG7" and VOB7".  
3. Crosstalk C.T.1 (C.T.1') is calculated by the equation below:  
VOG or VOB  
VOR  
[VP-P]  
[VP-P]  
[dB]  
C.T.1 =20LOG  
(C.T.1')  
VB3 =VOR7''-VOG7''  
=VOG7''-VOB7''  
[V]  
C.T.2 Crosstalk2 (f=50MHz)  
C.T.2' Crosstalk2 (f=150MHz)  
=VOB7''-VOR7''  
1. Change the input pin from pin 8 (G-ch), and measure the output  
in the same way as in C.T.1, C.T.1'.  
FC1 Frequency characteristics1 (f=50MHz; maximum)  
2. Crosstalk C.T. 2 (C.T.2') is calculated by the equation below:  
FC1 Frequency relative characteristics1  
(f=50MHz; maximum)  
VOR or VOB  
VOG  
[VP-P]  
[VP-P]  
[dB]  
C.T.2 =20LOG  
(C.T.2')  
FC1' Frequency characteristics1 (f=150MHz; maximum)  
FC1' Frequency relative characteristics1  
(f=150MHz; maximum)  
C.T.3 Crosstalk3 (f=50MHz)  
C.T.3' Crosstalk3 (f=150MHz)  
1. Measuring conditions are as given in Supplementary Table.  
2. First, SGA is as input signal. Input a resister that is about 2Kto  
offer the voltage at input pins (Pin 3, Pin 8, Pin 13) in order that  
the bottom of input signal is 2.5V.  
1. Change the input pin from pin 13 (R-ch) to pin 3 (B-ch), and  
measure the output in the same way as in C.T.1, C.T.1'.  
2. Crosstalk C.T. 3 (C.T.3') is calculated by the equation below:  
Inputs the voltage at hold pins (Pin 23, Pin 28, Pin 33) in order  
that the bottom of sine wave output is 2V.  
VOR or VOG  
VOB  
[VP-P]  
[VP-P]  
[dB]  
C.T.3 =20LOG  
(C.T.3')  
Control the MAIN CONTRAST (V17) in order that the amplitude  
of sine wave output is 4.0VP-P.  
By the same way, measure the output amplitude when SG1,  
SG2 is as input signal.  
Tr Pulse characteristics1  
Tf Pulse characteristics2  
3. Supposing that the measured value is treated as amplitude VOR8  
(VOG8 or VOB8) when SG1 is input, or as VOR9 (VOG9 or VOB9)  
when SG2 is input, frequency characteristics FC1 and FC1' are  
calculated as follows:  
1. Measuring conditions are as given in Supplementary Table.  
Control the MAIN CONTRAST(V17) in order that the amplitude  
of output signal is 4.0VP-P. Control the BRIGHTNESS(V19) in  
order that the Black level of output signal is 2.0V.  
2. Measure the time needed for the input pulse to rise from 10% to  
90% (Tr1) and to fall from 90% to 10% (Tf1)with an active prove.  
3. Measure the time needed for the output pulse to rise from 10%  
to 90% (Tr2) and to fall from 90% to 10% (Tf2) with an active  
prove.  
VOR8 (VOG8, VOB8)  
4.0  
[VP-P]  
[VP-P]  
FC1=20LOG  
VOR9 (VOG9, VOB9)  
4.0  
[VP-P]  
[VP-P]  
FC1'=20LOG  
4. Frequency relative band widths FC1 and FC1' are equal to the  
4. Pulse characteristics Tr and Tf are calculated by the equation  
below:  
difference in FC1 and FC1', respectively, between the channels.  
2
2
Tr (nsec)= (Tr2) -(Tr1)  
FC2 Frequency characteristics2 (f=150MHz; maximum)  
2
2
Tf (nsec)= (Tf2) -(Tf1)  
FC2' Frequency relative characteristics2  
100%  
90%  
(f=150MHz; maximum)  
Measuring conditions and procedure are the same as described in  
FC1, FC1, FC1', FC1', except that Control the MAIN CONTRAST  
(V17) in order that the amplitude of sine wave output is 1.0VP-P.  
10%  
0%  
Tf1 or Tf2  
Tr1 or Tr2  
6
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
V14th Clamp pulse threshold voltage  
Oaj2 OSD adjusting control characteristics (minimum)  
Oaj2 OSD adjusting control relative characteristics  
(minimum)  
1. Measuring conditions are as given in Supplementary Table.  
2. Turn down the SG4 input level gradually, monitoring the output  
(about 1.8 VDC). Measure the top level of input pulse when the  
output pedestal voltage turn decrease with unstable.  
Measuring conditions and procedure are the same as described in  
Note 23, except that V36 is set to 0V.  
OSDth OSD input threshold voltage  
W14 Clamp pulse minimum width  
1. Measuring conditions are as given in Supplementary Table.  
Decrease the SG4 pulse width gradually, monitoring the output.  
Measure the SG4 pulse width (a point of 1.5V) when the output  
pedestal voltage turn decrease with unstable.  
2. Reduce the SG6 input level gradually, monitoring output.  
Measure the SG6 level when the output reaches 0V.  
The measured value is called OSDth.  
PDCH Pedestal voltage temperature characteristics1  
V1th BLK input threshold voltage  
PDCL Pedestal voltage temperature characteristics2  
1. Measuring conditions are as given in Supplementary Table.  
2. Make sure that signals are not being output synchronously with  
SG6 (blanking period).  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the pedestal voltage at room temperature.  
The measured value is called PDC1.  
3. Measure the pedestal voltage at temperatures of -20°C and  
85°C. The measured value is called, respectively, PDC2 and  
PDC3.  
3. Reduce the SG6 input level gradually, monitoring output.  
Measure the SG6 level when the blanking period disappears.  
The measured value is called V1th.  
4. PDCH=PDC1 - PDC2  
HBLK Retrace BLK voltage  
PDCL=PDC1 - PDC3  
1. Measuring conditions are as given in Supplementary Table.  
2. Monitoring to output at that time, read the level of retrace  
blanking.  
OTr OSD pulse characteristics1  
OTf OSD pulse characteristics2  
1. Measuring conditions are as given in Supplementary Table.  
Control the MAIN OSD ADJUST(V36) in order that the amplitude  
of output signal is 3.0VP-P. Control the BRIGHTNESS(V19) in  
order that the Black level of output signal is 2.0V.  
2. Measure the time needed for the input pulse to rise from 10% to  
90% (OTr1) and to fall from 90% to 10% (OTf1) with an active  
prove.  
HVth Retrace BLK input threshold voltage  
1. Measuring conditions are as given in Supplementary Table.  
2. Confirm that output signal is being blanked by the SG7 at the  
time.  
Monitoring to output signal, decreasing the level of SG7.  
Measure the top level of SG7 when the blanking period is  
disappeared.  
3. Measure the time needed for the output pulse to rise from 10% to  
90% (OTr2) and to fall from 90% to 10% (OTf2) with an active  
prove.  
4. Pulse characteristics Tr and Tf are calculated by the equations  
below :  
2
2
OTr (nsec)= (OTr2) -(OTr1)  
2
2
OTf (nsec)= (OTf2) -(OTf1)  
Oaj1 OSD adjusting control characteristics (maximum)  
Oaj1 OSD adjusting control relative characteristics  
(maximum)  
1. Measuring conditions are as given in Supplementary Table.  
2. Measure the output at T.P25 (30 or 35).  
The pedestal level is called VLRA (VLGA or VLBA), and the OSD  
level is called VHRA (VHGA or VHBA).  
3. VLRA (VLGA or VLBA) is treated as Oaj1.  
Oaj1=VORA (VOGA, VOBA) = VHRA-VLRA, (VHGA-VLGA, VHBA-VLBA)  
4. OSD adjusting control relative characteristics Oaj1 are  
calculated by the equation below:  
Oaj1=VORA/VOGA, VOGA/VOBA, VOBA/VORA  
7
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
INPUT SIGNAL  
SG No.  
Signals  
Sine wave with amplitude of 0.7VP-P (f=1MHz)  
SGA  
0.7VP-P  
SG1  
SG2  
Sine wave with amplitude of 0.7VP-P (f=50MHz)  
Sine wave with amplitude of 0.7VP-P (f=150MHz)  
Pulse with amplitude of 0.7VP-P (f=1MHz, duty=50%)  
Pulses which are synchronous with SG4 pedestal portion  
SG3  
0.7VP-P  
Pulses which are synchronous with standard video step waveform pedestal portion:  
amplitude, 2.5VP-P; and pulse width, 0.5µs  
SG4  
2.5VP-P  
0V  
0.5µs  
0.5µs  
SG5  
Standard  
video step  
waveform  
Video signal with amplitude of 0.7VP-P (f=30kHz, amplitude sometimes variable)  
4V  
SG6  
OSD BLK  
and OSD  
signals  
0V  
Pulses which are synchronous with standard video step waveform’s video portions: amplitude, 4.0VP-P; and pulse width, 15µs  
4V  
SG7  
Retrace  
BLK  
signals  
0V  
Pulses which are synchronous with standard video step waveform’s video portions: amplitude, 4.0VP-P; and pulse width, 3µs  
8
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
2-1) Brightness terminal  
APLLICATION METHOD FOR M52737SP  
Used range is 1 to 5V  
Control characteristic is shown in the right Fig. .  
1) CLAMP PULSE INPUT  
Input positive pulse.  
5
4
3
2
1
The calculating of clamp pulse threshold voltage is by the method  
as shown right.  
The voltage more than 2.2V is limited.  
Recommended clamp pulse voltage is as the Fig. shown right.  
pulse width is recommended  
above 15kHz, 1.0µsec  
above 30kHz, 0.5µsec  
above 64kHz, 0.3µsec .  
0
1
2
3
4
5
6
Brightness Voltage (V)  
2-2) Sub brightness  
The clamp pulse circuit in ordinary set is a long roundabout way,  
and beside high voltage, sometimes connected to external  
terminal, it is very easy affected by large surge.  
There is no sub brightness control function in this IC.  
2-3) Hold capacitor  
Therefore, the Fig. shown right is recommended.  
It is necessary more than 0.01µF for this IC (when fH=15kHz).  
In fact it is changed according with hold time (except clamping  
time). It is need more capacitance for longer the hold time. In other  
way, for application. The smaller the capacitance is, the higher the  
response. The more the capacitance is, the more stable the action.  
According to signal, it is free to set the value. (especially the status  
of pulse for vertical sync timing).  
VTH= 2.2V-Diode×1  
=1.5V  
2.5 to 5.0V  
VTH (1.5V)  
0V  
3) BLK (for OSD) input terminal  
Input type is open base (reference to page 4).  
18  
Threshold voltage is 2.5V.  
If input of OSD signal without input of BLK pulse, the action will  
be strange. Therefore, it is necessary to input BLK pulse when  
input of OSD signal.  
Grounding this terminal when the OSD function is not used.  
If overlay OSD display period with clamp pulse period, the action  
will be strange. The method for this situation, recommended  
external circuit is as the right Fig.  
2) Brightness action  
VCC  
DC level shift  
+
signal  
C/P  
18  
+
BLK  
(for OSD)  
19  
brightness  
(1 to 5V)  
1
The upper figure is principle  
9
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
4) Retrace BLK input terminal  
Input type is open base. (reference to page 5).  
Threshold voltage is 1.5V.  
Grounding this terminal when retrace blanking function is not  
used.  
5) OSD adjust terminal  
Used range is 0 to 5V.  
Control characteristic is shown in the right Fig. .  
If there are something noises from the external of the terminals,  
and it also affect the output of the terminals, add capacitances  
will be effective for it.  
Make the terminals of OSD adjust open or GND, when OSD  
function is not used.  
5
4
3
2
1
0
1
2
3
4
5
6
OSD adjust Voltage (V)  
Notice of application  
Make the nearest distance between output pin and pull down  
resister.  
Recommended pedestal voltage of IC output signal is 2V.  
10  
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
TEST CIRCUIT  
SG7  
a
b
560  
560  
560  
V19  
V36  
2.2µ  
2.2µ  
2.2µ  
SW20  
36  
35  
34  
31  
29  
20  
19  
23  
22  
21  
33  
32  
30  
27  
26  
25  
24  
28  
VCC  
NC  
GND  
VCC  
NC  
GND  
VCC  
NC  
GND  
M52737SP  
VCC  
2
GND  
6
VCC  
7
GND  
11  
GND  
16  
VCC  
12  
1
3
4
5
8
9
10  
13  
14  
15  
17  
18  
0.01µ  
0.01µ  
0.01µ  
47µ  
47µ  
47µ  
V4  
SW1  
a
V9  
V14  
V17  
b
SW18  
a
SW10  
a
SW15  
a
SW13  
b
SW3  
b
SW5  
a
SW8  
b
c
a
a
b
b
a
b
SG6  
b
SG4  
100µ  
A
a
b
0.01µ  
SGA  
SG1  
SG2  
SG3  
SG5  
SG6  
SWA  
Units Resistance : Ω  
12V  
Capacitance : F  
TYPICAL CHARACTERISTICS  
THERMAL DERATING (MAXIMUM RATING)  
2800  
2403  
2400  
2000  
1600  
1200  
800  
400  
-20  
0
25  
50  
75 85 100 125 150  
AMBIENT TEMPERATURE Ta (°C)  
11  
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
APPLICATION EXAMPLE  
CRT  
110V  
DC CLAMP  
BLK IN  
(for retrace)  
560  
0.01µ 2.2µ  
560  
0.01µ 2.2µ  
560  
0.01µ 2.2µ  
2.2V  
0.1µ  
0 to 5V  
0.1µ  
35  
36  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
M52737SP  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
0.01µ  
0.1µ  
0.01µ  
0.01µ  
0.1µ  
0 to 5V  
0 to 5V  
0 to 5V  
0.1µ  
0.1µ  
0 to 5V  
47µ  
0.01µ  
47µ  
0.01µ  
47µ  
0.01µ  
12V  
5V  
BLK IN  
(for OSD)  
INPUT  
(B)  
OSD IN  
(B)  
INPUT  
(G)  
OSD IN  
(G)  
INPUT  
(R)  
OSD IN  
(R)  
CLAMP  
Units Resistance : Ω  
Capacitance : F  
12  
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
DESCRIPTION OF PIN  
Pin No.  
Name  
DC voltage (V )  
Peripheral circuit of pins  
Description of function  
VCC  
Input pulses of minimum  
3.5V.  
B-ch  
G-ch  
3.5 to 5V  
BLK IN  
(for OSD)  
1
1
1V  
maximum  
Connected to GND if not  
used.  
2.5V  
GND  
0.9mA  
2
7
12  
VCC (B-ch)  
VCC (G-ch)  
VCC (R-ch)  
Apply equivalent  
voltage to 3 channels.  
12  
VCC  
2k  
2k  
Clamped to about 2.5V  
due to clamp pulses  
from pin 18.  
3
8
13  
INPUT (B)  
INPUT (G)  
INPUT (R)  
2.5  
Input at low impedance.  
2.5V  
CP  
GND  
0.24mA  
VCC  
1.5k  
4
9
Subcontrast  
(B)  
Subcontrast  
(G)  
Use at maximum 5V  
for stable operation.  
2.5  
23.5k  
2.5V  
14  
Subcontrast  
(R)  
GND  
VCC  
Input pulses of minimum  
3.5V.  
3.5 to 5V  
5
10  
15  
OSD IN (B)  
OSD IN (G)  
OSD IN (R)  
1V  
maximum  
2.5V  
Connected to GND if not  
used.  
GND  
1.1mA  
13  
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
DESCRIPTION OF PIN (cont.)  
Pin No.  
Name  
DC voltage (V )  
GND  
Peripheral circuit of pins  
Description of function  
6, 31  
11, 26  
16, 21  
GND (B)  
GND (G)  
GND (R)  
VCC  
11k  
Main  
contrast  
Use at maximum 5V for  
stable operation.  
2.5V  
17  
2.5  
41k  
GND  
17  
VCC  
41k  
Input pulses of minimum  
2.5V.  
2.5V  
minimum  
18  
CP IN  
18  
0.5V  
maximum  
2.2V  
Input at low impedance.  
GND  
VCC  
20.3k  
B-ch  
19  
Brightness  
G-ch  
19  
GND  
VCC  
Input pulses of minimum  
2.5V.  
45k  
B-ch  
G-ch  
2.5 to 5V  
BLK IN  
(for retrace)  
20  
20  
0.5V  
maximum  
Connected to GND if not  
used.  
2.1V  
GND  
0.25mA  
14  
MITSUBISHI ICs (Monitor)  
M52737SP  
3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING  
DESCRIPTION OF PIN (cont.)  
Pin No.  
Name  
DC voltage (V )  
Peripheral circuit of pins  
Description of function  
22, 27, 32  
NC  
VCC  
1k  
23  
28  
33  
Hold (R)  
Hold (G)  
Hold (B)  
A capacity is needed on  
the GND side.  
Variable  
0.2mA  
GND  
Used to supply power to  
output emitter follower  
only.  
Apply equivalent voltage  
to 3 channels.  
24  
29  
34  
VCC2 (R)  
VCC2 (G)  
VCC2 (B)  
Pin 24  
Pin 29  
Pin 34  
Apply 12  
Variable  
A resistor is needed on  
the GND side.  
25  
30  
35  
OUTPUT (R)  
OUTPUT (G)  
OUTPUT (B)  
Set discretionally to  
maximum 15mA,  
50  
Pin 25  
Pin 30  
Pin 35  
depending on the  
required driving capacity.  
VCC  
65k  
65k  
50k  
1k  
Pulled up directly to VCC  
or open if not used.  
36  
OSD adjust  
at open 5.5V  
10P  
55k  
55k  
GND  
15  

相关型号:

M52738P

3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING, RETRACE BLANKING
MITSUBISHI

M52739FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.
MITSUBISHI

M52742ASP

BUS CONTROLLED 3-CHANNEL VIDEO PREAMP FOR CRT DISPLAY MONITOR
MITSUBISHI

M52742ASP

BUS Controlled 3-Channel Video Preamp for CRT Display Monitor
RENESAS

M52742SP

BUS CONTROLLED 3-CHANNEL VIDEO PREAMP FOR CRT DISPLAY MONITOR
MITSUBISHI

M52743

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52743BSP

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52743BSP

I2C BUS Controlled 3-Channel Video Preamplifier
RENESAS

M52743SP

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52744

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52744SP

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52745SP

BUS CONTROLLED 3-CHANNEL VIDEO PREAMP FOR CRT DISPLAY MONITOR
MITSUBISHI