HI-5701 [INTERSIL]

6-Bit, 30MSPS, Flash A/D Converter; 6位, 30MSPS时,Flash A / D转换器
HI-5701
型号: HI-5701
厂家: Intersil    Intersil
描述:

6-Bit, 30MSPS, Flash A/D Converter
6位, 30MSPS时,Flash A / D转换器

转换器
文件: 总14页 (文件大小:154K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI-5701  
Data Sheet  
June 1999  
File Number 2937.8  
6-Bit, 30MSPS, Flash A/D Converter  
Features  
The HI-5701 is a monolithic, 6-bit, CMOS flash Analog-to-  
Digital Converter. It is designed for high speed applications  
where wide bandwidth and low power consumption are  
essential. Its 30MSPS speed is made possible by a parallel  
architecture which also eliminates the need for an external  
sample and hold circuit. The HI-5701 delivers ±0.7 LSB  
differential nonlinearity while consuming only 250mW (Typ)  
at 30MSPS. Microprocessor compatible data output latches  
are provided which present valid data to the output bus 1.5  
clock cycles after the convert command is received. An  
overflow bit is provided to allow the series connection of two  
converters to achieve 7-bit resolution.  
• 30MSPS with No Missing Codes  
• Full Power Input Bandwidth . . . . . . . . . . . . . . . . . . 20MHz  
• No Missing Codes Over Temperature  
• Sample and Hold Not Required  
• Single Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . +5V  
• Power Dissipation (Max). . . . . . . . . . . . . . . . . . . . .300mW  
• CMOS/TTL Compatible  
• Overflow Bit  
• /883 Version Available  
The HI-5701 is available in Commercial and Industrial  
temperature ranges and is supplied in 18 lead Plastic DIP  
and SOIC packages  
Applications  
• Video Digitizing  
• Radar Systems  
Ordering Information  
• Communication Systems  
• High Speed Data Acquisition Systems  
TEMP.  
PKG.  
NO.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
18 Ld PDIP  
HI3-5701K-5  
HI9P5701K-5  
HI3-5701B-9  
HI9P5701B-9  
HI5701-EV  
0 to 70  
0 to 70  
-40 to 85  
-40 to 85  
25  
E18.3  
Pinout  
18 Ld SOIC  
M18.3  
E18.3  
M18.3  
HI-5701  
(PDIP, SOIC)  
TOP VIEW  
18 Ld PDIP  
18 Ld SOIC  
Evaluation Board  
D5 (MSB)  
OVF  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
D4  
D3  
1
/ R  
V
2
SS  
NC  
CE2  
D2  
D1  
13 D0 (LSB)  
12  
CE1  
CLK  
V
V
V
DD  
11  
10  
PHASE  
IN  
V
+
-
REF  
REF  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
1
HI-5701  
Functional Block Diagram  
φ1  
φ2  
φ1  
φ1  
φ2  
V
IN  
D
R/2  
OVERFLOW  
(OVF)  
Q
Q
Q
Q
Q
Q
Q
V
+
REF  
CL  
COMP 64  
D
R
R
D5 (MSB)  
D4  
CL  
D
CL  
COMP 63  
COMP 32  
COMP 2  
COMPARATOR  
LATCHES  
AND  
63 TO 6  
ENCODER  
LOGIC  
R
R
R
D
D3  
1
CL  
/ R  
2
D
D2  
CL  
D
D1  
CL  
R
D
D0 (LSB)  
CL  
V
-
REF  
R/2  
COMP 1  
CE1  
CE2  
CLOCK  
PHASE  
V
φ2 (SAMPLE)  
DD  
V
SS  
φ1 (AUTO BALANCE)  
2
HI-5701  
Absolute Maximum Ratings  
Thermal Information  
o
Supply Voltage, V  
DD  
Analog and Reference Input Pins (VSS - 0.5) < V  
Digital I/O Pins . . . . . . . . . . . . . . . .(VSS - 0.5) < V < (V  
I/O  
to V  
SS  
. . . . . . . . . . . (VSS - 0.5) < V  
< +7V  
+0.5V)  
+0.5V)  
Thermal Resistance (Typical, Note 1)  
θJA ( C/W)  
DD  
DD  
DD  
< (V  
INA  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
75  
105  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
o
Maximum Power Dissipation at 70 C (Note 2) . . . . . . . . . . .635mW  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
o
Operating Conditions  
o
o
Temperature Range  
HI3-5701-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 70 C  
HI9P5701-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
o
o
o
(SOIC - Lead Tips Only)  
o
o
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
2. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.  
Electrical Specifications  
V
C
= +5.0V; V  
= 30pF; Unless Otherwise Specified  
+ = +4.0V; V  
REF-  
= V = GND; f = Specified Clock Frequency at 50% Duty Cycle;  
SS  
DD  
REF  
S
L
(NOTE 3)  
o
o
0 C TO 70 C  
o
o
o
25 C  
-40 C TO 85 C  
PARAMETER  
SYSTEM PERFORMANCE  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
6
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
±2.0  
-
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Integral Linearity Error, INL  
(Best Fit Line)  
f
f
f
f
f
f
f
f
= 20MHz  
±0.5  
±1.5  
±0.3  
±0.7  
±0.5  
±0.5  
±0.25  
±0.25  
±1.25  
S
S
S
S
S
S
S
S
= 30MHz  
-
Differential Linearity Error, DNL  
(Guaranteed No Missing Codes)  
= 20MHz  
±0.6  
±0.75  
= 30MHz  
-
±2.0  
-
Offset Error, V  
OS  
(Adjustable to Zero)  
= 20MHz (Note 3)  
= 30MHz  
±2.5  
-
±2.5  
-
Full Scale Error, FSE  
(Adjustable to Zero)  
= 20MHz (Note 3)  
= 30MHz  
±2.0  
-
DYNAMIC CHARACTERISTICS  
Maximum Conversion Rate  
Minimum Conversion Rate  
Full Power Input Bandwidth  
Signal to Noise Ratio, SNR  
No Missing Codes  
30  
-
40  
-
-
30  
-
-
MSPS  
MSPS  
MHz  
dB  
No Missing Codes (Note 3)  
0.125  
0.125  
f
f
f
= 30MHz  
-
20  
36  
31  
-
-
-
-
-
-
-
S
S
S
= 1MHz, f = 100kHz  
IN  
-
-
RMS Signal  
= --------------------------------  
RMS Noise  
= 30MHz, f = 4MHz  
IN  
-
-
dB  
Signal to Noise Ratio, SINAD  
f
f
= 1MHz, f = 100kHz  
IN  
-
-
35  
30  
-
-
-
-
-
-
dB  
dB  
S
S
RMS Signal  
= 30MHz, f = 4MHz  
IN  
= -------------------------------------------------------------  
RMS Noise + Distortion  
Total Harmonic Distortion  
f
f
f
f
= 1MHz, f = 100kHz  
IN  
-
-
-
-
-44  
-38  
2
-
-
-
-
-
-
-
-
-
-
-
-
dBc  
dBc  
S
S
S
S
= 30MHz, f = 4MHz  
IN  
Differential Gain  
= 14.32MHz, f = 3.58MHz  
IN  
%
Differential Phase  
= 14.32MHz, f = 3.58MHz  
IN  
2
Degree  
3
HI-5701  
Electrical Specifications  
V
C
= +5.0V; V  
+ = +4.0V; V  
REF-  
= V = GND; f = Specified Clock Frequency at 50% Duty Cycle;  
SS  
DD  
REF  
S
= 30pF; Unless Otherwise Specified (Continued)  
L
(NOTE 3)  
o
o
0 C TO 70 C  
o
o
o
25 C  
-40 C TO 85 C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
ANALOG INPUTS  
Analog Input Resistance, R  
V
V
V
= 4V  
-
-
-
30  
20  
-
-
-
-
-
-
-
MΩ  
pF  
IN  
IN  
IN  
IN  
Analog Input Capacitance, C  
= 0V  
IN  
Analog Input Bias Current, IB  
REFERENCE INPUTS  
= 0V, 4V  
0.01  
±1.0  
±1.0  
µA  
Total Reference Resistance, R  
250  
-
370  
-
-
235  
-
-
-
L
o
Reference Resistance Tempco, T  
+0.266  
/ C  
C
DIGITAL INPUTS  
Input Logic High Voltage, V  
IH  
2.0  
-
-
-
2.0  
-
V
Input Logic Low Voltage, V  
-
-
-
-
0.8  
1.0  
1.0  
-
-
-
-
-
0.8  
1.0  
1.0  
-
V
IL  
Input Logic High Current, I  
V
V
= 5V  
= 0V  
-
µA  
µA  
pF  
IH  
IN  
IN  
Input Logic Low Current, I  
-
IL  
Input Capacitance, C  
7
IN  
DIGITAL OUTPUTS  
Output Logic Sink Current, I  
OL  
V
= 0.4V  
= 4.5V  
3.2  
-
-
-
3.2  
-
mA  
mA  
µA  
pF  
O
Output Logic Source Current, I  
V
-3.2  
-
±1.0  
-
-3.2  
-
±1.0  
-
OH  
O
Output Leakage, I  
CE2 = 0V  
CE2 = 0V  
-
-
-
-
-
OFF  
Output Capacitance, C  
5.0  
OUT  
TIMING CHARACTERISTICS  
Aperture Delay, t  
-
-
6
-
-
-
-
-
-
ns  
ps  
ns  
ns  
ns  
ns  
AP  
Aperture Jitter, t  
AJ  
30  
12  
11  
14  
10  
Data Output Enable Time, t  
(Note 3)  
(Note 3)  
(Note 3)  
(Note 3)  
-
20  
20  
20  
-
-
20  
20  
20  
-
EN  
Data Output Disable Time, t  
-
-
DIS  
Data Output Delay, t  
-
-
OD  
Data Output Hold, t  
5
5
H
POWER SUPPLY REJECTION  
Offset Error PSRR, V  
V
V
= 5V ±10%  
= 5V ±10%  
-
-
±0.1  
±0.1  
±1.0  
±1.0  
-
-
±1.5  
±1.5  
LSB  
LSB  
OS  
DD  
DD  
Gain Error PSRR, FSE  
POWER SUPPLY CURRENT  
Supply Current, I  
NOTE:  
f
= 20MHz  
S
-
50  
60  
-
75  
mA  
DD  
3. Parameter guaranteed by design or characterization and not production tested.  
