HI-6010JTF [HOLTIC]

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS; ARINC 429发射器/接收器, 8位总线
HI-6010JTF
型号: HI-6010JTF
厂家: HOLT INTEGRATED CIRCUITS    HOLT INTEGRATED CIRCUITS
描述:

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
ARINC 429发射器/接收器, 8位总线

微控制器和处理器 串行IO控制器 通信控制器 外围集成电路
文件: 总12页 (文件大小:116K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI-6010  
ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS  
January 2006  
GENERAL DESCRIPTION  
FEATURES  
The HI-6010 is a CMOS integrated circuit designed to  
interface the avionics data bus standard ARINC 429 to an  
8 bit port. It contains one receiver and one transmitter.  
They operate independently except for the self test option  
and the parity option. The receiver demands that the  
incoming data meet the standard protocol and the trans-  
mitter outputs a standard protocol stream.  
!
ARINC 429 protocol controller with interface to  
an 8 bit bus  
!
!
!
!
!
Automatic label recognition option  
8 bit or 32 bit buffering option  
Self test and parity options  
CMOS / TTL logic pins  
The HI-6010 provides flexible options for interfacing to the  
user system. The controlling processor can operate both  
the receiver and transmitter either by using hard wired  
flags and gates at the pins or by using software reads and  
writes of the Status Register and Control Register or a  
combination thereof.  
Plastic and ceramic package options - surface  
mount or DIP  
!
Military processing available  
The chip is programmable to operate with single 8 bit  
bytes requiring "on the fly transmitter loading and receiver  
downloading" or to operate in 32 bit "extended buffer"  
mode. In addition there is an option to use automatic label  
recognition after loading 8 possible labels for comparison.  
Parity and self test are also software programmable.  
Master Reset is activated only by taking the MR pin high.  
PIN CONFIGURATION (Top View)  
VSS  
WEF  
1
2
3
4
5
6
7
8
9
28 RE  
27 C/D  
26 CS  
25 WE  
24 D7  
23 D6  
22 D5  
21 D4  
20 D3  
19 D2  
18 D1  
17 D0  
16 RXD1  
15 VDD  
CTS  
TXC  
HFS  
Two clock inputs allow independent selection of the data  
rates of the transmitter and receiver. Each must be 4X the  
desiredARINC 429 frequency.  
MR  
TXE  
RXRDY  
TXRDY  
Error flags are generated for transmitter underwrites and  
for receiver data framing miscues, parity errors, and buffer  
overwrites.  
TXD0 10  
TXD1 11  
RXC 12  
FCR 13  
RXD0 14  
The HI-6010 is a 5 volt chip that will require data transla-  
tion from and to theARINC bus. The HI-8482 and HI-8588  
line receivers are available for the receiver side and the  
HI-318X and HI-858X line drivers are available for the  
transmitter side.  
Pin numbers apply for plastic and ceramic DIP and  
for plastic PLCC. Consult factory for pin out of 48  
lead ceramic leadless chip carrier.  
APPLICATIONS  
OPERATING SUPPLY VOLTAGE  
! Avionics Data Communication  
! Serial to Parallel Conversion  
! Parallel to Serial Conversion  
! VDD = 5.0 VOLTS 5%  
! VSS = 0.0 VOLTS  
HOLT INTEGRATED CIRCUITS  
www.holtic.com  
(DS6010 Rev.D)  
01/06  
HI-6010  
PIN DESCRIPTIONS  
PIN  
SYMBOL FUNCTION  
DESCRIPTION  
1
VSS  
WEF  
CTS  
TXC  
HFS  
MR  
POWER  
OUTPUT  
INPUT  
INPUT  
INPUT  
INPUT  
OUTPUT  
OUTPUT  
OUTPUT  
OUTPUT  
OUTPUT  
INPUT  
OUTPUT  
INPUT  
POWER  
INPUT  
I / O  
0.0 Volts  
2
Error indication if high. Status register must be read to determine specific error.  
Enables data transmission when low.  
Source clock for data transmission. 4 times bit rate.  
Hardware feature select.  
3
4
5
6
Master reset, active high.  
7
TXE  
RXRDY  
TXRDY  
TXD0  
TXD1  
RXC  
FCR  
RXD0  
VDD  
RXD1  
D0  
Low when transmission in progress.  
High when data of received word is available.  
High when data of a transmitted word may be input.  
"Zeroes" data output of transmitter.  
"Ones" data output of transmitter.  
Source clock for data reception. 4 times bit rate.  
First character received flag.  
"Zeroes" data input to receiver.  
5 Volts 5ꢀ  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
"Ones" data input to receiver.  
Data bus  
D1  
I / O  
Data bus  
D2  
I / O  
Data bus  
D3  
I / O  
Data bus  
D4  
I / O  
Data bus  
D5  
I / O  
Data bus  
D6  
I / O  
Data bus  
D7  
I / O  
Data bus  
WE  
INPUT  
INPUT  
INPUT  
INPUT  
8 bit data bus input control active low.  
Chip select, active low.  
CS  
C/D  
High for control or status register operations, low for data  
8 bit data bus output control, active low.  
RE  
goes high for any one of three receiver errors. The status  
register will show which of the three errors occurred:  
USING THE RECEIVER  
The receiver logic is independent of the transmitter except in  
the following ways:  
1. SelfTest  
Status Register Bit  
Error  
SR3  
SR4  
SR5  
Received a parity error  
Data Overwritten  
Receiving sequence error  
2. Parity Option  
In self test, the transmitter outputs route to the receiver inputs  
internally ignoring the external inputs. Also in self test, the  
external receiver clock is replaced with the transmitter clock.  
The possible Receiver sequence errors are:  
1. RXD0 and RXD1 simultaneously a one.  
2. Less than 32 bits before 3 nulls.  
3. More than 32 bits.  
The parity option affects both the receiver and transmitter.  
Either both are operational or neither.  
There are no errors flagged for labels received that don't  
match stored labels when in the label recognition mode.  
Errors are cleared by MR or by reading the Status Register.  
HARDWARE CONTROL OF THE RECEIVER  
PIN 2 - WEF  
WEF is an error indicator. It goes high for a transmitter  
"underwrite" (failure to keep up with byte loading) and pin 2  
PIN 5 - HFS and the CONTROLREGISTER  
This pin, along with the control register, sets up the  
functioning (e.g. modes) of the chip. If HFS is low, the  
HOLT INTEGRATED CIRCUITS  
2
HI-6010  
USING THE RECEIVER (cont.)  
PIN 14 - RXD0 and PIN 16 - RXD1  
These pins must be 5 volt logic levels. There must be a  
translator between the ARINC bus and these inputs.  
Typically a receiver chip, such as the HI-8482 or HI-8588  
is inserted between the ARINC bus and the logic chips.  
RXD0 is looking for a high level for zero inputs and RXD1 is  
looking for a high level for one inputs. When both inputs are  
low this is referred to as the Null state.  
receiver is not programmable to the 32 bit "extended buffer"  
mode nor to the label recognition mode. Affecting the  
receiver:  
CONTROL PROGRAM PIN 5  
VALUE VALUE  
BIT NAME  
OPERATION  
SOFTWARE CONTROL OF THE RECEIVER  
CR1  
X
0
1
0
1
1
No action  
No action  
Next 8 data read cycles will read  
stored labels. One time only sequence  
on each transiton of CR1 to a 1.  
By writing to the Control Register and reading the Status  
Register the controlling processor can operate the receiver  
without hardware interrupts.  
The Control Register in  
combination with the wiring of pin 5 was explained above.  
The Status Register bits pertaining to the receiver are  
explained below:  
CR2  
CR3*  
CR4  
CR5  
0
1
X
X
Receiver is disabled  
Receiver is enabled  
0
1
X
X
RXRDY goes high normally  
Blocks RXRDY for one ARINC word  
STATUS BIT VALUE  
MEANING  
0
1
X
X
Self test disabled  
Self test enabled  
SR1  
SR3  
SR4  
SR5  
0
1
No receiver data  
Receiver data ready  
0
0
No parity errors enabled and 32nd  
bit is data  
Parity error flag enabled  
32 bit "extended mode" enabled and  
parity enabled.  
0
1
No parity error  
Parity error - Parity was even  
1
0
0
1
0
1
Receiver data not overwritten  
Receiver data was overwritten  
1
1
8 bit "one byte at a time" mode and  
parity enabled.  
0
1
Receiver data received without framing error  
Framing error - Did not receive exactly 32  
good bits  
CR7  
X
0
1
0
1
1
Label recognition not programmable  
Label recognition disabled  
Label recognition enabled  
SR6  
0
1
Did not receive first byte  
Received first byte - Same flag as pin 13  
* CR3 will be automatically reset to 0 after being programmed  
to a 1 at the completion of an ARINC word reception. This  
allows a software label recognition different from the automatic  
option available.  
COMMUNICATING WITH THE CONTROL AND  
STATUS REGISTERS  
Pin 27, C/D, must be high to read the status register or write  
the control register. Reading the status register resets  
errors. There is no provision to read the control register.  
PIN 6 - MR  
When MR is a 1, the control word is set to 0X10 0101 (CR7 -  
CR0). For the receiver this sets up 8 bit mode with the  
receiver and parity enabled. MR also initializes the registers  
and logic. The first ARINC reception will only occur after a  
word gap.  
LABELRECOGNITION OPTION  
Pin 5 must be high if label recognition is selected in either the  
8 or 32 bit modes and all eight label buffers must be written  
using redundant labels, if necessary.  
PIN 8 - RXRDY  
In 8 bit mode, this pin goes high whenever 8 bits are received  
without error. In 32 bit mode, this pin goes high after all 32 bits  
are received with no error. This flag may be inhibited for one  
ARINC word if CR3 is programmed to 1. This flag is also  
inhibited in label recognition if the incomingARINC label does  
not match one of the stored 8 labels.  
The chip compares the incoming label to the stored labels. If  
a match is found, the data is processed. If a match is not  
found, no indicators of receivingARINC data are presented.  
LOADING LABELS  
After the write that changes CR7 from 0 to 1, the next 8 writes  
of data (C/D is a zero for data) will load the label registers.  
Labels must be loaded whenever pin 5 goes from low to  
high.  
PIN 12 - RXC  
This pin must have a clock applied that is 4X the desired  
receive frequency.  
PIN 13 - FCR  
READING LABELS  
In 8 bit mode, this pin flags the first character (byte) received.  
In 32 bit mode, this pin goes high for a valid 32 bit word. The  
pin is not affected by CR3 programming.  
After the write that changes CR1 from 0 to 1, the next 8 data  
reads are labels.  
HOLT INTEGRATED CIRCUITS  
3
HI-6010  
PIN 7 - TXE  
Whenever a transmission begins, this pin goes low and  
returns high after the transmission is complete.  
USING THE TRANSMITTER  
The transmitter logic is independent of the receiver except in  
the following ways:  
1. Self Test  
PIN 9 - TXRDY  
Whenever TXRDY is a one, data may be written into the  
transmitter buffer. In 8 bit "one byte at a time" mode, this pin  
may be monitored to indicate when to write the next 8 bits.  
2. Parity Option  
In self test the transmitter outputs route to the receiver inputs  
internally and theTXD0 andTXD1 outputs are inhibited.  
PIN 10 - TXD0 and PIN 11 - TXD1  
TXD0 will go high during a transmission if the data is zero.  
TXD1 goes high if data is a one. When both pins are low this  
is referred to as the Null state. Typically an ARINC  
transmitter chip, such as the HI-3182, HI-3183, HI-8585 or  
HI-8586 is connected to these pins to translate the 5 volt  
levels to the properARINC bus levels.  
When parity is enabled, both the receiver and transmitter are  
affected. Odd parity is automatically generated in the 32nd  
bit if this option is selected.  
HARDWARE CONTROL OF THE TRANSMITTER  
PIN 2 - WEF  
Data is not output when the HI-6010 is in self-test mode.  
This output goes high for 1 transmitter error and 3 receiver  
errors. To determine which error is being flagged, read the  
Status Register. Reading the Status Register also clears the  
error flag. The transmitter will not function until the error is  
cleared. It can also be cleared by MR going high.  
SOFTWARE CONTROLOF THE TRANSMITTER  
By writing into the Control Register and reading the Status  
Register, the controlling processor can operate the  
transmitter independent of the flags at the pins.  
Transmission can be initiated by changing CR0 from a 0 to a 1  
after the transmitter buffer has been loaded. Then the Status  
Register may be monitored as follows:  
The only possible transmitter error is generated when running  
in 8 bit mode. For the transmitter this means loading the last 3  
bytes while the transmission is in progress. Failure to load a  
byte before the previous byte's 8th bit is transmitted will  
generate the error, indicated by status bit SR7 set to a 1.  
STATUS BIT VALUE  
MEANING  
PIN 3 - CTS  
SR0  
SR2  
SR7  
0
1
Do not load the transmitter buffer  
Ready to load the transmitter buffer  
This pin is a hardware gate for transmissions. If the  
transmitter buffer is loaded and Control Register bit CR0 is a  
one, the only inhibit of the transmitter would be for CTS to be a  
one. When taken low, transmission of an ARINC word is  
enabled. It may be pulsed to release each transmitted word.  
0
1
Transmission in progress  
Transmitter is idle  
0
1
No transmission error  
8 bit mode only error for underwriting data  
PIN 4 - TXC  
The data rate of transmission is controlled by this pin. This  
clock must be 4X the desired date rate.  
APPLICATIONS TIPS  
Cabling Noise  
PIN 5 - HFS and the CONTROLREGISTER  
This pin along with the Control Register sets the functioning of  
the chip. For the transmitter:  
The HI-6010 has TTL compatible inputs and therefore  
they are susceptible to noise near ground. If the data bus  
is passed by ribbon cable or the equivalent to the device  
under test, it is possible to get significant glitches on the  
Master Reset line. The problem will appear to be a pattern  
sensitive failure. One cure is simply to adequately bypass  
Master Reset. Another is to buffer the HI-6010 inputs near  
the chip.  
CONTROL PROGRAM  
BIT NAME  
PIN 5  
VALUE  
VALUE  
OPERATION  
CR0  
0
1
X
X
Transmitter is disabled  
Transmitter is enabled  
CR4  
CR5  
0
1
X
X
Not in self test  
Self test enabled  
0
1
0
1
0
0
1
1
8 bit mode + data in 32nd bit  
8 bit mode + parity enabled  
32 bit mode with parity enabled  
8 bit mode with parity enabled  
Receiver Seems Dead  
After Master Reset the HI-6010 receiver must see a word  
gap before the firstARINC data bit.  
PIN 6 - MR  
Error flags must be cleared by either a Status Register  
Read or by a Master Reset. The operation of either the  
transmitter or the receiver is inhibited upon error.  
The chip is initialized whenever this pin goes high. The  
Control Register is set to 0X10 0101 (CR7 - CR0). For the  
transmitter this sets up 8 bit mode with the transmitter  
enabled.  
HOLT INTEGRATED CIRCUITS  
4
HI-6010  
8 BIT "ONE BYTE AT A TIME" TRANSMIT USING TXRDY, PIN 9, TO TRIGGER NEXT BYTE LOAD  
P I N S  
REC/D CSWE D7  
28 27 26 25 24  
D6  
23  
D5  
22  
D4  
21  
D3  
20  
D2  
19  
D1  
18  
D0  
17  
6
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
3
X
0
0
0
0
0
0
0
0
7
1
0
0
0
0
0
0
0
1
8
X
X
X
X
X
X
X
X
X
9
1
0
1
0
1
0
1
0
1
13  
X
X
X
X
X
X
X
X
X
COMMENTS  
Load Control Word  
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
P
P
1
0
0
0*  
0
0
0
0
1
TD8 TD7 TD6 TD5 TD4 TD3 TD2 TD1  
TXRDY & TXE Go Low After Load Data  
Monitor Pin 9 to Go High  
After Pin 9 High Then Load Next Byte  
Monitor Pin 9 to Go High  
Load  
X
X
X
X
X
X
X
X
P TD16 TD15 TD14 TD13 TD12 TD11 TD10 TD9  
1
X
X
X
X
X
X
X
X
P TD24 TD23 TD22 TD21 TD20 TD19 TD18 TD17 0  
1
X
X
X
X
X
X
X
X
0
Monitor Pin 9 to Go High  
Load  
P TD32 TD31 TD30 TD29 TD28 TD27 TD26 TD25 0  
1
X
X
X
X
X
X
X
X
0
Transmission Complete  
* With Pin 5 low, CCoonnttrrooll RReeggiisstteerr BBiitt 55 sseelleeccttss iiff tthhee 3322nndd bbiitt iiss eeiitthheerr oodddd ppaarriittyy oorr ddaattaa..  
P = Pulse  
XX == DDoonn''tt Care  
8 BIT "ONE BYTE AT A TIME" TRANSMIT MONITORING STATUS REGISTER BIT 0  
P I N S  
REC/D CSWE D7  
28 27 26 25 24  
D6  
23  
D5  
22  
D4  
21  
D3  
20  
D2  
19  
D1  
18  
D0  
17  
6
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
1
0
0
0
0
0
0
0
0
0
0
8
X
X
X
X
X
X
X
X
X
X
X
9
1
0
0
1
0
0
1
0
0
1
0
13  
X
X
X
X
X
X
X
X
X
X
X
COMMENTS  
Load Control Word D0 = 1  
Load Data to Transmit - Byte 1  
Status Bits 0, 2 & 7 (TXRDY, TXE & ERROR)  
Status Bit 0 Goes High  
Load the Next Byte to Transmit  
Monitor Status Bit 0  
1
1
1
0
1
1
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
P
P
1
1
0
0
0*  
0
0
0
0
1
TD8 TD7 TD6 TD5 TD4 TD3 TD2 TD1  
P
P
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
P TD16 TD15 TD14 TD13 TD12 TD11 TD10 TD9  
P
P
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Detect a Transition  
P TD24 TD23 TD22 TD21 TD20 TD19 TD18 TD17 0  
Load 3rd Byte  
P
P
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
Monitor Status Bit 0  
Detect a Transition  
P TD32 TD31 TD30 TD29 TD28 TD27 TD26 TD25 0  
Load 4th Byte  
* With Pin 5 low, Control Register Bit 5 selects iiff tthhee 3322nndd bbiitt iiss eeiitthheerr oodddd ppaarriittyy oorr ddaattaa..  
P = Pulse  
XX == DDoonn''tt Care  
HOLT INTEGRATED CIRCUITS  
5
HI-6010  
RECEIVING 32 BIT WORDS HARDWARE INTERRUPT  
P I N S  
REC/D CSWE D7  
28 27 26 25 24  
D6  
23  
D5  
22  
D4  
21  
D3  
20  
D2  
19  
D1  
18  
D0  
17  
6
0
0
0
0
5
1
1
1
1
1
1
1
3
X
X
X
X
X
X
X
7
X
X
X
X
X
X
X
8
0
1
1
1
1
1
0
9
X
X
X
X
X
X
X
13  
0
COMMENTS  
Write CR: 32 Bit Recieve & No Label Recogn.  
Await Pin 8 or Pin 13 to Go High  
Read 1st Byte  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
P
1
1
1
1
1
1
0
0
0
0
0
1
0
0
X
X
X
X
X
X
X
X
1
P
P
P
P
1
RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1  
RD16 RD15 RD14 RD13 RD12 RD11 RD10 RD9  
1
0
Read 2nd Byte  
RD24 RD23 RD22 RD21 RD20 RD19 RD18 RD17 0  
PAR RD31 RD30 RD29 RD28 RD27 RD26 RD25 0  
0
Read 3rd Byte  
0
Read 4th Byte  
X
X
X
X
X
X
X
X
0
0
P = Pulse  
XX == DDoonn''tt Care  
RECEIVING 8 BIT MODE SOFTWARE INTERRUPT  
P I N S  
REC/D CSWE D7  
28 27 26 25 24  
D6  
23  
D5  
22  
D4  
21  
D3  
20  
D2  
19  
D1  
18  
D0  
17  
6
0
0
0
0
0
0
0
0
0
5
1
1
1
1
1
1
1
1
1
1
1
1
1
3
X
X
X
X
X
X
X
X
X
X
X
X
X
7
X
X
X
X
X
X
X
X
X
X
X
X
X
8
0
0
1
0
0
1
0
0
1
0
0
1
0
9
X
X
X
X
X
X
X
X
X
X
X
X
X
13  
0
0
1
0
0
0
0
0
0
0
0
0
0
COMMENTS  
1
P
P
P
P
P
P
P
P
P
P
P
P
1
1
1
0
1
1
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
X
X
0
0
1
0
0
0
Write CR: 8 Bit Receive & Not Label Recong.  
Monitor the Status Register  
SR 1 & SR 6 Go High - First Character  
Read 1st Byte  
RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1  
0
0
0
0
0
0
0
0
0
0
X
X
0
1
0
0
Look for SR 1 to Go High Again  
RD16 RD15 RD14 RD13 RD12 RD11 RD10 RD9  
Read 2nd Byte  
0
0
0
0
0
0
0
0
0
0
X
X
0
1
0
0
Look for SR 1 to Go High Again  
RD24 RD23 RD22 RD21 RD20 RD19 RD18 RD17 0  
Read 3rd Byte  
0
0
0
0
0
0
0
0
0
0
X
X
0
1
0
0
0
0
Look for SR 1 to Go High Again  
PAR RD31 RD30 RD29 RD28 RD27 RD26 RD25 0  
Read 4th Byte  
P = Pulse  
XX == DDoonn''tt Care  
HOLT INTEGRATED CIRCUITS  
6
HI-6010  
TRANSMIT IN 32 BIT MODE (EXTENDED BUFFER) USING CTS TO INITIATE  
P I N S  
REC/D CSWE D7  
28 27 26 25 24  
D6  
23  
D5  
22  
D4  
21  
D3  
20  
D2  
19  
D1  
18  
D0  
17  
6
0
0
0
5
1
1
1
1
1
1
3
1
1
1
1
1
0
7
1
1
1
1
1
1
8
X
X
X
X
X
X
9
1
1
1
1
0
0
13  
X
X
X
X
X
X
COMMENTS  
1
1
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
1
P
P
0
0
0
0
0
0
0
1
Load Control Word D5 = 0 & D0 = 1  
Load Data to Transmit - Byte 1  
Load Data to Transmit - Byte 2  
Load Data to Transmit - Byte 3  
Load Data to Transmit - Byte 4  
TD8 TD7 TD6 TD5 TD4 TD3 TD2 TD1  
P TD16 TD15 TD14 TD13 TD12 TD11 TD10 TD9  
P TD24 TD23 TD22 TD21 TD20 TD19 TD18 TD17 0  
P
1
X
X
TD31 TD30 TD29 TD28 TD27 TD26 TD25 0  
X
X
X
X
X
X
X
0
Take CTS Low to Start Transmitting  
32nd Bit Will Be Parity  
P = Pulse  
X = Don't Care  
TRANSMIT IN 32 BIT MODE (EXTENDED BUFFER)  
USING SOFTWARE WRITE TO CONTROL REGISTER  
P I N S  
REC/D CSWE D7  
28 27 26 25 24  
D6  
23  
D5  
22  
D4  
21  
D3  
20  
D2  
19  
D1  
18  
D0  
17  
6
0
0
0
5
1
1
1
1
1
1
3
0
0
0
0
0
0
7
1
1
1
1
1
0
8
X
X
X
X
X
X
9
1
0
0
0
0
0
13  
X
X
X
X
X
X
COMMENTS  
1
1
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
P
P
0
0
0
0
0
0
0
0
Load Control Word D5 = 0 & D0 = 0  
Load Data to Transmit - Byte 1  
Load Data to Transmit - Byte 2  
Load Data to Transmit - Byte 3  
Load Data to Transmit - Byte 4  
TD8 TD7 TD6 TD5 TD4 TD3 TD2 TD1  
P TD16 TD15 TD14 TD13 TD12 TD11 TD10 TD9  
P TD24 TD23 TD22 TD21 TD20 TD19 TD18 TD17 0  
P
P
X
0
TD31 TD30 TD29 TD28 TD27 TD26 TD25 0  
0
0
0
0
0
0
1
0
Write Control Word D0 = 1  
32nd Bit Will Be Parity  
P = Pulse  
XX == DDoonn''tt Care  
HOLT INTEGRATED CIRCUITS  
7
HI-6010  
LOADING LABELS  
P I N S  
REC/D CSWE D7  
28 27 26 25 24  
D6  
23  
D5  
22  
D4  
21  
D3  
20  
D2  
19  
D1  
18  
D0  
17  
6
0
0
0
0
0
0
0
0
0
0
5
1
1
1
1
1
1
1
1
1
1
3
X
X
X
X
X
X
X
X
X
X
7
X
X
X
X
X
X
X
X
X
X
8
X
X
X
X
X
X
X
X
X
X
9
X
X
X
X
X
X
X
X
X
X
13  
X
X
X
X
X
X
X
X
X
X
COMMENTS  
Control Bit 7 Must Be 0 First  
Write 1 into Control Bit 7  
Load the 1st Label  
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
P
P
P
P
P
P
P
P
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1L7 1L6 1L5 1L4 1L3 1L2 1L1 1L0  
2L7 2L6 2L5 2L4 2L3 2L2 2L1 2L0  
3L7 3L6 3L5 3L4 3L3 3L2 3L1 3L0  
4L7 4L6 4L5 4L4 4L3 4L2 4L1 4L0  
5L7 5L6 5L5 5L4 5L3 5L2 5L1 5L0  
6L7 6L6 6L5 6L4 6L3 6L2 6L1 6L0  
7L7 7L6 7L5 7L4 7L3 7L2 7L1 7L0  
8L7 8L6 8L5 8L4 8L3 8L2 8L1 8L0  
Load the 2nd Label  
Load the 3rd Label  
Load the 4th Label  
Load the 5th Label  
Load the 6th Label  
Load the 7th Label  
Load the 8th Label  
P = Pulse  
XX == DDoonn''tt Care  
READING LABELS  
P I N S  
REC/D CSWE D7  
28 27 26 25 24  
D6  
23  
D5  
22  
D4  
21  
D3  
20  
D2  
19  
D1  
18  
D0  
17  
6
0
0
0
0
0
0
0
0
0
0
5
1
1
1
1
1
1
1
1
1
1
3
X
X
X
X
X
X
X
X
X
X
7
X
X
X
X
X
X
X
X
X
X
8
X
X
X
X
X
X
X
X
X
X
9
X
X
X
X
X
X
X
X
X
X
13  
X
X
X
X
X
X
X
X
X
X
COMMENTS  
Make Sure Bit 1 of Control Word is 0  
Write 1 into Control Bit 1  
Read the 1st Label  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P
P
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
1
0
0
P
P
P
P
P
P
P
P
1L7 1L6 1L5 1L4 1L3 1L2 1L1 1L0  
2L7 2L6 2L5 2L4 2L3 2L2 2L1 2L0  
3L7 3L6 3L5 3L4 3L3 3L2 3L1 3L0  
4L7 4L6 4L5 4L4 4L3 4L2 4L1 4L0  
5L7 5L6 5L5 5L4 5L3 5L2 5L1 5L0  
6L7 6L6 6L5 6L4 6L3 6L2 6L1 6L0  
7L7 7L6 7L5 7L4 7L3 7L2 7L1 7L0  
8L7 8L6 8L5 8L4 8L3 8L2 8L1 8L0  
Read the 2nd Label  
Read the 3rd Label  
Read the 4th Label  
Read the 5th Label  
Read the 6th Label  
Read the 7th Label  
Read the 8th Label  
P = Pulse  
XX == DDoonn''tt Care  
HOLT INTEGRATED CIRCUITS  
8
HI-6010  
TIMING DIAGRAMS  
DATA BUS TIMING - READ  
DATA BUS TIMING - WRITE  
VALID  
VALID  
C/D  
RD  
C/D  
WE  
tCDH  
tCDH  
tCDS  
tCDS  
tWP  
tDWS  
tRD  
tDR  
tDWH  
DATA  
BUS  
DATA  
BUS  
VALID  
VALID  
tCSSR  
tCSSW  
tCSHR  
tCSHW  
CS  
CS  
Figure 1.  
Figure 2.  
TRANSMTTER OPERATION  
RECEIVER OPERATION  
CTS  
TXE  
tCTL  
tCPW  
tENDAT  
tDTX  
tTXRY  
TXD0/  
TXD1  
RXD0/  
RXD1  
FIRST  
BIT  
LAST  
BIT  
LAST  
BIT  
tDR  
RXRDY/  
FCR  
TXRDY  
Figure 3.  
Figure 4.  
HOLT INTEGRATED CIRCUITS  
9
HI-6010  
ABSOLUTE MAXIMUM RATINGS  
(Voltages referenced to VSS = 0V)  
Supply Voltage:  
Input Voltage Range  
Input Current  
VDD  
VIN  
IIN  
-0.5V to +7.0V  
-0.5V to VDD +0.5V  
+10mA  
Power Dissipation  
PD  
500mW  
Operating Temperature Range: TA (Industrial)  
-40°C to +85°C  
TA (Hi temp & Military) -55°C to +125°C  
Storage Temperature Range:  
Lead Temperature  
TSTG  
-65°C to +150°C  
Output Current  
IOUT  
+25mA  
TLEAD  
300°C for 60 Seconds  
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings  
only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
VDD = 5.0V, VSS = 0V, TA = Operating Temperature Range (unless otherwise specified).  
PARAMETER  
SYMBOL  
VDD  
VIH  
CONDITION  
MIN  
4.75  
2.1  
TYP  
5
MAX  
UNITS  
Operating Voltage  
Min. Input Voltage  
Max. Input Voltage  
Min. Input Current  
Max. Input Current  
Min. Output Voltage  
5.25  
V
V
(HI)  
(LO)  
(HI)  
1.4  
1.4  
VIL  
0.7  
1.5  
V
IIH  
VIH = 4.9V  
VIL = 0.1V  
µA  
µA  
V
(LO)  
(HI)  
IIL  
-1.5  
2.7  
VOH  
VOL  
IDD  
IOUT = -1.5mA  
IOUT = 1.8mA  
f = 400KHz  
Not tested  
Max. Output Voltage (LO)  
Operating Current Drain  
Input Capacitance  
0.7  
2.8  
20  
V
0.8  
mA  
pF  
CIN  
AC ELECTRICAL CHARACTERISTICS  
VDD = 5.0V, VSS = 0V, TA =Operating Temperature Range (unless otherwise specified).  
PARAMETER SYMBOL  
MIN  
TYP  
MAX  
UNITS  
DATA BUS TIMING - READ  
(See Figure 1.)  
Setup C/D to RD  
tCDS  
tCDH  
tRD  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
Hold C/D to RD  
Delay RD to Data  
200  
150  
Delay Data Bus Hi-Z from RD  
Setup CS to RD  
tDR  
tCSSR  
tCSHR  
0
0
Hold RD to CS  
DATA BUS TIMING - WRITE  
Set C/D to WE  
(See Figure 2.)  
tCDS  
tCDH  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Hold C/D to WE  
Setup Data Bus to WE  
Hold Data Bus to WE  
Setup CS to WE  
tDWS  
tDWH  
tCSSW  
tCSHW  
tWP  
200  
100  
0
Hold CS to WE  
0
Pulse Width WE  
200  
TRANSMITTER TIMING  
Delay TXE from CTS  
Delay TXRDn from CTS  
Delay TXRDY from last TXDn  
Delay TXE from last TXDn  
CTS pulse width  
(See Figure 3.)  
tCTL  
tENDAT  
tTXRDY  
tTDTX  
tCPW  
1.5  
1
2.0  
CLKS  
CLK  
16  
CLKS  
4
DATA BITS  
CLK  
1
1
RECEIVER TIMING  
Delay Last RXDn to RXRDY  
MR pulse width  
(See Figure 4.)  
tDR  
tMR  
3
CLKS  
CLK  
HOLT INTEGRATED CIRCUITS  
10  
HI-6010  
ORDERING INFORMATION  
HI - 6010C x-xx  
PART  
TEMPERATURE  
NUMBER RANGE  
FLOW  
BURN  
IN  
LEAD  
FINISH  
Blank  
T
-40°C TO +85°C  
-55°C TO +125°C  
-55°C TO +125°C  
I
NO  
NO  
Gold  
Gold  
T
M
M-01  
YES  
Tin / Lead (Sn / Pb) Solder  
PART PACKAGE  
NUMBER DESCRIPTION  
C
28 PIN CERAMIC SIDE BRAZED DIP  
HI - 6010J x x  
PART  
LEAD  
NUMBER FINISH  
Blank  
F
Tin / Lead (Sn / Pb) Solder  
100% Matte Tin (Pb-free, RoHS compliant)  
PART  
TEMPERATURE  
NUMBER RANGE  
FLOW  
BURN  
IN  
Blank  
T
-40°C TO +85°C  
-55°C TO +125°C  
I
NO  
NO  
T
PART PACKAGE  
NUMBER DESCRIPTION  
J
28 PIN PLASTIC J-LEAD PLCC  
HOLT INTEGRATED CIRCUITS  
11  
HI-6010 PACKAGE DIMENSIONS  
inches (millimeters)  
28-PIN CERAMIC SIDE-BRAZED DIP  
Package Type: 28C  
1.400 ± .014  
(35.560 ± .356)  
.610 ± .010  
(15.494 ± .254)  
.595 ± .010  
(15.113 ± .254)  
.050 TYP.  
(1.270 TYP.)  
.200 MAX.  
(5.080 MAX.)  
.600 ± .010  
.085 ± .009  
(2.159 ± .229)  
(15.240 ± .254)  
.125 MIN.  
(3.175 MIN.)  
010 +.002/-.001  
(.254+.051/-.025)  
.100 ±.005  
.018 ±.002  
(.457 ± .051)  
(2.540 ± .127)  
28-PIN PLASTIC PLCC  
Package Type: 28J  
PIN NO. 1 IDENT  
PIN NO. 1  
.045 x 45°  
.045 x 45°  
.050 ±.005  
(1.27 ± .127)  
.453 ± .003  
(11.506 ± .076)  
SQ.  
.490 ± .005  
(12.446 ± .127)  
SQ.  
.031 ± .005  
(.787 ± .127)  
.017 ±.004  
(.432 ± .102)  
SEE DETAIL  
A
.009  
.011  
.015 ± .002  
(.381 ± .051)  
.173 ± .008  
(4.394 ± .203)  
.020 MIN  
(.508 MIN)  
.025  
.045  
DETAILA  
R
.410 ± .020  
(10.414 ± .508)  
HOLT INTEGRATED CIRCUITS  
12  

相关型号:

HI-6010_06

ARINC 429 TRANSMITTER/RECEIVER FOR 8 BIT BUS
HOLTIC

HI-6011

ARINC 429 Transmitter / Dual Receiver for 8-Bit Bus
HOLTIC

HI-6011CDT

ARINC 429 Transmitter / Dual Receiver for 8-Bit Bus
HOLTIC

HI-6110

MIL-STD-1553 / MIL-STD-1760 BC / RT / MT Message Processor
HOLTIC

HI-6110PC

Mil-Std-1553 Controller, 2 Channel(s), CMOS, PQCC64, 9 X 9 MM, PLASTIC, LCC-64
HOLTIC

HI-6110PCF

暂无描述
HOLTIC

HI-6110PCI

MIL-STD-1553 / MIL-STD-1760 BC / RT / MT Message Processor
HOLTIC

HI-6110PCIF

MIL-STD-1553 / MIL-STD-1760 BC / RT / MT Message Processor
HOLTIC

HI-6110PCM

MIL-STD-1553 / MIL-STD-1760 BC / RT / MT Message Processor
HOLTIC

HI-6110PCMF

MIL-STD-1553 / MIL-STD-1760 BC / RT / MT Message Processor
HOLTIC

HI-6110PCT

MIL-STD-1553 / MIL-STD-1760 BC / RT / MT Message Processor
HOLTIC

HI-6110PCTF

MIL-STD-1553 / MIL-STD-1760 BC / RT / MT Message Processor
HOLTIC