M52742ASP [RENESAS]

BUS Controlled 3-Channel Video Preamp for CRT Display Monitor; 总线控制3路视频前置放大器CRT显示器
M52742ASP
型号: M52742ASP
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

BUS Controlled 3-Channel Video Preamp for CRT Display Monitor
总线控制3路视频前置放大器CRT显示器

显示器 消费电路 商用集成电路 音频放大器 视频放大器 光电二极管
文件: 总27页 (文件大小:378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M52742ASP  
BUS Controlled 3-Channel Video Preamp for CRT Display Monitor  
REJ03F0192-0201  
Rev.2.01  
Mar 31, 2008  
Description  
M52742ASP is semiconductor integrated circuit for CRT display monitor.  
It includes OSD blanking, OSD mixing, retrace blanking, wide band amplifier, brightness control, uniformity function.  
Main/sub contrast and OSD adjust function can be controlled by I2C BUS.  
Features  
Frequency band width: RGB  
OSD  
200 MHz (at 3 dB)  
80 MHz  
Input: RGB  
OSD  
0.7 VP-P (typ.)  
3 VP-P min. (positive)  
3 VP-P min. (positive)  
3 VP-P min. (positive)  
5.5 VP-P (max.)  
BLK (for OSD)  
Retrace BLK  
Output: RGB  
OSD  
5 VP-P (max.)  
Main contrast and sub contrast can be controlled by I2C
Include internal and external pedestal clamp circuit.  
Application  
CRT display monitor  
Recommended Operating C
Supply voltage range:  
V3, V8, V12, V36)  
(V17)  
(V3, V8, V12, V36)  
V (V17)  
Rated supply voltage:  
Major Specification  
BUS controlled 3ch video pre-amp with OSD mixing function and retrace blanking function  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 1 of 26  
M52742ASP  
Block Diagram  
MAIN  
BRIGHTNESS  
RETRACE  
BLK IN  
30  
27  
OSD IN (R)  
4
Sub  
contrast  
Main  
contrast  
Retrace  
blanking  
2
3
5
9
Amp  
INPUT (R)  
VCC1 (R) 12 V  
GND1 (R)  
Clamp  
Clamp  
Clamp  
OSD Mix  
OUTPUT (R)  
35  
Sub Cont  
(8 bit)  
Clamp  
F/B  
34 EXT  
FEED BACK (R)  
OSD IN (G)  
INPUT (G)  
Main  
contrast  
Sub  
contrast  
Retrace  
blanking  
6
8
Amp  
32  
31  
OSD Mix  
OUTPUT (G)  
VCC1 (G) 12 V  
Sub Cont  
(8 bit)  
EXT  
FEED BACK (G)  
Clamp  
F/B  
GND1 (G) 10  
OSD IN (B)  
INPUT (B)  
13  
11  
Main  
contrast  
Sub  
contrast  
Retrace  
anking  
OSD Mix  
29 OUTPUT (B)  
VCC1 (B) 12 V  
GND1 (B)  
12  
14  
15  
Sub Cont  
(8 bit)  
EXT  
FEED BACK (B)  
28  
Main  
contrast  
8 bit  
CONTRAST  
(ABL) IN  
VCC 5 V  
(DIGITAL)  
SDA  
17  
21  
20  
22  
Sync on  
Green Sep  
BUS  
I/F  
INPUT (SOG)  
7
AC  
SCL  
SOG SEP OUT 18  
GND (5 V)  
19  
16  
23 24 25 26  
DAC OUTPUT  
FOR CUT-OFF adj  
CLAMP  
PULSE  
IN  
UNIFOR
I
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 2 of 26  
M52742ASP  
Pin Arrangement  
M52742ASP  
OSD BLK IN  
INPUT (R)  
1
2
3
4
5
6
7
8
9
36 VCC2  
35 OUTPUT (R)  
34 EXT FEED BACK (R)  
33 GND2  
VCC1 (R)  
OSD IN (R)  
GND1 (R)  
32 OUTPUT (G)  
31 EXT FEED BACK (G)  
30 MAIN BRIGHTNESS  
29 OUTPUT (B)  
28 EXT FEED BACK (B)  
27 RETRACE BLK IN  
26 D/A OUT1  
INPUT (G)  
INPUT (SOG)  
VCC1 (G)  
OSD IN (G)  
GND1 (G) 10  
INPUT (B) 11  
V
CC1 (B) 12  
25 D/A OUT2  
OSD IN (B) 13  
GND1 (B) 14  
24 D/A OUT3  
23 D/A OUT4  
ABL IN 15  
22 GND (5
UNIFORMITY IN 16  
21 SD
VCC = 5 V 17  
20
SOG SEP OUT 18  
1
(Top vie
Outl
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 3 of 26  
M52742ASP  
Absolute Maximum Ratings  
(Ta = 25°C)  
Item  
Supply voltage (pins 3, 8, 12, 36)  
Supply voltage (pin 17)  
Power dissipation  
Symbol  
Ratings  
13.0  
Unit  
VCC12  
VCC5  
Pd  
V
6.0  
V
2403  
mW  
°C  
°C  
V
Ambient temperature  
Topr  
Tstg  
20 to +75  
40 to +150  
12.0  
Storage temperature  
Recommended supply 12  
Recommended supply 5  
Vopr12  
Vopr5  
5.0  
V
Electrical Characteristics  
(VCC = 12 V, 5 V, Ta = 25°C, unless otherwise noted)  
CTL  
Limits  
Input  
19  
Voltage  
30 15  
Bri- AB
BUS CTL (H)  
2H 03H 04H 05H 06H 07H 08H 09H 0BH  
Test  
Point  
Min. Typ. Max. Unit (s)  
2, 6,  
1
4, 9  
27  
7
16  
11 OSD 13 CP in ReT SOG UNI  
Sub OSD BLK D/A D/A  
D/A  
Cont Adj Adj OUT OUT OUT OUT EXT  
D/A  
INT  
RGB BLK OSD  
in  
BLK  
in  
in  
ght  
Item  
Circuit  
current1  
Symbol  
ICC1  
in  
3
1
2
3
4
b
SG5  
00H 00H FFH FFH FFH FFH 00H  
0
126 146 mA  
IA  
IB  
a
a
a
a
a
a
a
a
a
0
255 255  
255  
255  
b
SG5  
Circuit  
current2  
mA  
a
a
a
a
a
a
a
ICC2  
18  
8.0  
25  
b
SG2  
b
SG5  
Output  
dynamic range  
VP-P OUT  
6.0  
1.6  
Vomax  
Vimax  
b
SG2  
Variable  
Maximum  
input  
VP-P IN  
OUT  
b
SG1  
Maximum  
gain  
16.5 17.7 19.4 dB OUT  
a
Gv  
255  
Relative max-  
imum gain  
1.0  
1.2  
0.8  
Gv  
VC1  
Main contrast  
control  
C8H  
200  
17.0 18.5 dB O
2.0 5.0  
15.5  
characteristics1  
Main contrast  
control relative  
characteristics1  
1.0  
1.2  
0.8  
VC1  
Main contrast  
control  
characteristics2  
G5  
64H  
100  
11.0
a
a
a
a
a
a
a
a
2.0 5.0  
9.5  
0
VC2  
Main contrast  
control relative  
characteristics2  
Main contrast  
control  
0.4  
VC2  
VC3  
b
SG1  
b
SG5  
14H  
20  
2.0 5.0  
0.2  
characteristics3  
Main contrast  
control relative  
characteristics3  
Sub contrast  
control  
1.0 1.2  
a
a
a
a
a
0.8  
VC3  
VSC1  
VSC1  
VSC2  
VSC2  
VSC3  
VSC3  
b
SG1  
b
SG5  
FFH C8H C8H C8H  
2.0 5.0  
17.5 19.0 dB OUT  
16.0  
0.8  
255  
200 200 200  
characteristics1  
Sub contrast  
control relative  
characteristics1  
Sub contrast  
control  
1.0 1.2  
a
a
a
a
a
b
SG1  
b
SG5  
FFH 64H 64H 64H  
2.0 5.0  
13.5 15.0 dB OUT  
12.0  
255  
100 100 100  
characteristics2  
Sub contrast  
control relative  
characteristics2  
Sub contrast  
control  
0.8 1.0 1.2  
a
a
a
a
a
b
SG1  
b
SG5  
FFH 14H 14H 14H  
2.0 5.0  
1.5 1.9  
2.2 VP-P OUT  
255  
20  
20  
20  
characteristics3  
Sub contrast  
control relative  
characteristics3  
1.0 1.2  
0.8  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 4 of 26  
M52742ASP  
Electrical Characteristics (cont.)  
CTL  
Voltage  
Limits  
Test  
Point  
Input  
4, 9 19  
BUS CTL (H)  
00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0BH  
2, 6,  
11  
1
27  
7
16  
30  
OSD 13 CP in ReT SOG UNI Bri- ABL Main Sub Sub Sub OSD BLK D/A  
15  
D/A  
D/A D/A  
Adj OUT OUT OUT OUT EXT  
INT  
RGB BLK OSD  
in  
BLK in  
in  
ght  
Cont Cont Cont Cont Adj  
3
Item  
Main/sub  
Symbol  
VMSC  
Min. Typ. Max. Unit  
(s)  
in  
1
2
1
2
3
4
C8H C8H C8H C8H  
3.5 4.1 4.7 VP-P OUT  
b
SG1  
a
a
b
SG5  
a
a
a
2.0 5.0  
contrast control  
characteristics  
Main/sub contrast  
control relative  
characteristics  
ABL control  
200  
200  
200  
200  
0.8 1.0 1.2  
VMSC  
b
SG1  
b
SG5  
FFH FFH FFH FFH  
2.0 4.0  
4.2 5.0 5.8 VP-P OUT  
0.8 1.0 1.2  
a
a
a
a
a
ABL1  
characteristics1  
255  
255  
255  
255  
ABL control  
relative  
characteristics1  
ABL1  
ABL control  
characteristics2  
ABL control  
relative  
b
SG1  
b
SG5  
2.6 3.1 3.6 VP-P OUT  
a
a
a
a
a
2.0 2.0  
ABL2  
0.8 1.0 1.2  
3.3 3.7 4.1  
V
ABL2  
characteristics2  
Brightness  
control  
b
SG5  
OUT  
a
a
a
a
a
a
a
a
a
a
a
4.0 5.0  
VB1  
characteristics1  
Brightness  
control relative  
0
0.3  
V
VB1  
0.3  
characteristics1  
Brightness  
control  
b
SG5  
1.5 1.8 2.1  
V
V
V
V
OUT  
a
2.0
VB2  
characteristics2  
Brightness  
0
0.3  
OUT  
a
a
a
VB2  
VB3  
0.3  
control relative  
characteristics2  
Brightness  
b
SG5  
0.7 0.9 1.1  
control  
characteristics3  
Brightness  
0.3  
2.0  
1.0  
3.0  
1.0  
0
0
0
0
0
0.3  
VB3  
FC1  
control relative  
characteristics3  
Frequency  
b
SG
Vari  
able  
2.5 dB OUT  
a
characteristics1  
(f = 50 MHz)  
Frequency relative  
characteristics1  
(f = 50 MHz)  
Frequency  
1.0 dB  
FC1  
Vari  
able  
Vari FFH FFH FFH 00H 00H FFH FFH FFH FFH 00H  
3.0 d
5.0  
FC1  
'
characteristics1  
(f = 200 MHz)  
Frequency relative  
characteristics1  
(f = 200 MHz)  
able 255  
255  
255  
0
0
255  
255  
255 255  
0
a
a
a
a
FC1  
FC2  
'
Frequency  
a
5 V  
Vari  
able  
3
5.0  
characteristics2  
(f = 200 MHz)  
Frequency relative  
characteristics2  
(f = 200 MHz)  
Crosstalk1  
1.0  
FC2  
(29) 2bSG3  
UT (32) 6a  
11a  
OUT (29) 2bSG3  
OUT (32) 6a  
11a  
Vari  
able  
FFH  
255  
a
5 V  
25 2
15 10 dB  
a
a
a
a
a
a
a
a
a
a
5.0  
5.0  
C.T.1  
C.T.1'  
C.T.2  
C.T.2'  
C.T.3  
C.T.3'  
(f = 50 MHz)  
Crosstalk1  
Vari  
able  
a
5 V  
(f = 200 MHz)  
Crosstalk2  
OUT (29) 2a  
OUT (35) 6bSG3  
11a  
Vari  
able  
a
5 V  
25 20 dB  
15 10 dB  
25 20 dB  
15 10 dB  
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
5.0  
5.0  
5.0  
5.0  
(f = 50 MHz)  
Crosstalk2  
2a  
6bSG3  
OUT (29)  
OUT (35)  
Vari  
able  
a
5 V  
(f = 200 MHz)  
Crosstalk3  
11a  
2a  
OUT (32)  
OUT (35)  
Vari  
able  
a
5 V  
6a  
11bSG3  
2a  
6a  
(f = 50 MHz)  
Crosstalk3  
(f = 200 MHz)  
OUT (32)  
OUT (35)  
Vari  
able  
a
5 V  
11bSG3  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 5 of 26  
M52742ASP  
Electrical Characteristics (cont.)  
CTL  
Voltage  
Limits  
Test  
Point  
Input  
BUS CTL (H)  
2, 6,  
11 OSD  
RGB BLK OSD  
1
4, 9  
19  
27  
7
16  
30  
15 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0BH  
D/A D/A D/A INT  
Adj OUT OUT OUT OUT EXT  
13 CP in ReT SOG UNI Bri- ABL Main Sub Sub Sub OSD BLK D/A  
BLK  
in  
in  
ght  
Cont Cont Cont Cont Adj  
Item  
Symbol  
Tr  
Min. Typ. Max. Unit  
(s)  
in  
b
SG1  
in  
1
2
3
1
2
3
4
b
SG5  
Vari  
able  
Vari  
able  
Pulse  
characteristics1  
1.7  
ns OUT  
a
a
a
a
a
a
5.0  
5.0  
(4 VP-P  
Pulse  
)
b
SG1  
b
SG5  
Vari  
able  
Vari  
able  
2.2  
ns OUT  
a
a
a
a
Tf  
characteristics2  
(4 VP-P  
)
b
SG1  
b
SG5  
Vari  
able  
Vari  
able  
Relative pulse  
characteristics1  
0.8  
0.8  
0
0
0.8 ns OUT  
0.8 ns OUT  
a
a
a
a
a
a
a
a
a
a
5.0  
5.0  
Tr  
Tf  
b
SG1  
b
SG5  
Vari  
able  
Vari  
able  
Relative pulse  
characteristics2  
b
SG1  
b
SG5  
FFH  
255  
1.0 1.5 2.0  
0.2 0.5  
V
OUT  
a
a
a
a
b
a
a
a
a
a
a
a
a
a
a
a
a
a
2.0 5.0  
2.0 5.0  
2.0 5.0  
2.0 5.0  
2.0 5.0  
Clamp pulse  
threshold voltage  
VthCP  
WCP  
OTr  
Variable  
b
SG1  
b
SG5  
µs OUT  
a
b
Clamp pulse  
minimum width  
Variable  
b
08H  
8
3.0 6.0 ns OUT  
3.0 6.0 ns OUT  
a
a
OSD pulse  
characteristics1  
SG6 SG5  
b
b
SG6 SG5  
08H  
8
OSD pulse  
characteristics2  
OTf  
0FH  
15  
b
b
4.6 5.4 6.2 VP-P OUT  
0.8 1.0 1.2  
a
a
a
a
OSD adjust control  
characteristics1  
Oaj1  
SG6 SG6 SG5  
Oaj1  
OSD adjust control  
relative  
characteristics1  
OSD adjust control  
characteristics2  
b
b
b
SG6 SG6 SG5  
8
2.8 3.3 3.8 VP-P OUT  
0.8 1.0 1.2  
a
a
a
Oaj2  
OSD adjust control  
relative  
characteristics2  
Oaj2  
OSD BLK  
characteristics  
b
SG6  
a
00H  
0
OBLK  
0
0.1 0.3 VP-P OUT  
a
0.2  
0
0.2 VP-P  
OSD relative  
characteristics  
OBLK  
08H  
8
2.2 2.7 3.2  
2.2 2.7 3.2  
1.7 2.0 2.3  
0.7 1.0 
0.1
V
V
OUT  
a
a
a
a
a
a
a
5.0  
2.0 5.0  
2.0 5.0  
2.0 5.0  
2.0 5.0  
OSD input  
threshold voltage  
VthOSD  
VthBLK  
HBLK1  
HBLK2  
HBLK3  
00H  
0
OSD BLK input  
threshold voltage  
0FH  
15  
Retrace BLK  
characteristics1  
7  
06H  
6
b  
5 SG7  
Retrace BLK  
characteristics2  
00H  
0
b b  
SG5 SG7  
Retrace BLK  
characteristics3  
08H  
8
Retrace BLK  
input threshold  
voltage  
b
b
SG5 SG7  
1.
a
a
a
a
a
a
a
a
a
a
a
a
2.0 5.0  
2.0 5.0  
2.0 5.0  
VthRET  
SS-NV  
SS-SV  
Variable  
N  
OUT  
b
SG4  
a
a
a
a
SOG input  
maximum noise  
voltage  
Variable  
SonG IN  
Sync OUT  
b
SG4  
SOG  
minimum input  
voltage  
0.2 0.3  
VP-P  
Variable  
Sync OUT  
Sync OUT  
Sync OUT  
b
SG4  
Sync output  
high level  
4.5 4.9 5.0  
V
V
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
2.0 5.0  
2.0 5.0  
2.0 5.0  
VSH  
b
SG4  
Sync output  
low level  
0
0
0.3 0.6  
60  
VSL  
b
SG4  
Sync output  
delay time1  
90 ns  
TDS-F  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 6 of 26  
M52742ASP  
Electrical Characteristics (cont.)  
CTL  
Voltage  
Limits  
Test  
Point  
Input  
19  
BUS CTL (H)  
2, 6,  
11  
1
4, 9  
27  
7
16  
30  
15 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0BH  
D/A D/A D/A INT  
Adj OUT OUT OUT OUT EXT  
OSD 13 CP in ReT SOG UNI Bri- ABL Main Sub Sub Sub OSD BLK D/A  
RGB BLK OSD  
in  
BLK  
in  
in  
ght  
Cont Cont Cont Cont Adj  
Item  
Symbol  
TDS-R  
Min. Typ. Max. Unit  
(s)  
in  
1
2
3
1
2
3
4
b
SG4  
Sync output  
delay time2  
0
60  
90 ns Sync  
OUT  
a
a
a
a
a
a
a
a
a
a
a
a
a
a
2.0 5.0  
FFH FFH FFH FFH 00H 00H FFH FFH FFH FFH 00H  
255  
D/A H output  
voltage  
4.5 5.0 5.5 VDC D/A  
OUT  
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
2.0 5.0  
2.0 5.0  
2.0 5.0  
2.0 5.0  
2.0 5.0  
VOH  
VOL  
DNL  
UNI1  
255 255 255 255  
0
0
255 255 255  
0
00H 00H 00H 00H  
0
0
1.0  
7
0.5 1.0 VDC D/A  
OUT  
D/A L output  
voltage  
0
0
0
Vari Vari Vari Vari  
able able able able  
10  
5
1.0 LSB D/A  
OUT  
D/A  
nonlinearity  
b
b
SG1  
b
SG5  
C8H C8H C8H C8H  
200 200 200 200  
FFH FFH FFH FFH  
255 255 255  
13  
%
OUT  
Uniformity  
characteristics1  
SG6  
2.5 V  
255  
b
SG6  
b
SG1  
b
SG5  
3.5  
6.5  
%
OUT  
Uniformity  
characteristics2  
UNI2  
1.25 V  
IA  
00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H  
0
D/A input  
current range  
0.18  
mA D/A  
OUT  
a
a
a
a
a
a
a
a
a
a
a
a
a
a
2.0 5.0  
2.0 5.0  
0
0
0
0
0
0
0
0
0
0
D/A output  
current range  
D/A  
OUT  
1.0 mA  
IA  
+
Electrical Characteristics Test Method  
ICC1 Circuit Current1  
Measuring conditions are as listed in supplementary Table.  
Measured with a current meter at test point IA.  
ICC2 Circuit Current2  
Measuring conditions are as listed in supplementar
Measured with a current meter at test point IB.  
Vomax Output Dynamic Range  
Decrease V30 gradually, and measueform output is distorted. The voltage is called VOL.  
Next, increase V30 gradually, an the top of waveform output is distorted. The voltage is  
called VOH.  
Voltage Vomax is calcul:  
Vomax = VOH V
VOH  
5.0  
Waveform output  
VOL  
0.0  
Vimax Maximum Input  
Increase the input signal (SG2) amplitude gradually, starting from 700 mVP-P. Measure the amplitude of the input  
signal when the output signal starts becoming distorted.  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 7 of 26  
M52742ASP  
GV Maximum Gain  
Input SG1, and read the amplitude output at OUT (29, 32, 35). The amplitude is called VOUT (29, 32, 35). Maximum  
gain GV is calculated by the equation below:  
VOUT  
GV = 20log  
(dB)  
0.7  
GV Relative Maximum Gain  
Relative maximum gain GV is calculated by the equation below:  
GV = VOUT (29) / VOUT (32),  
VOUT (32) / VOUT (35),  
VOUT (35) / VOUT (29)  
VC1 Main Contrast Control Characteristics1  
Measuring the amplitude output at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35). Main contrast  
control characteristics VC1 is calculated by the equation below:  
VOUT  
VC1 = 20log  
(dB)  
0.7  
VC1 Main Contrast Control Relative Characteristics1  
Relative characteristics VC1 is calculated by the equation b
VC1 = VOUT (29) / VOUT (32),  
VOUT (32) / VOUT (35),  
VOUT (35) / VOUT (29)  
VC2 Main Contrast Control Charac
Measuring condition and procedure n VC1.  
VC2 Main Contrast Contics2  
Measuring condition and described in VC1.  
VC3 Main Contrast Contrcs3  
Measuring the amplitude output a29, 32, 35).  
The measured value is called VOUT (29, 32, 35).  
VC3 Main Contrast Control Relative Characteristics3  
Measuring condition and procedure are the same as described in VC1.  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 8 of 26  
M52742ASP  
VSC1 Sub Contrast Control Characteristics1  
Measure the amplitude output at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35). Sub contrast  
control characteristics VSC1 is calculated by the equation below:  
VOUT  
VSC1 = 20log  
(dB)  
0.7  
VSC1 Sub Contrast Control Relative Characteristics1  
Relative characteristics VSC1 is calculated by the equation below:  
VSC1 = VOUT (29) / VOUT (32),  
VOUT (32) / VOUT (35),  
VOUT (35) / VOUT (29).  
VSC2 Sub Contrast Control Characteristics2  
Measuring condition and procedure are the same as described in VSC1  
.
VSC2 Sub Contrast Control Relative Characteristics2  
Measuring condition and procedure are the same as described in VSC1  
SC3 Sub Contrast Control Characteristics3  
.
V
Measuring the amplitude output at OUT (29, 32, 35).  
The measured value is called VSC3  
VSC3 Sub Contrast Control Relative Characte
Measuring condition and procedure are the same
VMSC Main/sub Contrast Control Ch
Measure the amplitude output at OUT value is called VMSC.  
VMSC Main/sub Contrast eristics  
Relative characteristics Vuation below:  
VMSC = VOU
VOUT (
VOUT (35) / 29)  
ABL1 ABL Control Characteristics1  
Measure the amplitude output at OUT (29, 32, 35). The measured value is called VOUT (29, 32, 35), and is treated as  
ABL1.  
ABL1 ABL Control Relative Characteristics1  
Relative characteristics ABL1 is calculated by the equation below:  
ABL1 = VOUT (29) / VOUT (32) ,  
VOUT (32) / VOUT (35) ,  
VOUT (35) / VOUT (29)  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 9 of 26  
M52742ASP  
ABL2 ABL Control Characteristics2  
Measuring condition and procedure are the same as described in ABL1.  
ABL2 ABL Control Relative Characteristics2  
Measuring condition and procedure are the same as described in ABL1.  
VB1 Brightness Control Characteristics1  
Measure the DC voltage at OUT (29, 32, 35) with a voltmeter. The measured value is called VOUT (29, 32, 35), and is  
treated as VB1.  
VB1 Brightness Control Relative Characteristics1  
Relative characteristics VB1 is calculated by the difference in the output between the channels.  
VB1 = VOUT (29) VOUT (32),  
VOUT (32) VOUT (35),  
VOUT (35) VOUT (29)  
VB2 Brightness Control Characteristics2  
Measuring condition and procedure are the same as described in VB1.  
VB2 Brightness Control Relative Characteristics2  
Measuring condition and procedure are the same as describe
VB3 Brightness Control Characteristics3  
Measuring condition and procedure are the same a
VB3 Brightness Control Relative Cha
Measuring condition and procedure are B1.  
F
C1 Frequency Characteristic
First, SG3 to 1 MHz is as inpat is about 2 kto offer the voltage at input pins (2, 6, 11) in  
order that the bottom of inthe main contrast in order that the amplitude of sine wave output  
is 4.0 VP-P. Control the bottom of sine wave output is 2.0 VP-P. By the same way, measure  
the output amplitude when input signal. The measured value is called VOUT (29, 32, 35).  
Frequency characteristics FC1 (alculated by the equation below:  
VOUT VP-P  
FC1 = 20log  
(dB)  
Output amplitude when inputted SG3 (1 MHz): 4 VP-P  
FC1 Frequency Relative Characteristics1 (f = 50 MHz)  
Relative characteristics FC1 is calculated by the difference in the output between the channels.  
FC1' Frequency Characteristics1 (f = 200 MHz)  
Measuring condition and procedure are the same as described in table, expect SG3 to 200 MHz.  
FC1' Frequency Relative Characteristics1 (f = 200 MHz)  
Relative characteristics FC1' is calculated by the difference in the output between the channels.  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 10 of 26  
M52742ASP  
FC2 Frequency Characteristics2 (f = 200 MHz)  
SG3 to 1 MHz is as input signal. Control the main contrast in order that the amplitude of sine wave output is 1.0 VP-P  
.
By the same way, measure the output amplitude when SG3 to 200 MHz is as input signal.  
The measured value is called VOUT (29, 32, 35). Frequency characteristics FC2 (29, 32, 35) is calculated by the  
equation below:  
VOUT VP-P  
FC2 = 20log  
(dB)  
Output amplitude when inputted SG3 (1 MHz): 4 VP-P  
FC2 Frequency Relative Characteristics2 (f = 200 MHz)  
Relative characteristics FC2 is calculated by the difference in the output between the channels.  
C.T.1 Crosstalk1 (f = 50 MHz)  
Input SG3 (50 MHz) to pin 2 only, and then measure the waveform amplitude output at OUT (29, 32, 35). The  
measured value is called VOUT (29, 32, 35). Crosstalk C.T.1 is calculated by the equation below:  
VOUT (29, 32)  
C.T.1 = 20log  
(dB)  
VOUT (35)  
C.T.1' Crosstalk1 (f = 200 MHz)  
Measuring condition and procedure are the same as described in C.T.z.  
C.T.2 Crosstalk2 (f = 50 MHz)  
Input SG3 (50 MHz) to pin 6 only, and then measure the wt OUT (29, 32, 35). The  
measured value is called VOUT (29, 32, 35). Crosstalk quation below:  
VOUT (29, 32)  
C.T.2 = 20log  
(dB)  
VOUT (35)  
C.T.2' Crosstalk2 (f = 200 MHz)  
Measuring condition and procedure aC.T.2, expect SG3 to 200 MHz.  
C.T.3 Crosstalk3 (f = 50 MH
Input SG3 (50 MHz) to pin the waveform amplitude output at OUT (29, 32, 35). The  
measured value is called talk C.T.3 is calculated by the equation below:  
VOU
C.T.3 = 20log  
VOUT
C.T.3' Crosstalk3 (f = 200 MHz)  
Measuring condition and procedure are the same as described in C.T.3, expect SG3 to 200 MHz.  
Tr Pulse Characteristics1 (4 VP-P  
)
Control the main contrast (00H) in order that the amplitude of output signal is 4.0 VP-P  
.
Control the brightness (V30) in order that the Black level of output signal is 2.0 V.  
Measure the time needed for the input pulse to rise from 10% to 90% (Tr1) and for the output pulse to rise from 10% to  
90% (Tr2) with an active probe.  
Pulse characteristics Tr is calculated by the equations below:  
Tr = [ (Tr2)2 (Tr1)2 ]  
Tr Relative Pulse Characteristics1  
Relative characteristics Tr is calculated by the difference in the output between the channels.  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 11 of 26  
M52742ASP  
Tf Pulse Characteristics2 (4 VP-P  
)
Measure the time needed for the input pulse to fall from 90% to 10% (Tf1) and for the output pulse to fall from 90% to  
10% (Tf2) with an active probe.  
Pulse characteristics Tf is calculated by the equations below:  
Tf = [ (Tf2)2 (Tf1)2 ]  
Tf Relative Pulse Characteristics2  
Relative characteristics Tf is calculated by the difference in the output between the channels.  
100%  
90%  
10%  
Tf1 or Tf2  
0%  
Tr1 or Tr2  
VthCP Clamp Pulse Threshold Voltage  
Turn down the SG5 input level gradually from 5.0 VP-P, monitori
Measure the top level of input SG5 at when the output pedeswn or unstable.  
WCP Clamp Pulse Minimum Width  
Decrease the SG5 pulse width gradually from 0.5 Measure the input SG5 pulse width (at the  
point of 1.5 V) at when output pedestal level is ble.  
OTr OSD Pulse Characteristics1  
Measure the time needed for the outp90% (OTr) with an active probe.  
OTf OSD Pulse Characteri
Measure the time needed fom 90% to 10% (OTf) with an active probe.  
Oaj1 OSD Adjust Contr1  
Measure the amplitude output a32, 35). The measured value is called VOUT (29, 32, 35), and is treated as  
Oaj1.  
Oaj1 OSD Adjust Control Relative Characteristics1  
Relative characteristics Oaj1 is calculated by the equation below:  
Oaj1 = VOUT (29) / VOUT (32),  
VOUT (32) / VOUT (35),  
VOUT (35) / VOUT (29)  
Oaj2 OSD Adjust Control Characteristics2  
Measuring condition and procedure are the same as described in Oaj1.  
Oaj2 OSD Adjust Control Relative Characteristics2  
Measuring condition and procedure are the same as described in Oaj1.  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 12 of 26  
M52742ASP  
OBLK OSD BLK Characteristics  
Output voltage-Black level voltage of "High" section of SG6 is calculated. The calculated value is called VOUT (29,  
32, 35), and is treated as OBLK.  
OBLK OSD Relative Characteristics  
Relative characteristics OBLK is calculated by the equation below:  
OBLK = VOUT (29) - VOUT (32),  
VOUT (32) - VOUT (35),  
VOUT (35) - VOUT (29)  
VthOSD OSD Input Threshold Voltage  
Reduce the SG6 input level gradually, monitoring output. Measure the SG6 level when the output reaches 0 V. The  
measured value is called VthOSD.  
VthBLK OSD BLK Input Threshold Voltage  
Confirm that output signal is being blanked by the SG6 at the time.  
Monitoring to output signal, decreasing the level of SG6. Measure the top hen the blanking period is  
disappeared. The measured value is called VthBLK.  
HBLK1 Retrace BLK Characteristics1  
Measure the amplitude output is blanked by the SG7 at OUT value is called VOUT (29, 32,  
35), and is treated as HBLK1.  
HBLK2 Retrace BLK Characteristics2  
Measure the amplitude output is blanked by the The measured value is called VOUT (29, 32,  
35), and is treated as HBLK2.  
HBLK3 Retrace BLK Characterist
Measure the amplitude output is bl29, 32, 35). The measured value is called VOUT (29, 32,  
35), and is treated as HBLK3.  
VthRET Retrace BLK
Confirm that output signal e SG7 at the time.  
Monitoring to output signal, deevel of SG7. Measure the top level of SG7 when the blanking period is  
disappeared. The measured value d VthRET.  
SS-NV SOG Input Maximum Noise Voltage  
The sync's amplitude of SG4 be changed all white into all black, increase from 0 VP-P to 0.02 VP-P. No pulse output  
permitted.  
SS-SV SOG Minimum Input Voltage  
The sync's amplitude of SG4 be changed all white or all black, decrease from 0.3 VP-P to 0.2 VP-P. Confirm no  
malfunction produced by noise.  
VSH Sync Output High Level  
Measure the high voltage at SyncOUT. The measured value is treated as VSH.  
VSL Sync Output Low Level  
Measure the low voltage at SyncOUT. The measured value is treated as VSL.  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 13 of 26  
M52742ASP  
TDS-F Sync Output Delay Time1  
SyncOUT becomes High with sync part of SG4.  
Measure the time needed for the front edge of SG4 sync to fall from 50% and for SyncOUT to rise from 50% with an  
active probe. The measured value is treated as TDS-F, less than 90 ns.  
TDS-R Sync Output Delay Time2  
Measure the time needed for the rear edge of SG4 sync to rise from 50% and for SyncOUT to fall from 50% with an  
active probe. The measured value is treated as TDS-R, less than 90 ns.  
SG4  
Pedestal voltage  
sync (50%)  
TDS-F  
(50%)  
SyncOUT  
TDS-R  
VOH D/A H Output Voltage  
Measure the DC voltage at D/A OUT. The measured value is treated a
VOL D/A L Output Voltage  
Measure the DC voltage at D/A OUT. The measured value
IAO D/A Output Current Range  
Electric current flow from the output of D/A OUT IA+.  
Electric current flow into the output of D/A OmA: IA.  
A
1 VDC  
DNL D/A Nonlinearity  
The difference of differential non-linearity of D/A OUT must be less than ±1.0 LSB.  
UNI1 Uniformity Characteristics1, UNI2 Uniformity characteristics2  
VuniA is amplitude output at OUT (29, 32, 35), when SG6 is low voltage. VuniB is amplitude output at OUT (29, 32,  
35), when SG6 is high voltage.  
Modulation ratio UNI (UNI2) is calculated by the equation below;  
UNI1 (UNI2) = 100 (VuniB / VuniA 1) (%)  
VuniB  
VuniA  
OUT  
Pedestal  
voltage  
SG6  
5 VP-P (2.5 VP-P  
)
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 14 of 26  
M52742ASP  
I2C BUS Protocol  
(1) Slave address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
R/W  
1
0
0
0
1
0
0
0
= 88H  
(2) Slave receiver format  
S
Slave address  
A
Sub address  
A
Data byte  
A
P
Start condition  
Acknowledge  
Stop condition  
(3) Sub address byte and data byte format  
Sub  
Data Byte (Top: Byte Format, Under: Start Condition)  
Add.  
Function  
Main contrast  
Bit  
D7  
A07  
0
D6  
A06  
1
D5  
A05  
0
D4  
A04  
0
D3  
A03  
0
D2  
A02  
0
D1  
A01  
0
D0  
A00  
0
8
00H  
Sub contrast R  
Sub contrast G  
Sub contrast B  
OSD level  
8
8
8
4
4
8
8
01H  
02H  
03H  
04H  
05H  
06H  
A17  
1
A16  
0
A15  
0
A14  
A13  
0
A12  
0
A11  
0
A10  
0
A27  
1
A26  
0
A25  
0
23  
A22  
0
A21  
0
A20  
0
A37  
1
A36  
0
A32  
0
A31  
0
A30  
0
0
1
A42  
0
A41  
0
A40  
0
RE-BLK adjust  
D/A OUT1  
A53  
1
A52  
0
A51  
0
A50  
0
A64  
0
A63  
0
A62  
0
A61  
0
A60  
0
D/A OUT2  
75  
0
A74  
0
A73  
0
A72  
0
A71  
0
A70  
0
D/A OUT3  
0
A85  
0
A84  
0
A83  
0
A82  
0
A81  
0
A80  
0
D/A OUT4  
A96  
0
A95  
0
A94  
0
A93  
0
A92  
0
A91  
0
A90  
0
Pedestal clamp INT/EXT
0
0
0
0
AB0  
0
0
0
0
Note: Pedestal level INT/EXT
0 INT 1 EXT  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 15 of 26  
M52742ASP  
Timing Requirement of I2C  
Item  
Symbol  
VIL  
Min.  
0.5  
3.0  
0
Max.  
1.5  
5.5  
100  
Unit  
V
Input voltage LOW  
Input voltage HIGH  
VIH  
V
SCL clock frequency  
fSCL  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
Time the bus must be free before a new transmission can start  
Hold time start condition. After this period the first clock pulse is generated  
The LOW period of the clock  
tBUF  
4.7  
4.0  
4.7  
4.0  
4.7  
0
tHD:STA  
tLOW  
The HIGH period of the clock  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tr  
Set up time for start condition (Only relevant for a repeated start condition)  
Hold time for I2C devices  
Set-up time DATA  
250  
Rise time of both SDA and SCL  
1000  
300  
Fall time of both SDA and SCL  
tf  
Set-up time for stop condition  
tSU:STO  
4.0  
Timing Chart  
tBUF  
tr, tf  
VIH  
SDA  
VIL  
tSU: STO  
tHD: STA  
tSU: DAT  
t
VIH  
VIL  
SCL  
tL
S
S
P
S
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 16 of 26  
M52742ASP  
Input Signal  
SG No.  
Signals  
Pulse with amplitude of 0.7 VP-P (f = 30 kHz). Video width of 25 µs. (75%)  
33 µs  
SG1  
Video signal  
(all white)  
8 µs  
0.7 VP-P  
SG2  
Video signal  
(step wave)  
0.7 VP-P  
(Amplitude is variable.)  
SG3  
Sine wave  
(for freq. char.)  
ine wave amplitude of 0.7 VP-P.  
1 MHz, 50 MHz, 200 MHz (variable)  
Video width of 25 µs. (75%)  
all white or all black  
variable.  
SG4  
Video signal  
(all white,  
all black)  
Sync's amplitude  
is variable.  
0.3 VP-P  
3 µs  
Pulse width and amplitude are v
SG5  
Clamp  
pulse  
5 VTTL  
SG6  
OSD pulse  
Amplitude is variable.  
5 VTTL  
5 µs  
SG7  
BLK pulse  
5 VTTL  
5 µs  
Amplitude is variable.  
Note: f = 30 kHz  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 17 of 26  
M52742ASP  
Test Circuit  
D/A D/A D/A D/A  
OUT1 OUT2 OUT3 OUT4  
SG7  
a
SG5  
SDA SCL  
OUT (35)  
OUT (32)  
OUT (29)  
C/P IN  
V30  
0 to 5 V  
100  
b
b
a
470  
470  
470  
34  
SW27  
SW19  
100 µH  
36  
35  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
12 V out f/b gnd out f/b  
brt out f/b  
blk dac dac dac dac gnd sda scl c/p  
M52742ASP  
blk  
1
R
2
12 V osd gnd  
G
6
SonG 12 V osd gnd  
10  
B
12 V osd gnd abl UNI 5 V sync  
12 13 14 15 16 17 18  
47 µ  
3
4
5
7
8
9
11  
+
S
ONG  
IN  
IN (2)  
IN (6)  
IN (11)  
SYNC  
OUT  
3.3 µ 0.01 µ  
3.3 µ 0.01 µ  
3.3 µ 0.0
+
+
+
+
1 µ  
1 k  
SW16  
b
SW1 SW2  
SW4  
a
SW6 SW7  
SW9  
a
a
ba  
b
b
a
ba  
b
a
b
A
IB  
5 V  
IA  
SG6  
+
A
SG6  
47 µ  
SG1  
SG2  
SG3  
12 V  
point  
0.01 µF (unless otherwise specified.)  
Units Resistance: Ω  
Capacitance: F  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 18 of 26  
M52742ASP  
Typical Characteristics  
Main Contrast Control Characteristics  
Thermal Derating  
2800  
6
2403  
2400  
5
4
2000  
1600  
1200  
800  
1442  
3
2
1
400  
0
Sub contrast: Max  
0
00H  
FFH  
20  
0
25 50 75 100 125 150  
Ambient Temperature Ta (°C)  
Main Contrast Control Data  
Sub Contrast Control Characteristics  
rol Characteristics  
6
5
4
2
1
0
3
2
1
0
Mai
00H  
0
1
2
3
4
Sub
ABL Cha
Brightness Control Voltage (VDC)  
OSD Adjust Control Characteristics  
6
5
4
3
2
1
0
6
5
4
3
2
1
Main contrast: Max  
Sub contrast: Max  
0
0
1
2
3
4
5
0H  
FH  
ABL Control Voltage (VDC  
)
OSD Adjust Control Data  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 19 of 26  
M52742ASP  
Sync on Green input Min. Pulse Width  
12  
(Video duty = 75%)  
Uniformity Characteristics  
12  
10  
8
7
10  
1 µ  
+
8
100 k  
IN  
6
4
6
4
2
0
2
0
Sync separate  
normal operating range  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
Input Sync Amplitude (VP-P  
)
Input Amplitude (VP-P  
)
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 20 of 26  
M52742ASP  
Application Example  
110 V  
CRT  
Cut off Adj  
DAC
5 V  
TTL  
BLK IN  
(for retrace)  
SDA  
470  
0 to 5 V  
0.01 µ  
3
470  
470  
SCL  
Clamp pulse  
IN  
100  
1 µ 0.01 µ  
24 23 22  
100 µH  
36  
35  
34  
33  
32  
31  
21  
20  
19  
P  
1
2
3
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
0.01 µ  
0.01 µ  
+
33 µ  
ABL IN  
0 to 5 V  
Sync  
Sep  
OUT  
+
3.3
47 µ  
3.3 µ  
47 µ  
1 k  
2.2 µ  
3.3 µ 0.01 µ  
1 µ  
0.01 µ  
+
+
5 V  
TTL  
75  
75  
75  
Uniformity IN  
5 V  
TTL  
5 V  
TTL  
OSD IN (B)  
OSD IN (G)  
OSD IN (R)  
BLK IN  
5 V  
TTL  
(for OSD)  
+
0.01 µ  
47 µ  
+
Units Resistance:  
Capacitance: F  
12 V 5 V  
*
INPUT  
(R)  
INPUT  
(G)  
S
ON  
G
INPUT  
INPUT  
(B)  
* Circuit example of pin 6 and pin 7 same signal input  
note: Feed back is internal feed back  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 21 of 26  
M52742ASP  
Pin Description  
Pin No.  
Name  
DC Voltage (V)  
Peripheral Circuit  
Function  
Input pulses  
1
OSD BLK IN  
R
G
3.7 to 5 V  
GND to 1.7 V  
1
B
2 k  
Connected to GND if not  
used.  
2.7 V  
0.37 mA 0.37 mA  
2
6
INPUT (R)  
INPUT (G)  
INPUT (B)  
2.5  
Clamped to about 2.5 V  
due to clamp pulses  
from pin 19.  
2 k  
2 k  
11  
Input at low impedance.  
C
0.3 mA  
3
8
VCC1 (R)  
12  
Apply equivalent voltage  
to 3 channels  
VCC1 (G)  
12  
4
VCC1 (B)  
OSD IN (R)  
OSD IN (G)  
OSD IN (B)  
Input pulses  
9
3.7 to 5 V  
13  
GND to 1.7 V  
Connected to GND if not  
used.  
2.7 V  
5
GND 1 (R)  
GND 1 (G)  
GND 1 (B)  
GND (5 V)  
GND 2  
10  
14  
22  
33  
7
INPUT  
When o
SYNC ON GREEN  
Input pin for sync  
separation.  
(S on G)  
Sync is negative.  
7
3.33 V  
Input signal at pin 7,  
compare with the  
reference voltage of  
internal circuit in order to  
separate sync signal.  
500  
0.22 mA  
0.15 mA  
0.22 mA  
When not used, set to  
OPEN.  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 22 of 26  
M52742ASP  
Pin Description (cont.)  
Pin No.  
Name  
ABL IN  
DC Voltage (V)  
Peripheral Circuit  
Function  
15  
When open 2.5 V  
ABL (Automatic Beam Limiter)  
input pin. Recommended  
voltage range is 0 to 5 V.  
When ABL function is not  
used, set to 5 V.  
2.5 V  
20 k  
1.2 k  
1.2 k  
30 k  
0.5 mA  
15  
16  
Uniformity IN  
5.75  
Uniformity input pin.  
Recommended amplitude  
range is 0 to 5 VP-P  
.
200  
20 k  
7.25 V  
5 k  
16  
17  
18  
VCC (5 V)  
5
S on G Sep  
OUT  
gnal output pin, Being  
pen collector output type.  
19  
Clamp Pulse  
IN  
Input pulses  
2.5 to 5 V  
GND to 0.5 V  
Input at low impedance.  
2.2 V  
0.15 mA  
SCL of I2C BUS  
(Serial clock line)  
VTH = 2.3 V  
20  
SCL  
50 k  
20  
2 k  
3 V  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 23 of 26  
M52742ASP  
Pin Description (cont.)  
Pin No.  
Name  
SDA  
DC Voltage (V)  
Peripheral Circuit  
Function  
SDA of I2C BUS  
(Serial data line)  
TH = 2.3 V  
21  
50 k  
V
21  
2 k  
3 V  
23  
24  
25  
26  
D/A OUT  
D/A output pin.  
Output voltage range is 0 to 5  
V, min input current is 0.18 mA  
when D/A output pin is 1 V.  
Max output current is 1.0 mA.  
27  
Retrace BLK  
IN  
Input pulses  
50 k  
2.5 to 5 V  
GND to 0.5 V  
27  
nected to GND if not used.  
28  
31  
34  
EXT Feed  
Back (B)  
EXT Feed  
Back (G)  
EXT Feed  
Back (R)  
Variable  
29  
32  
35  
OUTPUT (B)  
OUTPUT (G)  
OUTPUT (R)  
A resistor is needed on the  
GND side.  
36  
50  
50  
Set discretionally to maximum  
15 mA, depending on the  
required driving capacity.  
36  
30  
VCC2  
12  
Used to supply power to output  
emitter follower only.  
Main  
Brightness  
It is recommended that the IC  
be used between pedestal  
voltage 2 V and 3 V.  
35 k  
30  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 24 of 26  
M52742ASP  
Application Method for M52742ASP  
Clamp Pulse Input  
Clamp pulse width is recommended  
above 15 kHz, 1.0 µs  
above 30 kHz, 0.5 µs  
above 64 kHz, 0.3 µs.  
The clamp pulse circuit in ordinary set is a long round about way, and beside high voltage, sometimes connected to  
external terminal, it is very easy affected by large surge.  
Therefore, the figure shown right is recommended.  
19  
EXT-Feed Back  
In case of application circuit example of lower figure, Set up R1, Rk level of the signal feed  
backed from Power AMP is 1 V, when the bottom of output sig
Main brig
DC: 1 t
Power Amp Out  
Pre Amp  
Input R  
eed back  
lack level 1 to 5 V  
R1  
R2  
EXT-Feed Back Application Circuit  
Notice of Application  
Make the nearest distance between output pin and pull down resistor.  
Recommended pedestal voltage of IC output signal is 2 V.  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 25 of 26  
M52742ASP  
Package Dimensions  
36P4E  
Plastic 36pin 500mil SDIP  
EIAJ Package Code  
SDIP36-P-500-1.78  
JEDEC Code  
Weight(g)  
3.0  
Lead Material  
Cu Alloy  
36  
19  
1
18  
Dimension in Millimeters  
Symbol  
A
Min  
Nom  
Max  
5.08  
D
A
1
0.51  
3.8  
0.5  
0.6  
0.4  
0.9  
1.0  
1.3  
0.65  
0.22  
31.3  
10.85  
0.75  
0.27  
31.5  
11.0  
1.778  
12.7  
1.05  
0.34  
31.7  
11.15  
D
E
e
e
b
1
e1  
3.0  
SEATING PLANE  
L
0°  
15°  
REJ03F0192-0201 Rev.2.01 Mar 31, 2008  
Page 26 of 26  
Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Notes:  
1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes  
warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property  
rights or any other rights of Renesas or any third party with respect to the information in this document.  
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including,  
but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.  
3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass  
destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws  
and regulations, and procedures required by such laws and regulations.  
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this  
document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document,  
please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be  
disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com )  
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a  
result of errors or omissions in the information included in this document.  
6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability  
of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular  
application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.  
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications  
or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk uman injury or which require especially high quality  
and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combntrol, aerospace and aeronautics, nuclear power, or  
undersea communication transmission. If you are considering the use of our products for such purposes, pleRenesas sales office beforehand. Renesas shall  
have no liability for damages arising out of the uses set forth above.  
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed
(1) artificial life support devices or systems  
(2) surgical implantations  
(3) healthcare intervention (e.g., excision, administration of medication, etc.)  
(4) any other purposes that pose a direct threat to human life  
Renesas shall have no liability for damages arising out of the uses set forth in the above and cts in any of the foregoing  
applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated coployees against any and all  
damages arising out of such applications.  
9. You should use the products described herein within the range specified by Renesas, g, operating supply voltage range,  
movement power voltage range, heat radiation characteristics, installation and other no liability for malfunctions or damages  
arising out of the use of Renesas products beyond such specified ranges.  
10. Although Renesas endeavors to improve the quality and reliability of its productuch as the occurrence of failure at a certain  
rate and malfunctions under certain use conditions. Please be sure to implemssibility of physical injury, and injury or damage  
caused by fire in the event of the failure of a Renesas product, such as safeg but not limited to redundancy, fire control and  
malfunction prevention, appropriate treatment for aging degradation or an, since the evaluation of microcomputer software  
alone is very difficult, please evaluate the safety of the final products or
11. In case Renesas products listed in this document are detached from are attached or affixed, the risk of accident such as  
swallowing by infants and small children is very high. You should iproducts may not be easily detached from your products.  
Renesas shall have no liability for damages arising out of such d
12. This document may not be reproduced or duplicated, in any foapproval from Renesas.  
13. Please contact a Renesas sales office if you have any queshis document, Renesas semiconductor products, or if you have  
any other inquiries.  
RENESAS SALES OFFICE
http://www.renesas.com  
Refer to "http://www.renesas.coiled information.  
Renesas Technology Amer
450 Holger Way, San Jos
Tel: <1> (408) 382-7500,
Renesas Technology Europ
Dukes Meadow, Millboard Roadamshire, SL8 5FH, U.K.  
Tel: <44> (1628) 585-100, Fax: <40  
Renesas Technology (Shanghai) Co.
Unit 204, 205, AZIACenter, No.1233 Lujiaing Rd, Pudong District, Shanghai, China 200120  
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898  
Renesas Technology Hong Kong Ltd.  
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong  
Tel: <852> 2265-6688, Fax: <852> 2377-3473  
Renesas Technology Taiwan Co., Ltd.  
10th Floor, No.99, Fushing North Road, Taipei, Taiwan  
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399  
Renesas Technology Singapore Pte. Ltd.  
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632  
Tel: <65> 6213-0200, Fax: <65> 6278-8001  
Renesas Technology Korea Co., Ltd.  
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea  
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145  
Renesas Technology Malaysia Sdn. Bhd  
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: <603> 7955-9390, Fax: <603> 7955-9510  
© 2008. Renesas Technology Corp., All rights reserved. Printed in Japan.  
Colophon .7.2  

相关型号:

M52742SP

BUS CONTROLLED 3-CHANNEL VIDEO PREAMP FOR CRT DISPLAY MONITOR
MITSUBISHI

M52743

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52743BSP

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52743BSP

I2C BUS Controlled 3-Channel Video Preamplifier
RENESAS

M52743SP

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52744

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52744SP

I 2 C BUS CONTROLLED 3-CHANNEL VIDEO PREAMPLIFIER
MITSUBISHI

M52745SP

BUS CONTROLLED 3-CHANNEL VIDEO PREAMP FOR CRT DISPLAY MONITOR
MITSUBISHI

M52746SP

BUS CONTROLLED 3CH VIDEO PRE-AMP FOR CRT DISPLAY MONITOR
MITSUBISHI

M52749FP

BUS CONTROLLED 3CH VIDEO PRE-AMP FOR CRT DISPLAY MONITOR
MITSUBISHI

M52749FP

BUS Controlled 3ch Video Pre-amp for CRT Display Monitor
RENESAS

M527534-12

Cannon MIL-DTL-38999 Connectors
ITT