4
HI-5701  
Timing Waveforms  
COMPARATOR DATA  
IS LATCHED  
ENCODED DATA IS  
LATCHED INTO THE  
OUTPUT REGISTERS  
CLOCK  
INPUT  
PHASE - HIGH  
φ1  
φ1  
φ1  
φ1  
φ2  
φ2  
φ2  
φ2  
φ2  
SAMPLE  
N - 2  
SAMPLE  
N - 1  
SAMPLE  
N
SAMPLE  
N + 1  
SAMPLE  
N + 2  
CLOCK  
INPUT  
PHASE - LOW  
AUTO  
AUTO  
BALANCE  
AUTO  
BALANCE  
AUTO  
BALANCE  
BALANCE  
t
S
t
AB  
ANALOG  
INPUT  
t
AP  
t
t
H
AJ  
t
OD  
DATA  
OUTPUT  
DATA N - 4  
DATA N - 3  
DATA N - 2  
DATA N - 1  
DATA N  
FIGURE 1. INPUT-TO-OUTPUT TIMING  
CE1  
CE2  
t
t
t
t
DIS  
EN  
EN  
DIS  
HIGH  
HIGH  
D0 - D5  
DATA  
DATA  
DATA  
DATA  
IMPEDANCE  
DATA  
IMPEDANCE  
HIGH  
OVF  
IMPEDANCE  
FIGURE 2. OUTPUT ENABLE TIMING  
5
HI-5701  
Typical Performance Curves  
6
6
5
4
3
f
= 20MHz  
S
f
= 1MHz, f = 100kHz  
IN  
S
5
4
f
= 30MHz  
= 40MHz  
S
f
= 30MHz, f = 4MHz  
IN  
S
f
S
V
= 5V, V  
o
+ = 4V  
REF  
DD  
T
= 25 C  
A
V
= 5V, V + = 4V  
REF  
DD  
3
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
10 20 30 40 50 60 70 80 90  
-40 -30 -20 -10  
o
INPUT FREQUENCY (f ) - MHz  
TEMPERATURE ( C)  
IN  
FIGURE 3. EFFECTIVE NUMBER OF BITS vs f  
IN  
FIGURE 4. ENOB vs TEMPERATURE  
38  
36  
34  
32  
30  
28  
26  
24  
-34  
-36  
-38  
-40  
-42  
-44  
-46  
V
= 5V, V  
REF  
+ = 4V  
f
= 1MHz, f = 100kHz  
DD  
S IN  
f
= 30MHz, f = 4MHz  
IN  
S
f
= 30MHz, f = 4MHz  
IN  
S
V
= 5V, V + = 4V  
REF  
DD  
f
= 1MHz, f = 100kHz  
IN  
S
0
10 20 30 40 50 60 70 80 90  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-40 -30 -20 -10  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 5. SNR vs TEMPERATURE  
FIGURE 6. TOTAL HARMONIC DISTORTION vs TEMPERATURE  
1
2
f
= 100kHz  
f
= 100kHz  
IN  
IN  
V
= 5V, V + = 4V  
REF  
DD  
V
= 5V, V + = 4V  
REF  
DD  
1.5  
0.75  
0.5  
0.25  
0
f
= 30MHz  
= 1MHz  
f
= 30MHz  
S
S
1
0.5  
f
f
= 1MHz  
S
S
0
0
10 20 30 40 50 60 70 80 90  
0
10 20 30 40 50 60 70 80 90  
-40 -30 -20 -10  
-40 -30 -20 -10  
o
(o  
TEMPERATURE ( C)  
TEMPERATURE C)  
FIGURE 7. INL vs TEMPERATURE  
FIGURE 8. DNL vs TEMPERATURE  
6
HI-5701  
Typical Performance Curves (Continued)  
1
60  
55  
V
= 5V, V + = 4V  
REF  
DD  
V
= 5V ±10%, V  
+ = 4V  
REF  
DD  
50  
45  
40  
0.5  
0
f
= 20MHz  
S
PSRR V  
OS  
35  
30  
25  
20  
15  
10  
PSRR FSE  
-0.5  
-1  
f
= 1MHz  
60  
S
0
10 20 30 40 50 60 70 80 90  
-40  
-20  
0
20  
40  
80  
100  
-40 -30 -20 -10  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 9. POWER SUPPLY REJECTION vs TEMPERATURE  
FIGURE 10. SUPPLY CURRENT vs TEMPERATURE  
6.0  
60  
f = 1MHz  
V
= 5V, V  
o
+ = 4V  
REF  
I
DD  
55  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
T
= 25 C  
D = 50%  
A
50  
45  
40  
D = 25%  
t
AB  
D = -----------------------  
+ t  
t
35  
30  
25  
20  
15  
10  
AB  
S
D = 10%  
30  
40  
50  
60  
0.1  
1
10  
100  
CLOCK FREQUENCY (MHz)  
CLOCK FREQUENCY (MHz)  
FIGURE 11. SUPPLY CURRENT vs CLOCK AND DUTY CYCLE  
FIGURE 12. EFFECTIVE NUMBER OF BITS vs CLOCK  
FREQUENCY  
7
HI-5701  
eliminated during operation. The block diagram and timing  
diagram illustrate how the HI-5701 CMOS flash converter  
operates.  
TABLE 1. PIN DESCRIPTIONS  
NAME DESCRIPTION  
Bit 6, Output (MSB).  
PIN #  
1
2
3
4
5
D5  
The input clock which controls the operation of the HI-5701  
is first split into a non-inverting φ1 clock and an inverting φ2  
clock. These two clocks, in turn, synchronize all internal  
timing of analog switches and control logic within the  
converter.  
OVF  
Overflow, Output.  
Digital Ground.  
No Connection.  
V
SS  
NC  
CE2  
Three-State Output Enable Input, Active  
High (See Table 2).  
In the “Auto Balance” mode (φ1), all φ1 switches close and  
φ2 switches open. The output of each comparator is  
momentarily tied to its own input, self-biasing the comparator  
6
CE1  
Three-State Output Enable Input, Active  
Low (See Table 2).  
midway between V and V  
and presenting a low  
SS  
DD  
7
8
CLK  
Clock Input.  
impedance to a small input capacitor. Each capacitor, in  
turn, is connected to a reference voltage tap from the  
resistor ladder. The Auto Balance mode quickly precharges  
all 64 input capacitors between the self-bias voltage and  
each respective tap voltage.  
PHASE  
Sample Clock Phase Control Input. When  
Phase is Low, Sample Unknown (φ1) Oc-  
curs When the Clock is Low and Auto Bal-  
ance (φ2) Occurs When the Clock is High  
(See Text).  
9
V
V
V
V
+
-
Reference Voltage Positive Input.  
Reference Voltage Negative Input.  
Analog Signal Input.  
Power Supply, +5V.  
Bit 1, Output (LSB).  
Bit 2, Output.  
In the “Sample” mode (φ2), all φ1 switches open and φ2  
switches close. This places each comparator in a sensitive  
high gain amplifier configuration. In this open loop state, the  
input impedance is very high and any small voltage shift at  
the input will drive the output either high or low. The φ2 state  
also switches each input capacitor from its reference tap to  
the input signal. This instantly transfers any voltage  
difference between the reference tap and input voltage to the  
comparator input. All 64 comparators are thus driven  
simultaneously to a defined logic state. For example, if the  
input voltage is at mid-scale, capacitors precharged near  
zero during φ1 will push comparator inputs higher than the  
self bias voltage at φ2; capacitors precharged near the  
reference voltage push the respective comparator inputs  
lower than the bias point. In general, all capacitors  
REF  
REF  
IN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
DD  
D0  
D1  
D2  
1
Bit 3, Output.  
/
R2  
Reference Ladder Midpoint.  
Bit 4, Output.  
2
D3  
D4  
Bit 5, Output.  
TABLE 2. CHIP ENABLE TRUTH TABLE  
precharged by taps above the input voltage force a “low”  
voltage at comparator inputs; those precharged below the  
input voltage force “high” inputs at the comparators.  
CE1  
CE2  
D0 - D5  
OVF  
0
1
1
0
Valid  
Valid  
Valid  
1
Three-State  
Three-State  
During the next φ1 state, comparator output data is latched  
into the encoder logic block and the first stage of encoding  
takes place. The following φ2 state completes the encoding  
process. The 6 data bits (plus overflow bit) are latched into  
X
Three-State  
X = Don’t Care  
Theory of Operation  
the output flip-flops at the next falling clock edge. The  
1
Overflow bit is set if the input voltage exceeds V  
+ - /  
2
REF  
The HI-5701 is a 6-bit analog-to-digital converter based on a  
parallel CMOS “flash” architecture. This flash technique is an  
extremely fast method of A/D conversion because all bit  
decisions are made simultaneously. In all, 64 comparators  
are used in the HI-5701; 63 comparators to encode the  
output word, plus an additional comparator to detect an  
overflow condition.  
LSB. The output bus may be either enabled or disabled  
according to the state of CE1 and CE2 (See Table 2). When  
disabled, output bits assume a high impedance state.  
As shown in the timing diagram, the digital output word  
becomes valid after the second φ1 state. There is thus a one  
and a half cycle pipeline delay between input sample and  
digital output. “Data Output Delay” time indicates the slight  
time delay for data to become valid at the end of the φ1 state.  
Refer to the Glossary of Terms for other definitions.  
The CMOS HI-5701 works by alternately switching between  
a “Sample” mode and an “Auto Balance” mode. Splitting up  
the comparison process in this CMOS technique offers a  
number of significant advantages. The offset voltage of each  
CMOS comparator is dynamically canceled with each  
conversion cycle such that offset voltage drift is virtually  
8
HI-5701  
D5  
D4  
DATA  
OVF  
D3  
OUPUT  
V
1/2R  
NC  
SS  
D2  
D1  
D0  
+5V  
CE2  
CE1  
V
+5V  
10µF  
10µF  
DD  
10µF  
0.01µF  
CLOCK  
INPUT  
CLK  
+9V to +12V  
50Ω  
0.01µF  
ANALOG  
SIGNAL  
INPUT  
V
PHASE  
IN  
100Ω  
HA-5033  
50Ω  
V
V
REF-  
+4V  
REF+  
10µF  
0.01µF  
0.01µF  
-9V to -12V  
FIGURE 13. TEST CIRCUIT  
clock and phase inputs control the sample and auto balance  
modes. The digital outputs change state on the clock phase  
which begins the sample mode. Two chip enable inputs  
control the three-state outputs of output bits D0 through D5  
and the Overflow OVF bit. As indicated in Table 2, all output  
bits are high impedance when CE2 is low, and output bits D0  
through D5 are independently controlled by CE1.  
Application Information  
Voltage Reference  
The reference voltage is applied across the resistor ladder at  
the input of the converter, between V + and V -. In  
REF REF  
most applications, V  
- is simply tied to analog ground  
REF  
such that the reference source drives V  
+. The reference  
REF  
must be capable of supplying enough current to drive the  
minimum ladder resistance of 235over temperature.  
Although the Digital Outputs are capable of handling typical  
data bus loading, the bus capacitance charge/discharge  
currents will produce supply and local ground disturbances.  
Therefore, an external bus driver is recommended.  
The HI-5701 is specified for a reference voltage of 4.0V, but  
will operate with voltages as high as the V  
supply. In the  
DD  
case of 4.0V reference operation, the converter encodes the  
analog input into a binary output in LSB increments of  
Clock  
The clock should be properly terminated to digital ground  
near the clock input pin. Clock frequency defines the  
conversion frequency and controls the converter as  
described in the “Theory of Operation” section. The Auto  
Balance φ1 half cycle of the clock may be reduced to 16ns;  
the Sample φ2 half cycle may be varied from a minimum of  
16ns to a maximum of 8µs.  
(V  
+ -V  
)/64, or 62.5mV. Reducing the reference  
REF  
REF  
voltage reduces the LSB size proportionately and thus  
increases linearity errors. The minimum practical reference  
voltage is about 2V. Because the reference voltage terminals  
are subjected to internal transient currents during  
conversion, it is important to drive the reference pins from a  
low impedance source and to decouple thoroughly. Again,  
ceramic and tantalum (0.01µF and 10µF) capacitors near  
TABLE 3. PHASE CONTROL  
the package pin are recommended. It is not necessary to  
1
CLOCK  
PHASE  
INTERNAL GENERATION  
Sample Unknown (φ2)  
Auto Balance (φ1)  
decouple the / R tap point pin for most applications.  
2
0
0
1
1
0
1
0
1
It is possible to elevate V  
this case, the V  
REF  
- from ground if necessary. In  
- pin must be driven from a low  
REF  
impedance reference capable of sinking the current through  
the resistor ladder. Careful decoupling is again  
recommended.  
Auto Balance (φ1)  
Sample Unknown (φ2)  
Gain and Offset Adjustment  
Digital Control and Interface  
In applications where accuracy is of utmost importance,  
three adjustments can be made; i.e., offset, gain, and  
The HI-5701 provides a standard high speed interface to  
external CMOS and TTL logic families. Four digital inputs  
are provided to control the function of the converter. The  
9
HI-5701  
midpoint trim. In general, offset and gain correction can be  
done in the preamp circuitry.  
Signal Source  
A current pulse is present at the analog input (V ) at the  
IN  
beginning of every sample and auto balance period. The  
transient current is due to comparator charging and switch  
feed through in the capacitor array. It varies with the  
amplitude of the analog input and the sampling rate.  
Offset Adjustment  
The preferred offset correction method is to introduce a DC  
component to V of the converter. An alternate method is to  
IN  
adjust the V  
- input to produce the desired offset  
REF  
adjustment. The theoretical input voltage to produce the first  
The signal source must be capable of recovering from the  
transient prior to the end of the sample period to ensure a  
valid signal for conversion. Suitable broad band amplifiers or  
buffers which exhibit low output impedance and high output  
drive include the HFA-0005, HA-5004, HA-5002, and HA-  
5033.  
1
transition is / LSB.  
2
1
1
V
(0 to 1 transition) = / LSB = / (V  
/64) = V  
/128.  
REF  
IN  
2
2
REF  
Gain Adjustment  
In general, full scale error correction can be done in the  
preamp circuitry by adjusting the gain of the op amp. An  
alternate method is to adjust the V + input voltage. This  
The signal source may drive above or below the power  
REF  
supply rails, but should not exceed 0.5V beyond the rails or  
1
adjustment is performed by setting V to the 63 to overflow  
IN  
damage may occur. Input voltages of -0.5V to + / LSB are  
2
1
transition. The theoretical input voltage to produce the  
1
converted to all zeros; input voltages of V  
+ - / LSB to  
REF  
2
transition is / LSB less than V  
2
+ and is calculated as  
REF  
V
+ 0.5 are converted to all ones with the Overflow bit set.  
DD  
follows:  
Power Supply  
V
(63 to 64 transition) = V  
REF  
- (V  
/128)  
REF  
IN  
= V  
The HI-5701 operates nominally from a 5V supply, but will  
function from 3V to 6V. The supply should be well regulated  
and “clean” of significant noise, especially high frequency  
noise. It is recommended that power supply decoupling  
capacitors be placed as close to the supply pin as possible.  
A combination of 0.01µF ceramic and 10µF tantalum  
capacitors is recommended for this purpose as shown in the  
test circuit Figure 13.  
(127/128).  
REF  
To perform the gain trim, first do the offset trim and then  
apply the required V for the 63 to overflow transition. Now  
IN  
+ until that transition occurs on the outputs.  
adjust V  
REF  
Midpoint Trim  
1
The reference center ( / R) is available to the user as the  
2
midpoint of the resistor ladder. The / R point can be used  
to improve linearity or create unique transfer functions. The  
offset and gain trims should be done prior to adjusting the  
midpoint. The theoretical transition from count 31 to 32  
occurs at 31.5 LSBs. That voltage is calculated as follows:  
1
2
Reducing Power Consumption  
Power dissipation in the HI-5701 is related to clock frequency  
and clock duty cycle. For a fixed 50% clock duty cycle, power  
may be reduced by lowering the clock frequency. For a given  
conversion frequency, power may be reduced by shortening  
the Auto Balance φ1 portion of the clock duty cycle.  
V
(31 to 32 transition) = 31.5(V  
REF  
/64) = V  
(63/128).  
1
IN  
REF  
An adjustable voltage follower can be used to drive the / R  
2
pin. Set V to the 31 to 32 transition voltage, then adjust the  
IN  
voltage follower until the transition occurs on the output bits.  
TABLE 4. OUTPUT CODE TABLE  
BINARY OUTPUT CODE  
INPUT VOLTAGE  
V
+ = 4V  
- = 0V  
REF  
MSB  
D5  
1
LSB  
D0  
1
CODE  
DESCRIPTION  
V
DECIMAL  
COUNT  
REF  
(V)  
OVF  
D4  
1
D3  
1
D2  
1
D1  
1
Overflow (OVF)  
Full Scale (FS)  
FS - 1 LSB  
4.000  
127  
63  
1
0
0
3.9063  
1
1
1
1
1
1
3.8438  
62  
1
1
1
1
1
0
3
/
FS  
2.9688  
48  
0
1
1
0
0
0
0
4
10  
HI-5701  
TABLE 4. OUTPUT CODE TABLE (Continued)  
BINARY OUTPUT CODE  
INPUT VOLTAGE†  
V
+ = 4V  
- = 0V  
REF  
MSB  
D5  
1
LSB  
D0  
0
CODE  
DESCRIPTION  
V
DECIMAL  
COUNT  
REF  
(V)  
OVF  
D4  
D3  
D2  
D1  
1
/
FS  
1.9688  
32  
0
0
0
0
0
2
1
/
FS  
0.9688  
16  
0
0
1
0
0
0
0
4
1 LSB  
Zero  
0.0313  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
The voltages listed above represent the ideal transition of each output code shown as a function of the reference voltage.  
Offset Error, V  
- Offset error is the difference between  
the actual input voltage of the 0 to 1 code transition and the  
Glossary of Terms  
OS  
Aperture Delay - is The time delay between the external  
sample command (the rising edge of the clock) and the time  
at which the signal is actually sampled. This delay is due to  
internal clock path propagation delays.  
ideal value of V  
LSBs.  
- + 0.5 LSB. V error is expressed in  
OS  
REF  
Power Supply Rejection Ratio, PSRR - Is expressed in  
LSBs and is the maximum shift in code transition points due  
to a power supply voltage shift. This is measured at the 0 to  
1 code transition point and the 62 to 63 code transition point  
with a power supply voltage shift from the nominal value of  
5.0V.  
Aperture Jitter, t  
AJ  
- This is the RMS variation in the  
aperture delay due to variation of internal φ1 and φ2 clock  
path delays and variation between the individual comparator  
switching times.  
Differential Linearity Error, DNL - The differential linearity  
error is the difference in LSBs between the spacing of the  
measured midpoint of adjacent codes and the spacing of  
ideal midpoints of adjacent codes. The ideal spacing of each  
midpoint is 1 LSB. The range of values possible is from  
-1 LSB (which implies a missing code) to greater than  
+1 LSB.  
Signal to Noise Ratio, SNR - SNR is the ratio in dB of the  
RMS signal to RMS noise at specified input and sampling  
frequencies.  
Signal to Noise and Distortion Ratio, SINAD - Is the ratio  
in dB of the RMS signal to the RMS sum of the noise and  
harmonic distortion at specified input and sampling  
frequencies.  
Full Power Input Bandwidth - Full power bandwidth is the  
frequency at which the amplitude of the fundamental of the  
digital output word has decreased 3dB below the amplitude  
of an input sine wave. The input sine wave has a peak-to-  
peak amplitude equal to the reference voltage. The  
bandwidth given is measured at the specified sampling  
frequency.  
Total Harmonic Distortion, THD - Is the ratio in dBc of the  
RMS sum of the first five harmonic components to the RMS  
signal for a specified input and sampling frequency  
Full Scale Error, FSE - is The difference between the actual  
input voltage of the 63 to 64 code transition and the ideal  
value of V  
REF  
+ - 1.5 LSB. This error is expressed in LSBs.  
Integral Linearity Error, INL - The integral linearity error is  
the difference in LSBs between the measured code centers  
and the ideal code centers. The ideal code centers are  
calculated using a best fit line through the converter’s  
transfer function.  
LSB - Least Significant Bit = (V  
+ - V  
-)/64. All  
REF  
REF  
HI-5701 specifications are given for a 62.5mV LSB size  
+ = 4V, V - = 0V.  
V
REF  
REF  
11  
HI-5701  
Die Characteristics  
DIE DIMENSIONS:  
WORST CASE CURRENT DENSITY:  
5
2
86.6 mils x 130.7 mils x 19 mils ±1 mil  
<2.0 x 10 A/cm  
METALLIZATION:  
TRANSISTOR COUNT:  
Type: SiAl  
4000  
Thickness: 11kÅ ±1kÅ  
SUBSTRATE POTENTIAL (POWERED UP):  
PASSIVATION:  
V+  
Type: SiO  
2
Thickness: 8kÅ ±1kÅ  
Metallization Mask Layout  
HI-5701  
V
(3)  
SS  
1
(16)  
/
R
2
(15) D2  
CE2 (5)  
(14) D1  
(13) D0  
(12) V  
DD  
CE1 (6)  
12  
HI-5701  
Dual-In-Line Plastic Packages (PDIP)  
N
E18.3 (JEDEC MS-001-BC ISSUE D)  
E1  
18 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
INDEX  
AREA  
1 2  
3
N/2  
INCHES  
MILLIMETERS  
-B-  
-C-  
SYMBOL  
MIN  
MAX  
0.210  
-
MIN  
-
MAX  
5.33  
-
NOTES  
-A-  
A
A1  
A2  
B
-
4
D
E
0.015  
0.115  
0.014  
0.045  
0.008  
0.845  
0.005  
0.300  
0.240  
0.39  
2.93  
0.356  
1.15  
0.204  
21.47  
0.13  
7.62  
6.10  
4
BASE  
PLANE  
A2  
A
0.195  
0.022  
0.070  
0.014  
0.880  
-
4.95  
0.558  
1.77  
0.355  
22.35  
-
-
SEATING  
PLANE  
-
L
C
L
B1  
C
8, 10  
D1  
B1  
eA  
A1  
A
D1  
-
e
eC  
C
B
D
5
eB  
0.010 (0.25) M  
C
B S  
D1  
E
5
NOTES:  
0.325  
0.280  
8.25  
7.11  
6
1. Controlling Dimensions: INCH. In case of conflict between English and  
Metric dimensions, the inch dimensions control.  
E1  
e
5
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
-
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
e
e
6
A
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication No. 95.  
-
0.430  
0.150  
-
10.92  
3.81  
7
B
4. Dimensions A, A1 and L are measured with the package seated in  
L
0.115  
2.93  
4
9
JEDEC seating plane gauge GS-3.  
N
18  
18  
5. D, D1, and E1 dimensions do not include mold flash or protrusions.  
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).  
Rev. 0 12/93  
e
6. E and  
are measured with the leads constrained to be  
A
-C-  
perpendicular to datum  
.
7. e and e are measured at the lead tips with the leads unconstrained.  
B
C
e
must be zero or greater.  
C
8. B1 maximum dimensions do not include dambar protrusions. Dambar  
protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,  
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).  
13  
HI-5701  
Small Outline Plastic Packages (SOIC)  
N
M18.3 (JEDEC MS-013-AB ISSUE C)  
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
18 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE  
E
INCHES  
MILLIMETERS  
-B-  
SYMBOL  
MIN  
MAX  
MIN  
2.35  
0.10  
0.33  
0.23  
11.35  
7.40  
MAX  
2.65  
0.30  
0.51  
0.32  
11.75  
7.60  
NOTES  
A
A1  
B
C
D
E
e
0.0926  
0.0040  
0.013  
0.1043  
0.0118  
0.0200  
0.0125  
0.4625  
0.2992  
-
1
2
3
L
-
9
SEATING PLANE  
A
0.0091  
0.4469  
0.2914  
-
-A-  
o
h x 45  
D
3
4
-C-  
α
0.050 BSC  
1.27 BSC  
-
e
A1  
H
h
0.394  
0.010  
0.016  
0.419  
0.029  
0.050  
10.00  
0.25  
0.40  
10.65  
0.75  
1.27  
-
C
B
0.10(0.004)  
5
0.25(0.010) M  
C
A M B S  
L
6
N
α
18  
18  
7
NOTES:  
o
o
o
o
0
8
0
8
-
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 0 12/93  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Interlead  
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above  
the seating plane, shall not exceed a maximum value of 0.61mm  
(0.024 inch)  
10. Controlling dimension: MILLIMETER. Converted inch dimensions are  
not necessarily exact.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
14  

相关型号:

HI-5701/883

6-Bit, 30 MSPS Flash A/D Converter
INTERSIL

HI-5701883

6-Bit, 30 MSPS Flash A/D Converter
INTERSIL

HI-5701_05

6-Bit, 30MSPS, Flash A/D Converter
INTERSIL

HI-574

Complete, 12-Bit A/D Converters with Microprocessor Interface
INTERSIL

HI-574A

Complete, 12-Bit A/D Converters with Microprocessor Interface
INTERSIL

HI-574A_01

Complete, 12-Bit A/D Converters with Microprocessor Interface
INTERSIL

HI-574A_08

Complete, 12-Bit A/D Converters with Converters with Microprocessor Interface
INTERSIL

HI-6010

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6010C

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6010CM-01

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6010CT

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6010J

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC