HI-574A_08 [INTERSIL]

Complete, 12-Bit A/D Converters with Converters with Microprocessor Interface; 完整的12位与微处理器接口转换器A / D转换器
HI-574A_08
型号: HI-574A_08
厂家: Intersil    Intersil
描述:

Complete, 12-Bit A/D Converters with Converters with Microprocessor Interface
完整的12位与微处理器接口转换器A / D转换器

转换器 微处理器
文件: 总18页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI-574A, HI-674A  
®
Data Sheet  
August 7, 2008  
FN3096.6  
Complete, 12-Bit A/D Converters with  
Microprocessor Interface  
Features  
• Complete 12-Bit A/D Converter with Reference and Clock  
• Full 8-Bit, 12-Bit or 16-Bit Microprocessor Bus Interface  
• Bus Access Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 150ns  
• No Missing Codes Over Temperature  
The HI-X74(A) is a complete 12-bit, Analog-to-Digital  
Converter, including a +10V reference clock, three-state  
outputs and a digital interface for microprocessor control.  
Successive approximation conversion is performed by two  
monolithic dice housed in a 28 lead package. The bipolar  
analog die features the Intersil Dielectric Isolation process,  
which provides enhanced AC performance and freedom  
from latch-up.  
• Minimal Setup Time for Control Signals  
• Fast Conversion Times  
- HI-574A (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25µs  
- HI-674A (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15µs  
Custom design of each IC (bipolar analog and CMOS digital)  
has yielded improved performance over existing versions of  
this converter. The voltage comparator features high PSRR  
plus a high speed current-mode latch, and provides precise  
decisions down to 0.1 LSB of input overdrive. More than 2X  
reduction in noise has been achieved by using current  
instead of voltage for transmission of all signals between the  
analog and digital ICs. Also, the clock oscillator is current  
controlled for excellent stability over temperature.  
• Low Noise, via Current-Mode Signal Transmission  
Between Chips  
• Byte Enable/Short Cycle (A Input)  
O
- Guaranteed Break-Before-Make Action, Eliminating Bus  
Contention During Read Operation. Latched by Start  
Convert Input (To Set the Conversion Length)  
• Supply Voltage . . . . . . . . . . . . . . . . . . . . . . ±12V to ±15V  
• Pb-Free Available (RoHS Compliant)  
The HI-X74(A) offers standard unipolar and bipolar input  
ranges, laser trimmed for specified linearity, gain and offset  
accuracy. The low noise buried zener reference circuit is  
trimmed for minimum temperature coefficient.  
Applications  
• Military and Industrial Data Acquisition Systems  
• Electronic Test and Scientific Instrumentation  
• Process Control Systems  
Power requirements are +5V and ±12V to ±15V, with typical  
dissipation of 385mW (HI-574A, HI-674A) at 12V.  
Pinout  
HI-574A, HI-674A  
(28 LD PDIP, SBDIP)  
TOP VIEW  
+5V SUPPLY, V  
LOGIC  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
STATUS, STS  
DB11 MSB  
DB10  
2
3
DATA MODE SEL, 12/8  
CHIP SEL, CS  
BYTE ADDR/SHORT  
4
DB9  
CYCLE, A  
O
5
DB8  
READ/CONVERT, R/C  
CHIP ENABLE, CE  
6
DB7  
DIGITAL  
+12V/+15V SUPPLY, V  
CC  
7
DATA  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
OUTPUTS  
+10V REF, REF OUT  
8
ANALOG  
COMMON, AC  
9
10  
11  
12  
REFERENCE INPUT  
-12V/-15V SUPPLY, V  
EE  
BIPOLAR OFFSET  
BIP OFF  
10V INPUT 13  
LSB  
DIG COMMON,  
DC  
14  
20V INPUT  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2001, 2008. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
HI-574A, HI-674A  
Ordering Information  
TEMPERATURE RANGE  
PKG.  
PART NUMBER  
PART MARKING  
HI3-574AJN-5  
HI3-574AJN-5Z (Notes 1, 3) HI3-574AJN-5Z  
HI3-574AKN-5 HI3-574AKN-5  
HI3-574AKN-5Z (Notes 1, 3) HI3-574AKN-5Z  
INL  
(°C)  
PACKAGE  
28 Ld PDIP  
DWG. #  
HI3-574AJN-5  
±1.0 LSB  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±1.0 LSB  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
±0.5 LSB  
±0.5 LSB  
0 to +75  
0 to +75  
0 to +75  
0 to +75  
0 to +75  
0 to +75  
-55 to +125  
-55 to +125  
0 to +75  
0 to +75  
0 to +75  
0 to +75  
0 to +75  
-55 to +125  
E28.6  
28 Ld PDIP (Pb-Free)  
28 Ld PDIP  
E28.6  
E28.6  
E28.6  
D28.6  
D28.6  
D28.6  
D28.6  
E28.6  
E28.6  
E28.6  
E28.6  
D28.6  
D28.6  
28 Ld PDIP (Pb-Free)  
28 Ld SBDIP (Pb-Free)  
28 Ld SBDIP (Pb-Free)  
28 Ld SBDIP (Pb-Free)  
28 Ld SBDIP (Pb-Free)  
28 Ld PDIP  
HI1-574AJD-5 (Note 2)  
HI1-574AKD-5 (Note 2)  
HI1-574ASD-2 (Note 2)  
HI1-574ATD-2 (Note 2)  
HI3-674AJN-5  
HI1-574AJD -5  
HI1-574AKD -5  
HI1-574ASD -2  
HI1- 574ATD-2  
HI3-674AJN-5  
HI3-674AJN-5Z (Notes 1, 3) HI3-674AJN-5Z  
HI3-674AKN-5 HI3-674AKN-5  
HI3-674AKN-5Z (Notes 1, 3) HI3-674AKN-5Z  
28 Ld PDIP (Pb-Free)  
28 Ld PDIP  
28 Ld PDIP (Pb-Free)  
28 Ld SBDIP (Pb-Free)  
28 Ld SBDIP (Pb-Free)  
HI1-674AKD-5 (Note 2)  
HI1-674ATD/883 (Note 2)  
NOTES:  
HI1-674AKD -5  
HI1-674ATD /883  
1. Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.  
2. These Intersil Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with  
both SnPb and Pb-free soldering operations.  
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-  
020.  
FN3096.6  
August 7, 2008  
2
HI-574A, HI-674A  
Functional Block Diagram  
BIT OUTPUTS  
MSB  
LSB  
12/8  
NIBBLE A (NOTE)  
NIBBLE B (NOTE)  
NIBBLE C (NOTE)  
CS  
CONTROL  
LOGIC  
THREE-STATE BUFFERS AND CONTROL  
A
O
R/C  
CE  
V
LOGIC  
POWER-UP RESET  
DIGITAL  
COMMON  
12 BITS  
SAR  
STS  
CLK  
OSCILLATOR  
STROBE  
DIGITAL CHIP  
ANALOG CHIP  
12 BITS  
V
V
CC  
EE  
COMP  
V
IN  
REF  
DAC  
-
10k  
V
OUT  
REF  
5k  
+
2.5k  
+10V  
REF  
5k  
10k  
-
5k  
ANALOG  
BIP  
20V  
10V  
COMMON  
OFF INPUT INPUT  
NOTE: “Nibble” is a 4-bit digital word.  
FN3096.6  
August 7, 2008  
3
HI-574A, HI-674A  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage  
Thermal Resistance (Typical, Note 4)  
SBDIP Package . . . . . . . . . . . . . . . . . .  
PDIP Package* . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
θ
(°C/W)  
55  
60  
θ
(°C/W)  
18  
N/A  
JA  
JC  
V
V
V
to Digital Common . . . . . . . . . . . . . . . . . . . . . . 0V to +16.5V  
to Digital Common . . . . . . . . . . . . . . . . . . . . . . . 0V to -16.5V  
CC  
EE  
to Digital Common . . . . . . . . . . . . . . . . . . . . . . 0V to +7V  
LOGIC  
Analog Common to Digital Common . . . . . . . . . . . . . . . . . . . .±1V  
Control Inputs  
PDIP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
SBDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175°C  
Maximum Storage Temperature Range  
(CE, CS, A , 12/8, R/C) to Digital Common . . -0.5V to V  
O
+0.5V  
LOGIC  
Analog Inputs  
PDIP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
SBDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
(REFIN, BIPOFF, 10VIN) to Analog Common . . . . . . . . . . ±16.5V  
20VIN to Analog Common . . . . . . . . . . . . . . . . . . . . . . . . . . ±24V  
REFOUT . . . . .Indefinite Short To Common, Momentary Short To V  
CC  
*Pb-free PDIPs can be used for through hole wave solder  
processing only. They are not intended for use in Reflow solder  
processing applications.  
Operating Conditions  
Temperature Range  
HI3-574Axx-5, HI1-674Axx-5 . . . . . . . . . . . . . . . . . . 0°C to +75°C  
HI1-574AxD-2, HI1-674AxD-2 . . . . . . . . . . . . . . .-55°C to +125°C  
Die Characteristics  
Transistor Count  
HI-574A, HI-674A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTE:  
4. θ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
DC and Transfer Accuracy Specifications Typical at +25°C with V = +15V or +12V, V  
= +5V, V = -15V or -12V;  
CC  
LOGIC EE  
Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise  
specified. Temperature limits established by characterization and are not  
production tested.  
TEMPERATURE RANGE  
-5 (0°C to +75°C)  
PARAMETER  
DYNAMIC CHARACTERISTICS  
J SUFFIX  
K SUFFIX  
UNITS  
Resolution (Max)  
12  
12  
1
Bits  
Linearity Error  
+25°C (Max)  
±1  
±1  
± /  
LSB  
LSB  
2
1
0°C to +75°C (Max)  
± /  
2
Max Resolution For Which No Missing Codes Is Guaranteed  
+25°C  
12  
11  
12  
12  
Bits  
Bits  
T
to T  
MAX  
MIN  
Unipolar Offset (Max)  
Adjustable to Zero  
Bipolar Offset (Max)  
±2  
±1.5  
LSB  
V
V
= 0V (Adjustable to Zero)  
= -10V  
±4  
±4  
LSB  
IN  
IN  
±0.15  
±0.1  
% of FS  
Full Scale Calibration Error  
+25°C (Max), With Fixed 50Ω Resistor From REF OUT To REF IN  
±0.25  
±0.25  
% of FS  
(Adjustable to Zero)  
T
to T  
to T  
(No Adjustment At +25°C)  
±0.475  
±0.22  
±0.375  
±0.12  
% of FS  
% of FS  
MIN  
MIN  
MAX  
MAX  
T
(With Adjustment To Zero +25°C)  
FN3096.6  
August 7, 2008  
4
HI-574A, HI-674A  
DC and Transfer Accuracy Specifications Typical at +25°C with V = +15V or +12V, V  
= +5V, V = -15V or -12V;  
CC  
LOGIC EE  
Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise  
specified. Temperature limits established by characterization and are not  
production tested. (Continued)  
TEMPERATURE RANGE  
-5 (0°C to +75°C)  
PARAMETER  
J SUFFIX  
K SUFFIX  
UNITS  
Temperature Coefficients  
Guaranteed Max Change, T  
to T (Using Internal Reference)  
MAX  
MIN  
Unipolar Offset  
±2  
±2  
±9  
±1  
±1  
±2  
LSB  
LSB  
LSB  
Bipolar Offset  
Full Scale Calibration  
Power Supply Rejection Max Change In Full Scale Calibration  
+13.5V < V  
< +16.5V or +11.4V < V  
CC  
< +12.6V  
±2  
1
±1  
1
LSB  
LSB  
LSB  
CC  
+4.5V < V  
< +5.5V  
± /  
± /  
LOGIC  
2
2
-16.5V < V < -13.5V or -12.6V < V < -11.4V  
±2  
±1  
EE  
EE  
ANALOG INPUTS  
Input Ranges  
Bipolar  
-5 to +5 (Note 6)  
-10 to +10 (Note 7)  
0 to +10 (Note 6)  
0 to +20 (Note 7)  
V
V
V
V
Unipolar  
Input Impedance  
10V Span  
5k, ±25%  
Ω
Ω
20V Span  
10k, ±25%  
POWER SUPPLIES  
Operating Voltage Range  
V
V
V
+4.5 to +5.5  
+11.4 to +16.5  
-11.4 to -16.5  
V
V
V
LOGIC  
CC  
EE  
Operating Current  
I
I
I
7 Typ, 15 Max  
11 Typ, 15 Max  
21 Typ, 28 Max  
mA  
mA  
mA  
LOGIC  
+15V Supply  
CC  
EE  
-15V Supply  
Power Dissipation  
±15V, +5V  
515 Typ, 720 Max  
385 Typ  
mW  
mW  
±12V, +5V  
Internal Reference Voltage  
T
to T  
+10.00 ±0.05 Max  
2.0 Max  
V
MIN  
MAX  
Output Current, Available For External Loads (External Load Should Not  
Change During Conversion).  
mA  
FN3096.6  
August 7, 2008  
5
HI-574A, HI-674A  
8
DC and Transfer Accuracy Specifications Typical at +25°C with V = +15V or +12V, V  
= +5V, V = -15V or -12V;  
CC  
LOGIC EE  
Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise  
specified. Temperature limits established by characterization and are not  
production tested. (Continued)  
TEMPERATURE RANGE  
-2 (-55°C to +125°C)  
PARAMETER  
DYNAMIC CHARACTERISTICS  
S SUFFIX  
T SUFFIX  
UNITS  
Resolution (Max)  
12  
12  
1
Bits  
Linearity Error  
+25°C  
±1  
±1  
± /  
LSB  
LSB  
2
-55°C to +125°C (Max)  
±1  
Max Resolution For Which No Missing Codes Is Guaranteed  
+25°C  
12  
11  
12  
12  
Bits  
Bits  
T
to T  
MAX  
MIN  
Unipolar Offset (Max)  
Adjustable to Zero  
Bipolar Offset (Max)  
±2  
±1.5  
LSB  
V
V
= 0V (Adjustable to Zero)  
= -10V  
±4  
±4  
LSB  
IN  
±0.15  
±0.1  
% of FS  
IN  
Full Scale Calibration Error  
+25°C (Max), With Fixed 50Ω Resistor From REF OUT To REF IN  
±0.25  
±0.25  
% of FS  
(Adjustable To Zero)  
T
T
to T  
to T  
(No Adjustment At +25°C)  
±0.75  
±0.50  
±0.50  
±0.25  
% of FS  
% of FS  
MIN  
MAX  
(With Adjustment To Zero At +25°C)  
MIN  
MAX  
Temperature Coefficients  
Guaranteed Max Change, T  
to T  
(Using Internal Reference)  
MAX  
MIN  
Unipolar Offset  
±2  
±2  
±1  
±2  
LSB  
LSB  
LSB  
Bipolar Offset  
Full Scale Calibration  
±20  
±10  
Power Supply Rejection Max Change In Full Scale Calibration  
+13.5V < V  
< +16.5V or +11.4V < V  
< +12.6V  
CC  
±2  
1
±1  
1
LSB  
LSB  
LSB  
CC  
+4.5V < V  
< +5.5V  
± /  
± /  
LOGIC  
2
2
-16.5V < V < -13.5V or -12.6V < V < -11.4V  
±2  
±1  
EE  
EE  
ANALOG INPUTS  
Input Ranges  
Bipolar  
-5 to +5 (Note 6)  
-10 to +10 (Note 7)  
0 to +10 (Note 6)  
0 to +20 (Note 7)  
V
V
V
V
Unipolar  
Input Impedance  
10V Span  
5k, ±25%  
Ω
Ω
20V Span  
10k, ±25%  
POWER SUPPLIES  
Operating Voltage Range  
V
V
V
+4.5 to +5.5  
+11.4 to +16.5  
-11.4 to -16.5  
V
V
V
LOGIC  
CC  
EE  
FN3096.6  
August 7, 2008  
6
HI-574A, HI-674A  
DC and Transfer Accuracy Specifications Typical at +25°C with V = +15V or +12V, V  
= +5V, V = -15V or -12V;  
CC  
LOGIC EE  
Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise  
specified. Temperature limits established by characterization and are not  
production tested. (Continued)  
TEMPERATURE RANGE  
-2 (-55°C to +125°C)  
PARAMETER  
S SUFFIX  
T SUFFIX  
UNITS  
Operating Current  
I
I
I
7 Typ, 15 Max  
mA  
mA  
mA  
LOGIC  
+15V Supply  
11 Typ, 15 Max  
21 Typ, 28 Max  
CC  
EE  
-15V Supply  
Power Dissipation  
±15V, +5V  
515 Typ, 720 Max  
385 Typ  
mW  
mW  
±12V, +5V  
Internal Reference Voltage  
T
to T  
MAX  
+10.00 ±0.05 Max  
2.0 Max  
V
MIN  
Output current, available for external loads (external load should not  
change during conversion).  
mA  
Digital Specifications All Models, Over Full Temperature Range; Parameters with MIN and/or MAX limits are 100% tested at +25°C,  
unless otherwise specified. Temperature limits established by characterization and are not production tested.  
PARAMETER  
Logic Inputs (CE, CS, R/C, A ,12/8)  
MIN  
TYP  
MAX  
O
Logic “1”  
Logic “0”  
Current  
+2.4V  
-
-
+5.5V  
+0.8V  
±5µA  
-
-0.5V  
-
-
±0.1µA  
5pF  
Capacitance  
Logic Outputs (DB11-DB0, STS)  
Logic “0” (I  
Logic “1” (I  
Logic “1” (I  
- 1.6mA)  
-
-
+0.4V  
SINK  
- 500µA)  
- 10µA)  
+2.4V  
-
-
-
SOURCE  
SOURCE  
+4.5V  
-
±5µA  
-
Leakage (High-Z State, DB11-DB0 Only)  
Capacitance  
-
-
±0.1µA  
5pF  
Timing Specifications (HI-574A) +25°C, Note 5, Unless Otherwise Specified.  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
CONVERT MODE  
t
t
STS Delay from CE  
CE Pulse Width  
-
-
-
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
DSC  
HEC  
50  
50  
50  
50  
50  
0
-
-
t
CS to CE Setup  
-
SSC  
HSC  
SRC  
HRC  
t
t
CS Low During CE High  
R/C to CE Setup  
-
-
-
-
t
R/C Low During CE High  
-
-
t
A
A
to CE Setup  
-
-
SAC  
HAC  
O
O
t
Valid During CE High  
50  
15  
10  
-
-
t
Conversion Time  
12-Bit Cycle T  
MIN  
to T  
MAX  
20  
13  
25  
17  
C
8-Bit Cycle T  
to T  
MAX  
MIN  
FN3096.6  
August 7, 2008  
7
HI-574A, HI-674A  
Timing Specifications (HI-574A) +25°C, Note 5, Unless Otherwise Specified. (Continued)  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
READ MODE  
t
t
Access Time from CE  
Data Valid After CE Low  
Output Float Delay  
CS to CE Setup  
-
25  
-
75  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DD  
HD  
-
-
t
100  
150  
HL  
t
50  
0
-
-
-
-
-
-
-
-
SSR  
t
R/C to CE Setup  
-
SRR  
t
A
to CE Setup  
O
50  
0
-
SAR  
HSR  
HRR  
t
CS Valid After CE Low  
R/C High After CE Low  
-
t
0
-
-
t
A
Valid After CE Low  
O
50  
300  
HAR  
t
STS Delay After Data Valid  
1200  
HS  
Timing Specifications (HI-674A) +25°C, Note 5, Unless Otherwise Specified.  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
CONVERT MODE  
t
t
STS Delay from CE  
CE Pulse Width  
-
-
-
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
DSC  
HEC  
50  
50  
50  
50  
50  
0
-
-
t
CS to CE Setup  
-
SSC  
HSC  
SRC  
HRC  
t
t
CS Low During CE High  
R/C to CE Setup  
-
-
-
-
t
R/C Low During CE High  
-
-
t
A
A
to CE Setup  
-
-
SAC  
HAC  
O
O
t
Valid During CE High  
50  
8
-
-
t
Conversion Time  
12-Bit Cycle T  
MIN  
to T  
MAX  
12  
8
15  
10  
C
8-Bit Cycle T  
to T  
MAX  
5
MIN  
READ MODE  
t
t
Access Time from CE  
Data Valid After CE Low  
Output Float Delay  
CS to CE Setup  
-
75  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DD  
HD  
25  
-
-
-
t
100  
150  
HL  
t
50  
0
-
-
-
-
-
-
-
-
SSR  
SRR  
t
R/C to CE Setup  
-
t
A
to CE Setup  
O
50  
0
-
SAR  
HSR  
HRR  
t
CS Valid After CE Low  
R/C High After CE Low  
-
t
0
-
-
t
A
Valid After CE Low  
O
50  
25  
HAR  
t
STS Delay After Data Valid  
850  
HS  
NOTES:  
5. Time is measured from 50% level of digital transitions. Tested with a 50pF and 3kΩ load.  
6. For the “10V Input”, Pin 13.  
7. For the “20V Input”, Pin 14.  
FN3096.6  
August 7, 2008  
8
HI-574A, HI-674A  
The HI-X74AK grade is guaranteed for maximum nonlinearity  
Pin Descriptions  
1
of ± / LSB. For this grade, this means that an analog value  
2
PIN  
SYMBOL  
DESCRIPTION  
which falls exactly in the center of a given code width will result  
in the correct digital output code. Values nearer the upper or  
lower transition of the code width may produce the next upper  
or lower digital output code. The HI-X74AJ is guaranteed to ±1  
LSB max error. For this grade, an analog value which falls  
within a given code width will result in either the correct code for  
that region or either adjacent one.  
1
V
Logic supply pin (+5V)  
LOGIC  
2
12/8  
Data Mode Select - Selects between  
12-bit and 8-bit output modes.  
3
4
CS  
Chip Select - Chip Select high disables  
the device.  
A
Byte Address/Short Cycle - See Table 3  
for operation.  
O
Note that the linearity error is not user-adjustable.  
5
6
R/C  
CE  
Read/Convert - See Table 3 for operation.  
Differential Linearity Error (No Missing Codes)  
Chip Enable - Chip Enable low disables  
the device.  
A specification which guarantees no missing codes requires  
that every code combination appear in a monotonic increasing  
sequence as the analog input level is increased. Thus every  
code must have a finite width. For the HI-X74AK grade, which  
guarantees no missing codes to 12-bit resolution, all 4096  
codes must be present over the entire operating temperature  
ranges. The HI-X74AJ grade guarantees no missing codes to  
11-bit resolution over temperature; this means that all code  
combinations of the upper 11 bits must be present; in practice  
very few of the 12-bit codes are missing.  
7
8
V
Positive Supply (+12V/+15V)  
CC  
REF OUT +10V Reference  
9
AC  
Analog Common  
10  
11  
12  
13  
REF IN  
Reference Input  
V
Negative Supply (-12V/-15V).  
EE  
BIP OFF Bipolar Offset  
10V Input 10V Input - Used for 0V to 10V and -5V to  
+5V input ranges.  
Unipolar Offset  
14  
20V Input 20V Input - Used for 0V to 20V and -10V to  
+10V input ranges.  
1
The first transition should occur at a level / LSB above analog  
2
common. Unipolar offset is defined as the deviation of the  
actual transition from that point. This offset can be adjusted as  
discussed on the following pages. The unipolar offset  
temperature coefficient specifies the maximum change of the  
transition point over temperature, with or without external  
adjustment.  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DC  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
DB9  
DB10  
DB11  
STS  
Digital Common  
Data Bit 0 (LSB)  
Data Bit 1  
Data Bit 2  
Data Bit 3  
Bipolar Offset  
Data Bit 4  
Similarly, in the bipolar mode, the major carry transition  
Data Bit 5  
(0111 1111 1111 to 1000 0000 0000) should occur for an  
1
Data Bit 6  
analog value / LSB below analog common. The bipolar  
2
Data Bit 7  
offset error and temperature coefficient specify the initial  
deviation and maximum change in the error over  
temperature.  
Data Bit 8  
Data Bit 9  
Data Bit 10  
Data Bit 11 (MSB)  
Full Scale Calibration Error  
The last transition (from 1111 1111 1110 to 1111 1111 1111)  
1
should occur for an analog value 1 / LSB below the  
2
Status Bit - Status high implies a conversion  
is in progress.  
nominal full scale (9.9963V for 10.000V full scale). The full  
scale calibration error is the deviation of the actual level at  
the last transition from the ideal level. This error, which is  
typically 0.05 to 0.1% of full scale, can be trimmed out as  
shown in Figures 1 and 2. The full scale calibration error  
over temperature is given with and without the initial error  
trimmed out. The temperature coefficients for each grade  
indicate the maximum change in the full scale gain from the  
initial value using the internal 10V reference.  
Definitions of Specifications  
Linearity Error  
Linearity error refers to the deviation of each individual code  
from a line drawn from “zero” through “full scale”. The point  
1
used as “zero” occurs / LSB (1.22mV for 10V span) before  
2
the first code transition (all zeros to only the LSB “on”). “Full  
scale” is defined as a level 1 / LSB beyond the last code  
2
1
transition (to all ones). The deviation of a code from the true  
straight line is measured from the middle of each particular  
code.  
FN3096.6  
August 7, 2008  
9
HI-574A, HI-674A  
In general, sensitive analog signals should be routed between  
Temperature Coefficients  
ground traces and kept well away from digital lines. If analog  
and digital lines must cross, they should do so at right angles.  
The temperature coefficients for full-scale calibration,  
unipolar offset, and bipolar offset specify the maximum  
change from the initial (25°C) value to the value at T  
or  
MIN  
Power Supplies  
T
.
MAX  
Supply voltages to the HI-X74A (+15V, -15V and +5V) must be  
“quiet” and well regulated. Voltage spikes on these lines can  
affect the converter’s accuracy, causing several LSBs to flicker  
when a constant input is applied. Digital noise and spikes from  
a switching power supply are especially troublesome. If  
Power Supply Rejection  
The standard specifications for the HI-X74A assume use of  
+5.00V and ±15.00V or ±12.00V supplies. The only effect of  
power supply error on the performance of the device will be  
a small change in the full scale calibration. This will result in  
a linear change in all lower order codes. The specifications  
show the maximum change in calibration from the initial  
value with the supplies at the various limits.  
switching supplies must be used, outputs should be carefully  
filtered to assure “quiet” DC voltage at the converter terminals.  
Further, a bypass capacitor pair on each supply voltage  
terminal is necessary to counter the effect of variations in  
supply current. Connect one pair from pin 1 to 15 (V  
LOGIC  
Code Width  
supply), one from pin 7 to 9 (V  
CC  
to Analog Common) and  
A fundamental quantity for A/D converter specifications is  
the code width. This is defined as the range of analog input  
values for which a given digital output code will occur. The  
nominal value of a code width is equivalent to 1 least  
significant bit (LSB) of the full scale range or 2.44mV out of  
10V for a 12-bit ADC.  
one from pin 11 to 9 (V to Analog Common). For each  
EE  
capacitor pair, a 10µF tantalum type in parallel with a 0.1µF  
ceramic type is recommended.  
Ground Connections  
Pins 9 and 15 should be tied together at the package to  
guarantee specified performance for the converter. In  
addition, a wide PC trace should run directly from pin 9 to  
(usually) +15V common, and from pin 15 to (usually) the +5V  
Logic Common. If the converter is located some distance from  
the system’s “single point” ground, make only these  
connections to pins 9 and 15: Tie them together at the  
package, and back to the system ground with a single path.  
This path should have low resistance. (Code dependent  
Quantization Uncertainty  
Analog-to-digital converters exhibit an inherent quantization  
1
uncertainty of ± / LSB. This uncertainty is a fundamental  
2
characteristic of the quantization process and cannot be  
reduced for a converter of given resolution.  
Left-Justified Data  
The data format used in the HI-X74A is left-justified. This  
means that the data represents the analog input as a fraction  
of full-scale, ranging from 0 to  
point to the left of the MSB.  
currents flow in the V , V and V  
terminals, but not  
CC EE LOGIC  
through the HI-X74A’s Analog Common or Digital Common).  
4095  
4096  
. This implies a binary  
Analog Signal Source  
Applying the HI-X74A  
HI-574A and HI-674A  
For each application of this converter, the ground  
The device chosen to drive the HI-X74A analog input will see a  
nominal load of 5kΩ (10V range) or 10kΩ (20V range).  
However, the other end of these input resistors may change  
±400mV with each bit decision, creating abrupt changes in  
current at the analog input. Thus, the signal source must  
maintain its output voltage while furnishing these step changes  
in load current, which occur at 1.6μs and 950ns intervals for the  
HI-574A and HI-674A, respectively. This requires low output  
impedance and fast settling by the signal source.  
connections, power supply bypassing, analog signal source,  
digital timing and signal routing on the circuit board must be  
optimized to assure maximum performance. These areas  
are reviewed in the following sections, along with basic  
operating modes and calibration requirements.  
Physical Mounting and Layout Considerations  
LAYOUT  
The output impedance of an op amp, for example, has an  
open loop value which, in a closed loop, is divided by the  
loop gain available at a frequency of interest. The amplifier  
should have acceptable loop gain at 600kHz for use with the  
HI-X74A. To check whether the output properties of a signal  
source are suitable, monitor the HI-X74A’s input (pin 13 or  
14) with an oscilloscope while a conversion is in progress.  
Each of the twelve disturbances should subside in 1μs or  
less for the HI-574A and 500ns or less for the HI-674A. (The  
comparator decision is made about 1.5µs and 850ns after  
each code change from the SAR for the HI-574A and  
HI-674A, respectively.)  
Unwanted, parasitic circuit components, (L, R, and C) can  
make 12-bit accuracy impossible, even with a perfect A/D  
converter. The best policy is to eliminate or minimize these  
parasitics through proper circuit layout, rather than try to  
quantify their effects.  
The recommended construction is a double-sided printed  
circuit board with a ground plane on the component side.  
Other techniques, such as wire-wrapping or point-to-point  
wiring on vector board, will have an unpredictable effect on  
accuracy.  
FN3096.6  
August 7, 2008  
10  
HI-574A, HI-674A  
If the application calls for a Sample/Hold to precede the  
Range Connections and Calibration Procedures  
converter, it should be noted that not all Sample/Holds are  
compatible with the HI-574A in the manner described above.  
These will require an additional wideband buffer amplifier to  
lower their output impedance. A simpler solution is to use the  
Intersil HA-5320 Sample/Hold, which was designed for use  
with the HI-574A.  
The HI-X74A is a “complete” A/D converter, meaning it is fully  
operational with addition of the power supply voltages, a Start  
Convert signal, and a few external components as shown in  
Figures 1 and 2. Nothing more is required for most  
applications.  
Whether controlled by a processor or operating in the  
stand-alone mode, the HI-X74A offers four standard input  
ranges: 0V to +10V, 0V to +20V, ±5V and ±10V. The  
maximum errors for gain and offset are listed under  
Specifications. If required, however, these errors may be  
adjusted to zero as explained below. Power supply and  
ground connections have been discussed in an earlier  
section.  
STS 28  
2 12/8  
HIGH BITS  
24-27  
3
4
5
CS  
A
O
MIDDLE BITS  
20-23  
OFFSET  
R1  
100K  
R/C  
CE  
LOW BITS  
16-19  
+15V  
GAIN  
-15V  
6
Unipolar Connections and Calibration  
R2  
Refer to Figure 1. The resistors shown (see Note below)  
are for calibration of offset and gain. If this is not required,  
replace R2 with a 50Ω, 1% metal film resistor and remove  
the network on pin 12. Connect pin 12 to pin 9. Then,  
connect the analog signal to pin 13 for the 0V to 10V range,  
or to pin 14 for the 0V to 20V range. Inputs to +20V (5V  
over the power supply) are no problem - the converter  
operates normally.  
10 REF IN  
REF OUT  
100K  
100Ω  
8
100Ω  
+5V  
1
7
12 BIP OFF  
0V TO +10V  
ANALOG  
+15V  
13 10V  
IN  
INPUTS  
-15V 11  
14 20V   
IN  
0V TO +20V  
DIG COM 15  
9 ANA  
COM  
Calibration consists of adjusting the converter’s most  
negative output to its ideal value (offset adjustment), then,  
adjusting the most positive output to its ideal value (gain  
adjustment). To understand the procedure, note that in  
principle, one is setting the output with respect to the  
midpoint of an increment of analog input, as denoted by  
two adjacent code changes. Nominal value of an increment  
is one LSB. However, this approach is impractical because  
nothing “happens” at a midpoint to indicate that an  
adjustment is complete. Therefore, calibration is performed  
in terms of the observable code changes instead of the  
midpoint between code changes.  
When driving the 20V (pin 14) input, minimize capacitance on pin 13.  
FIGURE 1. UNIPOLAR CONNECTIONS  
STS 28  
2 12/8  
HIGH BITS  
24-27  
3
4
5
CS  
A
O
MIDDLE BITS  
20-23  
R/C  
CE  
For example, midpoint of the first LSB increment should be  
LOW BITS  
16-19  
positioned at the origin, with an output code of all 0’s. To do  
1
6
this, apply an input of + / LSB (+1.22mV for the 10V range;  
2
GAIN  
R2  
+2.44mV for the 20V range). Adjust the Offset potentiometer  
R1 until the first code transition flickers between  
0000 0000 0000 and 0000 0000 0001.  
10 REF IN  
REF OUT  
12 BIP OFF  
100Ω  
100Ω  
8
Next, perform a Gain Adjust at positive full scale. Again, the  
+5V 1  
ideal input corresponding to the last code change is applied.  
1
R1  
±5V  
This is 1 / LSBs below the nominal full scale (+9.9963V for  
2
OFFSET  
+15V 7  
-15V 11  
13 10V  
IN  
ANALOG  
INPUTS  
10V range; +19.9927V for 20V range). Adjust the Gain  
potentiometer R2 for flicker between codes 1111 1111 1110  
and 1111 1111 1111.  
14 20V †  
IN  
±10V  
DIG COM 15  
9 ANA  
COM  
Bipolar Connections and Calibration  
Refer to Figure 2. The gain and offset errors listed under  
Specifications may be adjusted to zero using  
When driving the 20V (pin 14) input, minimize capacitance on pin 13.  
potentiometers R1 and R2 (see Note below). If this isn’t  
FIGURE 2. BIPOLAR CONNECTIONS  
FN3096.6  
August 7, 2008  
11  
HI-574A, HI-674A  
required, either or both pots may be replaced by a 50Ω, 1%  
TABLE 1. HI-574A STAND-ALONE MODE TIMING  
metal film resistor.  
SYMBOL  
PARAMETER  
Low R/C Pulse Width  
STS Delay from R/C  
Data Valid after R/C Low  
MIN TYP MAX UNITS  
Connect the Analog signal to pin 13 for a ±5V range, or to  
pin 14 for a ±10V range. Calibration of offset and gain is  
t
50  
-
-
-
-
-
-
-
-
200  
-
ns  
ns  
ns  
ns  
ns  
ns  
HRL  
t
DS  
similar to that for the unipolar ranges as discussed above.  
1
t
25  
First apply a DC input voltage / LSB above negative full  
2
HDR  
scale (i.e., -4.9988V for the ±5V range, or -9.9976V for the  
±10V range). Adjust the offset potentiometer R1 for flicker  
t
STS Delay after Data Valid 300  
1200  
-
HS  
t
t
High R/C Pulse Width  
Data Access Time  
150  
-
HRH  
DDR  
between output codes 0000 0000 0000 and 0000 0000  
1
150  
0001. Next, apply a DC input voltage 1 / LSBs below  
2
positive full scale (+4.9963V for ±5V range; +9.9927V for  
±10V range). Adjust the Gain potentiometer R2 for flicker  
between codes 1111 1111 1110 and 1111 1111 1111.  
Time is measured from 50% level of digital transitions. Tested with a  
50pF and 3kΩ load.  
TABLE 2. HI-674A STAND-ALONE MODE TIMING  
NOTE: The 100Ω potentiometer R2 provides Gain Adjust for the 10V  
and 20V ranges. In some applications, a full scale of 10.24V (LSB  
equals 2.5mV) or 20.48V (LSB equals 5.0mV) is more convenient.  
For these, replace R2 by a 50Ω, 1% metal film resistor. Then, to pro-  
vide Gain Adjust for the 10.24V range, add a 200Ω potentiometer in  
series with pin 13. For the 20.48V range, add a 500Ω potentiometer  
in series with pin 14.  
SYMBOL  
PARAMETER  
Low R/C Pulse Width  
STS Delay from R/C  
MIN TYP MAX UNITS  
t
50  
-
-
-
-
-
-
ns  
ns  
ns  
ns  
HRL  
t
200  
-
DS  
t
Data Valid after R/C Low 25  
HDR  
t
STS Delay after Data  
Valid  
25  
850  
HS  
Controlling the HI-X74A  
The HI-X74A includes logic for direct interface to most  
microprocessor systems. The processor may take full  
control of each conversion, or the converter may operate in  
the “stand-alone” mode, controlled only by the R/C input.  
Full control consists of selecting an 8-bit or 12-bit  
t
t
High R/C Pulse Width  
Data Access Time  
150  
-
-
-
-
ns  
ns  
HRH  
DDR  
150  
Time is measured from 50% level of digital transitions. Tested with  
a 50pF and 3kΩ load.  
conversion cycle, initiating the conversion, and reading the  
output data when ready-choosing either 12 bits at once or 8  
followed by 4, in a left-justified format. The five control  
Conversion Length  
A Convert Start transition (see Table 1) latches the state of  
inputs are all TTL/CMOS-compatible: (12/8, CS, A , R/C  
A , which determines whether the conversion continues for  
O
O
and CE). Table 3 illustrates the use of these inputs in  
controlling the converter’s operations. Also, a simplified  
schematic of the internal control logic is shown in Figure 6.  
12 bits (A low) or stops with 8 bits (A high). If all 12 bits are  
O O  
read following an 8-bit conversion, the last three LSBs will  
read ZERO and DB3 will read ONE. A is latched because it  
O
is also involved in enabling the output buffers (see ““Reading  
the Output Data” on page 13). No other control inputs are  
latched.  
“Stand-Alone Operation”  
The simplest control interface calls for a single control line  
connected to R/C. Also, CE and 12/8 are wired high, CS and  
TABLE 3. TRUTH TABLE FOR HI-X74A CONTROL INPUTS  
A
are wired low, and the output data appears in words of  
O
12 bits each.  
CE CS R/C 12/8  
A
OPERATION  
O
The R/C signal may have any duty cycle within (and  
including) the extremes shown in Figures 7 and 8. In  
general, data may be read when R/C is high unless STS is  
also high, indicating a conversion is in progress. Timing  
parameters particular to this mode of operation are listed in  
Tables 1 and 2.  
0
X
1
1
1
1
1
1
1
X
1
0
0
0
0
0
0
0
X
X
0
0
0
0
1
1
1
X
X
X
X
X
X
X
X
1
X
None  
None  
X
0
1
0
1
0
1
X
0
1
Initiate 12-bit conversion  
Initiate 8-bit conversion  
Initiate 12-bit conversion  
Initiate 8-bit conversion  
Initiate 12-bit conversion  
Initiate 8-bit conversion  
Enable 12-bit Output  
0
Enable 8 MSBs Only  
0
Enable 4 LSBs Plus 4 Trailing Zeroes  
FN3096.6  
August 7, 2008  
12  
HI-574A, HI-674A  
12 output lines become active simultaneously, for interface  
Conversion Start  
to a 12-bit or 16-bit data bus. The A input is ignored.  
O
A conversion may be initiated as shown in Table 3 by a logic  
transition on any of three inputs: CE, CS or R/C. The last of  
the three to reach the correct state starts the conversion, so  
one, two or all three may be dynamically controlled. The  
nominal delay from each is the same, and if necessary, all  
three may change state simultaneously. However, to ensure  
that a particular input controls the start of conversion, the  
other two should be set up at least 50ns earlier. See the  
HI-X74A Timing Specifications, Convert Mode.  
With 12/8 low, the output is organized in two 8-bit bytes,  
selected one at a time by A . This allows an 8-bit data bus  
O
to be connected as shown in Figure 5. A is usually tied to  
O
the least significant bit of the address bus, for storing the  
HI-X74A output in two consecutive memory locations. (With  
A
low, the 8 MSBs only are enabled. With A high, 4 MSBs  
O
O
are disabled, bits 4 through 7 are forced low, and the 4 LSBs  
are enabled). This two byte format is considered “left justified  
data,” for which a decimal (or binary!) point is assumed to  
the left of byte 1:  
This variety of HI-X74A control modes allows a simple  
interface in most system applications. The Convert Start  
timing relationships are illustrated in Figure 3.  
BYTE 1  
BYTE 2  
The output signal STS indicates status of the converter by  
going high only while a conversion is in progress. While STS  
is high, the output buffers remain in a high impedance state  
and data cannot be read. Also, an additional Start Convert  
will not reset the converter or re-initiate a conversion while  
STS is high.  
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
MSB  
LSB  
Further, A may be toggled at any time without damage to  
O
the converter. Break-before-make action is guaranteed  
between the two data bytes, which assures that the outputs  
strapped together in Figure 5 will never be enabled at the  
same time.  
Reading the Output Data  
The output data buffers remain in a high impedance state  
until four conditions are met: R/C high, STS low, CE high  
and CS low. At that time, data lines become active according  
A read operation usually begins after the conversion is  
complete and STS is low. For earliest access to the data,  
however, the read should begin no later than (t  
before STS goes low. See Figure 4.  
to the state of inputs 12/8 and A . Timing constraints are  
O
+ t  
)
DD  
HS  
illustrated in Figure 4.  
The 12/8 input will be tied high or low in most applications,  
though it is fully TTL/CMOS-compatible. With 12/8 high, all  
CE  
t
HEC  
HSC  
CE  
CS  
t
t
HSR  
SSR  
t
SSC  
CS  
t
HRR  
t
t
SRC  
R/C  
R/C  
t
t
SRR  
t
HRC  
A
O
A
O
t
SAR  
HAR  
t
SAC  
STS  
t
HAC  
t
STS  
HS  
t
t
C
HD  
t
DSC  
DATA  
VALID  
DB11-DB0  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
DB11-DB0  
t
t
HL  
DD  
See HI-X74A Timing Specifications for more information.  
See HI-X74A Timing Specifications for more information.  
FIGURE 4. READ CYCLE TIMING  
FIGURE 3. CONVERT START TIMING  
FN3096.6  
August 7, 2008  
13  
HI-574A, HI-674A  
A
ADDRESS BUS  
O
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
STS  
12/8  
DB11 (MSB)  
3
4
A
O
5
DATA  
BUS  
6
7
HI-X74A  
8
9
10  
11  
12  
13  
14  
DB0 (LSB) 16  
DIG.  
15  
COM.  
FIGURE 5. INTERFACE TO AN 8-BIT DATA BUS  
NIBBLE B ZERO  
OVERRIDE  
NIBBLE A, B  
NIBBLE C  
INPUT BUFFERS  
12/8  
READ CONTROL  
CS  
A
O
STATUS  
R/C  
CE  
CURRENT  
CONTROLLED  
OSCILLATOR  
STROBE  
CLOCK  
CONVERT  
CONTROL  
EOC9  
CK  
POWER UP  
RESET  
Q
D
RESET  
Q
A
LATCH  
O
EOC13  
FIGURE 6. HI-X74A CONTROL LOGIC  
FN3096.6  
August 7, 2008  
14  
HI-574A, HI-674A  
t
HRL  
R/C  
t
DS  
STS  
t
C
t
HDR  
t
HS  
DATA  
VALID  
DATA  
VALID  
DB11-DB0  
FIGURE 7. LOW PULSE FOR R/C - OUTPUTS ENABLED AFTER CONVERSION  
R/C  
t
t
DS  
HRH  
STS  
t
C
t
HDR  
t
DDR  
HIGH-Z  
HIGH-Z  
DB11-DB0  
DATA  
VALID  
FIGURE 8. HIGH PULSE FOR R/C - OUTPUTS ENABLED WHILE R/C HIGH, OTHERWISE HIGH-Z  
FN3096.6  
August 7, 2008  
15  
HI-574A, HI-674A  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
Analog: 3070mm x 4610mm  
Digital: 1900mm x 4510mm  
Type: Nitride Over Silox  
Nitride Thickness: 3.5kÅ ±0.5kÅ  
Silox Thickness: 12kÅ ±1.5kÅ  
METALLIZATION:  
WORST CASE CURRENT DENSITY:  
Digital Type: Nitrox  
Thickness: 10kÅ ±2kÅ  
5
2
1.3 x 10 A/cm  
Metal 1: AlSiCu  
Thickness: 8kÅ ±1kÅ  
Metal 2: AlSiCu  
Thickness: 16kÅ ±2kÅ  
Analog Type: Al  
Thickness: 16kÅ ±2kÅ  
Metallization Mask Layout  
HI-574A, HI-674A  
R/C  
DB10  
DB9  
CE  
V
CC  
V
REFOUT  
ANALOG  
COMMON  
DB8  
DB7  
DB6  
DB5  
ANALOG  
COMMON  
ANALOG  
COMMON  
V
REFIN  
DB4  
DB3  
DB2  
V
EE  
FN3096.6  
August 7, 2008  
16  
HI-574A, HI-674A  
Ceramic Dual-In-Line Metal Seal Packages (SBDIP)  
c1 LEAD FINISH  
D28.6 MIL-STD-1835 CDIP2-T28 (D-10, CONFIGURATION C)  
28 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE  
-A-  
-D-  
E
INCHES MILLIMETERS  
MIN  
BASE  
METAL  
(c)  
SYMBOL  
MAX  
0.232  
0.026  
0.023  
0.065  
0.045  
0.018  
0.015  
1.490  
0.610  
MIN  
-
MAX  
5.92  
NOTES  
b1  
A
b
-
-
2
3
-
M
A
M
(b)  
0.014  
0.014  
0.045  
0.023  
0.008  
0.008  
-
0.36  
0.36  
1.14  
0.58  
0.20  
0.20  
-
0.66  
-B-  
b1  
b2  
b3  
c
0.58  
SECTION A-A  
S
S
S
D
bbb  
C
A - B  
1.65  
D
1.14  
4
2
3
-
BASE  
PLANE  
S2  
Q
0.46  
-C-  
SEATING  
PLANE  
c1  
D
0.38  
L
37.85  
15.49  
S1  
b2  
eA  
A A  
E
0.500  
12.70  
-
e
eA/2  
aaa M C A - B S D S  
b
c
e
0.100 BSC  
2.54 BSC  
-
eA  
eA/2  
L
0.600 BSC  
0.300 BSC  
15.24 BSC  
7.62 BSC  
-
ccc  
M
C A - B S D S  
-
NOTES:  
0.125  
0.200  
3.18  
5.08  
-
1. Index area: A notch or a pin one identification mark shall be locat-  
ed adjacent to pin one and shall be located within the shaded  
area shown. The manufacturer’s identification shall not be used  
as a pin one identification mark.  
Q
0.015  
0.005  
0.005  
0.060  
0.38  
0.13  
0.13  
1.52  
5
6
7
-
S1  
S2  
α
-
-
-
-
2. The maximum limits of lead dimensions b and c or M shall be  
measured at the centroid of the finished lead surfaces, when  
solder dip or tin plate lead finish is applied.  
o
o
o
o
90  
105  
90  
105  
aaa  
bbb  
ccc  
M
-
-
-
-
0.015  
0.030  
0.010  
0.0015  
-
-
-
-
0.38  
0.76  
0.25  
0.038  
-
3. Dimensions b1 and c1 apply to lead base metal only. Dimension  
M applies to lead plating and finish thickness.  
-
4. Corner leads (1, N, N/2, and N/2+1) may be configured with a  
partial lead paddle. For this configuration dimension b3 replaces  
dimension b2.  
-
2
8
N
28  
28  
5. Dimension Q shall be measured from the seating plane to the  
base plane.  
Rev. 0 5/18/94  
6. Measure dimension S1 at all four corners.  
7. Measure dimension S2 from the top of the ceramic body to the  
nearest metallization or lead.  
8. N is the maximum number of terminal positions.  
9. Braze fillets shall be concave.  
10. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
11. Controlling dimension: INCH.  
FN3096.6  
August 7, 2008  
17  
HI-574A, HI-674A  
Dual-In-Line Plastic Packages (PDIP)  
E28.6 (JEDEC MS-011-AB ISSUE B)  
28 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
N
E1  
INCHES MILLIMETERS  
INDEX  
1
2
3
N/2  
AREA  
SYMBOL  
MIN  
MAX  
0.250  
-
MIN  
-
MAX  
6.35  
-
NOTES  
-B-  
-C-  
A
A1  
A2  
B
-
4
-A-  
0.015  
0.125  
0.014  
0.030  
0.008  
1.380  
0.005  
0.600  
0.485  
0.39  
3.18  
0.356  
0.77  
0.204  
4
D
E
0.195  
0.022  
0.070  
0.015  
1.565  
-
4.95  
0.558  
1.77  
0.381  
39.7  
-
-
BASE  
PLANE  
A2  
A
-
SEATING  
PLANE  
B1  
C
8
L
C
L
-
D1  
B1  
eA  
A1  
A
D1  
e
D
35.1  
5
eC  
C
B
D1  
E
0.13  
15.24  
12.32  
5
eB  
0.010 (0.25) M  
C
B S  
0.625  
0.580  
15.87  
14.73  
6
NOTES:  
E1  
e
5
1. Controlling Dimensions: INCH. In case of conflict between English and  
Metric dimensions, the inch dimensions control.  
0.100 BSC  
0.600 BSC  
2.54 BSC  
15.24 BSC  
-
e
e
6
A
B
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
-
0.700  
0.200  
-
17.78  
5.08  
7
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication No. 95.  
L
0.115  
2.93  
4
9
4. Dimensions A, A1 and L are measured with the package seated in  
N
28  
28  
JEDEC seating plane gauge GS-3.  
Rev. 1 12/00  
5. D, D1, and E1 dimensions do not include mold flash or protrusions.  
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).  
e
6. E and  
are measured with the leads constrained to be perpendic-  
A
-C-  
ular to datum  
.
7. e and e are measured at the lead tips with the leads unconstrained.  
B
C
e
must be zero or greater.  
C
8. B1 maximum dimensions do not include dambar protrusions. Dambar  
protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,  
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN3096.6  
August 7, 2008  
18  

相关型号:

HI-6010

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6010C

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6010CM-01

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6010CT

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6010J

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6010JF

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6010JT

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6010JTF

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6010_06

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6011

ARINC 429 Transmitter / Dual Receiver for 8-Bit Bus
HOLTIC

HI-6011CDT

ARINC 429 Transmitter / Dual Receiver for 8-Bit Bus
HOLTIC

HI-6110

MIL-STD-1553 / MIL-STD-1760 BC / RT / MT Message Processor
HOLTIC