HI-5700 [INTERSIL]

8-Bit, 20 MSPS Flash A/D Converter; 8位, 20 MSPS的Flash A / D转换器
HI-5700
型号: HI-5700
厂家: Intersil    Intersil
描述:

8-Bit, 20 MSPS Flash A/D Converter
8位, 20 MSPS的Flash A / D转换器

转换器
文件: 总12页 (文件大小:733K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
HI-5700  
8-Bit, 20 MSPS Flash A/D Converter  
May 1997  
Features  
Description  
• 20 MSPS with No Missing Codes  
• 18MHz Full Power Input Bandwidth  
• No Missing Codes Over Temperature  
• Sample and Hold Not Required  
• Single +5V Supply Voltage  
• CMOS/TTL  
The HI-5700 is a monolithic, 8-bit, CMOS Flash Analog-to-  
Digital Converter. It is designed for high speed applications  
where wide bandwidth and low power consumption are  
essential. Its 20 MSPS speed is made possible by a parallel  
architecture which also eliminates the need for an external  
sample and hold circuit. The HI-5700 delivers ±0.5 LSB  
differential nonlinearity while consuming only 725mW  
(typical) at 20 MSPS. Microprocessor compatible data  
output latches are provided which present valid data to the  
output bus 1.5 clock cycles after the convert command is  
received. An overflow bit is provided to allow the series  
connection of two converters to achieve 9-bit resolution.  
• Overflow Bit  
• Improved Replacement for MP7684  
• Evaluation Board Available  
• /883 Version Available  
Ordering Information  
Applications  
PART  
TEMPERATURE  
RANGE  
NUMBER  
PACKAGE  
• Video Digitizing  
HI3-5700J-5  
HI9P5700J-5  
HI3-5700A-9  
HI9P5700A-9  
0oC to +70oC  
0oC to +70oC  
-40oC to +85oC  
-40oC to +85oC  
28 Lead Plastic DIP  
28 Lead Plastic SOIC (W)  
28 Lead Plastic DIP  
28 Lead Plastic SOIC (W)  
• Radar Systems  
• Medical Imaging  
• Communication Systems  
• High Speed Data Acquisition Systems  
Pinout  
HI-5700  
(PDIP, SOIC)  
TOP VIEW  
VIN  
CLK  
1
2
28  
27  
26  
25  
24  
23  
22  
VREF  
-
(MSB) D7  
D6  
AVDD  
AGND  
AGND  
AVDD  
1/2R  
3
4
D5  
5
D4  
1/4R  
VDD  
6
7
21 AVDD  
8
GND  
3/4R  
AGND  
9
20  
19  
18  
17  
16  
15  
D3  
D2  
10  
11  
12  
13  
14  
AGND  
AVDD  
VREF  
+
(LSB) D1  
D0  
CE1  
CE2  
OVF  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2002. All Rights Reserved  
File Number 3174.4  
HI-5700  
Functional Block Diagram  
ýφ1 ýφ2  
φý1  
ýφ1  
ýφ2  
VIN  
28  
D
R/2  
OVERFLOW  
(OVF)  
Q
Q
Q
Q
Q
Q
14  
2
VREF  
+
17  
CL  
R
COMP  
256  
D
D7 (MSB)  
D6  
CL  
R
R
3/4R  
9
D
3
CL  
COMP  
193  
R
R
R
COMPARATOR  
LATCHES  
AND  
ENCODER  
LOGIC  
D
4
D5  
1/2R  
CL  
22  
6
COMP  
129  
D
5
D4  
D3  
CL  
1/4R  
D
10  
R
R
CL  
COMP  
65  
D
D2  
D1  
Q
Q
11  
12  
CL  
COMP  
2
D
R
CL  
VREF  
-
27  
D
13  
D0 (LSB)  
Q
R/2  
CL  
COMP  
1
CE1  
CE2  
16  
15  
φý1  
18  
20  
AVDD  
AGND  
VDD  
GND  
23  
24  
21 26  
19  
7
8
1
CLK  
25  
φý2  
4-1492  
Specifications HI-5700  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage, VDD to GND . . . . . . . . . (GND - 0.5) < VDD < +7.0V  
Analog and Reference Input Pins. . . .(VSS - 0.5) < VINA < (VDD +0.5V)  
Digital I/O Pins . . . . . . . . . . . . . . . (GND - 0.5) < VI/O < (VDD +0.5V)  
Thermal Resistance  
θJA  
HI3-5700J-5, HI3-5700A-9 . . . . . . . . . . . . . . . . . . . . . 55oC/W  
HI9P5700J-5, HI9P5700A-9 . . . . . . . . . . . . . . . . . . . . 75oC/W  
Storage Temperature Range . . . . . . . . . . . . . . . -65oC to +150oC Maximum Power Dissipation +70oC . . . . . . . . . . . . . . . . . . . . 1.05W  
Lead Temperature (Soldering, 10s) . . . . . . . . . . . . . . . . . . . . 300oC  
(SOIC - Lead Tips Only)  
Operating Temperature Range  
HI3-5700J-5, HI9P5700J-5 . . . . . . . . . . . . . . . . . . . 0oC to +70oC  
HI3-5700A-9, HI9P5700A-9 . . . . . . . . . . . . . . . -40oC to +85oC  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150oC  
CAUTION: Stresses above those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and opera-  
tion of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.  
Electrical Specifications AVDD = VDD = +5.0V; VREF+ = +4.0V; VREF- = GND = AGND = 0V; FS = Specified Clock Frequency at  
50% Duty Cycle; CL = 30pF; Unless Otherwise Specified  
(NOTE 2)  
0oC TO +70oC  
+25oC  
TYP  
-40oC TO +85oC  
PARAMETER  
TEST CONDITION  
MIN  
MAX  
MIN  
MAX  
UNITS  
SYSTEM PERFORMANCE  
Resolution  
8
-
-
8
-
Bits  
Integral Linearity Error (INL)  
(Best Fit Method)  
F
F
S = 15MHz, fIN = DC  
S = 20MHz, fIN = DC  
-
-
±0.9  
±1.0  
±2.0  
±2.25  
-
-
±2.25  
±3.25  
LSB  
LSB  
Differential Linearity Error (DNL)  
(Guaranteed No Missing Codes)  
F
S = 15MHz, fIN = DC  
-
-
±0.4  
±0.5  
±0.9  
±0.9  
-
-
±1.0  
±1.0  
LSB  
LSB  
FS = 20MHz, fIN = DC  
Offset Error (VOS)  
F
F
S = 15MHz, fIN = DC  
S = 20MHz, fIN = DC  
-
-
±5.0  
±5.0  
±8.0  
±8.0  
-
-
±9.5  
±9.5  
LSB  
LSB  
Full Scale Error (FSE)  
FS = 15MHz, fIN = DC  
S = 20MHz, fIN = DC  
-
-
±0.5  
±0.6  
±4.5  
±4.5  
-
-
±8.0  
±8.0  
LSB  
LSB  
F
DYNAMIC CHARACTERISTICS  
Maximum Conversion Rate  
Minimum Conversion Rate  
Full Power Input Bandwidth  
Signal to Noise Ratio (SNR)  
No Missing Codes  
20  
-
25  
-
-
0.125  
-
20  
-
-
0.125  
-
MSPS  
MSPS  
MHz  
No Missing Codes (Note 2)  
FS = 20MHz  
-
18  
-
FS = 15MHz, fIN = 100kHz  
FS = 15MHz, fIN = 3.58MHz  
FS = 15MHz, fIN = 4.43MHz  
FS = 20MHz, fIN = 100kHz  
FS = 20MHz, fIN = 3.58MHz  
FS = 20MHz, fIN = 4.43MHz  
-
-
-
-
-
-
46.5  
44.0  
43.4  
45.9  
42.0  
41.6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
RMS Signal  
= --------------------------------  
RMS Noise  
Signal to Noise and Distortion Ratio  
(SINAD)  
FS = 15MHz, fIN = 100kHz  
FS = 15MHz, fIN = 3.58MHz  
FS = 15MHz, fIN = 4.43MHz  
FS = 20MHz, fIN = 100kHz  
FS = 20MHz, fIN = 3.58MHz  
FS = 20MHz, fIN = 4.43MHz  
-
-
-
-
-
-
43.4  
34.3  
32.3  
42.3  
35.2  
32.8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
RMS Signal  
= -------------------------------------------------------------  
RMS Noise + Distortion  
Total Harmonic Distortion (THD)  
FS = 15MHz, fIN = 100kHz  
FS = 15MHz, fIN = 3.58MHz  
FS = 15MHz, fIN = 4.43MHz  
FS = 20MHz, fIN = 100kHz  
FS = 20MHz, fIN = 3.58MHz  
FS = 20MHz, fIN = 4.43MHz  
-
-
-
-
-
-
-46.9  
-34.8  
-32.8  
-46.6  
-36.6  
-33.5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Differential Gain  
F
S = 14MHz, fIN = 3.58MHz  
S = 14MHz, fIN = 3.58MHz  
-
-
3.5  
0.9  
-
-
-
-
-
-
%
Differential Phase Error  
F
Degree  
4-1493  
Specifications HI-5700  
Electrical Specifications AVDD = VDD = +5.0V; VREF+ = +4.0V; VREF- = GND = AGND = 0V; FS = Specified Clock Frequency at  
50% Duty Cycle; CL = 30pF; Unless Otherwise Specified (Continued)  
(NOTE 2)  
0oC TO +70oC  
+25oC  
TYP  
-40oC TO +85oC  
PARAMETER  
ANALOG INPUTS  
TEST CONDITION  
MIN  
MAX  
MIN  
MAX  
UNITS  
Analog Input Resistance, RIN  
Analog Input Capacitance, CIN  
Analog Input Bias Current, IB  
VIN = 4V  
VIN = 0V  
VIN = 0V, 4V  
4
-
-
10  
60  
±0.01  
-
-
-
-
-
MΩ  
pF  
µA  
-
-
±1.0  
±1.0  
REFERENCE INPUTS  
Total Reference Resistance, RL  
Reference Resistance Tempco, TC  
DIGITAL INPUTS  
250  
-
330  
-
-
235  
-
-
-
+0.31  
/°C  
Input Logic High Voltage, VIH  
Input Logic Low Voltage, VIL  
Input Logic High Current, IIH  
Input Logic Low Current, IIL  
Input Capacitance, CIN  
2.0  
-
-
-
-
7
-
2.0  
V
V
µA  
µA  
pF  
-
-
-
-
-
0.8  
1.0  
1.0  
-
-
-
-
-
0.8  
1.0  
1.0  
-
VIN = 5V  
VIN = 0V  
DIGITAL OUTPUTS  
Output Logic Sink Current, IOL  
Output Logic Source Current, IOH  
Output Leakage, IOZ  
VO = 0.4V  
3.2  
-3.2  
-
-
-
-
-
-
3.2  
-3.2  
-
-
-
mA  
mA  
µA  
pF  
VO = 4.5V  
-
±1.0  
-
-
±1.0  
-
CE2 = 0V, VO = 0V, 5V  
CE2 = 0V  
Output Capacitance, COUT  
5.0  
TIMING CHARACTERISTICS  
Aperture Delay, tAP  
Aperture Jitter, tAJ  
Data Output Enable Time, tEN  
Data Output Disable Time, tDIS  
Data Output Delay, tOD  
Data Output Hold, tH  
-
-
-
-
-
6
-
-
25  
20  
25  
-
-
-
-
-
-
-
-
30  
25  
30  
-
ns  
ps  
ns  
ns  
ns  
ns  
30  
18  
15  
20  
20  
10  
5
POWER SUPPLY REJECTION  
Offset Error PSRR, VOS  
Gain Error PSRR, FSE  
V
V
DD = 5V ±10%  
DD = 5V ±10%  
-
-
±0.1  
±0.1  
±2.75  
±2.75  
-
-
±5.0  
±5.0  
LSB  
LSB  
POWER SUPPLY CURRENT  
Supply Current, IDD  
NOTES:  
FS = 20MHz  
-
145  
180  
-
190  
mA  
9. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.  
10. Parameter guaranteed by design or characterization and not production tested.  
4-1494  
HI-5700  
Timing Waveforms  
ENCODER DATA IS  
LATCHED INTO THE  
OUTPUT REGISTERS  
COMPARATOR DATA  
IS LATCHED  
SAMPLE  
SAMPLE  
N-1  
SAMPLE  
N
SAMPLE  
N+1  
SAMPLE  
N+2  
CLOCK  
N-2  
AUTO  
BALANCE  
tAB  
AUTO  
BALANCE  
AUTO  
BALANCE  
AUTO  
BALANCE  
INPUT  
ANALOG  
INPUT  
tAP  
tH  
tAJ  
tOD  
DATA  
OUTPUT  
DATA N-4  
DATA N-3  
DATA N-2  
DATA N-1  
DATA N  
FIGURE 1. INPUT-TO-OUTPUT TIMING  
CE1  
CE2  
tEN  
tEN  
tDIS  
tDIS  
HIGH  
HIGH  
D0 - D7  
DATA  
DATA  
DATA  
DATA  
IMPEDANCE  
IMPEDANCE  
HIGH  
IMPEDANCE  
OVF  
DATA  
FIGURE 2. OUTPUT ENABLE TIMING  
4-1495  
HI-5700  
Typical Performance Curves  
8
8
7
6
5
4
VDD = 5V, VREF+ = 4V  
VDD = 5V, VREF+ = 4V  
TA = 25oC  
7
6
FS = 15MHz, fIN = 100kHz  
FS = 20MHz, fIN = 100kHz  
FS = 15MHz  
FS = 20MHz, fIN = 3.85MHz  
FS = 20MHz  
FS = 15MHz, fIN = 3.85MHz  
5
4
-60 -40 -20  
0
+20 +40 +60 +80 +100 +120 +140  
TEMPERATURE (oC)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
INPUT FREQUENCY - fIN (MHz)  
FIGURE 4. EFFECTIVE NUMBER OF BITS vs TEMPERATURE  
FIGURE 3. EFFECTIVE NUMBER OF BITS vs fIN  
-30  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
B.  
D.  
VDD = 5V, VREF+ = 4V  
VDD = 5V, VREF+ = 4V  
A.  
-32  
-34  
-36  
-38  
-40  
-42  
-44  
-46  
-48  
-50  
B.  
A. FS = 15MHz, fIN = 100kHz  
B. FS = 15MHz, fIN = 4.43MHz  
C. FS = 20MHz, fIN = 100kHz  
D. FS = 20MHz, fIN = 4.43MHz  
C.  
C.  
A. FS = 15MHz, fIN = 100kHz  
B. FS = 15MHz, fIN = 4.43MHz  
C. FS = 20MHz, fIN = 100kHz  
D. FS = 20MHz, fIN = 4.43MHz  
A.  
D.  
-60 -40 -20  
0
+20 +40 +60 +80 +100 +120 +140  
TEMPERATURE (oC)  
-60 -40  
-20  
0
+20 +40 +60 +80 +100 +120 +140  
TEMPERATURE (oC)  
FIGURE 5. SNR vs TEMPERATURE  
FIGURE 6. TOTAL HARMONIC DISTORTION vs TEMPERATURE  
1.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VDD = 5V, VREF+ = 4V  
VDD = 5V, VREF+ = 4V  
fIN = 100kHz  
f
IN = 100kHz  
0.75  
0.5  
0.25  
0
FS = 20MHz  
FS = 15MHz  
FS = 20MHz  
FS = 15MHz  
-60 -40 -20  
0
+20 +40 +60 +80 +100 +120 +140  
TEMPERATURE (oC)  
-60 -40 -20  
0
+20 +40 +60 +80 +100 +120 +140  
TEMPERATURE (oC)  
FIGURE 7. INL vs TEMPERATURE  
FIGURE 8. DNL vs TEMPERATURE  
4-1496  
HI-5700  
Typical Performance Curves (Continued)  
8
2.0  
1.5  
1.0  
0.5  
0
VDD = 5V, VREF+ = 4V  
VDD = 5V, VREF+ = 4V  
7
FS = 20MHz  
6
FS = 15MHz  
5
4
3
2
FS = 20MHz  
FS = 15MHz  
-60 -40 -20  
0
+20 +40 +60 +80 +100 +120 +140  
TEMPERATURE (oC)  
-60 -40 -20  
0
+20 +40 +60 +80 +100 +120 +140  
TEMPERATURE (oC)  
FIGURE 9. OFFSET VOLTAGE vs TEMPERATURE  
FIGURE 10. FULL SCALE ERROR vs TEMPERATURE  
35  
30  
25  
20  
15  
10  
1.0  
VDD = 5V, VREF+ = 4V  
VDD = 5V, VREF+ = 4V  
0.5  
0
C
LOAD = 30pF  
PSRR VOS  
tOD  
tHOLD  
PSRR FSE  
-0.5  
-1.0  
-60 -40 -20  
0
+20 +40 +60 +80 +100 +120 +140  
TEMPERATURE (oC)  
-60 -40 -20  
0
+20 +40 +60 +80 +100 +120 +140  
TEMPERATURE (oC)  
FIGURE 11. OUTPUT DELAY vs TEMPERATURE  
VDD = 5V, VREF+ = 4V  
FIGURE 12. POWER SUPPLY REJECTION vs TEMPERATURE  
180  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
170  
VDD = 5V, VREF+ = 4V  
160  
TA = 25oC  
150  
D = 50%  
140  
130  
120  
110  
100  
90  
tAB  
FS = 20MHz  
FS = 1MHz  
D =  
tAB + tS  
D = 25%  
80  
70  
60  
50  
40  
30  
D = 10%  
10  
80  
-60 -40 -20  
0
+20 +40 +60 +80 +100 +120 +140  
TEMPERATURE (oC)  
0.1  
1
100  
CLOCK FREQUENCY (MHz)  
FIGURE 13. SUPPLY CURRENT vs TEMPERATURE  
FIGURE 14. SUPPLY CURRENT vs CLOCK DUTY CYCLE  
4-1497  
HI-5700  
TABLE 1. PIN DESCRIPTION  
DESCRIPTION  
output word, plus an additional comparator to detect an  
overflow condition.  
PIN #  
NAME  
The CMOS HI-5700 works by alternately switching between  
a “Sample” mode and an “Auto Balance” mode. Splitting up  
the comparison process in this CMOS technique offers a  
number of significant advantages. The offset voltage of each  
CMOS comparator is dynamically canceled with each  
conversion cycle such that offset voltage drift is virtually  
eliminated during operation. The block diagram and timing  
diagram illustrate how the HI-5700 CMOS flash converter  
operates.  
1
2
CLK  
D7  
Clock Input  
Bit 7, Output (MSB)  
Bit 6, Output  
3
D6  
4
D5  
Bit 5, Output  
5
D4  
Bit 4, Output  
6
1/4R  
VDD  
GND  
3/4R  
D3  
1/4th Point of Reference Ladder  
Digital Power Supply  
Digital Ground  
7
The input clock which controls the operation of the HI-5700  
is first split into a non-inverting φ1 clock and an inverting φ2  
clock. These two clocks, in turn, synchronize all internal  
timing of analog switches and control logic within the  
converter.  
8
9
3/4th Point of Reference Ladder  
10  
11  
12  
13  
14  
15  
Bit 3, Output  
D2  
Bit 2, Output  
In the “Auto Balance” mode (φ1), all φ1 switches close and  
φ2 switches open. The output of each comparator is  
momentarily tied to its own input, self-biasing the comparator  
D1  
Bit 1, Output  
D0  
Bit 0, Output (LSB)  
Overflow, Output  
midway between GND and V  
and presenting a low  
DD  
OVF  
CE2  
impedance to a small input capacitor. Each capacitor, in  
turn, is connected to a reference voltage tap from the  
resistor ladder. The Auto Balance mode quickly precharges  
all 256 input capacitors between the self-bias voltage and  
each respective tap voltage.  
Three-State Output Enable Input, Active High.  
(See Table 2)  
16  
CE1  
Three-State Output Enable Input, Active Low.  
(See Table 2)  
In the “Sample” mode (φ2), all φ1 switches open and φ2  
switches close. This places each comparator in a sensitive  
high gain amplifier configuration. In this open loop state, the  
input impedance is very high and any small voltage shift at  
the input will drive the output either high or low. The φ2 state  
also switches each input capacitor from its reference tap to  
the input signal. This instantly transfers any voltage  
difference between the reference tap and input voltage to  
the comparator input. All 256 comparators are thus driven  
simultaneously to a defined logic state. For example, if the  
input voltage is at mid-scale, capacitors precharged near  
zero during φ1 will push comparator inputs higher than the  
self bias voltage at φ2; capacitors precharged near the  
reference voltage push the respective comparator inputs  
lower than the bias point. In general, all capacitors  
precharged by taps above the input voltage force a “low”  
voltage at comparator inputs; those precharged below the  
input voltage force “high” inputs at the comparators.  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VREF  
+
Reference Voltage Positive Input  
Analog Power Supply, +5V  
Analog Ground  
AVDD  
AGND  
AGND  
AVDD  
1/2R  
Analog Ground  
Analog Power Supply, +5V  
1/2 Point of Reference Ladder  
Analog Power Supply, +5V  
Analog Ground  
AVDD  
AGND  
AGND  
AVDD  
Analog Ground  
Analog Power Supply, +5V  
Reference Voltage Negative Input  
Analog Input  
VREF  
VIN  
-
TABLE 2. CHIP ENABLE TRUTH TABLE  
During the next φ1 Auto-Balancing state, comparator output  
data is latched into the encoder logic block and the first  
stage of encoding takes place. The following φ2 state  
completes the encoding process. The 8 data bits (plus  
overflow bit) are latched into the output flip-flops at the next  
falling clock edge. The Overflow bit is set if the input voltage  
CE1  
CE2  
D0 - D7  
Valid  
OVF  
0
1
1
0
Valid  
Valid  
1
Three-State  
Three-State  
X
Three-State  
exceeds V  
+ - 0.5 LSB. The output bus may be either  
REF  
X’s = Don’t Care.  
enabled or disabled according to the state of CE1 and CE2  
(See Table 2). When disabled, output bits assume a high  
impedance state.  
Theory of Operation  
The HI-5700 is an 8-bit analog-to-digital converter based on  
a parallel CMOS “flash” architecture. This flash technique is  
an extremely fast method of A/D conversion because all bit  
decisions are made simultaneously. In all, 256 comparators  
As shown in the timing diagram, the digital output word  
becomes valid after the second φ1 state. There is thus a one  
and a half cycle pipeline delay between input sample and  
digital output. “Data Output Delay” time indicates the slight  
time delay for data to become valid at the end of the φ1  
8
are used in the HI-5700: (2 -1) comparators to encode the  
4-1498  
HI-5700  
HA-5033  
+9V TO +12V  
100Ω  
0.01µF  
ANALOG  
SIGNAL  
INPUT  
10µF  
CLOCK INPUT  
VIN  
CLK  
D7  
1
2
28  
27  
VREF  
-
50Ω  
+9V TO +12V  
0.01µF  
0.01µF  
10µF  
10µF  
D6  
3
AVDD 26  
AGND 25  
AGND 24  
OUTPUT  
PINS  
D5  
4
DIGITAL  
VDD  
5
D4  
ANALOG  
VDD (+5V)  
TO ANALOG +5V  
10µF  
6
1/4R  
VDD  
23  
22  
AVDD  
1/2R  
7
ANALOG  
GROUND  
0.01µF  
8
AVDD 21  
GND  
3/4R  
AGND  
20  
19  
18  
17  
16  
15  
9
TO ANALOG GND  
D3  
10  
11  
12  
13  
14  
AGND  
AVDD  
DIGITAL  
GROUND  
0.01µF  
0.01µF  
10µF  
10µF  
D2  
OUTPUT  
PINS  
D1  
VREF  
+
PRECISION  
DC  
REFERENCE  
D0  
CE1  
CE2  
OVF  
+5V  
FIGURE 15. TEST CIRCUIT  
Applications Information  
Voltage Reference  
Digital Control and Interface  
The reference voltage is applied across the resistor ladder  
between V + and V -. In most applications, V - is  
simply tied to analog ground such that the reference source  
The HI-5700 provides a standard high speed interface to  
external CMOS and TTL logic families. Two chip enable  
inputs control the three-state outputs of output bits D0  
through D7 and the Overflow (OVF) bit. As indicated in the  
Truth Table, all output bits are high impedance when CE2 is  
low, and output bits D0 through D7 are independently  
controlled by CE1.  
REF  
REF  
REF  
drives V +. The reference must be capable of supplying  
REF  
enough current to drive the minimum ladder resistance of  
235over temperature.  
The HI-5700 is specified for a reference voltage of 4.0V, but  
will operate with voltages as high as the V  
case of 4.0V reference operation, the converter encodes the  
analog input into a binary output in LSB increments of  
supply. In the  
DD  
Although the Digital Outputs are capable of handling typical  
data bus loading, the bus capacitance charge/discharge  
currents will produce supply and local group disturbances.  
Therefore, an external bus driver is recommended.  
(V  
+ - V  
-)/256, or 15.6mV. Reducing the reference  
REF  
REF  
voltage reduces the LSB size proportionately and thus  
increases linearity errors. The minimum practical reference  
voltage is about 2.5V. Because the reference voltage  
terminals are subjected to internal transient currents during  
conversion, it is important to drive the reference pins from a  
low impedance source and to decouple thoroughly. Again,  
ceramic and tantalum (0.01µF and 10µF) capacitors near  
the package pin are recommended. It is not necessary to  
Clock  
The clock should be properly terminated to digital ground  
near the clock input pin. Clock frequency defines the  
conversion frequency and controls the converter as  
described in the “Theory of Operation” section. The Auto  
Balance φ1 half cycle of the clock may be reduced to  
approximately 20ns; the Sample φ2 half cycle may be varied  
from a minimum of 25ns to a maximum of 5µs.  
1
1
3
decouple the / R, / R, and / R tap point pins for most  
4
2
4
applications.  
Signal Source  
It is possible to elevate V  
- from ground if necessary. In  
REF  
A current pulse is present at the analog input (V ) at the  
this case, the V  
- pin must be driven from a low  
IN  
REF  
beginning of every sample and auto balance period. The  
transient current is due to comparator charging and switch  
feedthrough in the capacitor array. It varies with the  
amplitude of the analog input and the converter’s sampling  
impedance reference capable of sinking the current through  
the resistor ladder. Careful decoupling is again  
recommended.  
4-1499  
HI-5700  
rate.  
reference voltage is the ideal location.  
The signal source must absorb these transients prior to the Quarter Point Adjustment  
end of the sample period to ensure a valid signal for  
The reference tap points are brought out for linearity  
adjustment or creating a nonlinear transfer function if  
conversion. Suitable broad band amplifiers or buffers which  
exhibit low output impedance and high output drive include  
the HA-5004, HA-5002, and HA-5003.  
1
1
3
desired. It is not necessary to decouple the / R, / R, and /  
4
2
R tap points in most applications.  
4
The signal source may drive above or below the power supply  
rails, but should not exceed 0.5V beyond the rails or damage  
may occur. Input voltages of -0.5V to +0.5 LSB are converted  
Power Supplies  
The HI-5700 operates nominally from 5V supplies but will  
work from 3V to 6V. Power to the device is split such that  
analog and digital circuits within the HI-5700 are powered  
separately. The analog supply should be well regulated and  
“clean” from significant noise, especially high frequency  
to all zeroes; input voltages of V  
+ -0.5 LSB to V +0.5V  
REF  
DD  
are converted to all ones with the Overflow bit set.  
Full Scale Offset Error Adjustment  
In applications where accuracy is of utmost importance, noise. The digital supply should match the analog supply  
three adjustments can be made; i.e., offset, gain, and within about 0.5V and should be referenced externally to the  
reference tap point trims. In general, offset and gain analog supply at a single point. Analog and digital grounds  
correction can be done in the preamp circuitry.  
should not be separated by more that 0.5V. It is  
recommended that power supply decoupling capacitors be  
Offset Adjustment  
placed as close to the supply pins as possible.  
A
combination of 0.01µF ceramic and 10µF tantalum  
capacitors is recommended for this purpose as shown in the  
test circuit.  
Offset correction can be done in the preamp driving the  
converter by introducing a DC component to the input signal.  
An alternate method is to adjust V  
- to produce the  
REF  
desired offset. It is adjusted such that the 0 to 1 code  
transition occurs at 0.5 LSB.  
Reducing Power Consumption  
Power dissipation in the HI-5700 is related to clock  
frequency and clock duty cycle. For a fixed 50% clock duty  
cycle, power may be reduced by lowering the clock  
frequency. For a given conversion frequency, power may be  
reduced by decreasing the Auto-Balance (φ1) portion of the  
clock duty cycle. This relationship is illustrated in the  
Gain Adjustment  
In general, full scale error correction can be done in the  
preamp circuitry by adjusting the gain of the op amp. An  
alternate method is to adjust the V  
+ voltage. The  
REF  
TABLE 3. CODE TABLE  
BINARY OUTPUT CODE  
INPUT VOLTAGE  
V
V
REF+ = 4.0V  
REF- = 0.0V  
MSB  
D7  
1
LSB  
D0  
1
CODE  
DESCRIPTION  
DECIMAL  
COUNT  
(V)  
OVF  
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
1
Overflow (OVF)  
Full Scale (FS)  
FS - 1 LSB  
4.000  
3.9766  
3.961  
511  
255  
254  
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
3/4 FS  
1/2 FS  
1/4 FS  
2.992  
1.992  
0.992  
192  
128  
64  
0
0
0
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1 LSB  
Zero  
0.0078  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
The voltages listed above represent the ideal transition of each output code shown as a function of the reference voltage.  
4-1500  
HI-5700  
Glossary of Terms  
LSB: Least Significant Bit = (V  
5700 specifications are given for a 15.6mV LSB size V  
+ - V  
-)/256. All HI-  
REF  
Aperture Delay: Aperture delay is the time delay between  
the external sample command (the rising edge of the clock)  
and the time at which the signal is actually sampled. This  
delay is due to internal clock path propagation delays.  
REF  
+
REF  
= 4.0V, V  
- = 0.0V.  
REF  
Offset Error (VOS): Offset error is the difference between the  
actual input voltage of the 0 to 1 code transition and the ideal  
Aperture Jitter: This is the RMS variation in the aperture delay  
due to variation of internal φ1 and φ2 clock path delays and  
variation between the individual comparator switching times.  
value of V  
- + 0.5 LSB, V Error is expressed in LSBs.  
REF  
OS  
Power Supply Rejection Ratio (PSRR): PSRR is  
expressed in LSBs and is the maximum shift in code  
transition points due to a power supply voltage shift. This is  
measured at the 0 to 1 code transition point and the 254 to  
255 code transition point with a power supply voltage shift  
from the nominal value of 5.0V.  
Differential Linearity Error (DNL): The differential linearity  
error is the difference in LSBs between the spacing of the  
measured midpoint of adjacent codes and the spacing of ideal  
midpoints of adjacent codes. The ideal spacing of each  
midpoint is 1.0 LSB. The range of values possible is from -1.0  
LSB (which implies a missing code) to greater than +1.0 LSB.  
Signal to Noise Ratio (SNR): SNR is the ratio in dB of the  
RMS signal to RMS noise at specified input and sampling  
frequencies.  
Full Power Input Bandwidth: Full power input bandwidth is  
the frequency at which the amplitude of the fundamental of  
the digital output word has decreased 3dB below the  
amplitude of an input sine wave. The input sine wave has a  
peak-to-peak amplitude equal to the reference voltage. The  
bandwidth given is measured at the specified sampling  
frequency.  
Signal to Noise and Distortion Ratio (SINAD): SINAD is  
the ratio in dB of the RMS signal to the RMS sum of the  
noise and harmonic distortion at specified input and  
sampling frequencies.  
Total Harmonic Distortion (THD): THD is the ratio in dBc of  
the RMS sum of the first five harmonic components to the  
RMS signal for a specified input and sampling frequency.  
Full Scale Error (FSE): Full Scale Error is the difference  
between the actual input voltage of the 254 to 255 code  
transition and the ideal value of V  
is expressed in LSBs.  
+ - 1.5 LSB. This error  
REF  
Integral Linearity Error (INL): The integral linearity error is the  
difference in LSBs between the measured code centers and  
the ideal code centers. The ideal code centers are calculated  
using a best fit line through the converter’s transfer function.  
4-1501  
HI-5700  
Die Characteristics  
DIE DIMENSIONS:  
154.3 x 173.2 x 19 ± 1mils  
METALLIZATION:  
Type: Si - Al  
Thickness: 11kÅ ± 1kÅ  
GLASSIVATION:  
Type: SiO  
2
Thickness: 8kÅ ± 1kÅ  
TRANSISTOR COUNT: 8000  
SUBSTRATE POTENTIAL (Powered Up): V+  
Metallization Mask Layout  
HI-5700  
26  
25  
4
3
2
1
28  
27  
D4  
5
AGND  
1/4R  
VDD  
6
7
AGND  
AVDD  
24  
23  
VDD  
GND  
GND  
7
8
1/2R  
22  
21  
AVDD  
AGND  
8
20  
3/4R  
D3  
9
AGND  
AVDD  
19  
10  
11  
12  
13  
14  
15  
16  
17  
18  
4-1502  

相关型号:

HI-5700/883

8-Bit, 20 MSPS Flash A/D Converter
INTERSIL

HI-5700883

8-Bit, 20 MSPS Flash A/D Converter
INTERSIL

HI-5701

6-Bit, 30MSPS, Flash A/D Converter
INTERSIL

HI-5701/883

6-Bit, 30 MSPS Flash A/D Converter
INTERSIL

HI-5701883

6-Bit, 30 MSPS Flash A/D Converter
INTERSIL

HI-5701_05

6-Bit, 30MSPS, Flash A/D Converter
INTERSIL

HI-574

Complete, 12-Bit A/D Converters with Microprocessor Interface
INTERSIL

HI-574A

Complete, 12-Bit A/D Converters with Microprocessor Interface
INTERSIL

HI-574A_01

Complete, 12-Bit A/D Converters with Microprocessor Interface
INTERSIL

HI-574A_08

Complete, 12-Bit A/D Converters with Converters with Microprocessor Interface
INTERSIL

HI-6010

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6010C

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC