M52743SP [MITSUBISHI]

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER; I 2 C总线控制的三通道视频前置放大器
M52743SP
型号: M52743SP
厂家: Mitsubishi Group    Mitsubishi Group
描述:

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
I 2 C总线控制的三通道视频前置放大器

放大器
文件: 总19页 (文件大小:138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
DESCRIPTION  
M52743SP and M52744SP is semiconductor integrated circuit for  
PIN CONFIGURATION (TOP VIEW)  
CRT display monitor.  
It includes OSD blanking, OSD mixing, retrace blanking, wide band  
amplifre, brightness control.  
Main/sub contrast and OSD adjust function can be controlled by I2C  
1
2
3
4
5
6
7
8
9
36  
35  
34  
OSD BLK IN  
INPUT(R)  
VCC1(R)  
VCC2  
OUTPUT(R)  
EXT FEED BACK(R)  
bus.  
OSD IN(R)  
GND 1(R)  
INPUT(G)  
INPUT(SOG)  
VCC1(G)  
33 GND2  
32  
31  
30  
29  
OUTPUT(G)  
FEATURES  
EXT FEED BACK(G)  
MAIN BRIGHTNESS  
OUTPUT(B)  
Frequency band width: RGB.............................150MHz (at -3dB)  
OSD..............................................80MHz  
Input :RGB.............................................................0.7VP-P (typ.)  
OSD..........................................3VP-P minimum (positive)  
BLK (for OSD)...........................3VP-P minimum (positive)  
Retrace BLK.............................3VP-P minimum (positive)  
Output :RGB...........................................................5.5VP-P (max.)  
OSD..............................................................5VP-P (max.)  
Main contrast and sub contrast can be controlled by I2C bus.  
Include internal and external pedestal clamp circuit.  
OSD IN(G)  
28 EXT FEED BACK(B)  
27 RETRACE BLK IN  
GND 1(G) 10  
11  
12  
13  
14  
26  
25  
24  
23  
INPUT(B)  
VCC1(B)  
D/A OUT1  
D/A OUT2  
D/A OUT3  
D/A OUT4  
OSD IN(B)  
GND 1(B)  
STRUCTURE  
Bipola silicon monolisic IC  
ABL IN 15  
22 GND(5V)  
16  
17  
18  
21  
20  
19  
NC  
VCC (5V)  
SDA  
SCL  
APPLICATION  
CRT display monitor  
SOG SEP OUT  
CLAMP PULSE IN  
Outline 36P4E  
RECOMMENDED OPERATING CONDITION  
Supply voltage range......................11.5 to 12.5V (V3, V8, V12, V36)  
4.5 to 4.4V (V17)  
NC:NO CONNECTION  
Rated supply voltage..................................12.0V (V3, V8, V12, V36)  
5.0V (V17)  
MAJOR SPECIFICATION  
Bus controlled 3ch video pre-amp with OSD mixing function and  
retrace blanking function  
1
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
BLOCK DIAGRAM  
2
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)  
Symbol  
VCC  
Pd  
Parameter  
Ratings  
13.0  
Unit  
V
Supply voltage  
Power dissipation  
Ambient temperature  
Storage temperature  
Recommended supply  
Voltage range  
2403  
mW  
°C  
Topr  
-20 to +75  
-40 to +150  
12.0  
Tstg  
°C  
Vopr  
Vopr’  
θjc  
V
10.5 to 12.5  
22  
V
Case temperature  
°C/W  
ELECTRICAL CHARACTERISTICS (VCC=12V, 5V, Ta=25°C, unless otherwise noted)  
CTL  
voltage  
Input  
19  
CP in ReT  
BLK  
BUS CTL (H)  
Limits  
Test  
point  
(s)  
Symbol  
Parameter  
Unit  
0BH  
INT  
EXT  
4,9,13  
OSD  
in  
00H 01H 02H 03H 04H 05H 06H 07H 08H 09H  
Main Sub Sub Sub OSD BLK D/A D/A D/A D/A  
cont cont cont cont Adj Adj OUT OUT OUT OUT  
1
OSD  
BLK  
7
SOG  
in  
2,6,11  
RGB  
in  
27  
15  
ABL  
30  
Bri-  
ght  
Min. Typ. Max.  
1
2
3
1
2
3
4
b
a
Circuit  
FFH FFH FFH FFH 00H 00H FFH FFH FFH FFH 00H  
ICC1  
IA  
IB  
a
a
a
a
a
a
a
a
a
a
a
4.0 5.0  
4.0 5.0  
110 130 mA  
18 22 mA  
255 255 255 255  
0
0
255 255 255 255  
0
current1  
SG5  
b
a
Circuit  
current2  
ICC2  
SG5  
b
SG2  
b
a
Vari  
5.0  
Output  
dynamic range  
Vomax  
OUT  
6.0 8.0  
1.6  
VP-P  
VP-P  
able  
SG5  
b
IN  
OUT  
b
a
Maximum  
input  
64H  
100  
Vimax  
a
a
a
2.0 5.0  
2.0 5.0  
SG2  
Variable  
SG5  
b
SG1  
b
a
Maximum  
gain  
FFH  
255  
Gv  
OUT  
a
a
a
16.5 17.7 19.7  
0.8 1.0 1.2  
dB  
SG5  
Relative max-  
imum gain  
Gv  
Main contrast  
control  
characteristics1  
b
SG1  
b
SG5  
C8H  
200  
VC1  
OUT  
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
2.0 5.0  
14.5 16.0 17.5  
0.8 1.0 1.2  
8.5 10.0 11.5  
0.8 1.0 1.2  
dB  
Main contrast  
control relative  
characteristics1  
VC1  
VC2  
a
a
a
a
a
Main contrast  
control  
characteristics2  
b
SG1  
b
SG5  
64H  
100  
OUT  
2.0 5.0  
dB  
Main contrast  
control relative  
characteristics2  
VC2  
VC3  
Main contrast  
control  
characteristics3  
b
SG1  
b
SG5  
14H  
20  
OUT  
2.0 5.0  
0.2 0.4 0.6 VP-P  
Main contrast  
control relative  
characteristics3  
VC3  
VSC1  
VSC1  
VSC2  
VSC2  
VSC3  
VSC3  
0.8 1.0 1.2  
14.8 16.3 17.8  
0.8 1.0 1.2  
11.1 12.6 14.1  
0.8 1.0 1.2  
dB  
Sub contrast  
control  
characteristics1  
b
SG1  
b
SG5  
FFH C8H C8H C8H  
2.0 5.0  
255 200 200 200  
OUT  
Sub contrast  
control relative  
characteristics1  
− − − −  
Sub contrast  
control  
characteristics2  
b
SG1  
b
SG5  
FFH 64H 64H 64H  
255 100 100 100  
OUT  
2.0 5.0  
dB  
Sub contrast  
control relative  
characteristics2  
− − − −  
Sub contrast  
control  
characteristics3  
b
SG1  
b
SG5  
FFH 14H 14H 14H  
255 20  
OUT  
2.0 5.0  
1.4 1.7 2.0 VP-P  
20  
20  
Sub contrast  
control relative  
characteristics3  
0.8 1.0 1.2  
3
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
ELECTRICAL CHARACTERISTICS (cont.)  
CTL  
voltage  
Input  
Test  
BUS CTL (H)  
Limits  
point  
(s)  
Symbol  
VMSC  
Parameter  
Unit  
0BH  
INT  
EXT  
4,9,13  
OSD  
in  
00H 01H 02H 03H 04H 05H 06H 07H 08H 09H  
Main Sub Sub Sub OSD BLK D/A D/A D/A D/A  
cont cont cont cont Adj Adj OUT OUT OUT OUT  
1
OSD  
BLK  
7
SOG  
in  
2,6,11  
RGB  
in  
19  
27  
15  
ABL  
30  
Bri-  
ght  
CP in ReT  
BLK  
Min. Typ. Max.  
1
2
3
1
2
3
4
Main/sub  
contrast control  
characteristics2  
b
SG1  
b
a
C8H C8H C8H C8H 00H 00H FFH FFH FFH FFH 00H  
OUT  
a
a
a
2.0 5.0  
3.2 3.8 4.4 VP-P  
200 200 200 200  
0
0
255 255 255 255  
0
SG5  
Main/sub contrast  
control relative  
characteristics2  
VMSC  
ABL1  
OUT  
a
a
a
a
a
a
a
a
0.8 1.0 1.2  
3.8 4.6 5.4 VP-P  
0.8 1.0 1.2  
2.2 2.7 3.2 VP-P  
b
SG1  
b
SG5  
ABL control  
characteristics1  
FFH FFH FFH FFH  
255 255 255 255  
2.0 4.0  
ABL control  
relative  
characteristics1  
ABL1  
ABL2  
b
SG1  
b
SG5  
ABL control  
characteristics2  
OUT  
2.0 2.0  
ABL control  
relative  
characteristics2  
ABL2  
0.8 1.0 1.2  
3.3 3.7 4.1  
Brightness  
control  
characteristics1  
b
SG5  
VB1  
OUT  
a
a
a
a
a
a
a
a
a
a
a
a
a
4.0 5.0  
V
Brightness  
control relative  
characteristics1  
VB1  
VB2  
a
a
-0.3  
0
0.3  
V
Brightness  
control  
characteristics2  
b
SG5  
OUT  
2.0 5.0  
1.5 1.8 2.1  
Brightness  
control relative  
characteristics2  
VB2  
VB3  
-0.3  
0
0.3  
Brightness  
control  
characteristics3  
b
SG5  
OUT  
1.0 5.0  
0.7 0.9 1.1  
V
Brightness  
control relative  
characteristics3  
VB3  
-0.3  
0
0.3  
Frequency  
characteristics1  
(f=50MHz)  
Va  
ria  
ble  
b
SG3  
a
5V  
Vari  
able  
FC1  
OUT  
a
a
a
a
a
a
a
a
a
a
a
a
5.0  
-2.0  
-1.0  
-3.0  
-1.0  
0
0
0
0
2.5  
1.0  
3.0  
1.0  
dB  
dB  
dB  
dB  
dB  
dB  
Frequency relative  
characteristics1  
(f=50MHz)  
FC1  
FC1’  
Frequency  
characteristics1  
(f=150MHz)  
Va  
b
SG3  
a
5V  
Vari  
able  
FFH FFH FFH 00H 00H FFH FFH FFH FFH 00H  
ria  
OUT  
5.0  
255 255 255  
0
0
255 255 255 255  
0
ble  
Frequency relative  
characteristics1  
(f=150MHz)  
FC1’  
FC2  
Frequency  
characteristics2  
(f=150MHz)  
b
SG3  
a
5V  
Vari  
able  
OUT  
5.0  
-3.0 3.0 5.0  
Frequency relative  
characteristics2  
(f=150MHz)  
FC2  
-1.0  
0
1.0  
2bSG3  
6a  
11a  
a
5V  
Crosstalk 1  
(f=50MHz)  
Vari  
able  
OUT(29)  
OUT(32)  
FFH  
255  
C.T.1  
C.T.1’  
C.T.2  
C.T.2’  
C.T.3  
C.T.3’  
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
-25 -20  
-15 -10  
-25 -20  
dB  
dB  
dB  
2bSG3  
6a  
11a  
a
5V  
Crosstalk 1  
(f=150MHz)  
Vari  
able  
OUT(29)  
OUT(32)  
2a  
6bSG3  
11a  
a
5V  
Crosstalk 2  
(f=50MHz)  
Vari  
able  
OUT(29)  
OUT(35)  
2a  
6bSG3  
11a  
a
5V  
Crosstalk 2  
(f=150MHz)  
Vari  
able  
OUT(29)  
OUT(35)  
-15 -10 dB  
-25 -20 dB  
2a  
6a  
11bSG3  
a
5V  
Crosstalk 3  
(f=50MHz)  
Vari  
able  
OUT(32)  
OUT(35)  
2a  
6a  
11bSG3  
a
5V  
Crosstalk 3  
(f=150MHz)  
Vari  
able  
OUT(32)  
OUT(35)  
-15 -10  
dB  
4
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
ELECTRICAL CHARACTERISTICS (cont.)  
CTL  
voltage  
Input  
Test  
BUS CTL (H)  
Limits  
point  
(s)  
Symbol  
Parameter  
Unit  
0BH  
INT  
EXT  
4,9,13  
OSD  
in  
00H 01H 02H 03H 04H 05H 06H 07H 08H 09H  
Main Sub Sub Sub OSD BLK D/A D/A D/A D/A  
cont cont cont cont Adj Adj OUT OUT OUT OUT  
1
OSD  
BLK  
7
SOG  
in  
2,6,11  
RGB  
in  
19  
27  
15  
ABL  
30  
Bri-  
ght  
CP in ReT  
BLK  
Min. Typ. Max.  
1
2
3
1
2
3
4
Pulse  
characteristics1  
(4VP-P)  
Va  
ria  
ble  
b
SG1  
b
a
Vari  
able  
FFH FFH FFH 00H 00H FFH FFH FFH FFH 00H  
Tr  
Tf  
OUT  
OUT  
a
a
a
a
a
a
5.0  
5.0  
1.7  
3.0  
ns  
ns  
255 255 255  
0
0
255 255 255 255  
0
SG5  
Pulse  
characteristics2  
(4VP-P)  
Va  
ria  
ble  
b
SG1  
b
a
Vari  
able  
SG5  
Clamp pulse  
VthCP threshold  
voltage  
b
b
SG1  
FFH  
255  
OUT  
OUT  
a
a
a
a
a
a
a
2.0 5.0  
2.0 5.0  
1.0 1.5 2.0  
V
SG5  
Variable  
Clamp pulse  
minimum  
width  
Pedestal voltage  
temperature  
characteristics1  
b
b
SG1  
WCP  
a
a
0.2 0.5  
µs  
SG5  
Variable  
b
SG1  
b
SG5  
PDCH  
PDCL  
OUT  
OUT  
a
a
a
a
a
a
2.0 5.0  
2.0 5.0  
-3.0  
-3.0  
0
0
0.3  
0.3  
V
V
Pedestal voltage  
temperature  
characteristics2  
b
SG1  
b
SG5  
a
a
b
SG5  
OSD pulse  
characteristics1  
b
SG6  
08H  
8
OTr  
OUT  
OUT  
OUT  
a
a
a
a
a
a
a
a
a
2.0 5.0  
2.0 5.0  
2.0 5.0  
3.0 6.0  
3.0 6.0  
ns  
ns  
b
SG5  
OSD pulse  
characteristics2  
b
SG6  
08H  
8
OTf  
Oaj1  
a
b
b
SG5  
b
OSD adjust control  
characteristics1  
0FH  
15  
4.6 5.4 6.2 VP-P  
0.8 1.0 1.2  
2.8 3.3 3.8 VP-P  
0.8 1.0 1.2  
0.1 0.5 VP-P  
SG6 SG6  
OSD adjust control  
relative  
characteristics1  
Oaj1  
Oaj2  
OUT  
a
a
a
a
a
a
b
SG5  
b
b
OSD adjust control  
characteristics2  
08H  
8
2.0 5.0  
SG6 SG6  
OSD adjust control  
relative  
characteristics2  
Oaj2  
Oaj3  
b
SG5  
b
b
OSD adjust control  
characteristics3  
08H  
8
OUT  
2.0 5.0  
0
SG6 SG6  
OSD adjust control  
relative  
characteristics3  
Oaj3  
0.8 1.0 1.2  
2.2 2.7 3.2  
OSD input  
VthOSD threshold  
voltage  
b
b
SG5  
b
SG6  
08H  
8
OUT  
OUT  
a
a
a
a
a
2.0 5.0  
2.0 5.0  
V
SG6  
Variable  
OSD BLK input  
threshold  
voltage  
b
b
SG1  
b
SG5  
00H  
0
VthBLK  
a
2.2 2.7 3.2  
V
SG6  
Variable  
Retrace BLK  
characteristics1  
b
b
0FH  
15  
HBLK1  
HBLK2  
HBLK3  
OUT  
OUT  
OUT  
a
a
a
a
a
a
a
a
a
a
a
a
2.0 5.0  
2.0 5.0  
2.0 5.0  
1.7 2.0 2.3  
0.7 1.0 1.3  
0.1 0.4 0.7  
V
V
V
SG7  
SG5  
Retrace BLK  
characteristics2  
b
SG5  
b
SG7  
06H  
6
Retrace BLK  
characteristics3  
b
SG5  
b
SG7  
00H  
0
Retrace BLK  
input threshold  
voltage  
b
b
08H  
8
VthRET  
OUT  
a
a
a
a
a
a
a
b
2.0 5.0  
2.0 5.0  
1.0 1.5 2.0  
V
SG7  
SG5  
Variable  
SonG  
IN  
Sync  
SOG input  
SS-NV maximum  
noize voltage  
a
a
a
a
0 0.01 0.02 VP-P  
SG4  
Variable  
OUT  
SonG  
IN  
Sync  
OUT  
SOG  
SS-SV minimum  
b
a
a
a
2.0 5.0  
0.2 0.3  
VP-P  
SG4  
Variable  
input voltage  
Sync  
OUT  
Sync output  
hi level  
b
VSH  
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
2.0 5.0  
2.0 5.0  
2.0 5.0  
4.5 4.9 5.0  
V
V
SG4  
Sync  
OUT  
Sync output  
lo level  
b
SG4  
VSL  
0
0
0.3 0.6  
60 90  
Sync  
OUT  
Sync output  
delay time1  
b
SG4  
TDS-F  
ns  
5
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
ELECTRICAL CHARACTERISTICS (cont.)  
CTL  
voltage  
Input  
Test  
BUS CTL (H)  
Limits  
point  
(s)  
Symbol  
Parameter  
Unit  
ns  
0BH  
INT  
EXT  
4,9,13  
OSD  
in  
00H 01H 02H 03H 04H 05H 06H 07H 08H 09H  
Main Sub Sub Sub OSD BLK D/A D/A D/A D/A  
cont cont cont cont Adj Adj OUT OUT OUT OUT  
1
OSD  
BLK  
7
SOG  
in  
2,6,11  
RGB  
in  
19  
27  
15  
ABL  
30  
Bri-  
ght  
CP in ReT  
BLK  
Min. Typ. Max.  
1
2
3
1
2
3
4
Sync  
OUT  
Sync output  
delay time2  
b
SG4  
TDS-R  
VOH  
VOL  
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
2.0 5.0  
2.0 5.0  
2.0 5.0  
2.0 5.0  
2.0 5.0  
0
60 90  
D/A H output  
voltage  
D/A  
OUT  
FFH FFH FFH FFH 00H 00H FFH FFH FFH FFH 00H  
a
a
a
a
4.5 5.0 5.5 VDC  
255 255 255 255  
0
0
255 255 255 255  
0
D/A L output  
voltage  
D/A  
OUT  
00H 00H 00H 00H  
0
-1.0  
-1.0  
0.5 1.0 VDC  
0
0
0
0
Vari Vari Vari Vari  
abl abl abl abl  
D/A output  
D/A  
IAO  
0.4 mA  
1.0 LSB  
current range OUT  
e
e
e
e
Vari Vari Vari Vari  
abl abl abl abl  
D/A  
nonlinearity  
D/A  
OUT  
DNL  
e
e
e
e
Gv Relative maximum gain  
ELECTRICAL CHARACTERISTICS TEST METHOD  
Relative maximum gain GV is calculated by the equation bellow:  
GV= VOUT (29)/VOUT (32),  
ICC1 Circuit current1  
Measuring conditions are as listed in supplementary Table.  
Mesured with a current meter at test point IA.  
VOUT (32)/VOUT (35),  
VOUT (35)/VOUT (29)  
ICC2 Circuit current2  
VC1 Main contrast control characteristics1  
Measureing conditions are as listed in supplemtary Table.  
Measureing the amplitude output at OUT (29, 32, 35). The  
Measured with a current meter at test point IB.  
measured value is called VOUT (29, 32, 35). Main contrast control  
characterics VC1 is calculated by the equation bellow:  
VOUT  
Vomax Output dynamic range  
Decrease V30 gradually, and measure the voltage when the bottom  
VC1=20Log  
(dB)  
of waveform output is distorted. The voltage is called VCL.  
Next, increase V30 gradually, and measure the voltage when the  
top of waveform output is distorted. The voltage is called VOH.  
Voltage Vomax is calculated by the equation below:  
0.7  
VC1 Main contrast control relative characteristics1  
Relative characteristics VC1 is calculated by the equation bellow:  
VC1=VOUT (29)/VOUT (32),  
Vomax = VOH-VOL  
(V)  
VOUT (32)/VOUT (35),  
VOUT (35)/VOUT (29)  
VOH  
5.0  
VC2 Main contrast control characteristics2  
Waveform output  
Measuring condition and procedure are the same as described in  
VC1.  
VOL  
0.0  
VC2 Main contrast control relative characteristics2  
Measuring condition and procedure are the same as described in  
VC1.  
Vimax Maximum input  
Increase the input signal (SG2) amplitude gradually, starting from  
700mVP-P. Measure the amplitude of the input signal when the  
output signal starts becoming distorted.  
VC3 Main contrast control characteristics3  
Measuring condition and procedure are the same as described in  
VC1.  
Gv Maximum gain  
Input SG1, and read the amplitude output at OUT (29, 32, 35). The  
VC3 Main contrast control relative characteristics3  
Measuring condition and procedure are the same as described in  
VC1.  
amplitude is called VOUT (29, 32, 35). Maximum gain GV is  
calculated by the equation below:  
VOUT  
0.7  
GV=20Log  
(dB)  
6
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
VSC1 Sub contrast control characteristics1  
ABL2 ABL control characteristics2  
Measur the amplitude output at OUT (29, 32, 35). The measured  
value is called VOUT (29, 32, 35). Sub contrast control  
characteristics VSC1 is calculated by the equation below:  
VOUT  
Measuring condition and procedure are the same as described in  
ABL1.  
ABL2 ABL control relative characteristics2  
Measuring condition and procedure are the same as described in  
ABL1.  
VSC1=20Log  
(dB)  
0.7  
VSC1 Sub contrast control relative characteristics1  
Relative characteristics VSC1 is calculated by the equation below:  
VSC1= VOUT (29)/VOUT (32),  
VB1 Brightness control characteristics1  
Measure the DC voltage at OUT (29, 32, 35) with a voltmeter. The  
VOUT (32)/VOUT (35),  
measured value is called VOUT (29, 32, 35), and is ttreated as VB1.  
VOUT (35)/VOUT (29).  
VB1 Brightness control relative characteristics1  
Relative characteristics VB1 is calculated by the difference in the  
output between the channels.  
VSC2 Sub contrast control characteristics2  
Measuring condition and procedure are the same as described in  
VSC1.  
VB1= VOUT (29)-VOUT (32),  
VOUT (32)-VOUT (35),  
VSC2 Sub contrast control relative characteristics2  
Measuring condition and procedure are the same as described in  
VSC1.  
VOUT (35)-VOUT (29)  
VB2 Brightness control characteristics2  
Measuring condition and procedure are the same as described in  
VSC3 Sub contrast control characteristics3  
VB1.  
Measuring condition and procedure are the same as described in  
VSC1.  
VB2 Brightness control relative characteristics2  
Measuring condition and procedure are the same as described in  
VB1.  
VSC3 Sub contrast control relative characteristics3  
Measuring condition and procedure are the same as described in  
VSC1.  
VB3 Brightness control characteristics3  
Measuring condition and procedure are the same as described in  
VMSC Main/sub contrast control characteristics2  
Measure the amplitude output at OUT (29, 32, 35). The measured  
VB1.  
value is called VOUT (29, 32, 35). Main/Sub contrast control  
characteristics VMSC1 is calculated by the equation below:  
VOUT  
VB3 Brightness control relative characteristics3  
Measuring condition and procedure are the same as described in  
VB1.  
VMSC1=20Log  
(dB)  
0.7  
FC1 Frequency characteristics1 (f=50MHz)  
VMSC Main/sub contrast control relative characteristics2  
Relative characteristics VMSC1 is calculated by the equation  
below:  
First, SG3 to 1MHz is as input signal. Input a resister that is about  
2kto offer the voltage at input pins (2, 6, 11) in order that the bot-  
tom of input signal is 2.5V. Control the main contrast in order that  
the amplitude of sine wave output is 4.0VP-P. Control the brightness  
in order that the bottom of sine wave output is 2.0VP-P. By the same  
way, measure the output amplitude when SG3 to 50MHz is as input  
signal. The measured value is called VOUT (29, 32, 35). Frequency  
characteristics FC1 (29, 32, 35) is calculated by the equation below:  
VMSC= VOUT (29)/VOUT (32),  
VOUT (32)/VOUT (35),  
VOUT (35)/VOUT (29)  
ABL1 ABL control characteristics1  
Measure the amplitude output at OUT (29, 32, 35). The measured  
VOUT VP-P  
FC1=20Log  
(dB)  
value is called VOUT (29, 32, 35), and is ttreated as ABL1.  
Output amplitude when inputed SG3 (1MHz):4VP-P  
ABL1 ABL control relative characteristics1  
Relative characteristics ABL1 is calculated by the equation below:  
ABL1= VOUT (29)/VOUT (32),  
FC1 Frequency relative characteristics1 (f=50MHz)  
Relative characteristics FC1 is calculated by the difference in the  
VOUT (32)/VOUT (35),  
output between the channels.  
VOUT (35)/VOUT (29)  
7
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
C.T.3 Crosstalk3 (f=50MHz)  
FC1' Frequency characteristics1 (f=150MHz)  
Input SG3 (50MHz) to pin11 only, and then measure the waveform  
Measuring condition and procedure are the same as described in  
FC1, expect SG3 to 150MHz.  
amplitude output at OUT (29, 32, 35). The measured value is called  
VOUT (29, 32, 35). Crosstalk C.T.2 is calculated by the equation  
below:  
FC1' Frequency relative characteristics1 (f=150MHz)  
Relative characteristics FC1' is calculated by the difference in the  
VOUT (32, 35)  
VOUT (29)  
C.T.3=20Log  
(dB)  
output between the channels.  
FC2 Frequency characteristics2 (f=150MHz)  
C.T.3' Crosstalk3 (f=150MHz)  
SG3 to 1MHz is as input signal. Control the main contrast in order  
Measuring condition and procedure are the same as described in  
C.T.3, expect SG3 to 150MHz.  
that the amplitude of sine wave output is 1.0VP-P. By the same way,  
measure the output amplitude when SG3 to 150MHz is as input  
signal.  
Tr Pulse characteristics1 (4VP-P)  
The measured value is called VOUT (29, 32, 35). Frequency  
characteristics FC2 (29, 32, 35) is calculated by the equation below:  
Control the main contrast (00H) in order that the amplitude of output  
signal is 4.0VP-P.  
VOUT VP-P  
Control the brightness (V30) in order that the Black level of output  
signal is 2.0V.  
FC1=20Log  
(dB)  
Output amplitude when inputed SG3 (1MHz):4VP-P  
Measure the time needed for the input pulse to rise from 10% to 90  
% (Tr1) and for the output pulse to rise from 10% to 90% (Tr2) with  
an active prove.  
FC2 Frequency relative characteristics2 (f=150MHz)  
Relative characteristics FC2 is calculated by the difference in the  
Pulse characteristics TR is calculated by the equations below:  
output between the channels.  
TR= [(Tr2)2-(Tr1)2] (nsec)  
C.T.1 Crosstalk1 (f=50MHz)  
Input SG3 (50MHz) to pin2 only, and then measure the waveform  
Tf Pulse characteristics2 (4VP-P)  
amplitude output at OUT (29, 32, 35). The measured value is called  
VOUT (29, 32, 35). Crosstalk C.T.1 is calculated by the equation  
below:  
Measure the time needed for the input pulseto fall from 90% to 10%  
(Tf1) and for the output pulse to fall from 90% to 10% (Tf2) with an  
active prove.  
VOUT (29, 32)  
VOUT (35)  
C.T.1=20Log  
(dB)  
Pulse characteristics TF is calculated by the equations below:  
TR= [(Tf2)2-(Tf1)2] (nsec)  
C.T.1' Crosstalk1 (f=150MHz)  
Measuring condition and procedure are the same as described in  
C.T.1, expect SG3 to 150MHz.  
100%  
90%  
C.T.2 Crosstalk2 (f=50MHz)  
10%  
Input SG3 (50MHz) to pin6 only, and then measure the waveform  
0%  
amplitude output at OUT (29, 32, 35). The measured value is called  
VOUT (29, 32, 35). Crosstalk C.T.2 is calculated by the equation  
below:  
Tr1 or Tr2  
Tf1 or Tf2  
VthCP Clamp pulse threshold voltage  
VOUT (29, 35)  
VOUT (32)  
C.T.2=20Log  
(dB)  
Turn down the SG5 input level gradually from 5.0VP-P, monitoring  
the waveform output.  
Measure the top level of input pulse when the output pedestal  
voltage turn decrease with unstable.  
C.T.2' Crosstalk2 (f=150MHz)  
Measuring condition and procedure are the same as described in  
C.T.2, expect SG3 to 150MHz.  
WCP Clamp pulse minimum width  
Decrease the SG5 pulse width gradually from 0.5µs, monitoring the  
output. Measure the SG5 pulse width (a point of 1.5V) when the  
output pedestal voltage turn decrease with unstable.  
8
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
VthOSD OSD input threshold voltage  
PDCH Pedestal voltage temperature characteristics1  
Measure the pedestal voltage at 25°C. The measured value is  
called PDC1.  
Reduce the SG6 input level gradually, monitoring output. Measure  
the SG6 level when the output reaches 0V. The measured value is  
called VthOSD.  
Measure the pedestal voltage at temperature of -20°C.  
The measured value is called PDC2.  
Pedestal voltage temperature characteristics 1 is calculated by the  
equation below:  
VthBLK OSD BLK input threshold voltage  
Confirm that output signal is being blanked by the SG6 at the time.  
Monitoring to output signal, decreasing the level of SG6. Measure  
the top level of SG6 when the blanking period is disappeared. The  
measured value is called VthBLK.  
PDCH=PDC1-PDC2  
PDCL Pedestal voltage temperature characteristics2  
Measure the pedestal voltage at 25°C. The measured value is  
HBLK1 Retrace BLK characteristics1  
called PDC1.  
Measure the amplitude output is blanked by the SG7 at OUT (29,  
32, 35). The measured value is called VOUT (29, 32, 35), and is  
treated as HBLK1.  
Measure the pedestal voltage at temperature of 75°C.  
The measured value is called PDC3.  
Pedestal voltage temperature characteristics 2 is calculated by the  
equation below:  
HBLK2 Retrace BLK characteristics2  
PDCL=PDC1-PDC3  
Measure the amplitude output is blanked by the SG7 at OUT (29,  
32, 35). The measured value is called VOUT (29, 32, 35), and is  
treated as HBLK2.  
OTr OSD pulse characteristics1  
Measure the time needed for the output pulse to rise from 10% to  
90% (OTR) with an active prove.  
HBLK3 Retrace BLK characteristics3  
Measure the amplitude output is blanked by the SG7 at OUT (29,  
32, 35). The measured value is called VOUT (29, 32, 35), and is  
treated as HBLK3.  
OTf OSD pulse characteristics2  
Measure the time needed for the output pulse to fall from 90% to  
10% (OTF) with an active prove.  
VthRET Retrace BLK input threshold voltage  
Oaj1 OSD adjust control characteristics1  
Confirm that output signal is being blanked by the SG7 at the time.  
Monitoring to output signal, decreasing the level of SG7. Measure  
the top level of SG7 when the blanking period is disappeared. The  
measured value is called VthRET.  
Measure the amplitude output at OUT (29, 32, 35). The measured  
value is called VOUT (29,32,35), and is treated as Oaj1.  
Oaj1 OSD adjust control relative characteristics1  
Relative characteristics Oaj1 is calculated by the equation below:  
Oaj1=VOUT (29)/VOUT (32),  
VOUT (32)/VOUT (35),  
SS-NV SOG input maximum noize voltage  
The sync's amplitude of SG4 be changed all white into all black,  
increase from 0VP-P to 0.02VP-P. No pulse output permitted.  
VOUT (35)/VOUT (29)  
SS-SV SOG minimum input voltage  
Oaj2 OSD adjust control characteristics2  
Measuring condition and procedure are the same as described in  
The sync's amplitude of SG4 be changed all white or all black,  
decrease from 0.3VP-P to 0.2VP-P. Confirm no malfunction produced  
by noise.  
Oaj1.  
Oaj2 OSD adjust control relative characteristics2  
Measuring condition and procedure are the same as described in  
VSH Sync output hi level  
Oaj1.  
Measure the high voltage at SyncOUT. The measured value is  
treated as VSH.  
Oaj3 OSD adjust control characteristics3  
Measuring condition and procedure are the same as described in  
VSL Sync output lo level  
Oaj1.  
Measure the low voltage at SyncOUT. The measured value is  
treated as VSL.  
Oaj3 OSD adjust control relative characteristics3  
Measuring condition and procedure are the same as described in  
Oaj1.  
9
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
TDS-F Sync output delay time1  
VOH D/A H output voltage  
SyncOUT becomes High with sync part of SG4.  
Measure the DC voltage at D/AOUT. The measured value is  
Measure the time needed for the front edge of SG4 sync to fall from  
50% and for SyncOUT to rise from 50% with an active prove. The  
measured value is treated as TDS-F, less than 90nsec.  
ttreated as VOH.  
VOL D/A L output voltage  
Measure the DC voltage at D/AOUT. The measured value is  
ttreated as VOL.  
TDS-R Sync output delay time2  
Measure the time needed for the rear edge of SG4 sync to rise from  
50% and for SyncOUT to fall from 50% with an active prove. The  
measured value is treated as TDS-R, less than 90nsec.  
IAO D/A output current range  
Electric current flow from the output of D/AOUT must be less than  
1.0mA.  
Electric current flow in the output of D/AOUT must be less than  
0.4mA.  
SG4  
Pedestal voltage  
sync (50%)  
TDS-F  
(50%)  
DNL D/A nonlinearity  
SyncOUT  
TDS-R  
The difference of differential non-linearity of D/AOUT must be less  
than ±1.0LSB.  
BUS CONTROL TABLE  
(1) Slave address  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
1
D2  
0
D1  
0
R/W  
0
=88H  
(2) Each function’s sub address  
Function  
Data byte (up:bit information down: preset)  
sub  
add.  
bit  
D7  
D6  
D5  
A05  
0
D4  
A04  
0
D3  
A03  
0
D2  
A02  
0
D1  
A01  
0
D0  
A00  
0
A07  
0
A06  
1
Main contrast  
8
8
8
8
4
4
8
8
8
8
1
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0BH  
A17  
1
A16  
0
A15  
0
A14  
0
A13  
0
A12  
0
A11  
0
A10  
0
Sub contrast R  
Sub contrast G  
Sub contrast B  
OSD level  
A27  
1
A26  
0
A25  
0
A24  
0
A23  
0
A22  
0
A21  
0
A20  
0
A37  
1
A36  
0
A35  
0
A34  
0
A33  
0
A32  
0
A31  
0
A30  
0
A43  
1
A42  
0
A41  
0
A40  
0
0
0
0
0
A53  
1
A52  
0
A51  
0
A50  
0
RE-BLK adjust  
D/A OUT1  
0
0
0
0
A67  
1
A66  
0
A65  
0
A64  
0
A63  
0
A62  
0
A61  
0
A60  
0
A77  
1
A76  
0
A75  
0
A74  
0
A73  
0
A72  
0
A71  
0
A70  
0
D/A OUT2  
A87  
1
A86  
0
A85  
0
A84  
0
A83  
0
A82  
0
A81  
0
A80  
0
D/A OUT3  
A97  
1
A96  
0
A95  
0
A94  
0
A93  
0
A92  
0
A91  
0
A90  
0
D/A OUT4  
AB0  
0
Pedestal clamp INT/EXT SW  
0
0
0
0
0
0
0
Notes) pedestal level INT/EXT SW  
0INT  
1EXT  
10  
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
I2C BUS CONTROL SECTION SDA, SCL CHARACTERISTICS  
Symbol  
Parameter  
Min.  
-0.5  
3.0  
0
Max.  
1.5  
5.5  
100  
Unit  
V
VIL  
min. input LOW voltage  
max. input HIGH voltage  
SCL clock frequency  
VIH  
V
fSCL  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
tBUF  
Time the bus must be free before a new transmission can start  
Hold time start condition. After this period the first clock pulse is generated  
The LOW period of the clock  
4.7  
4.0  
4.7  
4.0  
4.7  
0
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tr  
The HIGH period of the clock  
Set up time for start condition (Only relevant for a repeated start condition)  
Hold time DATA  
Set-up time DATA  
250  
Rise time of both SDA and SCL lines  
Fall time of both SDA and SCL lines  
1000  
300  
tf  
tSU:STO  
Set-up time for stop condition  
4.0  
TIMING DIAGRAM  
tBUF  
tr, tf  
VIH  
SDA  
VIL  
tSU:STA  
tSU:STO  
tHD:STA  
tSU:DAT  
tHD:DAT  
VIH  
SCL  
VIL  
tLOW  
tHIGH  
S
S
P
S
11  
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
INPUT SIGNAL  
SG No.  
Signals  
Pulse with amplitude of 0.7VP-P (f=30kHz). Video width of 25µs. (75%)  
33µs  
SG1  
Video signal  
(all white)  
8µs  
0.7VP-P  
SG2  
Video signal  
(step wave)  
0.7VP-P  
(Amplitude is partially variable.)  
SG3  
Sine wave  
(for freq. char.)  
Sine wave amplitude of 0.7VP-P.  
f=1MHz, 50MHz, 150MHz (variable)  
Video width of 25µs. (75%)  
SG4  
all white or all black  
variable.  
0.7VP-P  
Video signal  
(all white,  
all black)  
Sync’s amplitude  
0.3VP-P  
3µs  
is variable.  
Pulse width and amplitude are variable.  
0.5µs  
SG5  
Clamp  
pulse  
5VTTL  
SG6  
OSD pulse  
Amplitude is partially variable.  
5VTTL  
5µs  
SG7  
BLK pulse  
5VTTL  
Amplitude is partially variable.  
5µs  
) f=30kHz  
12  
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
TEST CIRCUIT  
D/A  
D/A  
D/A  
D/A  
SG7  
a
SG5  
SDA  
SCL  
OUT (35)  
OUT (32)  
OUT (29)  
OUT1 OUT2 OUT3 OUT4  
C/P IN  
V30  
0 to 5V  
100  
b
b
a
1k  
1k  
1k  
SW27  
SW19  
100µH  
36  
35  
34  
31  
29  
20  
scl  
19  
23  
22  
21  
33  
32  
30  
brt  
27  
blk  
26  
25  
24  
28  
f/b  
12V  
out  
f/b  
gnd  
out  
f/b  
out  
dac  
dac  
dac  
dac  
gnd  
sda  
c/p  
M52743SP/M52744SP  
blk  
1
R
2
12V  
3
osd  
4
gnd  
5
G
6
SonG 12V  
osd  
9
gnd  
10  
B
12V  
12  
osd  
13  
gnd  
14  
abl  
15  
NC  
16  
5V  
17  
sync  
18  
7
8
11  
47µ  
100k  
IN (2)  
IN (6) SONG  
IN  
0.01µ  
3.3µ  
IN (11)  
0.01µ  
3.3µ  
SYNC  
OUT  
0.01µ  
3.3µ  
1µ  
V15  
0 to 5V  
1k  
SW1 SW2  
SW4  
a
SW6  
a
SW7  
SW9  
a
SW11  
a
SW13  
a
a
a
a
b
b
b
b
b
b
b
b
A
IB  
IA  
5V  
A
47µ  
12V  
SG6  
SG1  
SG2  
SG3  
SG4  
: MEASURE POINT  
Condenser : 0.01µF (unless otherwise specified.)  
Units Resistance : Ω  
Capacitance : F  
TYPICAL CHARACTERISTICS  
THERMAL DERATING  
MAIN CONTRAST CONTROL CHARACTERISTICS  
2800  
6
5
4
3
2
1
0
2403  
2400  
2000  
1600  
1200  
800  
400  
0
1442  
Sub contrast: Max  
-20  
0
25  
50  
75  
100 125 150  
00H  
FFH  
AMBIENT TEMPERATURE Ta (°C)  
MAIN CONTRAST CONTROL DATA  
13  
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
SUB CONTRAST CONTROL CHARACTERISTICS  
BRIGHTNESS CONTROL CHARACTERISTICS  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Main contrast: Max  
00H  
FFH  
0
5
SUB CONTRAST CONTROL DATA  
BRIGHTNESS CONTROL VOLTAGE (VDC)  
ABL CHARACTERISTICS  
OSD ADJUST CONTROL CHARACTERISTICS  
6
6
5
4
3
2
1
0
5
4
3
2
1
0
Main contrast: Max  
Sub contrast : Max  
0
5
0H  
FH  
ABL CONTROL VOLTAGE (VDC)  
OSD ADJUST CONTROL DATA  
SYNC ON GREEN INPUT MIN. PULSE WIDTH  
12  
(Video duty=75%)  
10  
8
Sync separate  
normal operating range  
6
4
2
7
100k  
0
1µ  
0
0.5  
INPUT SYNC AMPLITUDE (VP-P)  
IN  
14  
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
APPLICATION EXAMPLE  
CRT  
110V  
Cut Off Adj  
DAC OUT×4  
5VTTL  
BLK IN  
(for retrace)  
1k  
1k  
1k  
SDA  
0 to 5V  
0.01µ  
30 29  
SCL  
Clamp pulse  
IN  
100  
0.01µ 0.01µ  
0.01µ 0.01µ  
100µH  
36  
35  
34  
33  
32  
31  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
M52743SP/M52744SP  
1
2
3
4
5
6
7
8
9
10  
0.01µ  
11  
12  
13  
14  
15  
16  
17  
18  
0.01µ  
0.01µ  
NC  
100k  
1µ  
ABL IN  
0 to 5V  
47µ  
3.3µ  
47µ  
3.3µ  
47µ  
1k  
Sync  
Sep  
OUT  
0.01µ  
0.01µ  
0.01µ  
3.3µ  
5VTTL  
75  
75  
75  
5VTTL  
5VTTL  
OSD IN (B)  
OSD IN (G)  
OSD IN (R)  
5VTTL  
BLK IN  
(for OSD)  
47µ  
0.01µ  
12V  
5V  
INPUT  
(R)  
INPUT  
(G)  
SONG  
INPUT  
INPUT  
(B)  
FEED BACK IS  
INTERNAL FEED BACK  
Units Resistance : Ω  
Capacitance : F  
Circuit example of pin6 and pin7 same signal input  
15  
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
DESCRIPTION OF PIN  
Pin No.  
Name  
DC voltage (V )  
Peripheral circuit of pins  
Description of function  
R
G
Input pulses  
3.7 to 5V  
1
1
OSD BLK IN  
B
1.7V  
maximum  
Connected to GND if not  
used.  
0.8mA  
2.7V  
2k  
2k  
Clamped to about 2.5V  
due to clamp pulses  
from pin 19.  
2
6
11  
INPUT (R)  
INPUT (G)  
INPUT (R)  
2.5  
2
Input at low impedance.  
2.5V  
CP  
0.3mA  
3
8
12  
VCC1 (R)  
VCC1 (G)  
VCC1 (B)  
Apply equivalent  
voltage to 3 channels.  
12  
Input pulses  
3.7 to 5V  
1k  
4
9
13  
OSD IN (R)  
OSD IN (G)  
OSD IN (B)  
1.7V  
maximum  
4
Connected to GND if not  
used.  
2.7V  
0.5mA  
5
GND 1 (R)  
GND 1 (G)  
GND 1 (B)  
GND (5V)  
GND 2  
10  
14  
22  
33  
GND  
SYNC ON GREEN  
input pin for sync  
separation.  
Sync is negative.  
input signal at Pin7,  
compare with the  
reference voltage of  
internal circuit in order to  
separate sync signal.  
When not used, set to  
OPEN.  
INPUT  
(S on G)  
500  
7
When open2.5V  
1k  
3.2V  
7
16  
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
DESCRIPTION OF PIN (cont.)  
Pin No.  
Name  
DC voltage (V )  
When open 2.5V  
Peripheral circuit of pins  
Description of function  
2.5V  
20k  
30k  
ABL (Automatic Beam  
Limitter) input pin.  
Recommended voltage  
range is 0 to 5V.  
When ABL function is not  
used, set to 5V.  
15  
ABL IN  
1.2k  
1.2k  
0.5mA  
15  
16  
17  
NC  
VCC (5V)  
5
18  
Sync signal output pin,  
Being of open collector  
output type.  
S on G Sep  
OUT  
18  
41k  
Input pulses  
2.5 to 5V  
Clamp Pulse  
IN  
19  
0.5V  
maximum  
19  
Input at low impedance.  
2.2V  
0.15mA  
50k  
SCL of I2C BUS  
(Serial clock line)  
VTH=2.3V  
20  
SCL  
20  
2k  
3V  
50k  
SDA of I2C BUS  
(Serial data line)  
VTH=2.3V  
21  
SDA  
21  
2k  
3V  
17  
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
DESCRIPTION OF PIN (cont.)  
Pin No.  
Name  
DC voltage (V )  
Peripheral circuit of pins  
Description of function  
23  
24  
25  
26  
D/A output pin.  
Output voltage range is  
0 to 5V, Max output  
current is 0.4mA.  
D/A OUT  
23  
Input pulses  
2.5 to 5V  
50k  
R
G
B
Retrace BLK  
IN  
27  
0.5V  
27  
maximum  
2.25V  
Connected to GND if not  
used.  
35k  
28  
31  
34  
EXT Feed  
Back (B)  
EXT Feed  
Back (G)  
EXT Feed  
Back (R)  
Variable  
28  
A resistor is needed on  
the GND side.  
Set discretionally to  
maximum 15mA,  
36  
29  
32  
35  
OUTPUT (B)  
OUTPUT (G)  
OUTPUT (R)  
Variable  
50  
depending on the  
required driving capacity.  
50  
29  
Used to supply power to  
output emitter follower  
only.  
12  
36  
VCC2  
Impressed  
35k  
It is recommended that  
the IC be used between  
pedestal voltage 2V and  
3V.  
Main  
Brightness  
30  
30  
18  
MITSUBISHI ICs (Monitor)  
M52743SP/M52744SP  
I2C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER  
APPLICATION METHOD FOR M52743SP  
CLAMP PULSE INPUT  
Clamp pulse width is recommended  
above 15kHz, 1.0µsec  
above 30kHz, 0.5µsec  
above 64kHz, 0.3µsec.  
The clamp pulse circuit in ordinary set is a long round about way,  
and beside high voltage, sometimes connected to external terminal,  
it is very easy affected by large surge.  
Therefore, the Fig. shown right is recommended.  
19  
EXT-FEED BACK  
In case of application circuit example of lower figure, Set up R1, R2  
which seems that the black level of the signal feedbacked from  
Power AMP is 1V, when the bottom of output signal is 1V.  
Power Amp  
MAIN BRIGHTNESS  
DC:1 to 5V  
Power Amp OUT  
Pre Amp  
INPUT R  
R OUT PUT  
Black level 1 to 5V  
R1  
R Feed back  
Black level 1 to 5V  
R2  
EXT-FEED BACK APPLICATION CIRCUIT  
NOTICE OF APPLICATION  
TAILING  
Make the nearest distance between output pin and pull down  
There is the case that a screen tailing like a figure by characteristic  
of the next stage amplifier connected to M52744SP.  
That case recommends use of M52743SP.  
resister.  
Recommended pedestal voltage of IC output signal is 2V.  
Window  
signal  
Shadow  
tailing  
SCREEN  
19  

相关型号:

M52744

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52744SP

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52745SP

BUS CONTROLLED 3-CHANNEL VIDEO PREAMP FOR CRT DISPLAY MONITOR
MITSUBISHI

M52746SP

BUS CONTROLLED 3CH VIDEO PRE-AMP FOR CRT DISPLAY MONITOR
MITSUBISHI

M52749FP

BUS CONTROLLED 3CH VIDEO PRE-AMP FOR CRT DISPLAY MONITOR
MITSUBISHI

M52749FP

BUS Controlled 3ch Video Pre-amp for CRT Display Monitor
RENESAS

M527534-12

Cannon MIL-DTL-38999 Connectors
ITT

M52755FP

WIDE BAND ANALOG SWITCH
MITSUBISHI

M52755SP

Audio/Video Switch, 1 Func, 10 Channel, BIPolar, PDIP32, 32P4B
MITSUBISHI

M52756

WIDE BAND ANALOG SWITCH
MITSUBISHI

M52756SP

WIDE BAND ANALOG SWITCH
MITSUBISHI

M52757FP

WIDE BAND ANALOG SWITCH
MITSUBISHI