EVAL-ADV7184EB [ADI]

Multiformat SDTV Video Decoder with Fast Switch Overlay Support; 多格式SDTV视频解码器,具有快速开关覆盖支持
EVAL-ADV7184EB
型号: EVAL-ADV7184EB
厂家: ADI    ADI
描述:

Multiformat SDTV Video Decoder with Fast Switch Overlay Support
多格式SDTV视频解码器,具有快速开关覆盖支持

解码器 开关 电视
文件: 总108页 (文件大小:929K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiformat SDTV Video Decoder with Fast  
Switch Overlay Support  
ADV7184  
Digital output formats (8-bit or 16-bit)  
FEATURES  
ITU-R BT.656 YCrCb 4:2:2 output + HS, VS, and FIELD 0.5 V  
to 1.6 V analog signal input range  
Multiformat video decoder supports NTSC-(J, M, 4.43),  
PAL-(B/D/G/H/I/M/N), SECAM  
Differential gain: 0.5% typ  
Integrates four 54 MHz, 10-bit ADCs  
Differential phase: 0.5° typ  
SCART fast blank support  
Programmable video controls  
Clocked from a single 28.63636 MHz crystal  
Line-locked clock-compatible (LLC)  
Adaptive digital line length tracking (ADLLT™), signal  
processing, and enhanced FIFO management give mini  
TBC functionality  
5-line adaptive comb filters  
Proprietary architecture for locking to weak, noisy, and  
unstable video sources such as VCRs and tuners  
Subcarrier frequency lock and status information output  
Integrated AGC with adaptive peak white mode  
Macrovision® copy protection detection  
CTI (chroma transient improvement)  
DNR (digital noise reduction)  
Peak white/hue/brightness/saturation/contrast  
Integrated on-chip video timing generator  
Free-run mode (generates stable video output with no I/P)  
VBI decode support for closed captioning (including XDS),  
WSS, CGMS, Gemstar® 1×/2×, Teletext, VITC, VPS  
Power-down mode  
2-wire serial MPU interface (I2C®-compatible)  
3.3 V analog, 1.8 V digital core; 3.3 V IO supply  
Industrial temperature grade: –40°C to +85°C  
80-lead LQFP Pb-free package  
APPLICATIONS  
DVD recorders  
Video projectors  
HDD-based PVRs/DVDRs  
LCD TVs  
Multiple programmable analog input formats  
CVBS (composite video)  
S-Video (Y/C)  
YPrPb component (VESA, MII, SMPTE, and Betacam)  
12 analog video input channels  
Set-top boxes  
Integrated antialiasing filters  
Automatic NTSC/PAL/SECAM identification  
Programmable interrupt request output pin  
Security systems  
Digital televisions  
AVR receivers  
GENERAL DESCRIPTION  
The ADV7184 integrated video decoder automatically detects  
and converts a standard analog baseband television signal,  
which is compatible with worldwide standards NTSC, PAL,  
and SECAM, into 4:2:2 component video data-compatible  
with 16-bit or 8-bit CCIR601/CCIR656.  
AGC and clamp restore circuitry allow an input video signal  
peak-to-peak range of 0.5 V to 1.6 V. Alternatively, these can be  
bypassed for manual settings.  
The fixed 54 MHz clocking of the ADCs and datapath for all  
modes allows very precise, accurate sampling and digital  
filtering. The line locked clock output allows the output data  
rate, timing signals, and output clock signals to be synchronous,  
asynchronous, or line locked even with 5% line length  
variation. The output control signals allow glueless interface  
connections in almost any application. The ADV7184 modes  
are set up over a 2-wire, serial, bidirectional port (I2C-  
compatible).  
The advanced and highly flexible digital output interface  
enables performance video decoding and conversion in line-  
locked clock-based systems. This makes the device ideally  
suited for a broad range of applications with diverse analog video  
characteristics, including tape-based sources, broadcast sources,  
security and surveillance cameras, and professional systems.  
The 10-bit accurate ADC provides professional quality video  
performance and is unmatched. This allows true 8-bit  
resolution in the 8-bit output mode.  
SCART and overlay functionality are enabled by the ADV7184s  
ability to simultaneously process CVBS and standard definition  
RGB signals. Signal mixing is controlled by the fast blank pin.  
The 12 analog input channels accept standard composite,  
S-Video, and YPrPb video signals in an extensive number of  
combinations.  
The ADV7184 is fabricated in a 3.3 V CMOS process. Its  
monolithic CMOS construction ensures greater functionality  
with lower power dissipation. The ADV7184 is packaged in a  
small 80-lead LQFP Pb-free package.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
ADV7184  
TABLE OF CONTENTS  
Introduction ...................................................................................... 4  
Analog Front End......................................................................... 4  
Standard Definition Processor (SDP)........................................ 4  
Electrical Characteristics................................................................. 5  
Video Specifications..................................................................... 6  
Timing Specifications .................................................................. 7  
Analog Specifications................................................................... 7  
Thermal Specifications ................................................................ 8  
Timing Diagrams.......................................................................... 8  
Absolute Maximum Ratings............................................................ 9  
Package Thermal Performance................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Analog Front End ........................................................................... 12  
Analog Input Muxing ................................................................ 12  
Manual Input Muxing................................................................ 14  
XTAL Clock Input Pin Functionality....................................... 15  
28.63636 MHz Crystal Operation............................................ 15  
Antialiasing Filters ..................................................................... 15  
SCART and Fast Blanking......................................................... 15  
Fast Blank Control...................................................................... 16  
Readback of FB Pin Status......................................................... 18  
Global Control Registers ............................................................... 19  
Power-Save Modes...................................................................... 19  
Reset Control .............................................................................. 19  
Global Pin Control..................................................................... 19  
Global Status Registers................................................................... 21  
Standard Definition Processor (SDP).......................................... 22  
SD Luma Path ............................................................................. 22  
SD Chroma Path......................................................................... 22  
Sync Processing........................................................................... 23  
VBI Data Recovery..................................................................... 23  
General Setup.............................................................................. 23  
Color Controls............................................................................ 25  
Clamp Operation........................................................................ 27  
Luma Filter.................................................................................. 28  
Chroma Filter.............................................................................. 31  
Gain Operation........................................................................... 31  
Chroma Transient Improvement (CTI) .................................. 34  
Digital Noise Reduction (DNR), and Luma Peaking Filter.. 35  
Comb Filters................................................................................ 36  
AV Code Insertion and Controls ............................................. 39  
Synchronization Output Signals............................................... 40  
Sync Processing .......................................................................... 48  
VBI Data Decode ....................................................................... 48  
I2C Readback registers ............................................................... 57  
Pixel Port Configuration ............................................................... 71  
MPU Port Description................................................................... 72  
Register Accesses........................................................................ 73  
Register Programming............................................................... 73  
I2C Sequencer.............................................................................. 73  
I2C Register Maps ........................................................................... 74  
User Map ..................................................................................... 74  
User Sub Map.............................................................................. 90  
I2C Programming Examples.......................................................... 99  
Mode 1 CVBS Input................................................................... 99  
Mode 2 S-Video Input ............................................................. 100  
Mode 3 525i/625i YPrPb Input .............................................. 101  
Mode 4 SCART—S-Video or CVBS Autodetect.................. 102  
Mode 5 SCART Fast Blank—CVBS and RGB...................... 103  
Mode 6 SCART RGB input (Static Fast Blank)—CVBS and  
RGB............................................................................................ 104  
Rev. 0 | Page 2 of 108  
ADV7184  
PCB Layout Recommendations ................................................. 105  
Analog Interface Inputs........................................................... 105  
Power Supply Decoupling....................................................... 105  
PLL ............................................................................................. 105  
Digital Outputs (Both Data and Clocks) .............................. 105  
Digital Inputs.............................................................................106  
XTAL And Load Capacitor Values Selection ........................106  
Typical Circuit Connection .........................................................107  
Outline Dimensions......................................................................108  
Ordering Guide .........................................................................108  
REVISION HISTORY  
7/05—Revision 0: Initial Version  
Rev. 0 | Page 3 of 108  
ADV7184  
INTRODUCTION  
The ADV7184 is a high quality, single chip, multiformat video  
decoder that automatically detects and converts PAL, NTSC,  
and SECAM standards in the form of composite, S-Video, and  
component video into a digital ITU-R BT.656 format.  
STANDARD DEFINITION PROCESSOR (SDP)  
The ADV7184 is capable of decoding a large selection of  
baseband video signals in composite, S-Video, and component  
formats. The video standards supported include PAL B/D/I/G/H,  
PAL60, PAL M, PAL N, PAL Nc, NTSC M/J, NTSC 4.43, and  
SECAM B/D/G/K/L. The ADV7184 can automatically detect  
the video standard and process it accordingly.  
The advanced and highly flexible digital output interface enables  
performance video decoding and conversion in line-locked  
clock-based systems. This makes the device ideally suited for a  
broad range of applications with diverse analog video charac-  
teristics, including tape-based sources, broadcast sources,  
security and surveillance cameras, and professional systems.  
The ADV7184 has a 5-line, superadaptive, 2D comb filter that  
gives superior chrominance and luminance separation when  
decoding a composite video signal. This highly adaptive filter  
automatically adjusts its processing mode according to video  
standard and signal quality without user intervention. Video  
user controls such as brightness, contrast, saturation, and hue  
are also available within the ADV7184.  
ANALOG FRONT END  
The ADV7184 analog front end includes four 10-bit ADCs  
that digitize the analog video signal before applying it to the  
standard definition processor. The analog front end uses  
differential channels to each ADC to ensure high performance  
in mixed-signal applications.  
The ADV7184 implements a patented adaptive digital line-  
length tracking (ADLLT) algorithm to track varying video line  
lengths from sources such as a VCR. ADLLT enables the  
ADV7184 to track and decode poor quality video sources such  
as VCRs, noisy sources from tuner outputs, VCD players, and  
camcorders. The ADV7184 contains a chroma transient  
improvement (CTI) processor that sharpens the edge rate of  
chroma transitions, resulting in sharper vertical transitions.  
The front end also includes a 12-channel input mux that enables  
multiple video signals to be applied to the ADV7184. Current  
and voltage clamps are positioned in front of each ADC to  
ensure that the video signal remains within the range of the  
converter. Fine clamping of the video signals is performed  
downstream by digital fine clamping within the ADV7184. The  
ADCs are configured to run in 4× oversampling mode.  
The ADV7184 can process a variety of VBI data services, such  
as closed captioning (CC), wide screen signaling (WSS), copy  
generation management system (CGMS), Gemstar 1×/2×,  
extended data service (XDS), and teletext. The ADV7184 is  
fully Macrovision certified; detection circuitry enables Type I,  
II, and III protection levels to be identified and reported to the  
user. The decoder is also fully robust to all Macrovision signal  
inputs.  
The ADV7184 has optional antialiasing filters on each of the  
four input channels. The filters are designed for SD video with  
approximately 6 MHz bandwidth.  
SCART and overlay functionality are enabled by the ADV7184s  
ability to simultaneously process CVBS and Standard Definition  
RGB signals. Signal mixing is controlled by the Fast Blank pin.  
FUNCTIONAL BLOCK DIAGRAM  
ANTI  
ALIAS  
FILTER  
10  
10  
10  
10  
DATA  
CLAMP  
CLAMP  
CLAMP  
CLAMP  
A/D  
A/D  
A/D  
A/D  
8
PREPROCESSOR  
STANDARD DEFINITION PROCESSOR  
PIXEL  
DATA  
12  
AIN1–  
AIN12  
LUMA  
2D COMB  
(5H MAX)  
8
ANTI  
ALIAS  
FILTER  
CVBS/Y  
10  
10  
LUMA  
FILTER  
LUMA  
RESAMPLE  
Y
P15-P8  
P7-P0  
INPUT  
MUX  
10  
10  
DECIMATION AND  
DOWNSAMPLING  
FILTERS  
CVBS  
S-VIDEO  
YPrPb  
16  
ANTI  
ALIAS  
FILTER  
F
SYNC  
EXTRACT  
RESAMPLE  
CONTROL  
SC  
RECOVERY  
HS  
SCART - (RGB + CVBS)  
FAST BLANK  
OVERLAY  
CONTROL  
AND  
AV CODE  
INSERTION  
ANTI  
ALIAS  
FILTER  
Cr  
CVBS  
VS  
CHROMA  
2D COMB  
(4H MAX)  
CHROMA  
DEMOD  
CHROMA  
FILTER  
CHROMA  
RESAMPLE  
C
Cr  
Cb  
R
Cb  
FIELD  
Y
Cr  
Cb  
SYNC PROCESSING AND  
CLOCK GENERATION  
G
B
COLORSPACE  
CONVERSION  
SYNC AND  
CLK CONTROL  
LLC1  
LLC2  
SFL  
FB  
ADV7184  
SYNTHESIZED  
LLC CONTROL  
VBI DATA RECOVERY  
GLOBAL CONTROL  
SCLK  
SDA  
ALSB  
SERIAL INTERFACE  
CONTROL AND VBI DATA  
MACROVISION  
DETECTION  
STANDARD  
AUTODETECTION  
FREE RUN  
OUTPUT CONTROL  
CONTROL  
AND DATA  
INT  
Figure 1.  
Rev. 0 | Page 4 of 108  
 
ADV7184  
ELECTRICAL CHARACTERISTICS  
At AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.71 V to 1.89 V, nominal input range 1.6 V.  
Operating temperature range, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE1, 2, 3  
Resolution (Each ADC)  
Integral Nonlinearity  
Differential Nonlinearity  
DIGITAL INPUTS  
N
INL  
DNL  
10  
3
-0.99/2.5  
Bits  
LSB  
LSB  
BSL at 54 MHz  
BSL at 54 MHz  
–0.6/+0.7  
−0.5/+0.5  
Input High Voltage4  
Input Low Voltage5  
Input Current  
VIH  
VIL  
IIN  
2
V
V
μA  
μA  
pF  
0.8  
Pins listed in Note 6  
All other pins7  
–50  
–10  
+50  
+10  
10  
Input Capacitance9  
DIGITAL OUTPUTS  
CIN  
Output High Voltage8  
Output Low Voltage8  
High Impedance Leakage Current  
Output Capacitance9  
VOH  
VOL  
ILEAK  
COUT  
ISOURCE = 0.4 mA  
ISINK = 3.2 mA  
2.4  
V
V
μA  
pF  
0.4  
10  
20  
POWER REQUIREMENTS9  
Digital Core Power Supply  
Digital I/O Power Supply  
PLL Power Supply  
Analog Power Supply  
Digital Core Supply Current  
Digital I/O Supply Current  
PLL Supply Current  
DVDD  
DVDDIO  
PVDD  
AVDD  
IDVDD  
IDVDDIO  
IPVDD  
1.65  
3.0  
1.71  
3.15  
1.8  
3.3  
1.8  
3.3  
105  
4
11  
99  
269  
0.65  
20  
2
V
V
V
V
mA  
mA  
mA  
mA  
mA  
mA  
ms  
3.6  
1.89  
3.45  
Analog Supply Current  
IAVDD  
CVBS input10  
YPrPb input11  
Power-Down Current  
Power-Up Time  
IPWRDN  
tPWRUP  
1 All ADC linearity tests performed at input range of full scale – 12.5%, and at zero scale +12.5%.  
2 Max INL and DNL specifications obtained with part configured for component video input.  
3 Temperature range TMIN to TMAX, –40°C to +85°C. The min/max specifications are guaranteed over this range.  
4 To obtain specified VIH level on Pin 29, Register 0x13 (write only) must be programmed with value 0x04. If Register 0x13 is programmed with value 0x00, then VIH on  
Pin 29 = 1.2 V.  
5 To obtain specified VIL level on Pin 29, Register 0x13 (write only) must be programmed with value 0x04. If Register 0x13 is programmed with value 0x00, then VIL on  
Pin 29 = 0.4 V.  
6 Pins: 36 and 79.  
7 Excluding all “TEST” pins (TEST0 to TEST12)  
8 VOH and VOL levels obtained using default drive strength value (0xD5) in register subaddress 0xF4.  
9 Guaranteed by characterization.  
10 ADC0 powered on only.  
11 All four ADCs powered on.  
Rev. 0 | Page 5 of 108  
 
ADV7184  
VIDEO SPECIFICATIONS  
At AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.71 V to 1.89 V. Operating temperature range, unless  
otherwise noted.  
Table 2.  
Parameter1,2  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
NONLINEAR SPECIFICATIONS  
Differential Phase  
Differential Gain  
Luma Nonlinearity  
NOISE SPECIFICATIONS  
SNR Unweighted  
DP  
DG  
LNL  
CVBS I/P, modulate 5-step  
CVBS I/P, modulate 5-step  
CVBS I/P, 5-step  
0.5  
0.5  
0.5  
0.7  
0.7  
0.7  
Degree  
%
%
Luma ramp  
54  
56  
56  
58  
60  
dB  
dB  
dB  
Luma flat field  
Analog Front End Crosstalk  
LOCK TIME SPECIFICATIONS  
Horizontal Lock Range  
Vertical Lock Range  
–5  
40  
+5  
70  
%
Hz  
Fsc Subcarrier Lock Range  
Color Lock In Time  
1.3  
60  
Hz  
Lines  
%
Sync Depth Range3  
20  
5
200  
200  
Color Burst Range  
%
Vertical Lock Time  
2
100  
Fields  
Lines  
Autodetection Switch Speed  
CHROMA SPECIFICATIONS  
Hue Accuracy  
Color Saturation Accuracy  
Color AGC Range  
HUE  
CL_AC  
1
1
Degree  
%
%
5
400  
Chroma Amplitude Error  
Chroma Phase Error  
Chroma Luma Intermodulation  
LUMA SPECIFICATIONS  
Luma Brightness Accuracy  
Luma Contrast Accuracy  
0.5  
0.4  
0.2  
%
Degree  
%
CVBS, 1 V I/P  
CVBS, 1 V I/P  
1
1
%
%
1 Temperature range TMIN to TMAX, –40°C to +85°C. The min/max specifications are guaranteed over this range.  
2 Guaranteed by characterization.  
3 Nominal sync depth is 300 mV at 100% sync depth range.  
Rev. 0 | Page 6 of 108  
 
ADV7184  
TIMING SPECIFICATIONS  
At AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.71 V to 1.89 V. Operating temperature range, unless  
otherwise noted.  
Table 3.  
Parameter1,2  
Symbol Test Conditions  
Min  
Typ  
Max  
Unit  
SYSTEM CLOCK AND CRYSTAL  
Nominal Frequency  
Frequency Stability  
28.63636  
MHz  
ppm  
50  
I2C PORT3  
SCLK Frequency  
400  
kHz  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
SCLK Min Pulse Width High  
SCLK Min Pulse Width Low  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
SDA Setup Time  
SCLK and SDA Rise Time  
SCLK and SDA Fall Time  
Setup Time for Stop Condition  
RESET FEATURE  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0.6  
1.3  
0.6  
0.6  
100  
300  
300  
0.6  
Reset Pulse Width  
5
ms  
CLOCK OUTPUTS  
LLC1 Mark Space Ratio  
LLC1 Rising to LLC2 Rising  
LLC1 Rising to LLC2 Falling  
DATA AND CONTROL OUTPUTS  
Data Output Transitional Time4  
t9:t10  
t11  
t12  
45:55  
55:45 % duty cycle  
1
1
ns  
ns  
t13  
t14  
t15  
Negative clock edge to start of valid data;  
(tACCESS = t10 – t13)  
End of valid data to negative clock edge;  
(tHOLD = t9 + t14)  
3.6  
2.4  
ns  
ns  
Data Output Transitional Time4  
Propagation Delay to Hi-Z  
Max Output Enable Access Time t16  
Min Output Enable Access Time t17  
6
7
4
ns  
ns  
ns  
1 Temperature range TMIN to TMAX, –40°C to +85°C. The min/max specifications are guaranteed over this range.  
2 Guaranteed by characterization.  
3 TTL input values are 0 V to 3 V, with rise/fall times 3 ns, measured between the 10% and 90% points.  
4 Timing figures obtained using default drive strength value (0xD5) in register subaddress 0xF4.  
ANALOG SPECIFICATIONS  
At AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.71 V to 1.89 V. Operating temperature range, unless  
otherwise noted. Recommended analog input video signal range: 0.5 V to 1.6 V, typically 1 V p-p.  
Table 4.  
Parameter1,2  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
CLAMP CIRCUITRY  
External Clamp Capacitor  
Input Impedance3  
0.1  
10  
20  
0.75  
0.75  
17  
μF  
Clamps switched off  
MΩ  
kΩ  
mA  
mA  
μA  
μA  
Input impedance of Pin 40 (FB)  
Large Clamp Source Current  
Large Clamp Sink Current  
Fine Clamp Source Current  
Fine Clamp Sink Current  
17  
1 Temperature range TMIN to TMAX, –40°C to +85°C. The min/max specifications are guaranteed over this range.  
2 Guaranteed by characterization.  
3 Except Pin 40 (FB).  
Rev. 0 | Page 7 of 108  
 
ADV7184  
THERMAL SPECIFICATIONS  
Table 5.  
Parameter  
Symbol Test Conditions  
Min Typ Max Unit  
Junction-to-Case Thermal Resistance  
Junction-to-Ambient Thermal Resistance (Still Air)  
θJC  
θJA  
4-layer PCB with solid ground plane  
4-layer PCB with solid ground plane  
7.6  
38.1  
°C/W  
°C/W  
TIMING DIAGRAMS  
t5  
t3  
t3  
SDA  
t1  
t6  
SCLK  
t4  
t7  
t8  
t2  
Figure 2. I2C Timing  
t9  
t10  
OUTPUT LLC 1  
OUTPUT LLC 2  
t11  
t12  
t13  
t14  
OUTPUTS P0–P15, VS,  
HS, FIELD,  
SFL  
Figure 3. Pixel Port and Control Output Timing  
OE  
t15  
t17  
P0–P15, HS,  
VS, FIELD,  
SFL  
t16  
OE  
Figure 4.  
Timing  
Rev. 0 | Page 8 of 108  
 
ADV7184  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
AVDD to AGND  
DVDD to DGND  
PVDD to AGND  
DVDDIO to DGND  
DVDDIO to AVDD  
PVDD to DVDD  
DVDDIO to PVDD  
DVDDIO to DVDD  
AVDD to PVDD  
4 V  
2.2 V  
2.2 V  
4 V  
–0.3 V to +0.3 V  
–0.3 V to +0.3 V  
–0.3V to +2 V  
–0.3V to +2 V  
–0.3V to +2 V  
–0.3V to +2 V  
–0.3V to DVDDIO + 0.3 V  
–0.3V to DVDDIO + 0.3 V  
AGND – 0.3 V to AVDD + 0.3 V  
125°C  
PACKAGE THERMAL PERFORMANCE  
To reduce power consumption the user is advised to turn off  
any unused ADCs when using the part.  
AVDD to DVDD  
Digital Inputs Voltage to DGND  
Digital Output Voltage to DGND  
Analog Inputs to AGND  
Maximum Junction Temperature  
(TJ max)  
The junction temperature must always stay below the  
maximum junction temperature (TJ max) of 125°C. The  
following equation shows how to calculate the junction  
temperature:  
Storage Temperature Range  
–65°C to +150°C  
Infrared Reflow Soldering (20 sec) 260°C  
TJ = TA Max + (θJA × WMax  
where:  
A Max = 85°C.  
)
T
θ
W
JA = 30°C/W.  
max = ((AVDD × IAVDD) + (DVDD × IDVDD) + (DVDDIO × IDVDDIO) +  
(PVDD × IPVDD)).  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 9 of 108  
 
ADV7184  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VS  
AIN5  
PIN 1  
2
3
HS  
DGND  
DVDDIO  
P11  
AIN11  
AIN4  
4
AIN10  
AGND  
CAPC2  
CAPC1  
AGND  
CML  
5
6
P10  
7
P9  
ADV7184  
TOP VIEW  
(Not to Scale)  
8
P8  
9
DGND  
DVDD  
INT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
REFOUT  
AVDD  
CAPY2  
CAPY1  
AGND  
AIN3  
SFL  
TEST2  
DGND  
DVDDIO  
TEST8  
TEST12  
TEST11  
P7  
AIN9  
AIN2  
AIN8  
AIN1  
P6  
AIN7  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Figure 5. 80-Lead LQFP Pin Configuration  
Type Function  
Table 7. Pin Function Descriptions  
Pin No.  
3, 9, 14, 31, 71  
39, 47, 53, 56  
4, 15  
10, 30, 72  
50  
Mnemonic  
DGND  
AGND  
DVDDIO  
DVDD  
AVDD  
G
G
P
P
P
P
I
Digital Ground.  
Analog Ground.  
Digital I/O Supply Voltage (3.3 V).  
Digital Core Supply Voltage (1.8 V).  
Analog Supply Voltage (3.3 V).  
PLL Supply Voltage (1.8 V).  
Analog Video Input Channels.  
38  
PVDD  
42, 44, 46, 58, 60,  
62, 41, 43, 45, 57,  
59, 61  
AIN1 to AIN12  
11  
INT  
FB  
O
I
Interrupt Request Output. Interrupt occurs when certain signals are detected on the input  
video. See the User Sub Map register details in Table 103.  
40  
Fast Blank. FB is a fast switch overlay input that switches between CVBS and RGB analog I/P  
signals.  
70, 78, 13, 25, 69,  
63, 35, 34, 18, 17  
TEST0 to  
TEST5, TEST9  
to TEST12  
Leave these pins unconnected.  
77, 65  
16  
TEST6 to TEST7  
TEST8  
Tie to AGND  
Tie to DVDDIO  
33, 32, 24, 23, 22,  
21, 20, 19, 8, 7, 6, 5,  
76, 75, 74, 73  
P0 to P15  
O
Video Pixel Output Port.  
2
1
80  
HS  
VS  
FIELD  
O
O
O
Horizontal Synchronization Output Signal.  
Vertical Synchronization Output Signal.  
Field Synchronization Output Signal.  
Rev. 0 | Page 10 of 108  
 
ADV7184  
Pin No.  
67  
68  
Mnemonic  
SDA  
SCLK  
Type Function  
I/O  
I
I
I2C Port Serial Data Input/Output Pin.  
I2C Port Serial Clock Input (Max Clock Rate of 400 kHz).  
66  
ALSB  
This pin selects the I2C address for the ADV7184. ALSB set to Logic 0 sets the address for a  
write as 0x40; set to Logic 1 sets the address as 0x42.  
64  
27  
26  
RESET  
LLC1  
LLC2  
I
System Reset Input, Active Low. A minimum low reset pulse width of 5 ms is required to  
reset the ADV7184 circuitry.  
Line-Locked Clock 1. Line-locked output clock for the pixel data output by the ADV7184.  
Nominally 27 MHz, but varies up or down according to video line length.  
Line-Locked Clock 2. This is a divide-by-2 version of the LLC1 output clock for the pixel data  
output by the ADV7184. Nominally 13.5 MHz, but varies up or down according to video  
line length.  
O
O
29  
28  
XTAL  
I
This is the input pin for the 28.63636 MHz crystal, or can be overdriven by an external 3.3 V,  
28.63636 MHz clock oscillator source. In crystal mode, the crystal must be a fundamental  
crystal.  
This pin should be connected to the 28.63636 MHz crystal or left as a no connect if an  
external 3.3 V, 28.63636 MHz clock oscillator source is used to clock the ADV7184. In crystal  
mode, the crystal must be a fundamental crystal.  
XTAL1  
O
36  
79  
PWRDN  
OE  
I
I
Logic 0 on this pin places the ADV7184 in a power-down mode. Refer to the I2C Register  
Maps section for more options on power-down modes for the ADV7184.  
When set to Logic 0, OE enables the pixel output bus, P15 to P0 of the ADV7184.  
Logic 1 on the OE pin places P15 through P0, HS, VS, and SFL/SYNC_OUT into a high  
impedance state.  
37  
12  
ELPF  
SFL  
I
The recommended external loop filter must be connected to this ELPF pin, as shown in  
Figure 50.  
Subcarrier Frequency Lock. This pin contains a serial output stream that can be used to  
lock the subcarrier frequency when this decoder is connected to any Analog Devices, Inc.  
digital video encoder.  
O
51  
REFOUT  
O
O
I
Internal Voltage Reference Output. Refer to Figure 50 for a recommended capacitor  
network for this pin.  
The CML pin is a common-mode level for the internal ADCs. Refer to Figure 50 for a  
recommended capacitor network for this pin.  
ADC’s Capacitor Network. Refer to Figure 50 for a recommended capacitor network for  
these pins.  
ADC’s Capacitor Network. Refer to Figure 50 for a recommended capacitor network for  
these pins.  
52  
CML  
48, 49  
54, 55  
CAPY1, CAPY2  
CAPC1, CAPC2  
I
Rev. 0 | Page 11 of 108  
ADV7184  
ANALOG FRONT END  
ANALOG INPUT MUXING  
RGB_IP_SEL  
INSEL[3:0]  
INTERNAL  
MAPPING  
FUNCTIONS  
PRIM_MODE[3:0]  
SDM_SEL[1:0]  
ADC_SW_MAN_EN  
AIN1  
AIN7  
AIN2  
AIN8  
AIN3  
AIN9  
AIN4  
AIN10  
AIN5  
AIN11  
AIN6  
AIN12  
1
0
ADC0_SW[3:0]  
ADC0  
AIN3  
AIN9  
AIN4  
AIN10  
AIN5  
AIN11  
AIN6  
AIN12  
1
0
ADC1_SW[3:0]  
ADC1  
AIN2  
AIN8  
AIN5  
AIN11  
AIN6  
AIN12  
AIN4  
1
0
ADC2_SW[3:0]  
ADC2  
1
0
ADC3_SW[3:0]  
AIN4  
AIN7  
ADC3  
Figure 6. Internal Pin Connections  
The ADV7184 has an integrated analog muxing section that  
allows connecting more than one source of video signal to the  
decoder. Figure 6 outlines the overall structure of the input  
muxing provided in the ADV7184. As seen in Figure 6, the  
analog input muxes can be controlled in two ways:  
CONNECTING  
ANALOG SIGNALS  
TO ADV7184  
ADI RECOMMENDED  
INPUT MUXING;  
SEE TABLES 8 AND 9  
By functional registers (INSEL). Using INSEL[3:0]  
simplifies the setup of the muxes, and minimizes crosstalk  
between channels by pre-assigning the input channels. This  
is referred to as ADI-recommended input muxing.  
YES  
NO  
SET SDM_SEL[1:0] AND  
INSEL[3:0]  
SET SDM_SEL[1:0] AND  
INSEL[3:0] TO CONFIGURE  
ADV7184 TO DECODE  
VIDEO FORMAT:  
FOR REQUIRED MUXING  
CONFIGURATION  
By an I2C manual override (ADC_SW_MAN_EN,  
ADC0_SW, ADC1_SW, ADC2_SW, ADC3_SW). This is  
provided for applications with special requirements, such  
as number/combinations of signals, which would not be  
served by the pre-assigned input connections. This is  
referred to as manual input muxing.  
CVBS: 00, 0000  
YC: 00, 0110  
YPrPb: 00, 1001  
SCART (CVBS/RGB): 00, 1111  
SET SDM_SEL[1:0] FOR  
S-VIDEO/CVBS AUTODETECT  
USE MANUAL INPUT MUXING  
(ADC_SW_MAN_EN, ADC0_SW,  
ADC1_SW, ADC2_SW,  
ADC3_SW)  
Refer to Figure 7 for an overview of the two methods of  
controlling input muxing.  
Figure 7. Input Muxing Overview  
Rev. 0 | Page 12 of 108  
 
ADV7184  
ADI Recommended Input Muxing  
INSEL[3:0] Input Selection, Address 0x00 [3:0]  
A maximum of 12 CVBS inputs can be connected and decoded  
by the ADV7184. As seen in Figure 5, this means the sources  
must be connected to adjacent pins on the IC. This calls for a  
careful design of the PCB layout, for example, ground shielding  
between all signals routed through tracks that are physically  
close together.  
The INSEL bits allow the user to select an input channel as well  
as the input format. Depending on the PCB connections, only a  
subset of the INSEL modes is valid. The INSEL[3:0] not only  
switches the analog input muxing, it also configures the  
standard definition processor core to process CVBS (Comp),  
S-Video (Y/C), or component (YPbPr/RGB) format.  
SDM_SEL[1:0], S-Video and CVBS Autodetect Mode Select,  
Address 0x69 [1:0]  
ADI-recommended input muxing is designed to minimize  
crosstalk between signal channels and to obtain the highest  
level of signal integrity. Table 10 summarizes how the PCB  
layout should connect analog video signals to the ADV7184.  
The SDM_SEL bits decide on input routing and whether  
INSEL[3:0] is used to govern I/P routing decision.  
It is strongly recommended to connect any unused analog input  
pins to AGND to act as a shield.  
The CVBS/YC autodetection feature is enabled using  
SDM_SEL = 11.  
Table 8. SDM_SEL[1:0]  
Connect inputs AIN7 to AIN11 to AGND when only six input  
channels are used. This improves the quality of the sampling  
due to better isolation between the channels.  
SDM_SEL[1:0]  
Mode  
Analogue Video Inputs  
As per INSEL[3:0]  
AIN11  
Y = AIN10  
C = AIN12  
00  
01  
10  
As per INSEL[3:0]  
CVBS  
YC  
AIN12 is not under the control of INSEL[3:0]. It can be routed  
to ADC0/ADC1/ADC2 only by manual muxing. See Table 11  
for details.  
11  
YC/CVBS auto  
CVBS = AIN11  
Y = AIN11  
C = AIN12  
Table 9. Input Channel Switching Using INSEL[3:0]  
Description  
Description  
INSEL[3:0]  
0000  
(default)  
INSEL[3:0]  
1000  
Analog Input Pins  
CVBS1 = AIN1  
B = AIN4 or AIN71  
R = AIN5 or AIN81  
G = AIN6 or AIN91  
CVBS2 = AIN2  
B = AIN4 or AIN71  
R = AIN5 or AIN81  
G = AIN6 or AIN91  
CVBS3 = AIN3  
B = AIN4 or AIN71  
R = AIN5 or AIN81  
G = AIN6 or AIN91  
CVBS4 = AIN4  
B = AIN7  
R = AIN8  
G = AIN9  
CVBS1 = AIN5  
B = AIN7  
R = AIN8  
G = AIN9  
CVBS1 = AIN6  
B = AIN7  
R = AIN8  
Video Format  
SCART (CVBS and R, G, B)  
Analog Input Pins  
Y3 = AIN3  
C3 = AIN6  
Y1 = AIN1  
PB1 = AIN4  
PR1 = AIN5  
Y2 = AIN2  
PB2 = AIN3  
PR2 = AIN6  
CVBS7 = AIN7  
B = AIN4  
R = AIN5  
G = AIN6  
CVBS8 = AIN8  
B = AIN4  
R = AIN5  
G = AIN6  
CVBS9 = AIN9  
B = AIN4  
Video Format  
YC  
1001  
1010  
1011  
YPrPb  
0001  
0010  
0011  
0100  
0101  
SCART (CVBS and R, G, B)  
SCART (CVBS and R, G, B)  
SCART (CVBS and R, G, B)  
SCART (CVBS and R, G, B)  
SCART (CVBS and R, G, B)  
YPrPb  
SCART (CVBS and R, G, B)  
1100  
1101  
1110  
1111  
SCART (CVBS and R, G, B)  
SCART (CVBS and R, G, B)  
SCART (CVBS and R, G, B)  
SCART (CVBS and R, G, B)  
R = AIN5  
G = AIN6  
CVBS10 = AIN10  
B = AIN4 or AIN71  
R = AIN5 or AIN81  
G = AIN6 or AIN91  
CVBS11 = AIN11  
B = AIN4 or AIN71  
R = AIN5 or AIN81  
G = AIN6 or AIN91  
G = AIN9  
Y1 = AIN1  
C1 = AIN4  
Y2 = AIN2  
0110  
0111  
YC  
YC  
C2 = AIN5  
1 Selectable via RGB_IP_SEL.  
Rev. 0 | Page 13 of 108  
ADV7184  
RGB_IP_SEL, Address 0xF1 [0]  
registers (ADC0/ADC1/ACD2/ADC3_SW) contradict each  
other, the ADC0/ADC1/ADC2 /ADC3_SW settings apply and  
INSEL is ignored.  
For SCART input, R, G and B signals can be input on either  
AIN4, AIN5, and AIN6 or on AIN7, AIN8, and AIN9.  
0 (default)—B is input on AIN4, R is input on AIN 5, and G is  
input on AIN6.  
Manual input muxing controls only the analog input muxes.  
INSEL[3:0] still has to be set so the follow-on blocks process the  
video data in the correct format. This means INSEL must still  
be used to tell the ADV7184 whether the input signal is of  
component, YC, or CVBS format.  
1—B is input on AIN7, R is input on AIN 8, and G is input on  
AIN9.  
MANUAL INPUT MUXING  
By accessing a set of manual override muxing registers, the analog  
input muxes of the ADV7184 can be controlled directly. This is  
referred to as manual input muxing. Manual input muxing  
overrides other input muxing control bits, for example, INSEL.  
Restrictions in the channel routing are imposed by the analog  
signal routing inside the IC; every input pin cannot be routed to  
each ADC. Refer to Figure 6 for an overview on the routing  
capabilities inside the chip. The four mux sections can be  
controlled by the reserved control signal buses ADC0/ADC1/  
ADC2/ADC3_SW[3:0]. Table 11 explains the control words used.  
Manual muxing is activated by setting the ADC_SW_MAN_EN  
bit. It affects only the analog switches in front of the ADCs. This  
means if the settings of INSEL and the manual input muxing  
Table 10. Input Channel Assignments  
Input Channel  
AIN7  
Pin No.  
41  
ADI-Recommended Input Muxing Control INSEL[3:0]  
CVBS7  
SCART1-B  
AIN1  
AIN8  
AIN2  
AIN9  
AIN3  
AIN10  
AIN4  
AIN11  
AIN5  
AIN12  
AIN6  
42  
43  
44  
45  
46  
57  
58  
59  
CVBS1  
CVBS8  
CVBS2  
CVBS9  
CVBS3  
CVBS10  
CVBS4  
CVBS11  
CVBS5  
Not Available  
CVBS6  
YC1-Y  
YC2-Y  
YC3-Y  
YC1-C  
YC2-C  
YC3-C  
YPrPb1-Y  
YPrPb2-Y  
YPrPb2-Pb  
YPrPb1-Pb  
YPrPb1-Pr  
YPrPb2-Pr  
SCART2-CVBS  
SCART1-R  
SCART1-G  
SCART2-B  
SCART1-CVBS  
SCART2-R  
60  
61  
62  
SCART2-G  
Table 11. Manual Mux Settings for All ADCs (ADC_SW_MAN_EN = 1)  
ADC0  
ADC1  
ADC2  
ADC3  
ADC3_sw[3:0] Connected To  
ADC0_sw[3:0] Connected To  
ADC1_sw[3:0] Connected To ADC2_sw[3:0] Connected To  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
No Connection  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
No Connection  
No Connection  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
No Connection  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
No Connection 0000  
No Connection 0001  
No Connection 0010  
No Connection  
No Connection  
AIN2  
No Connection  
No Connection  
AIN5  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
No Connection  
No Connection  
No Connection  
No Connection  
AIN4  
No Connection  
No Connection  
No Connection  
No Connection  
AIN7  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
AIN3  
AIN4  
AIN5  
AIN6  
0011  
0100  
0101  
0110  
AIN6  
No Connection 0111  
No Connection 1000  
No Connection 1001  
No Connection 1010  
No Connection  
No Connection  
No Connection  
AIN8  
No Connection  
No Connection  
AIN11  
AIN9  
1011  
1100  
1101  
1110  
AIN10  
AIN11  
AIN12  
AIN12  
No Connection  
No Connection 1111  
Rev. 0 | Page 14 of 108  
 
ADV7184  
AA_FILT_EN[2], Address 0xF3 [2]  
ADC_SW_MAN_EN, Manual Input Muxing Enable, Address  
0xC4 [7]  
0 (default)—The filter on channel 2 is disabled.  
1—The filter on channel 2 is enabled.  
ADC0_sw[3:0], ADC0 Mux Configuration, Address 0xC3 [3:0]  
ADC1_sw[3:0], ADC1 Mux Configuration, Address 0xC3 [7:4]  
ADC2_sw[3:0], ADC2 Mux Configuration, Address 0xC4 [3:0]  
ADC3_sw[3:0], ADC3 Mux Configuration, Address 0xF3 [7:4]  
See Table 11.  
AA_FILT_EN[3], Address 0xF3 [3]  
0 (default)—The filter on channel 3 is disabled.  
1—The filter on channel 3 is enabled.  
RESPONSE OF AA FILTER WITH CALIBRATED CAPACITORS  
0
–2  
XTAL CLOCK INPUT PIN FUNCTIONALITY  
XTAL_TTL_SEL, Address 0x13 [2]  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
–52  
The XTAL pad is normally part of the crystal oscillator circuit,  
powered from a 1.8 V supply. For optimal clock generation, the  
slice level of the input buffer of this circuit is at approximately  
half the supply voltage. This makes it incompatible with TLL  
level signals.  
0 (default)—A crystal is used to generate the ADV7184s clock.  
1—An external TTL level clock is supplied. A different input  
buffer can be selected, which slices at TTL-compatible levels.  
This inhibits operation of the crystal oscillator and, therefore,  
can only be used when a clock signal is applied.  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 8. Frequency Response of Internal ADV7184 Antialiasing Filters  
28.63636 MHZ CRYSTAL OPERATION  
SCART AND FAST BLANKING  
EN28XTAL, Address 0x1D [6]  
The ADV7184 can support simultaneous processing of CVBS  
and RGB standard definition signals to enable SCART  
compatibility and overlay functionality.  
The ADV7184 can operate on two different base crystal  
frequencies. Selecting one over the other can be desirable in  
systems in which board crosstalk between different components  
leads to undesirable interference between video signals. It is  
recommended by ADI to use an XTAL of frequency  
28.63636 MHz to clock the ADV7184. The programming  
examples at the end of this datasheet presume 28.63636 MHz  
crystal is used.  
This function is available when INSEL[3:0] is set appropriately  
(see Table 9). Timing extraction is always performed by the  
ADV7184 on the CVBS signal. However, a combination of the  
CVBS and RGB inputs can be mixed and output under control  
of I2C registers and the fast blank (FB) pin.  
0 (default)—XTAL frequency is 27 MHz.  
1—XTAL frequency is 28.63636 MHz.  
Four basic modes are supported:  
Static Switch Mode  
ANTIALIASING FILTERS  
The FB pin is not used. The timing is extracted from the CVBS  
signal, and either the CVBS content or RGB content can be  
output under the control of CVBS_RGB_SEL. This mode allows  
the selection of a full-screen picture from either source. Overlay  
is not possible in static switch mode.  
The ADV7184 has optional antialiasing filters on each of the  
four input channels. The filters are designed for SD video with  
approximately 6 MHz bandwidth.  
A plot of the filter response is shown in Figure 8. The filters  
can be individually enabled via I2C under the control of  
AA_FILT_EN[3:0].  
Fixed Alpha Blending  
The FB pin is not used. The timing is extracted from the CVBS  
signal, and an alpha blended combination of the video from the  
CVBS and RGB sources is output. This alpha blending is  
applied to the full screen. The alpha blend factor is selected with  
the I2C signal MAN_ALPHA[6:0]. Overlay is not possible in  
fixed alpha blending mode.  
AA_FILT_EN[0], Address 0xF3 [0]  
0 (default)—The filter on channel 0 is disabled.  
1—The filter on channel 0 is enabled.  
AA_FILT_EN[1], Address 0xF3 [1]  
0 (default)—The filter on channel 1 is disabled.  
1—The filter on channel 1 is enabled.  
Rev. 0 | Page 15 of 108  
 
ADV7184  
Dynamic Switching (Fast Mux)  
The switched or blended data is output from the ADV7184 in  
the standard output formats (see Table 99).  
Source selection is under the control of the fast blank (FB) pin.  
This enables dynamic multiplexing between the CVBS and RGB  
sources. With default settings, when Logic 1 is applied to the  
FB pin the RGB source is selected; when Logic 0 is applied to  
the FB pin the CVBS source is selected. This mode is suitable  
for the overlay of subtitles, teletext, or other material. Typically,  
the CVBS source carries the main picture and the RGB source  
has the overlay data.  
FAST BLANK CONTROL  
FB_MODE[1:0], Address 0xED [1:0]  
FB_MODE controls which of the fast blank modes is selected.  
Table 12. FB_MODE[1:0] function  
FB_MODE[1:0] Description  
00 (default)  
Static Switch Mode.  
01  
10  
11  
Fixed Alpha Blending.  
Dynamic Switching (Fast Mux).  
Dynamic Switching with Edge Enhancement.  
Dynamic Switching with Edge-Enhancement  
This provides the same functionality as the dynamic switching  
mode, but with ADI proprietary edge-enhancement algorithms  
that improve the visual appearance of transitions for signals  
from a wide variety of sources.  
Static Mux Selection Control  
CVBS_RGB_SEL, Address 0xED [2]  
CVBS_RGB_SEL controls whether the video from the CVBS or  
the RGB source is selected for output from the ADV7184.  
System Diagram  
A block diagram of the ADV7184 fast blanking configuration  
is shown in Figure 9.  
0 (default)—Data from the CVBS source is selected for output.  
1—Data from the RGB source is selected for output.  
The CVBS signal is processed by the ADV7184 and converted  
to YPrPb. The RGB signals are processed by a color space  
converter (CSC) and samples are converted to YPrPb. Both sets  
of YPrPb signals are input to the sub-pixel blender, which can  
be configured to operate in any of the four modes outlined  
above.  
Alpha Blend Coefficient  
MAN_ALPHA_VAL[6:0], Address 0xEE [6:0]  
When FB_MODE[1:0] = 01 and fixed alpha blending is  
selected, MAN_ALPHA_VAL[6:0] determines the proportion  
in which the video from the CVBS source and the RGB source  
are blended. Equation 1 shows how these bits affect the video  
output.  
The fast blank position resolver determines the time position  
of the FB to a very high accuracy (<1 ns); this position infor-  
mation is then used by the sub-pixel blender in dynamic  
switching modes. This enables the ADV7184 to implement high  
performance multiplexing between the CVBS and RGB sources,  
even when the RGB data source is completely asynchronous to  
the sampling crystal reference.  
MAN _ ALPHA_VAL[6 : 0]  
Videoout = VideoCVBS × 1−  
64  
(1)  
MAN _ ALPHA_VAL[6 : 0]  
+VideoRGB  
×
64  
The maximum valid value for MAN_ALPHA_VAL[6:0] is  
1000000 such that the alpha blender coefficients remain  
between 0 and 1. The default value for MAN_ALPHA_VAL[6:0]  
is 0000000.  
An antialiasing filter is required on all four data channels (R, G,  
B, and CVBS). The order of this filter is reduced as all of the  
signals are sampled at 54 MHz.  
FAST BLANK  
(FB PIN)  
FAST BLANK  
POSITION  
RESOLVER  
2
I C  
CONTROL  
SIGNAL  
CVBS  
VIDEO  
PROCESSING  
TIMING  
EXTRACTION  
CONDITIONING  
CLAMPING AND  
DECIMATION  
ADC0  
YPrPb  
OUTPUT  
SUBPIXEL  
FORMATTER  
BLENDER  
R
G
B
ADC1  
RGB  
SIGNAL  
CONDITIONING  
CLAMPING AND  
DECIMATION  
ADC2  
ADC3  
YPrPb  
CONVERSION  
Figure 9. Fast Blank Block Diagram  
Rev. 0 | Page 16 of 108  
 
ADV7184  
Contrast Mode  
Fast Blank Edge Shaping  
CNTR_MODE[1:0], Address 0xF1 [3:2]  
FB_EDGE_SHAPE[2:0], Address 0xEF [2:0]  
The contrast level in the selected contrast reduction box is  
selected using the CNTR_MODE[1:0] bits.  
To improve the picture transition for high speed fast blank  
switching, an edge shape mode is available on the ADV7184.  
Depending on the format of the RGB inputs, it may be  
advantageous to apply this scheme to different degrees. The  
levels are selected via the FB_EDGE_SHAPE[2:0] bits. Users are  
advised to try each of the settings and select the setting that is  
most visually pleasing in their system.  
Table 14. CNTR_MODE[1:0] Function  
CNTR_MODE[1:0],  
Description  
00 (default)  
25%.  
01  
10  
11  
50%.  
75%.  
100%.  
Table 13. FB_EDGE_SHAPE[2:0] Function  
FB_EDGE_SHAPE[2:0]  
Description  
000  
001  
010 (default)  
011  
100  
No Edge Shaping.  
Level 1 Edge Shaping.  
Level 2 Edge Shaping.  
Level 3 Edge Shaping.  
Level 4 Edge Shaping.  
Not Valid.  
Fast Blank and Contrast Reduction Programmable  
Thresholds  
FB_LEVEL[1:0], Address 0xF1 [5:4]  
Controls the reference level for the fast blank comparator.  
101 to 111  
CNTR_LEVEL[1:0], Address 0xF1 [7:6]  
Contrast Reduction  
Controls the reference level for the contrast reduction  
comparator.  
For overlay applications, text can be more readable if the  
contrast of the video directly behind the text is reduced. To  
enable the definition of a window of reduced contrast behind  
inserted text, the signal applied to the FB pin can be interpreted  
as a tri-level signal, as shown in Figure 10.  
The internal fast-blank and contrast-reduction signals are  
resolved from the tri-level FB signal using two comparators,  
as shown in Figure 11. To facilitate compliance with different  
input level standards, the reference level to these comparators is  
programmable under the control of FB_LEVEL[1:0] and  
CNTR_LEVEL[1:0]. The resulting thresholds are given in  
Table 15.  
RGB SOURCE  
100%  
CVBS SOURCE  
50% CONTRAST  
FB PIN  
+
FAST BLANK  
FAST BLANK  
COMPARATOR  
SANDCASTLE  
CVBS SOURCE  
100%  
PROGRAMMABLE  
THRESHOLDS  
Figure 10. Fast Blank Signal Representation with  
Contrast Reduction Enabled  
CONTRAST  
REDUCTION  
COMPARATOR  
C
Contrast Reduction Enable  
CNTR_ENABLE, Address 0xEF [3]  
+
This register enables the contrast reduction feature and changes  
the meaning of the signal applied to the FB pin.  
Figure 11. Fast Blank and Contrast Reduction Programmable Threshold  
0 (default)—The contrast reduction feature is disabled and the  
fast blank signal is interpreted as a bi-level signal.  
1—The contrast reduction feature is enabled and the fast blank  
signal is interpreted as a tri-level signal.  
Rev. 0 | Page 17 of 108  
ADV7184  
Table 15. Fast Blank and Contrast Reduction Programmable Threshold I2C Controls  
CNTR_ENABLE  
FB_LEVEL[1:0]  
CNTR_LEVEL[1:0]  
Fast Blanking Threshold  
Contrast Reduction Threshold  
0
0
0
0
1
1
1
1
00 (default)  
01  
10  
11  
XX  
XX  
XX  
XX  
00  
01  
10  
11  
1.4 V  
1.6 V  
1.8 V  
2.0 V  
1.6 V  
1.8 V  
2.0 V  
2.2 V  
n/a  
n/a  
n/a  
n/a  
0.4 V  
0.6 V  
0.8 V  
2.0 V  
00 (default)  
01  
10  
11  
Table 16. FB_STATUS Functions  
FB_STATUS [3:0]  
Bit Name  
Description  
FB_rise. A high value indicates there has been a rising edge on FB since the last I2C  
0
FB_STATUS.0  
read. Value is cleared by current I2C read (self-clearing bit).  
FB_fall. A high value indicates there has been a falling edge on FB since the last I2C  
1
FB_STATUS.1  
read. Value is cleared by current I2C read (self-clearing bit).  
2
3
FB_STATUS.2  
FB_STATUS.3  
FB_stat. Value of FB input pin at time of read.  
FB_high. A high value indicates there has been a rising edge on FB since the last I2C  
read. Value is cleared by current I2C read (self-clearing bit).  
Alignment of FB Signal  
FB_INV, Address 0xED [3] (write only)  
FB_DELAY[3:0], Address 0xF0 [3:0]  
The interpretation of the polarity of the signal applied to the FB  
pin can be changed using FB_INV.  
In the event of misalignment between the FB input signal and  
the other input signals (CVBS, RGB) or unequalized delays in  
their processing, it is possible to alter the delay of the FB signal  
in 28.63636 MHz clock cycles. (For a finer granularity delay of  
the FB signal, refer to FB_SP_ADJUST[3:0], Address 0xEF [7:4]  
above.)  
0 (default)—The fast blank pin is active high.  
1—The fast blank pin is active low.  
READBACK OF FB PIN STATUS  
FB_STATUS[3:0], Address 0xED [7:4]  
The default value of FB_DELAY[3:0] is 0100.  
FB_STATUS[3:0] is a readback value that provides the system  
information on the status of the FB pins as shown in Table 16.  
Color Space Converter Manual Adjust  
FB_CSC_MAN, Address 0xEE [7]  
FB Timing  
As shown in Figure 9, the data from the CVBS source and  
the RGB source are both converted to YPbPr before being  
combined. In the case of the RGB source, the color space  
converter (CSC) must be used to perform this conversion.  
When SCART support is enabled, the parameters for the CSC  
are automatically configured correctly for this operation.  
FB_SP_ADJUST[3:0], Address 0xEF [7:4]  
The critical information extracted from the FB signal is the time  
at which it switches relative to the input video. Due to small  
timing inequalities either on the IC or on the PCB, it may be  
necessary to adjust the result by fractions of one clock cycle.  
This is controlled by FB_SP_ADJUST[3:0].  
If the user wishes to use a different conversion matrix,  
this autoconfiguration can be disabled and the CSC can be  
programmed manually. For details on this manual config-  
uration, please contact ADI.  
Each LSB of FB_SP_ADJUST[3:0] corresponds to 1/8 of an ADC  
clock cycle. Increasing the value is equivalent to adding delay to  
the FB signal. The reset value is chosen to give equalized channels  
when the ADV7184 internal antialiasing filters are enabled and  
there is no unintentional delay on the PCB.  
0 (default)—The CSC is configured automatically for the RGB  
to YPrPb conversion.  
The default value of FB_SP_ADJUST[3:0] is 0100.  
1—The CSC can be configured manually (not recommended).  
Rev. 0 | Page 18 of 108  
 
ADV7184  
GLOBAL CONTROL REGISTERS  
PWRDN_ADC_3, Address 0x3A [0]  
0 (default)—The ADC is in normal operation.  
1—ADC3 is powered down.  
Register control bits listed in this section affect the whole chip.  
POWER-SAVE MODES  
Power-Down  
PDBP, Address 0x0F [2]  
FB_PWRDN, Address 0x0F [1]  
The digital core of the ADV7184 can be shut down by using a  
To achieve very low power-down current, it is necessary to  
prevent activity on toggling input pins from reaching circuitry  
that could consume current. FB_PWRDN gates signals from the  
FB input pin.  
pin (  
) and the PWRDN bit. The PDBP register  
PWRDN  
controls which of the two has the higher priority. The default is  
to give the pin ( ) priority. This allows the user to have  
PWRDN  
the ADV7184 powered down by default.  
0 (default)—The FB input is in normal operation.  
1—The FB input is in power-save mode.  
0 (default)—The digital core power is controlled by the  
pin (the bit is disregarded).  
PWRDN  
1—The bit has priority (the pin is disregarded).  
RESET CONTROL  
RES Chip Reset, Address 0x0F [7]  
PWRDN, Address 0x0F [5]  
Setting this bit, equivalent to controlling the  
pin on the  
RESET  
Setting the PWRDN bit switches the ADV7184 into a chip-wide  
power-down mode. The power-down stops the clock from  
entering the digital section of the chip, thereby freezing its  
operation. No I2C bits are lost during power-down. The  
PWRDN bit also affects the analog blocks and switches them  
into low current modes. The I2C interface itself is unaffected,  
and remains operational in power-down mode.  
ADV7184, issues a full chip reset. All I2C registers are reset to  
their default values, making these bits self-clearing. (Some  
register bits do not have a reset value specified. They keep their  
last written value. Those bits are marked as having a reset value  
of x in the register tables.) After the reset sequence, the part  
immediately starts to acquire the incoming video signal.  
The ADV7184 leaves the power-down state if the PWRDN bit is  
Executing a software reset takes approximately 2 ms. However,  
it is recommended to wait 5 ms before performing any more I2C  
writes.  
set to 0 (via I2C), or if the overall part is reset using the  
RESET  
pin. Note that PDBP must be set to 1 for the PWRDN bit to  
power down the ADV7184.  
The I2C master controller receives a no acknowledge condition  
on the ninth clock cycle when chip reset is implemented. See  
the MPU Port Description section for a full description.  
0 (default)—The chip is operational.  
1—The ADV7184 is in chip-wide power-down.  
ADC Power-Down Control  
0 (default)—Operation is normal.  
1—The reset sequence starts.  
The ADV7184 contains four 10-bit ADCs (ADC 0, ADC 1,  
ADC 2, and ADC3). If required, it is possible to power down  
each ADC individually.  
GLOBAL PIN CONTROL  
Three-State Output Drivers  
TOD, Address 0x03 [6]  
In CVBS mode, ADC 1 and ADC 2 should be powered  
down to save on power consumption.  
In S-Video mode, ADC 2 should be powered down to save  
on power consumption.  
This bit allows the user to three-state the output drivers of the  
ADV7184. Upon setting the TOD bit, the P15 to P0, HS, VS,  
FIELD, and SFL pins are three-stated. The ADV7184 also  
PWRDN_ADC_0, Address 0x3A [3]  
0 (default)—The ADC is in normal operation.  
1—ADC0 is powered down.  
supports three-stating via a dedicated pin,  
. The output  
OE  
drivers are three-stated if the TOD bit or the  
pin is set high.  
OE  
The timing pins (HS/VS/FIELD) can be forced active via the  
TIM_OE bit. For more information on three-state control, refer  
to the Three-State LLC Driver and the Timing Signals Output  
Enable sections. Individual drive strength controls are provided  
via the DR_STR_XX bits.  
PWRDN_ADC_1, Address 0x3A [2]  
0 (default)—The ADC is in normal operation.  
1—ADC1 is powered down.  
PWRDN_ADC_2, Address 0x3A [1]  
0 (default)—The ADC is in normal operation.  
1—ADC2 is powered down.  
0 (default)—The output drivers are enabled.  
1—The output drivers are three-stated.  
Rev. 0 | Page 19 of 108  
 
ADV7184  
Three-State LLC Driver  
Drive Strength Selection (Clock)  
TRI_LLC, Address 0x1D [7]  
DR_STR_C[1:0] Address 0xF4 [3:2]  
This bit allows the output drivers for the LLC1 and LLC2 pins  
of the ADV7184 to be three-stated. For more information on  
three-state control, refer to the Three-State Output Drivers and  
the Timing Signals Output Enable sections. Individual drive  
strength controls are provided via the DR_STR_XX bits.  
The DR_STR_C[1:0] bits can be used to select the strength of  
the clock signal output driver (LLC pin). For more information,  
refer to the  
Drive Strength Selection (Sync) and the Drive Strength  
Selection (Data) sections.  
0 (default)—The LLC pin drivers work according to the  
DR_STR_C[1:0] setting (pin enabled).  
Table 18. DR_STR_C Function  
DR_STR_C[1:0]  
Description  
1—The LLC pin drivers are three-stated.  
01 (default)  
10  
11  
Medium low drive strength (2×).  
Medium high drive strength (3×).  
High drive strength (4×).  
Timing Signals Output Enable  
TIM_OE, Address 0x04 [3]  
The TIM_OE bit should be regarded as an addition to the TOD  
bit. Setting it high forces the output drivers for HS, VS, and  
FIELD into the active (that is, driving) state even if the TOD bit  
is set. If set to low, the HS, VS, and FIELD pins are three-stated,  
dependent on the TOD bit. This functionality is useful if the  
decoder is to be used as a timing generator only. This may be  
the case if only the timing signals are to be extracted from an  
incoming signal, or if the part is in free-run mode where, for  
example, a separate chip can output a company logo. For more  
information on three-state control, refer to the Three-State  
Output Drivers and the Three-State LLC Driver sections.  
Individual drive strength controls are provided via the  
DR_STR_XX bits.  
Drive Strength Selection (Sync)  
DR_STR_S[1:0], Address 0xF4 [1:0]  
The DR_STR_S[1:0] bits allow the user to select the strength of  
the synchronization signals with which HS, VS, and F are  
driven. For more information, refer to the Drive Strength  
Selection (Clock) and the Drive Strength Selection (Data)  
sections.  
Table 19. DR_STR_S Function  
DR_STR_S[1:0]  
Description  
01 (default)  
10  
11  
Medium low drive strength (2×).  
Medium high drive strength (3×).  
High drive strength (4×).  
0 (default)—HS, VS, and FIELD are three-stated according to  
the TOD bit.  
Enable Subcarrier Frequency Lock Pin  
1—HS, VS, and FIELD are forced active all the time.  
EN_SFL_PIN, Address 0x04 [1]  
The EN_SFL_PIN bit enables the output of subcarrier lock  
information (also known as GenLock) from the ADV7184 to an  
encoder in a decoder-encoder back-to-back arrangement.  
Drive Strength Selection (Data)  
DR_STR[1:0], Address 0xF4 [5:4]  
For EMC and crosstalk reasons, it may be desirable to  
strengthen or weaken the drive strength of the output drivers.  
The DR_STR[1:0] bits affect the P[15:0] output drivers.  
0 (default)—The subcarrier frequency lock output is disabled.  
1—The subcarrier frequency lock information is presented on  
the SFL pin.  
For more information on three-state control, refer to the Drive  
Strength Selection (Clock) and the  
Polarity LLC Pin  
PCLK, Address 0x37 [0]  
Drive Strength Selection (Sync) sections.  
The polarity of the clock that leaves the ADV7184 via the LLC1  
and LLC2 pins can be inverted using the PCLK bit. Changing  
the polarity of the LLC clock output may be necessary to meet  
the setup-and-hold time expectations of follow-on chips. This  
bit also inverts the polarity of the LLC2 clock.  
Table 17. DR_STR Function  
DR_STR[1:0]  
Description  
01 (default)  
10  
11  
Medium low drive strength (2×).  
Medium high drive strength (3×).  
High drive strength (4×).  
0—The LLC output polarity is inverted.  
1 (default)—The LLC output polarity is normal (as per the  
timing diagrams).  
Rev. 0 | Page 20 of 108  
ADV7184  
GLOBAL STATUS REGISTERS  
STATUS_3[7:0], Address 0x13 [7:0]  
Three registers provide summary information about the video  
decoder. The STATUS_1, STATUS_2, and STATUS_3 registers  
contain status bits that report operational information to the user.  
See Table 23.  
AD_RESULT[2:0] Autodetection Result, Address 0x10 [6:4]  
STATUS_1[7:0], Address 0x10 [7:0]  
These bits report back on the findings from the autodetection  
block. For more information on enabling the autodetection  
block, see the General Setup section. For information on  
configuring it, see the Autodetection of SD Modes section.  
This read-only register provides information about the internal  
status of the ADV7184. See CIL[2:0] Count Into Lock, Address  
0x51 [2:0] and COL[2:0] Count Out of Lock, Address 0x51 [5:3]  
for information on the timing.  
Table 20. AD_RESULT Function  
AD_RESULT[2:0]  
Description  
Depending on the setting of the FSCLE bit, the STATUS_1[0]  
and STATUS_1[1] bits are based solely on horizontal timing  
information or on the horizontal timing and lock status of the  
color subcarrier. See the FSCLE Fsc Lock Enable, Address 0x51  
[7] section.  
000  
001  
010  
011  
100  
101  
110  
111  
NTSM-MJ.  
NTSC-443.  
PAL-M.  
PAL-60.  
PAL-BGHID.  
SECAM.  
STATUS_2[7:0], Address 0x12 [7:0]  
See Table 22.  
PAL-Combination N.  
SECAM 525.  
Table 21. STATUS_1 Function  
STATUS 1 [7:0]  
Bit Name  
Description  
0
1
2
3
4
5
6
7
IN_LOCK  
LOST_LOCK  
FSC_LOCK  
FOLLOW_PW  
AD_RESULT.0  
AD_RESULT.1  
AD_RESULT.2  
COL_KILL  
In lock (right now).  
Lost lock (since last read of this register).  
Fsc locked (right now).  
AGC follows peak white algorithm.  
Result of autodetection.  
Result of autodetection.  
Result of autodetection.  
Color kill active.  
Table 22. STATUS_2 Function  
STATUS 2 [7:0]  
Bit Name  
MVCS DET  
MVCS T3  
MV_PS DET  
MV_AGC DET  
LL_NSTD  
FSC_NSTD  
Reserved  
Reserved  
Description  
Detected Macrovision color striping.  
Macrovision color striping protection. Conforms to Type 3 if high, and to Type 2 if low.  
Detected Macrovision pseudo Sync pulses.  
Detected Macrovision AGC pulses.  
0
1
2
3
4
5
6
7
Line length is nonstandard.  
Fsc frequency is nonstandard.  
Table 23. STATUS_3 Function  
STATUS 3 [7:0]  
Bit Name  
INST_HLOCK  
GEMD  
SD_OP_50HZ  
CVBS  
Description  
0
1
2
3
4
Horizontal lock indicator (instantaneous).  
Gemstar detect.  
Flags whether 50 Hz or 60 Hz is present at output.  
Indicates if a CVBS signal is detected in ‘YC/CVBS autodetection’ configuration  
Indicates if the ADV7184 is in free run mode. Outputs a blue screen by default. See the  
DEF_VAL_AUTO_EN Default Value Automatic Enable, Address 0x0C [1] bit for details  
about disabling this function.  
FREE_RUN_ACT  
5
6
7
STD_FLD_LEN  
INTERLACED  
PAL_SW_LOCK  
Field length is correct for currently selected video standard.  
Interlaced video detected (field sequence found).  
Reliable sequence of swinging bursts detected.  
Rev. 0 | Page 21 of 108  
 
ADV7184  
STANDARD DEFINITION PROCESSOR (SDP)  
STANDARD DEFINITION PROCESSOR  
MACROVISION  
DETECTION  
STANDARD  
AUTODETECTION  
SLLC  
CONTROL  
VBI DATA  
RECOVERY  
LUMA  
DIGITAL  
FINE  
DIGITIZED CVBS  
DIGITIZED Y (YC)  
LUMA  
2D COMB  
LUMA  
FILTER  
GAIN  
CONTROL  
LUMA  
RESAMPLE  
CLAMP  
LINE  
AV  
SYNC  
EXTRACT  
RESAMPLE  
CONTROL  
VIDEO DATA  
OUTPUT  
LENGTH  
CODE  
PREDICTOR  
INSERTION  
CHROMA  
DIGITAL  
FINE  
MEASUREMENT  
BLOCK (= >1 C)  
DIGITIZED CVBS  
DIGITIZED C (YC)  
CHROMA  
DEMOD  
CHROMA  
FILTER  
GAIN  
CONTROL  
CHROMA  
RESAMPLE  
CHROMA  
2D COMB  
2
CLAMP  
VIDEO DATA  
PROCESSING  
BLOCK  
F
SC  
RECOVERY  
Figure 12. Block Diagram of the Standard Definition Processor  
A block diagram of the ADV7184s standard definition  
processor (SDP) is shown in Figure 12.  
SD CHROMA PATH  
The input signal is processed by the following blocks:  
The SDP block can handle standard definition video in CVBS,  
YC, and YPrPb formats. It can be divided into a luminance and  
a chrominance path. If the input video is of a composite type  
(CVBS), both processing paths are fed with the CVBS input.  
Digital Fine Clamp. This block uses a high precision  
algorithm to clamp the video signal.  
Chroma Demodulation. This block uses a color subcarrier  
(Fsc) recovery unit to regenerate the color subcarrier for  
any modulated chroma scheme. The demodulation block  
then performs an AM demodulation for PAL and NTSC,  
and an FM demodulation for SECAM.  
SD LUMA PATH  
The input signal is processed by the following blocks:  
Digital Fine Clamp. This block uses a high precision  
algorithm to clamp the video signal.  
Chroma Filter Block. This block contains a chroma  
decimation filter (CAA) with a fixed response, and some  
shaping filters (CSH) that have selectable responses.  
Luma Filter Block. This block contains a luma decimation  
filter (YAA) with a fixed response, and some shaping filters  
(YSH) that have selectable responses.  
Gain Control. Automatic gain control (AGC) can operate  
on several different modes, including gain based on the  
color subcarriers amplitude, gain based on the depth of the  
horizontal sync pulse on the luma channel, or fixed manual  
gain.  
Luma Gain Control. The automatic gain control (AGC)  
can operate on a variety of different modes, including gain  
based on the depth of the horizontal sync pulse, peak white  
mode, and fixed manual gain.  
Chroma Resample. The chroma data is digitally resampled  
to keep it perfectly aligned with the luma data. The  
resampling is done to correct for static and dynamic line-  
length errors of the incoming video signal.  
Luma Resample. To correct for line-length errors as well as  
dynamic line-length changes, the data is digitally resampled.  
Luma 2D Comb. The two-dimensional comb filter  
provides YC separation.  
Chroma 2D Comb. The two-dimensional, 5-line,  
superadaptive comb filter provides high quality YC  
separation in case the input signal is CVBS.  
AV Code Insertion. At this point, the decoded luma (Y)  
signal is merged with the retrieved chroma values. AV  
codes (as per ITU-R. BT-656) can be inserted.  
AV Code Insertion. At this point, the demodulated chroma  
(Cr and Cb) signal is merged with the retrieved luma  
values. AV codes (as per ITU-R. BT-656) can be inserted.  
Rev. 0 | Page 22 of 108  
 
ADV7184  
SYNC PROCESSING  
GENERAL SETUP  
Video Standard Selection  
The ADV7184 extracts syncs embedded in the video data  
stream. There is currently no support for external HS/VS  
inputs. The sync extraction has been optimized to support  
imperfect video sources, such as videocassette recorders with  
head switches. The actual algorithm used employs a coarse  
detection based on a threshold crossing, followed by a more  
detailed detection using an adaptive interpolation algorithm.  
The raw sync information is sent to a line-length measurement  
and prediction block. The output of this block is then used to  
drive the digital resampling section to ensure that the ADV7184  
outputs 720 active pixels per line.  
The VID_SEL[3:0] register allows the user to force the digital  
core into a specific video standard. Under normal circum-  
stances, this should not be necessary. The VID_SEL[3:0] bits  
default to an autodetection mode that supports PAL, NTSC,  
SECAM, and variants thereof. The Autodetection of SD Modes  
section describes the autodetection system.  
Autodetection of SD Modes  
To guide the autodetect system, individual enable bits are  
provided for each of the supported video standards. Setting the  
relevant bit to 0 inhibits the standard from being automatically  
detected . Instead, the system picks the closest of the remaining  
enabled standards. The results of the autodetection can be read  
back via the status registers. See the Global Status Registers  
section for more information.  
The sync processing on the ADV7184 also includes the  
following specialized postprocessing blocks that filter and  
condition the raw sync information retrieved from the digitized  
analog video.  
VSYNC Processor. This block provides extra filtering of the  
detected VSYNCs to give improved vertical lock.  
VID_SEL[3:0], Address 0x00 [7:4]  
Table 24. VID_SEL Function  
HSYNC Processor. The HSYNC processor is designed to  
filter incoming HSYNCs that have been corrupted by  
noise, providing much improved performance for video  
signals with stable time base but poor SNR.  
VID_SEL[3:0]  
Description  
0000 (default)  
Autodetect (PAL-BGHID) <–> NTSC-J  
(without pedestal), SECAM.  
0001  
0010  
0011  
Autodetect (PAL-BGHID) <–> NTSC-M  
(with pedestal), SECAM.  
Autodetect (PAL-N) (pedestal) <–> NTSC-J  
(without pedestal), SECAM.  
Autodetect (PAL-N) (pedestal) <–> NTSC-M  
(with pedestal), SECAM.  
VBI DATA RECOVERY  
The ADV7184 can retrieve the following information from the  
input video:  
Wide-screen signaling (WSS)  
Copy generation management system (CGMS)  
Closed caption (CC)  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
NTSC-J (1).  
NTSC-M (1).  
PAL 60.  
NTSC-4.43 (1).  
PAL-BGHID.  
Macrovision protection presence  
Gemstar-compatible data slicing  
Teletext  
PAL-N (= PAL-BGHID (with pedestal)).  
PAL-M (without pedestal).  
PAL-M.  
PAL-combination N.  
PAL-combination N (with pedestal).  
SECAM.  
VITC/VPS  
SECAM (with pedestal).  
The ADV7184 is also capable of automatically detecting the  
incoming video standard with respect to  
AD_SEC525_EN Enable Autodetection of SECAM 525 Line  
Video, Address 0x07 [7]  
Color subcarrier frequency  
Field rate  
0 (default)—Disables the autodetection of a 525-line system with  
a SECAM style, FM-modulated color component.  
Line rate  
1—Enables autodetection.  
The SDP can configure itself to support PAL-BGHID,  
PAL-M/N, PAL-combination N, NTSC-M, NTSC-J, SECAM  
50 Hz/60 Hz, NTSC-4.43, and PAL-60.  
AD_SECAM_EN Enable Autodetection of SECAM,  
Address 0x07 [6]  
0—Disables the autodetection of SECAM.  
1 (default)—Enables autodetection.  
Rev. 0 | Page 23 of 108  
 
ADV7184  
AD_N443_EN Enable Autodetection of NTSC-443,  
Address 0x07 [5]  
Second, there was a design change in Analog Devices encoders  
from ADV717x to ADV719x. The older versions used the SFL  
(GenLock Telegram) bit directly, while the later ones invert the  
bit prior to using it. The reason for this is that the inversion  
compensated for the 1-line delay of an SFL (GenLock Telegram)  
transmission.  
0—Disables the autodetection of NTSC style systems with a  
4.43 MHz color subcarrier.  
1 (default)—Enables autodetection.  
AD_P60_EN Enable Autodetection of PAL-60,  
Address 0x07 [4]  
As a result, ADV717x encoders need the PAL switch bit in the  
SFL (GenLock Telegram) to be 1 for NTSC to work. Also, the  
ADV7190/ADV7191/ADV7194 encoders need the PAL switch  
bit in the SFL to be 0 to work in NTSC. If the state of the PAL  
switch bit is wrong, a 180° phase shift occurs.  
0—Disables the autodetection of PAL systems with a 60 Hz  
field rate.  
1 (default)—Enables autodetection.  
In a decoder/encoder back-to-back system in which SFL is used,  
this bit must be set up properly for the specific encoder used.  
AD_PALN_EN Enable Autodetection of PAL-N,  
Address 0x07 [3]  
0—Disables the detection of the PAL N standard.  
1 (default)—Enables autodetection.  
SFL_INV Address 0x41 [6]  
0 (default)—Makes the part SFL-compatible with ADV7190/  
ADV7191/ADV7194 and ADV73xx encoders.  
AD_PALM_EN Enable Autodetection of PAL-M,  
Address 0x07 [2]  
1—Makes the part SFL-compatible with ADV717x encoders.  
0—Disables the autodetection of PAL M.  
1 (default)—Enables autodetection.  
Lock-Related Controls  
Lock information is presented to the user through Bits [1:0] of  
the Status 1 register. See the STATUS_1[7:0], Address 0x10 [7:0]  
section. Figure 13 outlines the signal flow and the controls  
available to influence the way the lock status information is  
generated.  
AD_NTSC_EN Enable Autodetection of NTSC,  
Address 0x07 [1]  
0—Disables the autodetection of standard NTSC.  
1 (default)—Enables autodetection.  
SRLS Select Raw Lock Signal, Address 0x51 [6]  
AD_PAL_EN Enable Autodetection of PAL,  
Address 0x07 [0]  
Using the SRLS bit, the user can choose between two sources for  
determining the lock status (per Bits [1:0] in the Status 1  
register).  
0—Disables the autodetection of standard PAL.  
1 (default)—Enables autodetection.  
The time_win signal is based on a line-to-line evaluation of the  
horizontal synchronization pulse of the incoming video. It reacts  
quite quickly.  
Subcarrier Frequency Lock Inversion  
The SFL_INV bit controls the behavior of the PAL switch bit in  
the SFL (GenLock Telegram) data stream. It was implemented  
to solve some compatibility issues with video encoders. It solves  
two problems.  
The free_run signal evaluates the properties of the incoming  
video over several fields, and takes vertical synchronization  
information into account.  
0 (default)—Selects the free_run signal.  
1—Selects the time_win signal.  
First, the PAL switch bit is only meaningful in PAL. Some  
encoders (including Analog Devices encoders) also look at the  
state of this bit in NTSC.  
SELECT THE RAW LOCK SIGNAL  
SRLS  
FILTER THE RAW LOCK SIGNAL  
CIL[2:0], COL[2:0]  
TIME_WIN  
1
0
0
1
FREE_RUN  
COUNTER INTO LOCK  
COUNTER OUT OF LOCK  
STATUS 1 [0]  
STATUS 1 [1]  
F
LOCK  
SC  
MEMORY  
TAKE F LOCK INTO ACCOUNT  
SC  
FSCLE  
Figure 13. Lock-Related Signal Path  
Rev. 0 | Page 24 of 108  
ADV7184  
FSCLE Fsc Lock Enable, Address 0x51 [7]  
ST_NOISE_VLD, HS Tip Noise Measurement Valid, Address  
0xDE [3] (read only)  
The FSCLE bit allows the user to choose whether the status of  
the color subcarrier loop is taken into account when the overall  
lock status is determined and presented via Bits [1:0] in  
STATUS_1. This bit must be set to 0 when operating in YPrPb  
component mode to generate a reliable HLOCK status bit.  
0—The ST_NOISE[10:0] measurement is not valid  
1 (default)—The ST_NOISE[10:0] measurement is valid.  
ST_NOISE[10:0] HS Tip Noise Measurement, Address 0xDE  
[2:0], 0xDF [7:0]  
0 (default)—Makes the overall lock status dependent on the  
horizontal sync lock only.  
The ST_NOISE[10:0] measures, over four fields, a readback  
value of the average of the noise in the HSYNC tip.  
ST_NOISE_VLD must be 1 for this measurement to be valid.  
1—Makes the overall lock status dependent on horizontal sync  
lock and Fsc lock.  
1 bit of ST_NOISE[10:0] = 1 ADC code.  
VS_Coast[1:0], Address 0xF9 [3:2]  
1 bit of ST_NOISE[10:0] = 1.6 V/4096 = 390.625 μV.  
These bits are used to set VS free-run (coast) frequency.  
COLOR CONTROLS  
Table 25. VS_COAST[1:0] function  
These registers allow the user to control the picture appearance,  
including control of the active data in the event of video being  
lost. These controls are independent of any other controls. For  
instance, brightness control is independent of picture clamping,  
although both controls affect the signals dc level.  
VS_COAST [1:0]  
Description  
00 (default)  
Auto coast mode—follows VS  
frequency from last video input  
Forces 50 Hz coast mode  
Forces 60 Hz coast mode  
Reserved  
01  
10  
11  
CON[7:0] Contrast Adjust, Address 0x08 [7:0]  
This register allows the user to adjust the contrast of the picture.  
Table 28. CON Function  
CIL[2:0] Count Into Lock, Address 0x51 [2:0]  
CIL[2:0] determines the number of consecutive lines for which  
the into-lock condition must be true before the system switches  
into the locked state, and reports this via STATUS_1[1:0]. It  
counts the value in lines of video.  
CON[7:0]  
0x80 (default)  
0x00  
Description  
Gain on luma channel = 1  
Gain on luma channel = 0  
Gain on luma channel = 2  
Table 26. CIL Function  
0xFF  
CIL[2:0]  
Description  
000  
001  
010  
1
2
5
SD_SAT_Cb[7:0] SD Saturation Cb Channel,  
Address 0xE3 [7:0]  
This register allows the user to control the gain of the Cb  
channel only. The user can adjust the saturation of the picture.  
011  
100 (default)  
101  
110  
111  
10  
100  
500  
1000  
100000  
Table 29. SD_SAT_Cb Function  
SD_SAT_Cb[7:0] Description  
0x80 (default)  
0x00  
0xFF  
Gain on Cb channel = 1  
Gain on Cb channel = 0  
Gain on Cb channel = 2  
COL[2:0] Count Out of Lock, Address 0x51 [5:3]  
COL[2:0] determines the number of consecutive lines for which  
the out of lock condition must be true before the system switches  
into unlocked state, and reports this via STATUS_0[1:0]. It  
counts the value in lines of video.  
SD_SAT_Cr[7:0] SD Saturation Cr Channel, Address 0xE4  
[7:0]  
This register allows the user to control the gain of the Cr channel  
only. The user can adjust the saturation of the picture.  
Table 27. COL Function  
COL[2:0]  
Description  
Table 30. SD_SAT_Cr Function  
000  
1
001  
2
SD_SAT_Cr[7:0] Description  
010  
011  
100 (default)  
101  
110  
5
10  
100  
500  
1000  
100000  
0x80 (default)  
0x00  
0xFF  
Gain on Cr channel = 1  
Gain on Cr channel = 0  
Gain on Cr channel = 2  
111  
Rev. 0 | Page 25 of 108  
 
ADV7184  
SD_OFF_Cb[7:0] SD Offset Cb Channel,  
Address 0xE1 [7:0]  
DEF_Y[5:0] Default Value Y, Address 0x0C [7:2]  
If the ADV7184 loses lock on the incoming video signal or if  
there is no input signal, the DEF_Y[5:0] bits allow the user to  
specify a default luma value to be output. The register is used  
under the following conditions:  
This register allows the user to select an offset for data on the  
Cb channel only and adjust the hue of the picture. There is a  
functional overlap with the HUE [7:0] register.  
Table 31.SD_OFF_Cb Function  
SD_OFF_Cb[7:0] Description  
If DEF_VAL_AUTO_EN bit is set to high and the  
ADV7184 loses lock to the input video signal. This is the  
intended mode of operation (automatic mode).  
0x80 (default)  
0x00  
0xFF  
0 mV offset applied to the Cb channel  
−568 mV offset applied to the Cb channel  
+568 mV offset applied to the Cb channel  
The DEF_VAL_EN bit is set, regardless of the lock status of  
the video decoder. This is a forced mode that may be useful  
during configuration.  
SD_OFF_Cr [7:0] SD Offset Cr Channel, Address 0xE2 [7:0]  
This register allows the user to select an offset for data on the  
Cr channel only and adjust the hue of the picture. There is a  
functional overlap with the HUE [7:0] register.  
The DEF_Y[5:0] values define the 6 MSBs of the output video.  
The remaining LSBs are padded with 0s. For example, in 8-bit  
mode, the output is Y[7:0] = {DEF_Y[5:0], 0, 0}.  
Table 32. SD_OFF_Cr Function  
SD_OFF_Cr[7:0] Description  
The value for Y is set by the DEF_Y[5:0] bits. A value of 0x0D  
produces a blue color in conjunction with the DEF_C[7:0]  
default setting.  
0x80 (default)  
0x00  
0xFF  
0 mV offset applied to the Cr channel  
−568 mV offset applied to the Cr channel  
+568 mV offset applied to the Cr channel  
Register 0x0C has a default value of 0x36.  
DEF_C[7:0] Default Value C, Address 0x0D [7:0]  
BRI[7:0] Brightness Adjust, Address 0x0A [7:0]  
The DEF_C[7:0] register complements the DEF_Y[5:0] value. It  
defines the 4 MSBs of Cr and Cb values to be output if  
This register controls the brightness of the video signal. It  
allows the user to adjust the brightness of the picture.  
The DEF_VAL_AUTO_EN bit is set to high and the  
ADV7184 can’t lock to the input video (automatic mode).  
Table 33. BRI Function  
BRI[7:0]  
0x00 (default)  
0x7F  
Description  
Offset of the luma channel = 0 mV  
Offset of the luma channel = +204 mV  
Offset of the luma channel = −204 mV  
DEF_VAL_EN bit is set to high (forced output).  
The data that is finally output from the ADV7184 for the  
chroma side is Cr[7:0] = {DEF_C[7:4], 0, 0, 0, 0}, Cb[7:0] =  
{DEF_C[3:0], 0, 0, 0, 0}.  
0x80  
HUE[7:0] Hue Adjust, Address 0x0B [7:0]  
The values for Cr and Cb are set by DEF_C[7:0] bits. A value of  
0x7C produces a blue color in conjunction with the DEF_Y[5:0]  
default setting.  
This register contains the value for the color hue adjustment. It  
allows the user to adjust the hue of the picture.  
HUE[7:0] has a range of 90°, with 0x00 equivalent to an  
adjustment of 0°. The resolution of HUE[7:0] is 1 bit = 0.7°.  
DEF_VAL_EN Default Value Enable, Address 0x0C [0]  
This bit forces the use of the default values for Y, Cr, and Cb.  
Refer to the descriptions for DEF_Y and DEF_C for additional  
information. In this mode, the decoder also outputs a stable  
27 MHz clock, HS, and VS.  
The hue adjustment value is fed into the AM color demodulation  
block. Therefore, it only applies to video signals that contain  
chroma information in the form of an AM modulated carrier  
(CVBS or Y/C in PAL or NTSC). It does not affect SECAM and  
does not work on component video inputs (YPrPb).  
0 (default)—Outputs a colored screen determined by user-  
programmable Y, Cr, and Cb values when the decoder free-  
runs. Free-run mode is turned on and off by the  
DEF_VAL_AUTO_EN bit.  
Table 34. HUE Function  
HUE[7:0]  
0x00 (default)  
0x7F  
Description  
Phase of the chroma signal = 0°  
Phase of the chroma signal = +90°  
Phase of the chroma signal = −90°  
1—Forces a colored screen output determined by user-  
programmable Y, Cr, and Cb values. This overrides picture  
data even if the decoder is locked.  
0x80  
Rev. 0 | Page 26 of 108  
ADV7184  
The primary task of the analog clamping circuits is to ensure  
DEF_VAL_AUTO_EN Default Value Automatic Enable,  
Address 0x0C [1]  
that the video signal stays within the valid ADC input window  
so that the analog-to-digital conversion can take place. It is not  
necessary to clamp the input signal with a very high accuracy in  
the analog domain as long as the video signal fits the ADC range.  
This bit enables the automatic use of the default values for Y, Cr,  
and Cb when the ADV7184 cannot lock to the video signal.  
0—Disables free-run mode. If the decoder is unlocked, it  
outputs noise.  
After digitization, the digital fine clamp block corrects for any  
remaining variations in dc level. Since the dc level of an input  
video signal refers directly to the brightness of the picture  
transmitted, it is important to perform a fine clamp with high  
accuracy; otherwise, brightness variations may occur. Further-  
more, dynamic changes in the dc level almost certainly lead to  
visually objectionable artifacts, and must therefore be prohibited.  
1 (default)—Enables free-run mode. A colored screen set by the  
user-programmable Y, Cr, and Cb values is displayed when the  
decoder loses lock.  
CLAMP OPERATION  
The input video is ac-coupled into the ADV7184 through a  
0.1 μF capacitor. It is recommended that the range of the input  
video signal is 0.5 V to 1.6 V (typically 1 V p-p). If the signal  
exceeds this range, it cannot be processed correctly in the  
decoder. Since the input signal is ac-coupled into the decoder,  
its dc value needs to be restored. This process is referred to as  
clamping the video. This section explains the general process of  
clamping on the ADV7184, and shows the different ways in  
which a user can configure its behavior.  
The clamping scheme must be able to acquire a newly connected  
video signal with a completely unknown dc level, and it must  
maintain the dc level during normal operation.  
To quickly acquire an unknown video signal, the large current  
clamps may be activated. It is assumed that the amplitude of the  
video signal at this point is of a nominal value. Control of the  
coarse and fine current clamp parameters is automatically  
performed by the decoder.  
The ADV7184 uses a combination of current sources and a  
digital processing block for clamping, as shown in Figure 14.  
The analog processing channel shown is replicated three times  
inside the IC. While only one single channel (and only one  
ADC) is needed for a CVBS signal, two independent channels  
are needed for YC (S-VHS) type signals, and three independent  
channels are needed to allow component signals (YPrPb) to be  
processed.  
Standard definition video signals may have excessive noise on  
them. In particular, CVBS signals transmitted by terrestrial  
broadcast and demodulated using a tuner usually show very  
large levels of noise (>100 mV). A voltage clamp would be  
unsuitable for this type of video signal. Instead, the ADV7184  
uses a set of four current sources that can cause coarse  
(>0.5 mA) and fine (<0.1 mA) currents to flow into and away  
from the high impedance node that carries the video signal (see  
Figure 14).  
The clamping can be divided into two sections:  
The following sections describe the I2C signals that can be used  
to influence the behavior of the clamps on the ADV7184.  
Clamping before the ADC (analog domain): current  
sources.  
CCLEN Current Clamp Enable, Address 0x14 [4]  
Clamping after the ADC (digital domain): digital  
processing block.  
The current clamp enable bit allows the user to switch off the  
current sources in the analog front end altogether. This may be  
useful if the incoming analog video signal is clamped externally.  
The ADCs can digitize an input signal only if it resides within  
their 1.6 V input voltage range. An input signal with a dc level  
that is too large or too small is clipped at the top or bottom of  
the ADC range.  
0—The current sources are switched off.  
1 (default)—The current sources are enabled.  
FINE  
CURRENT  
SOURCES  
COARSE  
CURRENT  
SOURCES  
DATA  
SDP  
WITH DIGITAL  
PROCESSOR  
FINE CLAMP  
(DPP)  
ANALOG  
VIDEO  
INPUT  
PRE-  
ADC  
CLAMP CONTROL  
Figure 14. Clamping Overview  
Rev. 0 | Page 27 of 108  
 
ADV7184  
DCT[1:0] Digital Clamp Timing, Address 0x15 [6:5]  
The ADV7184 has two responses for the shaping filter: one  
that is used for good quality CVBS, component, and  
S-VHS type sources, and a second for nonstandard CVBS  
signals.  
The clamp timing register determines the time constant of the  
digital fine clamp circuitry. It is important to realize that the  
digital fine clamp reacts very quickly since it is supposed to  
immediately correct any residual dc level error for the active  
line. The time constant of the digital fine clamp must be much  
quicker than the one from the analog blocks.  
The YSH filter responses also include a set of notches for  
PAL and NTSC. However, it is recommended to use the  
comb filters for YC separation.  
By default, the time constant of the digital fine clamp is adjusted  
dynamically to suit the currently connected input signal.  
Digital resampling filter. This block is used to allow  
dynamic resampling of the video signal to alter parameters  
such as the time base of a line of video. Fundamentally, the  
resampler is a set of low-pass filters. The actual response is  
chosen by the system with no requirement for user  
intervention.  
Table 35. DCT Function  
DCT[1:0]  
Description  
00  
01  
Slow (TC = 1 sec).  
Medium (TC = 0.5 sec).  
Fast (TC = 0.1 sec).  
Determined by the ADV7184, depending on the  
I/P video parameters.  
10 (default)  
11  
Figure 16 through Figure 19 show the overall response of all  
filters together. Unless otherwise noted, the filters are set into  
a typical wideband mode.  
DCFE Digital Clamp Freeze Enable, Address 0x15 [4]  
Y-Shaping Filter  
This register bit allows the user to freeze the digital clamp loop  
at any time. It is intended for users who would like to do their  
own clamping. Users should disable the current sources for  
analog clamping via the appropriate register bits, wait until the  
digital clamp loop settles, and then freeze it via the DCFE bit.  
For input signals in CVBS format, the luma shaping filters play  
an essential role in removing the chroma component from a  
composite signal. YC separation must aim for best possible  
crosstalk reduction while still retaining as much bandwidth  
(especially on the luma component) as possible. High quality  
YC separation can be achieved by using the internal comb filters  
of the ADV7184. Comb filtering, however, relies on the  
frequency relationship of the luma component (multiples of the  
video line rate) and the color subcarrier (Fsc). For good quality  
CVBS signals, this relationship is known; the comb filter  
algorithms can be used to separate out luma and chroma with  
high accuracy.  
0 (default)—The digital clamp is operational.  
1—The digital clamp loop is frozen.  
LUMA FILTER  
Data from the digital fine clamp block is processed by three sets  
of filters. The data format at this point is CVBS for CVBS input  
or luma only for Y/C and YPrPb input formats.  
For nonstandard video signals, the frequency relationship may  
be disturbed and the comb filters may not be able to remove all  
crosstalk artifacts in an optimum fashion without the assistance  
of the shaping filter block.  
Luma antialias filter (YAA). The ADV7184 receives video at  
a rate of 27 MHz. For 4× oversampled video, the ADCs  
sample at 54 MHz, and the first decimation is performed  
inside the DPP filters. Therefore, the data rate into the SDP  
core is always 27 MHz. The ITU-R BT.601 recommends a  
sampling frequency of 13.5 MHz. The luma antialias filter  
decimates the oversampled video using a high quality, linear  
phase, low-pass filter that preserves the luma signal while at  
the same time attenuating out-of-band components. The  
luma antialias filter has a fixed response.  
An automatic mode is provided. Here, the ADV7184 evaluates  
the quality of the incoming video signal and selects the filter  
responses in accordance with the signal quality and video  
standard. YFSM, WYSFMOVR, and WYSFM allow the user to  
manually override the automatic decisions in part or in full.  
The luma shaping filter has three control registers  
Luma shaping filters (YSH). The shaping filter block is a  
programmable low-pass filter with a wide variety of  
responses. It can be used to selectively reduce the luma  
video signal bandwidth (needed prior to scaling, for  
example). For some video sources that contain high  
frequency noise, reducing the bandwidth of the luma  
signal improves visual picture quality. A follow-on video  
compression stage may work more efficiently if the video is  
low-pass filtered.  
YSFM[4:0] allows the user to manually select a shaping filter  
mode (applied to all video signals) or to enable an automatic  
selection (dependent on video quality and video standard).  
WYSFMOVR allows the user to manually override the  
WYSFM decision.  
WYSFM[4:0] allows the user to select a different shaping  
filter mode for good quality CVBS, component (YPrPb),  
and S-VHS (YC) input signals.  
Rev. 0 | Page 28 of 108  
 
ADV7184  
SET YSFM  
YSFM IN AUTO MODE?  
00000 OR 00001  
YES  
NO  
VIDEO  
QUALITY  
BAD  
GOOD  
USE YSFM SELECTED  
FILTER REGARDLESS FOR  
GOOD AND BAD VIDEO  
AUTO SELECT LUMA  
SHAPING FILTER TO  
COMPLEMENT COMB  
WYSFMOVR  
1
0
SELECT WIDEBAND  
FILTER AS PER  
WYSFM[4:0]  
SELECT AUTOMATIC  
WIDEBAND FILTER  
Figure 15. YSFM and WYSFM Control Flowchart  
Table 36. YSFM Function  
In automatic mode, the system preserves the maximum possible  
YSFM[4:0]  
Description  
bandwidth for good CVBS sources (since they can successfully  
be combed) as well as for luma components of YPrPb and YC  
sources, since they need not be combed. For poor quality  
signals, the system selects from a set of proprietary shaping  
filter responses that complements comb filter operation in order  
to reduce visual artifacts. The decisions of the control logic are  
shown in Figure 15.  
00000  
Automatic selection including a wide notch  
response (PAL/NTSC/SECAM)  
00001 (default)  
Automatic selection including a narrow  
notch response (PAL/NTSC/SECAM)  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
SVHS 1  
SVHS 2  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
SVHS 7  
SVHS 8  
YSFM[4:0] Y Shaping Filter Mode, Address 0x17 [4:0]  
The Y shaping filter mode bits allow the user to select from a  
wide range of low-pass and notch filters. When switched in  
automatic mode, the filter is selected based on other register  
selections, such as detected video standard, as well as properties  
extracted from the incoming video itself, such as quality and  
time base stability. The automatic selection always picks the  
widest possible bandwidth for the video input encountered.  
SVHS 9  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR 601)  
PAL NN 1  
PAL NN 2  
PAL NN 3  
PAL WN 1  
PAL WN 2  
NTSC NN 1  
NTSC NN 2  
NTSC NN 3  
NTSC WN 1  
NTSC WN 2  
NTSC WN 3  
Reserved  
If the YSFM settings specify a filter (that is, YSFM is set to  
values other than 00000 or 00001), the chosen filter is applied to  
all video, regardless of its quality.  
In automatic selection mode, the notch filters are used only for  
bad quality video signals. For all other video signals, wideband  
filters are used; see Table 36.  
WYSFMOVR Wideband Y Shaping Filter Override,  
Address 0x18,[7]  
Setting the WYSFMOVR bit enables use of the WYSFM[4:0]  
settings for good quality video signals. For more information,  
refer to the general discussion of the luma shaping filters in the  
Y-Shaping Filter section and the flowchart shown in Figure 15.  
0—The shaping filter for good quality video signals is selected  
automatically.  
1 (default)—Enables manual override via WYSFM[4:0].  
Rev. 0 | Page 29 of 108  
ADV7184  
COMBINED Y ANTIALIAS, CCIR MODE SHAPING FILTER,  
Y RESAMPLE  
WYSFM[4:0] Wide Band Y Shaping Filter Mode,  
Address 0x18 [4:0]  
0
–20  
The WYSFM[4:0] bits allow the user to manually select a shaping  
filter for good quality video signals, for example, CVBS with  
stable time base, luma component of YPrPb, and luma  
component of YC. The WYSFM bits are only active if the  
WYSFMOVR bit is set to 1. See the general discussion of the  
shaping filter settings in the Y-Shaping Filter section.  
–40  
–60  
–80  
Table 37. WYSFM Function  
WYSFM[4:0]  
Description  
Do not use  
Do not use  
SVHS 1  
–100  
–120  
00000  
00001  
00010  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
00011  
SVHS 2  
Figure 17. Y S-VHS 18 Extra Wideband Filter (CCIR 601-Compliant)  
00100  
SVHS 3  
00101  
00110  
SVHS 4  
SVHS 5  
COMBINED Y ANTIALIAS, PAL NOTCH FILTERS,  
Y RESAMPLE  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011 (default)  
10100–11111  
SVHS 6  
SVHS 7  
SVHS 8  
SVHS 9  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR 601)  
Do not use  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 18. Y PAL Notch Filter Responses  
The filter plots in Figure 16 show the S-VHS 1 (narrowest) to  
S-VHS 18 (widest) shaping filter settings. Figure 18 shows the  
PAL notch filter responses. The NTSC-compatible notches are  
shown in Figure 19.  
COMBINED Y ANTIALIAS, NTSC NOTCH FILTERS,  
Y RESAMPLE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
COMBINED Y ANTIALIAS, S-VHS LOW-PASS FILTERS,  
Y RESAMPLE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 19. NTSC Notch Filter Responses  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 16. Y S-VHS Combined Responses  
Rev. 0 | Page 30 of 108  
ADV7184  
Table 38. CSFM Function  
CHROMA FILTER  
CSFM[2:0]  
000 (default)  
001  
Description  
Data from the digital fine clamp block is processed by three sets  
of filters. The data format at this point is CVBS for CVBS inputs,  
chroma only for Y/C, or Cr/Cb interleaved for YPrPb input  
formats.  
1.5 MHz bandwidth filter.  
2.17 MHz bandwidth filter.  
010  
SH1.  
011  
SH2.  
Chroma Antialias Filter (CAA). The ADV7184 over-  
samples the CVBS by a factor of 2 and the Chroma/CrCb  
by a factor of 4. A decimating filter (CAA) is used to  
preserve the active video band and to remove any out-of-  
band components. The CAA filter has a fixed response.  
100  
101  
110  
111  
SH3.  
SH4.  
SH5.  
Wideband mode.  
GAIN OPERATION  
Chroma Shaping Filters (CSH). The shaping filter block  
(CSH) can be programmed to perform a variety of low-  
pass responses. It can be used to selectively reduce the  
bandwidth of the chroma signal for scaling or  
compression.  
The gain control within the ADV7184 is done on a purely  
digital basis. The input ADCs support a 10-bit range, mapped  
into a 1.6 V analog voltage range. Gain correction takes place  
after the digitization in the form of a digital multiplier.  
Advantages of this architecture over the commonly used PGA  
(programmable gain amplifier) before the ADCs include that  
the gain is now completely independent of supply, temperature,  
and process variations.  
Digital Resampling Filter. This block is used to allow  
dynamic resampling of the video signal to alter parameters  
such as the time base of a line of video. Fundamentally, the  
resampler is a set of low-pass filters. The actual response is  
chosen by the system without user intervention.  
As shown in Figure 21, the ADV7184 can decode a video signal  
as long as it fits into the ADC window. The two components to  
this are the amplitude of the input signal and the dc level on  
which it resides. The dc level is set by the clamping circuitry  
(see the Clamp Operation section).  
The plots in Figure 20 show the overall response of all filters  
together, from SH1 (narrowest) to SH5 (widest) in addition to  
the wideband mode (in red).  
COMBINED C ANTIALIAS, C SHAPING FILTER,  
C RESAMPLER  
0
–10  
–20  
–30  
–40  
–50  
–60  
If the amplitude of the analog video signal is too high, clipping  
may occur, resulting in visual artifacts. The analog input range  
of the ADC, together with the clamp level, determines the  
maximum supported amplitude of the video signal.  
The minimum supported amplitude of the input video is  
determined by the ADV7184s ability to retrieve horizontal and  
vertical timing and to lock to the color burst if present.  
There are separate gain control units for luma and chroma data.  
Both can operate independently of each other. The chroma unit,  
however, can also take its gain value from the luma path.  
0
1
2
3
4
5
6
The possible AGC modes are summarized in Table 39.  
FREQUENCY (MHz)  
It is possible to freeze the automatic gain control loops. This  
causes the loops to stop updating and the AGC-determined  
gain at the time of the freeze to stay active until the loop is  
either unfrozen or the gain mode of operation is changed.  
Figure 20. Chroma Shaping Filter Responses  
CSFM[2:0] C-Shaping Filter Mode, Address 0x17 [7]  
The C-shaping filter mode bits allow the user to select from a  
range of low-pass filters for the chrominance signal.  
The currently active gain from any of the modes can be read  
back. Refer to the description of the dual function manual gain  
registers, LG[11:0] Luma Gain and CG[11:0] Chroma Gain, in  
the Luma Gain and Chroma Gain sections.  
Rev. 0 | Page 31 of 108  
 
ADV7184  
ANALOG VOLTAGE  
RANGE SUPPORTED BY ADC (1.6V RANGE FOR ADV7184)  
MAXIMUM  
VOLTAGE  
SDP  
(GAIN SELECTION ONLY)  
DATA  
PRE-  
ADC  
PROCESSOR  
(DPP)  
GAIN  
CONTROL  
MINIMUM  
VOLTAGE  
CLAMP  
LEVEL  
Figure 21. Gain Control Overview  
Table 39. AGC Modes  
Input Video Type  
Luma Gain  
Manual gain luma.  
Chroma Gain  
Any  
Manual gain chroma.  
CVBS  
Dependent on horizontal sync depth.  
Dependent on color burst amplitude.  
Taken from luma path.  
Peak white.  
Dependent on color burst amplitude.  
Taken from luma path.  
Y/C  
Dependent on horizontal sync depth.  
Peak white.  
Dependent on color burst amplitude.  
Taken from luma path.  
Dependent on color burst amplitude.  
Taken from luma path.  
YPrPb  
Dependent on horizontal sync depth.  
Taken from luma path.  
Luma Gain  
LAGC[2:0] Luma Automatic Gain Control, Address 0x2C [6:4]  
The update speed for the peak white algorithm can be custom-  
ized by the use of internal parameters. Contact ADI for more  
information.  
The luma automatic gain control mode bits select the mode of  
operation for the gain control in the luma path. There are ADI  
internal parameters to customize the peak white gain control.  
Contact ADI for more information.  
Table 41. LAGT Function  
LAGT[1:0]  
Description  
00  
01  
10  
Slow (TC = 2 sec).  
Medium (TC = 1 sec).  
Fast (TC = 0.2 sec).  
Adaptive.  
Table 40. LAGC Function  
LAGC[2:0]  
000  
Description  
Manual fixed gain (use LMG[11:0]).  
11 (default)  
001  
AGC (blank level to sync tip). Peak white  
algorithm OFF.  
010 (default)  
AGC (blank level to sync tip). Peak white  
algorithm ON.  
LG[11:0] Luma Gain, Address 0x2F [3:0]; Address 0x30 [7:0];  
LMG[11:0] Luma Manual Gain, Address 0x2F [3:0];  
Address 0x30 [7:0]  
011  
100  
101  
110  
111  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Freeze gain.  
Luma gain [11:0] is a dual-function register. If written to, a  
desired manual luma gain can be programmed. This gain  
becomes active if the LAGC[2:0] mode is switched to manual  
fixed gain. Equation 2 and Equation 3 show how to calculate a  
desired gain for NTSC and PAL, respectively.  
LAGT[1:0] Luma Automatic Gain Timing, Address 0x2F [7:6]  
The luma automatic gain timing register allows the user to  
influence the tracking speed of the luminance automatic gain  
control. Note that this register only has an effect if the  
LAGC[2:0] register is set to 001, 010, 011, or 100 (automatic  
gain control modes).  
NTSC Luma_Gain =  
1024 < LMG[11: 0] 4095  
= 0.9078…3.63  
= 0.838…3.351  
(2)  
(3)  
1128  
PAL Luma_Gain =  
1024 < LMG[11: 0]4095  
If peak white AGC is enabled and active (see the section  
STATUS_1[7:0], Address 0x10 [7:0]), the actual gain update  
speed is dictated by the peak white AGC loop and, as a result,  
the LAGT settings have no effect. As soon as the part leaves  
peak white AGC, LAGT becomes relevant again.  
1222  
Rev. 0 | Page 32 of 108  
ADV7184  
The automatic gain control (AGC) algorithms adjust the levels  
based on the setting of the BETACAM bit (see Table 43).  
If read back, this register returns the current gain value.  
Depending on the setting in the LAGC[2:0] bits, this is one of  
the following values:  
Table 43. BETACAM Function  
BETACAM Description  
Luma manual gain value (LAGC[2:0] set to luma manual  
gain mode).  
0 (default) Assuming YPrPb is selected as input format.  
Selecting PAL with pedestal selects MII.  
Selecting PAL without pedestal selects SMPTE.  
Selecting NTSC with pedestal selects MII.  
Selecting NTSC without pedestal selects SMPTE.  
Luma automatic gain value (LAGC[2:0] set to any of the  
automatic modes).  
Table 42. LG/LMG Function  
1
Assuming YPrPb is selected as input format.  
Selecting PAL with pedestal selects BETACAM.  
Selecting PAL without pedestal selects BETACAM  
variant.  
LG[11:0]/LMG[11:0] Read/Write Description  
LMG[11:0] = X  
Write  
Manual gain for luma  
path.  
LG[11:0]  
Read  
Actually used gain.  
Selecting NTSC with pedestal selects BETACAM.  
Selecting NTSC without pedestal selects BETACAM  
variant.  
For example, to program the ADV7184 into manual fixed gain  
mode with a desired gain of 0.95 for the NTSC standard:  
1. Use Equation 2 to convert the gain:  
0.95 × 1128 = 1071.6  
PW_UPD Peak White Update, Address 0x2B [0]  
The peak white and average video algorithms determine the  
gain based on measurements taken from the active video. The  
PW_UPD bit determines the rate of gain change. LAGC[2:0]  
must be set to the appropriate mode to enable the peak white or  
average video mode in the first place. For more information,  
refer to the LAGC[2:0] Luma Automatic Gain Control, Address  
0x2C [6:4] section.  
2. Truncate to integer value:  
1071.6 = 1071  
3. Convert to hexadecimal:  
1071d = 0x42F  
4. Split into two registers and program:  
Luma Gain Control 1 [3:0] = 0x4  
Luma Gain Control 2 [7:0] = 0x2F  
0—Updates the gain once per video line.  
1 (default)—Updates the gain once per field.  
5. Enable manual fixed gain mode:  
Set LAGC[2:0] to 000  
Chroma Gain  
BETACAM Enable Betacam Levels, Address 0x01 [5]  
CAGC[1:0] Chroma Automatic Gain Control,  
Address 0x2C [1:0]  
If YPrPb data is routed through the ADV7184, the automatic  
gain control modes can target different video input levels, as  
outlined in Table 45. Note that the BETACAM bit is valid only if  
the input mode is YPrPb (component). The BETACAM bit sets  
the target value for AGC operation. A review of the following  
sections is useful:  
These two bits select the basic mode of operation for automatic  
gain control in the chroma path.  
Table 44. CAGC Function  
CAGC[1:0]  
Description  
00  
01  
Manual fixed gain (use CMG[11:0]).  
Use luma gain for chroma.  
Automatic gain (based on color burst).  
Freeze chroma gain.  
INSEL[3:0] Input Selection, Address 0x00 [3:0] to find how  
component video (YPrPb) can be routed through the  
ADV7184.  
10 (default)  
11  
Video Standard Selection to select the various standards,  
for example, with and without pedestal.  
Table 45. Betacam Levels  
Name  
Betacam (mV)  
Betacam Variant (mV)  
SMPTE (mV)  
0 to 700  
–350 to +350  
300  
MII (mV)  
Y Range  
Pb and Pr Range  
Sync Depth  
0 to 714 (incl. 7.5% pedestal)  
–467 to +467  
286  
0 to 714  
–505 to +505  
286  
0 to 700 (incl. 7.5% pedestal)  
–324 to +324  
300  
Rev. 0 | Page 33 of 108  
ADV7184  
CAGT[1:0] Chroma Automatic Gain Timing,  
Address 0x2D [7:6]  
If color kill is enabled, and if the color carrier of the incoming  
video signal is less than the threshold for 128 consecutive video  
lines, color processing is switched off (black and white output).  
To switch the color processing back on, another 128 consecutive  
lines with a color burst greater than the threshold are required.  
This register allows the user to influence the tracking speed of  
the chroma automatic gain control. It has an effect only if the  
CAGC[1:0] register is set to 10 (automatic gain).  
Table 46. CAGT Function  
The color kill option only works for input signals with a modu-  
lated chroma part. For component input (YPrPb), there is no  
color kill.  
CAGT[1:0]  
Description  
00  
01  
10  
Slow (TC = 2 sec).  
Medium (TC = 1 sec).  
Fast (TC = 0.2 sec).  
Adaptive.  
0—Disables color kill.  
1 (default)—Enables color kill.  
11 (default)  
CKILLTHR[2:0] Color Kill Threshold,  
Address 0x3D [6:4]  
CG[11:0] Chroma Gain, Address 0x2D [3:0]; Address 0x2E  
[7:0] CMG[11:0] Chroma Manual Gain, Address 0x2D [3:0];  
Address 0x2E [7:0]  
The CKILLTHR[2:0] bits allow the user to select a threshold for  
the color kill function. The threshold applies only to QAM-  
based (NTSC and PAL) or FM-modulated (SECAM) video  
standards.  
CG[11:0] is a dual-function register. If written to, a desired  
manual chroma gain can be programmed. This gain becomes  
active if the CAGC[1:0] mode is switched to manual fixed gain.  
Refer to Equation 4 for calculating a desired gain. If read back  
the register returns the current gain value. Depending on the  
setting in the CAGC[1:0] bits, this is either:  
To enable the color kill function, the CKE bit must be set. For  
settings 000, 001, 010, and 011, chroma demodulation inside  
the ADV7184 may not work satisfactorily for poor input video  
signals.  
Chroma manual gain value (CAGC[1:0] set to chroma  
manual gain mode).  
Table 48. CKILLTHR Function  
Description  
CKILLTHR[2:0] SECAM  
NTSC, PAL  
Chroma automatic gain value (CAGC[1:0] set to any of the  
automatic modes).  
000  
No color kill  
Kill at < 0.5%  
Kill at < 1.5%  
Kill at < 2.5%  
Kill at < 4.0%  
Kill at < 8.5%  
Kill at < 16.0%  
Kill at < 32.0%  
001  
010  
011  
100 (default)  
101  
Kill at < 5%  
Kill at < 7%  
Kill at < 8%  
Kill at < 9.5%  
Kill at < 15%  
Kill at < 32%  
Table 47. CG/CMG Function  
CG[11:0]/CMG[11:0]  
Read/Write Description  
CMG[11:0]  
Write  
Manual gain for  
chroma path.  
CG[11:0]  
Read  
Currently active gain.  
110  
(
0 < CG 4095  
)
111  
Reserved for ADI internal use only. Do not  
select.  
Chroma_Gain =  
= 0...4  
(4)  
1024  
For example, freezing the automatic gain loop and reading back  
the CG[11:0] register results in a value of 0x47A.  
CHROMA TRANSIENT IMPROVEMENT (CTI)  
The signal bandwidth allocated for chroma is typically much  
smaller than that of luminance. In the past, this was a valid way  
to fit a color video signal into a given overall bandwidth because  
the human eye is less sensitive to chrominance than to  
luminance.  
1. Convert the readback value to decimal:  
0x47A = 1146d  
2. Apply Equation 4 to convert the readback value:  
1146/1024 = 1.12  
The uneven bandwidth, however, may lead to visual artifacts in  
sharp color transitions. At the border of two bars of color, both  
components (luma and chroma) change at the same time (see  
Figure 22). Due to the higher bandwidth, the signal transition  
of the luma component is usually much sharper than that of the  
chroma component. The color edge is not sharp but blurred, in  
the worst case over several pixels.  
CKE Color Kill Enable, Address 0x2B [6]  
This bit allows the optional color kill function to be switched on  
or off. For QAM-based video standards (PAL and NTSC) and  
FM-based systems (SECAM), the threshold for the color kill  
decision is selectable via the CKILLTHR[2:0] bits.  
Rev. 0 | Page 34 of 108  
 
ADV7184  
Table 49. CTI_AB Function  
CTI_AB[1:0] Description  
LUMA SIGNAL WITH A  
TRANSITION, ACCOMPANIED  
BY A CHROMA TRANSITION  
LUMA  
SIGNAL  
00  
Sharpest mixing between sharpened and original  
chroma signal  
01  
Sharp mixing  
10  
Smooth mixing  
11 (default)  
Smoothest alpha blend function  
ORIGINAL, "SLOW" CHROMA  
TRANSITION PRIOR TO CTI  
DEMODULATED  
CHROMA  
SHARPENED CHROMA  
TRANSITION AT THE  
OUTPUT OF CTI  
SIGNAL  
CTI_C_TH[7:0] CTI Chroma Threshold, Address 0x4E [7:0]  
The CTI_C_TH[7:0] value is an unsigned, 8-bit number speci-  
fying how big the amplitude step in a chroma transition has to  
be in order to be steepened by the CTI block. Programming a  
small value into this register causes even smaller edges to be  
steepened by the CTI block. Making CTI_C_TH[7:0] a large  
value causes the block to improve large transitions only.  
Figure 22. CTI Luma/Chroma Transition  
The CTI block examines the input video data. It detects  
transitions of chroma, and can be programmed to steepen the  
chroma edges in an attempt to artificially restore lost color  
bandwidth. However, it operates only on edges above a certain  
threshold to ensure that noise is not emphasized. Care has also  
been taken to avoid edge ringing and undesirable saturation  
and hue distortion.  
The default value for CTI_C_TH[7:0] is 0x08, indicating the  
threshold for the chroma edges prior to CTI.  
DIGITAL NOISE REDUCTION (DNR), AND LUMA  
PEAKING FILTER  
Chroma transient improvements are needed primarily for  
signals that experienced severe chroma bandwidth limitations.  
For those types of signals, it is strongly recommended to enable  
the CTI block via CTI_EN.  
DNR is based on the assumption that high frequency signals  
with low amplitude are probably noise and therefore that their  
removal improves picture quality. There are two DNR blocks in  
the ADV7184: the DNR1 block before the luma peaking filter  
and the DNR2 block after the luma peaking filter, as shown in  
Figure 23.  
CTI_EN Chroma Transient Improvement Enable,  
Address 0x4D [0]  
0—Disables the CTI block.  
1 (default)—Enables the CTI block.  
CTI_AB_EN Chroma Transient Improvement Alpha Blend  
Enable, Address 0x4D [1]  
LUMA  
SIGNAL  
LUMA  
OUTPUT  
LUMA PEAKING  
FILTER  
DNR2  
DNR1  
This bit enables an alpha-blend function, which mixes the  
transient improved chroma with the original signal. The  
sharpness of the alpha blending can be configured via the  
CTI_AB[1:0] bits. For the alpha blender to be active, the CTI  
block must be enabled via the CTI_EN bit.  
Figure 23. DNR and Peaking Block Diagram  
DNR_EN Digital Noise Reduction Enable, Address 0x4D [5]  
0—Bypasses DNR (disables it).  
0—Disables the CTI alpha blender.  
1 (default)—Enables the CTI alpha blender.  
1 (default)— Enables DNR on the luma data.  
CTI_AB[1:0] Chroma Transient Improvement Alpha Blend,  
Address 0x4D [3:2]  
DNR_TH[7:0] DNR Noise Threshold, Address 0x50 [7:0]  
The DNR1 block is positioned before the luma peaking block.  
The DNR_TH[7:0] value is an unsigned 8-bit number, which  
determines the maximum edge that is interpreted as noise and  
therefore blanked from the luma data. Programming a large  
value into DNR_TH[7:0] causes the DNR block to interpret  
even large transients as noise and remove them. As a result, the  
effect on the video data is more visible.  
Programming a small value causes only small transients to be  
seen as noise and to be removed.  
The recommended DNR_TH[7:0] setting for A/V inputs is  
0x04, and the recommended DNR_TH[7:0] setting for tuner  
inputs is 0x0A.  
This controls the behavior of alpha-blend circuitry that mixes  
the sharpened chroma signal with the original one. It thereby  
controls the visual impact of CTI on the output data.  
For CTI_AB[1:0] to become active, the CTI block must be  
enabled via the CTI_EN bit, and the alpha blender must be  
switched on via CTI_AB_EN.  
Sharp blending maximizes the effect of CTI on the picture, but  
may also increase the visual impact of small amplitude, high  
frequency chroma noise.  
Rev. 0 | Page 35 of 108  
 
ADV7184  
The default value for DNR_TH[7:0] is 0x08, indicating the  
threshold for maximum luma edges to be interpreted as noise.  
COMB FILTERS  
The comb filters of the ADV7184 have been greatly improved to  
automatically handle video of all types, standards, and levels of  
quality. The NTSC and PAL configuration registers allow the  
user to customize comb filter operation, depending on which  
video standard is detected (by autodetection) or selected (by  
manual programming). In addition to the bits listed in this  
section, there are some other ADI internal controls; contact  
ADI for more information.  
PEAKING_GAIN[7:0], Luma Peaking Gain, Address 0xFB [7:0]  
This filter can be manually enabled. The user can boost or  
attenuate the midregion of the Y spectrum around 3 MHz. The  
peaking filter can visually improve the picture by showing more  
definition on the picture details that contain frequency  
components around 3 MHz. The default value (0x40) in this  
register passes through the luma data unaltered (0 dB response).  
A lower value attenuates the signal and a higher value amplifies  
it. A plot of the filters responses is shown in Figure 24.  
NTSC Comb Filter Settings  
Used for NTSC-M/J CVBS inputs.  
PEAKING GAIN USING BP FILTER  
15  
NSFSEL[1:0] Split Filter Selection NTSC, Address 0x19 [3:2]  
10  
5
NSFSEL[1:0] selects how much of the overall signal bandwidth  
is fed to the combs. A narrow bandwidth split filter gives better  
performance on diagonal lines, but leaves more dot crawl in the  
final output image. The opposite is true for a wide bandwidth  
split filter.  
0
–5  
Table 50.NSFSEL Function  
NSFSEL[1:0]  
Description  
Narrow  
Medium  
Medium  
Wide  
–10  
–15  
–20  
00 (default)  
01  
10  
11  
0
1
2
3
4
5
6
7
FREQUENCY (MHz)  
Figure 24. Peaking Filter Responses  
CTAPSN[1:0] Chroma Comb Taps NTSC, Address 0x38 [7:6]  
Table 51. CTAPSN Function  
DNR_TH2[7:0] DNR Noise Threshold 2, Address 0xFC [7:0]  
The DNR2 block is positioned after the luma peaking block, so  
it affects the amplified luma signal. It operates in the same way  
as the DNR1 block but has an independent threshold control,  
DNR_TH2[7:0]. This value is an unsigned 8-bit number, which  
determines the maximum edge that is still interpreted as noise  
and, therefore, blanked from the luma data.  
CTAPSN[1:0]  
Description  
00  
01  
Do not use  
NTSC chroma comb adapts 3 lines (3 taps) to  
2 lines (2 taps)  
10 (default)  
11  
NTSC chroma comb adapts 5 lines (5 taps) to 3  
lines (3 taps)  
NTSC chroma comb adapts 5 lines (5 taps) to 4  
lines (4 taps)  
Programming a large value into DNR_TH2[7:0] causes the  
DNR block to interpret even large transients as noise and  
remove them. As a result, the effect on the video data is more  
visible. Programming a small value causes only small transients  
to be seen as noise and removed.  
CCMN[2:0] Chroma Comb Mode NTSC, Address 0x38 [5:3]  
See Table 52.  
YCMN[2:0] Luma Comb Mode NTSC, Address 0x38 [2:0]  
See Table 53.  
Rev. 0 | Page 36 of 108  
ADV7184  
Table 52. CCMN Function  
CCMN[2:0]  
Description  
Configuration  
000 (default)  
Adaptive comb mode  
Adaptive 3-line chroma comb for CTAPSN = 01  
Adaptive 4-line chroma comb for CTAPSN = 10  
Adaptive 5-line chroma comb for CTAPSN = 11  
100  
101  
Disable chroma comb  
Fixed chroma comb (top lines of line memory)  
Fixed 2-line chroma comb for CTAPSN = 01  
Fixed 3-line chroma comb for CTAPSN = 10  
Fixed 4-line chroma comb for CTAPSN = 11  
Fixed 3-line chroma comb for CTAPSN = 01  
Fixed 4-line chroma comb for CTAPSN = 10  
Fixed 5-line chroma comb for CTAPSN = 11  
Fixed 2-line chroma comb for CTAPSN = 01  
Fixed 3-line chroma comb for CTAPSN = 10  
Fixed 4-line chroma comb for CTAPSN = 11  
110  
111  
Fixed chroma comb (all lines of line memory)  
Fixed chroma comb (bottom lines of line memory)  
Table 53.YCMN Function  
YCMN[2:0]  
000 (default)  
100  
101  
110  
Description  
Configuration  
Adaptive comb mode  
Disable luma comb  
Fixed luma comb (top lines of line memory)  
Fixed luma comb (all lines of line memory)  
Fixed luma comb (bottom lines of line memory)  
Adaptive 3-line (3 taps) luma comb  
Use low-pass/notch filter; see the Y-Shaping Filter section  
Fixed 2-line (2 taps) luma comb  
Fixed 3-line (3 taps) luma comb  
Fixed 2-line (2 taps) luma comb  
111  
PAL Comb Filter Settings  
CCMP[2:0] Chroma Comb Mode PAL, Address 0x39 [5:3]  
Used for PAL-B/G/H/I/D, PAL-M, PAL-Combinational N,  
PAL-60 and NTSC-443 CVBS inputs.  
See Table 56.  
YCMP[2:0] Luma Comb Mode PAL, Address 0x39 [2:0]  
PSFSEL[1:0] Split Filter Selection PAL,  
Address 0x19 [1:0]  
See Table 57.  
Vertical Blank Control  
PSFSEL[1:0] selects how much of the overall signal bandwidth  
is fed to the combs. A wide bandwidth split filter eliminates dot  
crawl, but shows imperfections on diagonal lines. The opposite  
is true for a narrow bandwidth split filter.  
Each vertical blank control register has the same meaning for  
the following bits:  
00—Early by 1 line.  
10—Delay by 1 line.  
11—Delay by 2 lines.  
Table 54. PSFSEL Function  
PSFSEL[1:0]  
Description  
Narrow  
Medium  
Wide  
00  
01 (default) is described under each register.  
01 (default)  
10  
11  
NVBIOLCM[1:0] NTSC VBI Odd Field Luma Comb Mode,  
Address 0xEB [7:6]  
Widest  
These bits control the first combed line after VBI on NTSC odd  
field (luma comb).  
CTAPSP[1:0] Chroma Comb Taps PAL, Address 0x39 [7:6]  
Table 55. CTAPSP Function  
CTAPSP[1:0] Description  
01 (default)—SMPTE170-compliant, blank lines 1–20, 264–282,  
comb half lines.  
00  
01  
Do not use.  
PAL chroma comb adapts 5 lines (3 taps) to  
3 lines (2 taps); cancels cross luma only.  
NVBIELCM[1:0] NTSC VBI Even Field Luma Comb Mode,  
Address 0xEB [5:4]  
10  
PAL chroma comb adapts 5 lines (5 taps) to  
3 lines (3 taps); cancels cross luma and hue error  
less well.  
These bits control the first combed line after VBI on NTSC  
even field (luma comb).  
11 (default)  
PAL chroma comb adapts 5 lines (5 taps) to 4 lines  
(4 taps); cancels cross luma and hue error well.  
01 (default)—SMPTE170-compliant, blank lines 1–20, 264–282,  
comb half lines.  
Rev. 0 | Page 37 of 108  
ADV7184  
PVBIOLCM[1:0] PAL VBI Odd Field Luma Comb Mode,  
Address 0xEB [3:2]  
NVBIECCM[1:0] NTSC VBI Even Field Chroma Comb  
Mode, Address 0xEC [5:4]  
These bits control the first combed line after VBI on PAL odd  
field (luma comb).  
These bits control the first combed line after VBI on NTSC  
even field (chroma comb).  
01 (default)—BT470-compliant, blank lines 624–22, 311–335,  
comb half lines.  
01 (default)—SMPTE170-compliant, no color on lines 1–20,  
264–282, chroma present on half lines.  
PVBIELCM[1:0] PAL VBI Even Field Luma Comb Mode,  
Address 0xEB [1:0]  
PVBIOCCM[1:0] PAL VBI Odd Field Chroma Comb Mode,  
Address 0xEC [3:2]  
These bits control the first combed line after VBI on PAL even  
field (luma comb).  
These bits control the first combed line after VBI on PAL odd  
field (chroma comb).  
01 (default)—BT470-compliant, blank lines 624–22, 311–335,  
comb half lines.  
01 (default)—BT470-compliant, no color on lines 624–22,  
311–335, chroma present on half lines.  
NVBIOCCM[1:0] NTSC VBI Odd Field Chroma Comb  
Mode, Address 0xEC [7:6]  
PVBIECCM[1:0] PAL VBI Even Field Chroma Comb Mode,  
Address 0xEC [1:0]  
These bits control the first combed line after VBI on NTSC odd  
field (chroma comb).  
These bits control the first combed line after VBI on PAL even  
field (chroma comb).  
01 (default)—SMPTE170-compliant, no color on lines 1–20,  
264–282, chroma present on half lines.  
01 (default)—BT470-compliant, no color on lines 624–22,  
311–335, chroma present on half lines.  
Table 56. CCMP Function  
CCMP[2:0]  
Description  
Configuration  
000 (default)  
Adaptive comb mode  
Adaptive 3-line chroma comb for CTAPSP = 01  
Adaptive 4-line chroma comb for CTAPSP = 10  
Adaptive 5-line chroma comb for CTAPSP = 11  
100  
101  
Disable chroma comb.  
Fixed chroma comb (top lines of line memory)  
Fixed 2-line chroma comb for CTAPSP = 01  
Fixed 3-line chroma comb for CTAPSP = 10  
Fixed 4-line chroma comb for CTAPSP = 11  
Fixed 3-line chroma comb for CTAPSP = 01  
Fixed 4-line chroma comb for CTAPSP = 10  
Fixed 5-line chroma comb for CTAPSP = 11  
Fixed 2-line chroma comb for CTAPSP = 01  
Fixed 3-line chroma comb for CTAPSP = 10  
Fixed 4-line chroma comb for CTAPSP = 11  
110  
111  
Fixed chroma comb (all lines of line memory)  
Fixed chroma comb (bottom lines of line memory)  
Table 57. YCMP Function  
YCMP[2:0]  
000 (default)  
100  
101  
110  
Description  
Configuration  
Adaptive comb mode  
Disable luma comb  
Fixed luma comb (top lines of line memory)  
Fixed luma comb (all lines of line memory)  
Fixed luma comb (bottom lines of line memory)  
Adaptive 5 lines (3 taps) luma comb  
Use low-pass/notch filter; see the Y-Shaping Filter section  
Fixed 3 lines (2 taps) luma comb  
Fixed 5 lines (3 taps) luma comb  
Fixed 3 lines (2 taps) luma comb  
111  
Rev. 0 | Page 38 of 108  
 
ADV7184  
In a 16-bit output interface where Y and Cr/Cb are delivered via  
separate data buses, the AV code is over the whole 16 bits. The  
SD_DUP_AV bit allows the user to replicate the AV codes on  
both buses, so the full AV sequence can be found on the Y bus  
and on the Cr/Cb bus. See Figure 25.  
AV CODE INSERTION AND CONTROLS  
This section describes the I2C-based controls that affect  
Insertion of AV codes into the data stream  
Data blanking during the vertical blank interval (VBI)  
0 (default)—The AV codes are in single fashion (to suit 8-bit  
interleaved data output).  
The range of data values permitted in the output data  
stream  
1—The AV codes are duplicated (for 16-bit interfaces).  
The relative delay of luma vs. chroma signals  
VBI_EN Vertical Blanking Interval Data Enable,  
Address 0x03 [7]  
Note that some of the decoded VBI data is being inserted  
during the horizontal blanking interval. See the Gemstar Data  
Recovery section for more information.  
The VBI enable bit allows data such as intercast and closed  
caption data to be passed through the luma channel of the  
decoder with a minimal amount of filtering. All data for Line 1  
to Line 21 is passed through and available at the output port.  
The ADV7184 does not blank the luma data, and automatically  
switches all filters along the luma data path into their widest  
bandwidth. For active video, the filter settings for YSH and YPK  
are restored.  
BT656-4 ITU Standard BT-R.656-4 Enable, Address 0x04 [7]  
The ITU has changed the position for toggling the V bit within  
the SAV EAV codes for NTSC between revisions 3 and 4. The  
BT656-4 standard bit allows the user to select an output mode  
that is compliant with either the previous or the new standard.  
For more information, review the standard at http://www.itu.int.  
Refer to the BL_C_VBI Blank Chroma during VBI, Address  
0x04 [2] section for information on the chroma path.  
Note that the standard change affects NTSC only and has no  
bearing on PAL.  
0 (default)—All video lines are filtered/scaled.  
1—Only the active video region is filtered/scaled.  
0 (default)—The BT656-3 specification is used. The V bit goes  
low at EAV of Lines 10 and 273.  
BL_C_VBI Blank Chroma during VBI, Address 0x04 [2]  
1—The BT656-4 specification is used. The V bit goes low at  
EAV of Lines 20 and 283.  
When BL_C_VBI is set high, the Cr and Cb values of all VBI  
lines are blanked. This is done so any data that may arrive  
during VBI is not decoded as color and output through Cr and  
Cb. As a result, it is possible to send VBI lines into the decoder,  
then output them through an encoder again, undistorted.  
Without this blanking, any wrongly decoded color is encoded  
by the video encoder; therefore, the VBI lines are distorted.  
SD_DUP_AV Duplicate AV Codes, Address 0x03 [0]  
Depending on the output interface width, it may be necessary to  
duplicate the AV codes from the luma path into the chroma path.  
In an 8-bit-wide output interface (Cb/Y/Cr/Y interleaved data),  
the AV codes are defined as FF/00/00/AV, with AV being the  
transmitted word that contains information about H/V/F. In  
this output interface mode, the following assignment takes  
place: Cb = FF, Y = 00, Cr = 00, and Y = AV.  
0—Decodes and outputs color during VBI.  
1 (default)—Blanks Cr and Cb values during VBI.  
SD_DUP_AV = 1  
SD_DUP_AV = 0  
16-BIT INTERFACE  
16-BIT INTERFACE  
AV  
8-BIT INTERFACE  
Y DATA BUS  
FF  
FF  
00  
00  
AV  
AV  
Y
00  
Y
Cb/Y/Cr/Y  
INTERLEAVED  
FF  
00  
00  
AV  
Cb  
Cr/Cb DATA BUS  
00  
00  
Cb  
FF  
00  
Cb  
AV CODE SECTION  
AV CODE SECTION  
AV CODE SECTION  
Figure 25. AV Code Duplication Control  
Rev. 0 | Page 39 of 108  
ADV7184  
CTA[2:0] Chroma Timing Adjust, Address 0x27 [5:3]  
RANGE Range Selection, Address 0x04 [0]  
This register allows the user to specify a timing difference  
between chroma and luma samples. This may be used to  
compensate for external filter group delay differences in the  
luma vs. chroma path, and to allow a different number of  
pipeline delays while processing the video downstream. Review  
this functionality together with the LTA[1:0] register.  
AV codes (as per ITU-R BT-656, formerly known as CCIR-656)  
consist of a fixed header made up of 0xFF and 0x00 values.  
These two values are reserved and therefore not to be used for  
active video. Additionally, the ITU specifies that the nominal  
range for video should be restricted to values between 16 and  
235 for luma and 16 to 240 for chroma.  
The chroma can only be delayed/advanced in chroma pixel  
steps. One chroma pixel step is equal to two luma pixels. The  
programmable delay occurs after demodulation, where one  
can no longer delay by luma pixel steps.  
The RANGE bit allows the user to limit the range of values  
output by the ADV7184 to the recommended value range. In  
any case, it ensures that the reserved values of 255d (0xFF) and  
00d (0x00) are not presented on the output pins unless they are  
part of an AV code header.  
For manual programming, use the following defaults:  
Table 58. RANGE Function  
CVBS input CTA[2:0] = 011  
YC input CTA[2:0] = 101  
YPrPb input CTA[2:0] =110  
RANGE  
Description  
16 ≤ Y ≤ 235  
1 ≤ Y ≤ 254  
0
16 ≤ C ≤ 240  
1 ≤ C ≤ 254  
1 (default)  
Table 60. CTA Function  
AUTO_PDC_EN Automatic Programmed Delay Control,  
Address 0x27 [6]  
CTA[2:0]  
Description  
000  
Not used  
Enabling the AUTO_PDC_EN function activates a function  
within the ADV7184 that automatically programs LTA[1:0] and  
CTA[2:0] to have the chroma and luma data match delays for all  
modes of operation.  
001  
010  
011 (default)  
100  
101  
Chroma + 2 chroma pixel (early)  
Chroma + 1 chroma pixel (early)  
No delay  
Chroma – 1 chroma pixel (late)  
Chroma – 2 chroma pixel (late)  
Chroma – 3 chroma pixel (late)  
Not used  
0—The ADV7183 uses the LTA[1:0] and CTA[2:0] values for  
delaying luma and chroma samples. Refer to the LTA[1:0] Luma  
Timing Adjust, Address 0x27 [1:0] and the CTA[2:0] Chroma  
Timing Adjust, Address 0x27 [5:3] sections.  
110  
111  
SYNCHRONIZATION OUTPUT SIGNALS  
1 (default)—The ADV7184 automatically programs the LTA  
and CTA values to have luma and chroma aligned at the output.  
Manual registers LTA[1:0] and CTA[2:0] are not used.  
HS Configuration  
The following controls allow the user to configure the behavior  
of the HS output pin only:  
LTA[1:0] Luma Timing Adjust, Address 0x27 [1:0]  
Beginning of HS signal via HSB[10:0]  
End of HS signal via HSE[10:0]  
Polarity of HS using PHS  
This register allows the user to specify a timing difference  
between chroma and luma samples.  
Note that there is a certain functionality overlap with the  
CTA[2:0] register. For manual programming, use the following  
defaults:  
The HS begin and HS end registers allow the user to freely  
position the HS output (pin) within the video line. The values  
in HSB[10:0] and HSE[10:0] are measured in pixel units from  
the falling edge of HS. Using both values, the user can program  
both the position and length of the HS output signal.  
CVBS input LTA[1:0] = 00  
YC input LTA[1:0] = 01  
YPrPb input LTA[1:0] =01  
HSB[10:0] HS Begin, Address 0x34 [6:4], Address 0x35 [7:0]  
Table 59. LTA Function  
The position of this edge is controlled by placing a binary  
number into HSB[10:0]. The number applied offsets the edge  
with respect to an internal counter that is reset to 0 immediately  
after EAV code FF, 00, 00, XY (see Figure 26). HSB[10:0] is set  
to 00000000010, which is 2 LLC1 clock cycles from count[0].  
LTA[1:0]  
Description  
00 (default)  
No delay  
01  
10  
11  
Luma 1 clk (37 ns) delayed  
Luma 2 clk (74 ns) early  
Luma 1 clk (37 ns) early  
The default value of HSB[10:0] is 0x002, indicating that the HS  
pulse starts two pixels after the falling edge of HS.  
Rev. 0 | Page 40 of 108  
 
ADV7184  
Table 61. HS Timing Parameters  
Characteristic  
HS to Active Video  
(LLC1 Clock Cycles)  
(HSE[10:0]) (default) (C in Figure 26) (default) (D in Figure 26)  
Active Video  
Samples/Line  
Total LLC1  
Clock Cycles  
(E in Figure 26)  
HS Begin Adjust  
(HSB[10:0]) (default)  
HS End Adjust  
Standard  
NTSC  
00000000010  
00000000000  
00000000000  
272  
276  
720Y + 720C = 1440  
640Y + 640C = 1280  
1716  
1560  
NTSC Square  
Pixel  
00000000010  
PAL  
00000000010  
00000000000  
284  
720Y + 720C = 1440  
1728  
LLC1  
PIXEL  
Cr  
Y
FF  
00  
EAV  
00  
XY  
80  
10  
80  
10  
80  
10  
FF  
00  
00  
SAV  
XY  
Cb  
Y
Cr  
Y
Cb  
Y
Cr  
BUS  
ACTIVE  
VIDEO  
H BLANK  
ACTIVE VIDEO  
HS  
HSE[10:0]  
4 LLC1  
HSB[10:0]  
C
D
D
E
E
Figure 26. HS Timing  
HSE[10:0] HS End, Address 0x34 [2:0]; Address 0x36 [7:0]  
VS and FIELD Configuration  
The following controls allow the user to configure the behavior  
of the VS and FIELD output pins, as well as to generate  
embedded AV codes:  
The position of this edge is controlled by placing a binary  
number into HSE[10:0]. The number applied offsets the edge  
with respect to an internal counter that is reset to 0 immediately  
after EAV code FF, 00, 00, XY (see Figure 26). HSE is set to  
00000000000, which is 0 LLC1 clock cycles from count[0].  
ADV encoder-compatible signals via NEWAVMODE  
PVS, PF  
The default value of HSE[10:0] is 000, indicating that the HS  
pulse ends 0 pixels after falling edge of HS.  
HVSTIM  
VSBHO, VSBHE  
VSEHO, VSEHE  
For NTSC control:  
For example:  
1. To shift the HS toward active video by 20 LLC1s, add  
20 LLC1s to both HSB and HSE, that is, HSB[10:0] =  
[00000010110], HSE[10:0] = [00000010100].  
o
o
o
NVBEGDELO, NVBEGDELE, NVBEGSIGN,  
NVBEG[4:0]  
2. To shift the HS away from active video by 20 LLC1s, add  
1696 LLC1s to both HSB and HSE (for NTSC), that is,  
HSB[10:0] = [11010100010], HSE[10:0] = [11010100000].  
1696 is derived from the NTSC total number of pixels = 1716.  
NVENDDELO, NVENDDELE, NVENDSIGN,  
NVEND[4:0]  
NFTOGDELO, NFTOGDELE, NFTOGSIGN,  
NFTOG[4:0]  
To move 20 LLC1s away from active video is equal to  
subtracting 20 from 1716 and adding the result in binary to  
both HSB[10:0] and HSE[10:0].  
For PAL control:  
o
o
o
PVBEGDELO, PVBEGDELE, PVBEGSIGN,  
PVBEG[4:0]  
PHS Polarity HS, Address 0x37 [7]  
PVENDDELO, PVENDDELE, PVENDSIGN,  
PVEND[4:0]  
The polarity of the HS pin can be inverted using the PHS bit.  
PFTOGDELO, PFTOGDELE, PFTOGSIGN,  
PFTOG[4:0]  
0 (default)—HS is active high.  
1—HS is active low.  
Rev. 0 | Page 41 of 108  
ADV7184  
NEWAVMODE New AV Mode, Address 0x31 [4]  
VSBHE VS Begin Horizontal Position Even, Address 0x32 [6]  
0—EAV/SAV codes are generated to suit ADI encoders. No  
adjustments are possible.  
This bit selects the position within a line at which the VS pin  
(not the bit in the AV code) becomes active. Some follow-on  
chips require the VS pin to change state when only HS is  
high/low.  
1 (default)—Enables the manual position of the VSYNC, Field,  
and AV codes using Register 0x34 to Register 0x37 and Register  
0xE5 to Register 0xEA. Default register settings are CCIR656-  
compliant; see Figure 27 for NTSC and Figure 32 for PAL. For  
recommended manual user settings, see Table 62 and Figure 28  
for NTSC; see Table 63 and Figure 33 for PAL.  
0—The VS pin goes high at the middle of a line of video (even  
field).  
1 (default)—The VS pin changes state at the start of a line (even  
field).  
Table 62. Recommended User Settings for NTSC  
(See Figure 28)  
VSEHO VS End Horizontal Position Odd, Address 0x33 [7]  
Register  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0xE5  
0xE6  
0xE7  
Register Name  
Write  
0x1A  
0x81  
0x84  
0x00  
0x00  
0x7D  
0xA1  
0x41  
0x84  
0x06  
This bit selects the position within a line at which the VS pin  
(not the bit in the AV code) becomes inactive. Some follow-on  
chips require the VS pin to change state only when HS is  
high/low.  
VSYNC Field Control 1  
VSYNC Field Control 2  
VSYNC Field Control 3  
HSYNC Position 1  
HSYNC Position 2  
HSYNC Position 3  
Polarity  
0—The VS pin goes low (inactive) at the middle of a line of  
video (odd field).  
1 (default)—The VS pin changes state at the start of a line (odd  
field).  
NTSV_V_Bit_Beg  
NTSC_V_Bit_End  
NTSC_F_Bit_Tog  
VSEHE VS End Horizontal Position Even, Address 0x33 [6]  
This bit selects the position within a line at which the VS pin  
(not the bit in the AV code) becomes inactive. Some follow-on  
chips require the VS pin to change state only when HS is  
high/low.  
HVSTIM Horizontal VS Timing, Address 0x31 [3]  
The HVSTIM bit allows the user to select where the VS signal is  
being asserted within a line of video. Some interface circuitry  
may require VS to go low while HS is low.  
0 (default)—The VS pin goes low (inactive) at the middle of a  
line of video (even field).  
1—The VS pin changes state at the start of a line (even field).  
0 (default)—The start of the line is relative to HSE.  
1—The start of the line is relative to HSB.  
PVS Polarity VS, Address 0x37 [5]  
The polarity of the VS pin can be inverted using the PVS bit.  
VSBHO VS Begin Horizontal Position Odd, Address 0x32 [7]  
0 (default)—VS is active high.  
1—VS is active low.  
This bit selects the position within a line at which the VS pin  
(not the bit in the AV code) becomes active. Some follow-on  
chips require the VS pin to change state only when HS is  
high/low.  
PF Polarity FIELD, Address 0x37 [3]  
The polarity of the FIELD pin can be inverted using the PF bit.  
0 (default)—The VS pin goes high at the middle of a line of  
video (odd field).  
0 (default)—FIELD is active high.  
1—FIELD is active low.  
1—The VS pin changes state at the start of a line (odd field).  
Rev. 0 | Page 42 of 108  
ADV7184  
FIELD 1  
525  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
19  
20  
21  
22  
OUTPUT  
VIDEO  
H
V
NVBEG[4:0] = 0x5  
NVEND[4:0] = 0x4  
*BT.656-4  
REG 0x04, BIT 7 = 1  
F
NFTOG[4:0] = 0x3  
FIELD 2  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
283  
284  
285  
OUTPUT  
VIDEO  
H
V
*BT.656-4  
REG 0x04, BIT 7 = 1  
NVBEG[4:0] = 0x5  
NVEND[4:0] = 0x4  
F
NFTOG[4:0] = 0x3  
*APPLIES IF NEMAVMODE = 0:  
MUST BE MANUALLY SHIFTED IF NEWAVMODE = 1.  
Figure 27. NTSC Default (BT.656). The Polarity of H, V, and F is Embedded in the Data.  
FIELD 1  
525  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
21  
22  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
FIELD  
OUTPUT  
NVBEG[4:0] =0x0  
NVEND[4:0] = 0x3  
NFTOG[4:0] = 0x5  
FIELD 2  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
284  
285  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
NVBEG[4:0] = 0x0  
NVEND[4:0] = 0x3  
FIELD  
OUTPUT  
NFTOG[4:0] = 0x5  
Figure 28. NTSC Typical VSYNC/Field Positions Using Register Writes in Table 62  
Rev. 0 | Page 43 of 108  
ADV7184  
1
NVENDSIGN  
0
1
NVBEGSIGN  
0
ADVANCE END OF  
VSYNC BY NVEND[4:0]  
DELAY END OF VSYNC  
BY NVEND[4:0]  
ADVANCE BEGIN OF  
VSYNC BY NVBEG[4:0]  
DELAY BEGIN OF  
VSYNC BY NVBEG[4:0]  
NOT VALID FOR USER  
PROGRAMMING  
NOT VALID FOR USER  
PROGRAMMING  
ODD FIELD?  
ODD FIELD?  
YES  
NO  
YES  
NO  
NVENDDELO  
1
NVENDDELE  
1
NVBEGDELO  
1
NVBEGDELE  
1
0
0
0
0
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
VSEHO  
1
VSEHE  
1
VSBHO  
1
VSBHE  
1
0
0
0
0
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
VSYNC END  
VSYNC BEGIN  
Figure 30. NTSC VSYNC End  
Figure 29. NTSC VSYNC Begin  
NVENDDELO NTSC VSYNC End Delay on Odd Field,  
Address 0xE6 [7]  
NVBEGDELO NTSC VSYNC Begin Delay on Odd Field,  
Address 0xE5 [7]  
0 (default)—No delay.  
0 (default)—No delay.  
1—Delays VSYNC from going low on an odd field by a line  
relative to NVEND.  
1—Delays VSYNC going high on an odd field by a line relative  
to NVBEG.  
NVENDDELE NTSC VSYNC End Delay on Even Field,  
Address 0xE6 [6]  
NVBEGDELE NTSC VSYNC Begin Delay on Even Field,  
Address 0xE5 [6]  
0 (default)—No delay.  
0 (default)—No delay.  
1—Delays VSYNC from going low on an even field by a line  
relative to NVEND.  
1—Delays VSYNC going high on an even field by a line relative  
to NVBEG.  
NVENDSIGN NTSC VSYNC End Sign, Address 0xE6 [5]  
NVBEGSIGN NTSC VSYNC Begin Sign, Address 0xE5 [5]  
0 (default)—Delays the end of VSYNC. Set for user manual  
programming.  
0—Delays the start of VSYNC. Set for user manual  
programming.  
1—Advances the end of VSYNC. Not recommended for user  
programming.  
1 (default)—Advances the start of VSYNC. Not recommended  
for user programming.  
NVEND[4:0] NTSC VSYNC End, Address 0xE6 [4:0]  
NVBEG[4:0] NTSC VSYNC Begin, Address 0xE5 [4:0]  
The default value of NVEND is 00100, indicating the NTSC  
VSYNC end position.  
The default value of NVBEG is 00101, indicating the NTSC  
VSYNC begin position. For all NTSC/PAL VSYNC timing  
controls, both the V bit in the AV code and the VSYNC on the  
VS pin are modified.  
For all NTSC/PAL VSYNC timing controls, both the V bit in  
the AV code and the VSYNC on the VS pin are modified.  
Rev. 0 | Page 44 of 108  
ADV7184  
NFTOGDELO NTSC Field Toggle Delay on Odd Field,  
Address 0xE7 [7]  
NFTOGSIGN NTSC Field Toggle Sign, Address 0xE7 [5]  
0—Delays the field transition. Set for user manual  
programming.  
0 (default)—No delay.  
1—Delays the field toggle/transition on an odd field by a line  
relative to NFTOG.  
1 (default)—Advances the field transition. Not recommended  
for user programming.  
NFTOGDELE NTSC Field Toggle Delay on Even Field,  
Address 0xE7 [6]  
NFTOG[4:0] NTSC Field Toggle, Address 0xE7 [4:0]  
The default value of NFTOG is 00011, indicating the NTSC  
Field toggle position.  
0—No delay.  
1 (default)—Delays the field toggle/transition on an even field  
by a line relative to NFTOG.  
For all NTSC/PAL field timing controls, both the F bit in the  
AV code and the field signal on the FIELD/DE pin are modified.  
PVBEGDELO PAL VSYNC Begin Delay on Odd Field,  
Address 0xE8 [7]  
1
NFTOGSIGN  
0
0 (default)—No delay.  
ADVANCE TOGGLE OF  
FIELD BY NFTOG[4:0]  
DELAY TOGGLE OF  
FIELD BY NFTOG[4:0]  
1—Delays VSYNC going high on an odd field by a line relative  
to PVBEG.  
NOT VALID FOR USER  
PROGRAMMING  
PVBEGDELE PAL VSYNC Begin Delay on Even Field,  
Address 0xE8 [6]  
ODD FIELD?  
YES  
NO  
0 (default)—No delay.  
1 (default)—Delays VSYNC going high on an even field by a  
line relative to PVBEG.  
NFTOGDELO  
1
NFTOGDELE  
1
0
0
PVBEGSIGN PAL VSYNC Begin Sign, Address 0xE8 [5]  
0—Delays the beginning of VSYNC. Set for user manual  
programming.  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
1 (default)—Advances the beginning of VSYNC. Not  
recommended for user programming.  
FIELD  
TOGGLE  
PVBEG[4:0] PAL VSYNC Begin, Address 0xE8 [4:0]  
Figure 31. NTSC FIELD Toggle  
The default value of PVBEG is 00101, indicating the PAL  
VSYNC begin position.  
For all NTSC/PAL VSYNC timing controls, both the V bit in  
the AV code and the VSYNC on the VS pin are modified.  
Table 63. Recommended User Settings for PAL (see Figure 33)  
Register  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0xE8  
0xE9  
0xEA  
Register Name  
VSYNC Field Control 1  
VSYNC Field Control 2  
VSYNC Field Control 3  
HSYNC Position 1  
HSYNC Position 2  
HSYNC Position 3  
Polarity  
Write  
0x1A  
0x81  
0x84  
0x00  
0x00  
0x7D  
0xA1  
0x41  
0x84  
0x06  
PAL_V_Bit_Beg  
PAL_V_Bit_End  
PAL_F_Bit_Tog  
Rev. 0 | Page 45 of 108  
ADV7184  
FIELD 1  
622  
623  
624  
625  
1
2
3
4
5
6
7
8
9
10  
22  
23  
24  
OUTPUT  
VIDEO  
H
V
PVBEG[4:0] = 0x5  
PVEND[4:0] = 0x4  
F
PFTOG[4:0] = 0x3  
FIELD 2  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
335  
336  
337  
OUTPUT  
VIDEO  
H
V
PVBEG[4:0] = 0x5  
PVEND[4:0] = 0x4  
F
PFTOG[4:0] = 0x3  
Figure 32. PAL Default (BT.656). The Polarity of H, V, and F is Embedded in the Data.  
FIELD 1  
622  
623  
624  
1
2
3
4
5
6
7
8
9
10  
11  
23  
24  
625  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
PVBEG[4:0] = 0x1  
PVEND[4:0] = 0x4  
FIELD  
OUTPUT  
PFTOG[4:0] = 0x6  
FIELD 2  
310  
311  
312  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
336  
337  
313  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
PVBEG[4:0] = 0x1  
PVEND[4:0] = 0x4  
FIELD  
OUTPUT  
PFTOG[4:0] = 0x6  
Figure 33. PAL Typical VSYNC/Field Positions Using Register Writes in Table 63  
Rev. 0 | Page 46 of 108  
ADV7184  
1
PVENDSIGN  
0
PVBEGSIGN  
1
0
ADVANCE END OF  
VSYNC BY PVEND[4:0]  
DELAY END OF VSYNC  
BY PVEND[4:0]  
ADVANCE BEGIN OF  
VSYNC BY PVBEG[4:0]  
DELAY BEGIN OF  
VSYNC BY PVBEG[4:0]  
NOT VALID FOR USER  
PROGRAMMING  
NOT VALID FOR USER  
PROGRAMMING  
ODD FIELD?  
ODD FIELD?  
YES  
NO  
YES  
NO  
PVENDDELO  
1
PVENDDELE  
1
PVBEGDELO  
1
PVBEGDELE  
1
0
0
0
0
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
VSEHO  
1
VSEHE  
1
VSBHO  
1
VSBHE  
1
0
0
0
0
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
VSYNC END  
VSYNC BEGIN  
Figure 35. PAL VSYNC End  
Figure 34. PAL VSYNC Begin  
PVEND[4:0] PAL VSYNC End, Address 0xE9 [4:0]  
PVENDDELO PAL VSYNC End Delay on Odd Field,  
Address 0xE9 [7]  
The default value of PVEND is 10100, indicating the PAL  
VSYNC end position.  
0 (default)—No delay.  
1—Delays VSYNC going low on an odd field by a line relative to  
PVEND.  
For all NTSC/PAL VSYNC timing controls, both the V bit in  
the AV code and the VSYNC on the VS pin are modified.  
PVENDDELE PAL VSYNC End Delay on Even Field,  
Address 0xE9 [6]  
PFTOGDELO PAL Field Toggle Delay on Odd Field, Address  
0xEA [7]  
0 (default)—No delay.  
0 (default)—No delay.  
1—Delays VSYNC going low on an even field by a line relative  
to PVEND.  
1—Delays the F toggle/transition on an odd field by a line  
relative to PFTOG.  
PVENDSIGN PAL VSYNC End Sign, Address 0xE9 [5]  
PFTOGDELE PAL Field Toggle Delay on Even Field, Address  
0xEA [6]  
0 (default)—Delays the end of VSYNC. Set for user manual  
programming.  
0 (default)—No delay.  
1—Advances the end of VSYNC. Not recommended for user  
programming.  
1 (default)—Delays the F toggle/transition on an even field by a  
line relative to PFTOG.  
Rev. 0 | Page 47 of 108  
ADV7184  
PFTOGSIGN PAL Field Toggle Sign, Address 0xEA [5]  
ENVSPROC Enable VSYNC Processor, Address 0x01 [3]  
0—Delays the field transition. Set for user manual  
programming.  
This block provides extra filtering of the detected VSYNCs to  
give improved vertical lock.  
1 (default)—Advances the field transition. Not recommended  
for user programming.  
0—Disables the VSYNC processor.  
1 (default)—Enables the VSYNC processor.  
PFTOG PAL Field Toggle, Address 0xEA [4:0]  
VBI DATA DECODE  
The default value of PFTOG is 00011, indicating the PAL field  
toggle position.  
There are two VBI data slicers on the ADV7184. The first is  
called is called the VBI data processor (VDP) and the second is  
called VBI System 2.  
For all NTSC/PAL field timing controls, the F bit in the AV  
code and the field signal on the FIELD/DE pin are modified.  
The VDP can slice both low bandwidth standards and high  
bandwidth standards such as teletext. VBI System 2 can slice  
low data-rate VBI standards only.  
1
PFTOGSIGN  
0
ADVANCE TOGGLE OF  
FIELD BY PTOG[4:0]  
DELAY TOGGLE OF  
FIELD BY PFTOG[4:0]  
The VDP is capable of slicing multiple VBI data standards on  
SD video. It decodes the VBI data on the incoming CVBS/YC or  
YUV data. The decoded results are available as ancillary data in  
output 656 data stream. For low data rate VBI standards like  
CC/WSS/CGMS the user can read the decoded data bytes from  
I2C registers.  
NOT VALID FOR USER  
PROGRAMMING  
ODD FIELD?  
YES  
NO  
The VBI data standards that can be decoded by the VDP are:  
PFTOGDELO  
1
PFTOGDELE  
1
PAL  
0
0
Teletext System A or C or D  
Teletext System B/WST  
ITU-BT-653  
ITU-BT-653  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
VPS (Video Programming System)  
VITC (Vertical Interval Time Codes)  
WSS (Wide Screen Signaling)  
ETSI EN 300 231 V 1.3.1  
BT.1119-1/  
ETSI.EN.300294  
CCAP (Closed Captioning)  
FIELD  
TOGGLE  
NTSC  
Figure 36. PAL F Toggle  
Teletext System B and D  
ITU-BT-653  
Teletext System C/NABTS  
VITC (Vertical Interval Time Codes)  
CGMS (Copy Generation Management EIA-J CPR-1204/IEC  
System)  
GEMSTAR  
CCAP (Closed Captioning)  
ITU-BT-653/EIA-516  
SYNC PROCESSING  
The ADV7184 has two additional sync processing blocks that  
postprocess the raw synchronization information extracted  
from the digitized input video. If desired, the blocks can be  
disabled via the following two I2C bits.  
61880  
EIA-608  
ENHSPLL Enable HSYNC Processor, Address 0x01 [6]  
The VBI data standard that the VDP decodes on a particular  
line of incoming video has been set by default as described in  
Table 64. This can be overridden manually and any VBI data  
can be decoded on any line. The details of manual program-  
ming are described in Table 65 and Table 66.  
The HSYNC processor is designed to filter incoming HSYNCs  
that have been corrupted by noise, providing improved per-  
formance for video signals with stable time bases but poor SNR.  
0—Disables the HSYNC processor.  
1 (default)—Enables the HSYNC processor.  
Rev. 0 | Page 48 of 108  
 
ADV7184  
0 (default)—The VDP decodes default standards on lines as  
shown in Table 64.  
VDP Default Configuration  
The VDP can decode different VBI data standards on a line-to-  
line basis. The various standards supported by default on  
different lines of VBI are explained in Table 64.  
1—VBI standards to be decoded are manually programmed.  
VBI_DATA_Px_Ny [3:0] VBI Standard to be Decoded on  
Line x for PAL, Line y for NTSC, Address 0x64-0x77, User  
Sub Map  
VDP Manual Configuration  
MAN_LINE_PGM Enable Manual Line Programming of VBI  
Standards, Address 0x64 [7] User Sub Map  
These are related 4-bit clusters contained from Register 0x64  
to Register 0x77 in the User Sub Map. The 4-bit, line pro-  
gramming registers, named VBI_DATA_Px_Ny, identifies the  
VBI data standard that would be decoded on line number X in  
PAL or on line number Y in NTSC mode. The different types of  
VBI standards decoded by VBI_DATA_Px_Ny are shown in  
Table 65. Note that the interpretation of its value depends on  
whether the ADV7184 is in PAL or NTSC mode.  
The user can configure the VDP to decode different standards on  
a line-to-line basis through manual line programming. For this,  
the user has to set the MAN_LINE_PGM bit. The user needs to  
write into all the line programming registers VBI_DATA_Px_Ny  
(Register 0x64 to Register 0x77, User Sub Map).  
Table 64. Default Standards on Lines for PAL and NTSC  
PAL – 625/50  
NTSC – 525/60  
Default VBI  
DATA Decoded Line No.  
Default VBI  
DATA Decoded Line No.  
Default VBI  
DATA Decoded  
Default VBI  
DATA Decoded  
Line No.  
6
7
8
9
Line No.  
286  
287  
288  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
VPS  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
VPS  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
WST  
VPS  
23  
24  
25  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Gemstar-1x  
Gemstar-1x  
Gemstar-1x  
NABTS  
NABTS  
NABTS  
NABTS  
VITC  
-
Gemstar-1x  
Gemstar-1x  
Gemstar-1x  
-
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
-
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
NABTS  
NABTS  
NABTS  
NABTS  
NABTS  
VITC  
NABTS  
VITC  
NABTS  
VITC  
VITC  
WST  
WST  
CCAP  
WSS  
WST  
NABTS  
NABTS  
NABTS  
CGMS  
CCAP  
VITC  
WST  
WST  
CCAP  
WST  
NABTS  
NABTS  
NABTS  
CGMS  
CCAP  
24 + Full  
22 + Full  
NABTS  
ODD Field  
ODD Field  
337 + Full  
EVEN Field  
WST  
285 + Full  
EVEN Field  
NABTS  
Table 65. VBI Data Standards—Manual Configuration  
VBI_DATA_Px_Ny  
625/50 – PAL  
525/60 – NTSC  
0000  
Disable VDP.  
Disable VDP.  
0001  
Teletext system identified by VDP_TTXT_TYPE.  
Teletext system identified by VDP_TTXT_TYPE.  
0010  
VPS – ETSI EN 300 231 V 1.3.1.  
Reserved.  
0011  
VITC.  
VITC.  
0100  
0101  
0110  
0111  
WSS BT.1119-1/ETSI.EN.300294.  
CGMS EIA-J CPR-1204/IEC 61880.  
Gemstar_1X.  
Gemstar_2X.  
CCAP EIA-608.  
Reserved.  
Reserved.  
Reserved.  
CCAP.  
1000 – 1111  
Reserved.  
Rev. 0 | Page 49 of 108  
ADV7184  
Table 66.VBI Data Standards to be Decoded on Line Px (PAL) or Line Ny (NTSC)  
Address  
Dec  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
Signal Name  
Register Location  
VDP_LINE_00F[7:4]  
VDP_LINE_010[7:4]  
VDP_LINE_011[7:4]  
VDP_LINE_012[7:4]  
VDP_LINE_013[7:4]  
VDP_LINE_014[7:4]  
VDP_LINE_015[7:4]  
VDP_LINE_016[7:4]  
VDP_LINE_017[7:4]  
VDP_LINE_018[7:4]  
VDP_LINE_019[7:4]  
VDP_LINE_01A[7:4]  
VDP_LINE_01B[7:4]  
VDP_LINE_01C[7:4]  
VDP_LINE_01D[7:4]  
VDP_LINE_01E[7:4]  
VDP_LINE_01F[7:4]  
VDP_LINE_020[7:4]  
VDP_LINE_021[7:4]  
VDP_LINEe_00E[3:0]  
VDP_LINE_00F[3:0]  
VDP_LINE_010[3:0]  
VDP_LINE_011[3:0]  
VDP_LINE_012[3:0]  
VDP_LINE_013[3:0]  
VDP_LINE_014[3:0]  
VDP_LINE_015[3:0]  
VDP_LINE_016[3:0]  
VDP_LINE_017[3:0]  
VDP_LINE_018[3:0]  
VDP_LINE_019[3:0]  
VDP_LINE_01A[3:0]  
VDP_LINE_01B[3:0]  
VDP_LINE_01C[3:0]  
VDP_LINE_01D[3:0]  
VDP_LINE_01E[3:0]  
VDP_LINE_01F[3:0]  
VDP_LINE_020[3:0]  
VDP_LINE_021[3:0]  
Hex  
VBI_DATA_P6_N23  
VBI_DATA_P7_N24  
VBI_DATA_P8_N25  
VBI_DATA_P9  
VBI_DATA_P10  
VBI_DATA_P11  
VBI_DATA_P12_N10  
VBI_DATA_P13_N11  
VBI_DATA_P14_N12  
VBI_DATA_P15_N13  
VBI_DATA_P16_N14  
VBI_DATA_P17_N15  
VBI_DATA_P18_N16  
VBI_DATA_P19_N17  
VBI_DATA_P20_N18  
VBI_DATA_P21_N19  
VBI_DATA_P22_N20  
VBI_DATA_P23_N21  
VBI_DATA_P24_N22  
VBI_DATA_P318  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
VBI_DATA_P319_N286  
VBI_DATA_P320_N287  
VBI_DATA_P321_N288  
VBI_DATA_P322  
VBI_DATA_P323  
VBI_DATA_P324_N272  
VBI_DATA_P325_N273  
VBI_DATA_P326_N274  
VBI_DATA_P327_N275  
VBI_DATA_P328_N276  
VBI_DATA_P329_N277  
VBI_DATA_P330_N278  
VBI_DATA_P331_N279  
VBI_DATA_P332_N280  
VBI_DATA_P333_N281  
VBI_DATA_P334_N282  
VBI_DATA_P335_N283  
VBI_DATA_P336_N284  
VBI_DATA_P337_N285  
Note:  
Teletext system identification: VDP assumes that if teletext  
is present in a video channel, all the teletext lines comply with a  
single standard system. Thus, the line programming using  
VBI_DATA_Px_Ny registers identifies whether the data in  
line is teletext; the actual standard is identified by the  
VDP_TTXT_TYPE_MAN bit.  
Full field detection (lines other than VBI lines) of any  
standard can also be enabled by writing into the registers  
VBI_DATA_P24_N22[3:0] and VBI_DATA_P337_N285[3:0].  
So, if VBI_DATA_P24_N22[3:0] is programmed with any  
teletext standard, then teletext is decoded off the whole of the  
ODD field. The corresponding register for the EVEN field is  
VBI_DATA_P337_N285[3:0].  
To program the VDP_TTXT_TYPE_MAN bit, the  
VDP_TTXT_TYPE_MAN_ENABLE bit must be set to 1.  
Rev. 0 | Page 50 of 108  
ADV7184  
VDP_TTXT_TYPE_MAN_ENABLE Enable Manual  
Selection of Teletext Type, Address 0x60 [2], User Sub Map  
The user may select the data identification word (DID) and the  
secondary data identification word (SDID) through  
programming the ADF_DID[4:0] and ADF_SDID[5:0] bits  
respectively as explained next.  
0 (default)—Manual programming of the teletext type is  
disabled.  
1—Manual programming of the teletext type is enabled.  
ADF_DID[4:0] User Specified Data ID Word in Ancillary  
Data, Address 0x62 [4:0], User Sub Map  
VDP_TTXT_TYPE_MAN [1:0] Specify the Teletext Type,  
Address 0x60 [1:0], User Sub Map  
This bit selects the data ID word to be inserted in the ancillary  
data stream with the data decoded by the VDP.  
These bits specify the teletext type to be decoded. These bits are  
functional only if VDP_TTXT_TYPE_MAN_ENABLE is set to 1.  
The default value of ADF_DID [4:0] is 10101.  
Table 67. VDP_TTXT_TYPE_MAN Function  
VDP_TTXT_  
TYPE_MAN  
ADF_SDID[5:0] User Specified Secondary Data ID Word in  
Ancillary Data, Address 0x63 [5:0], User Sub Map  
[1:0]  
Description  
These bits select the secondary data ID word to be inserted in  
the ancillary data stream with the data decoded by the VDP.  
625/50 (PAL )  
Teletext-ITU-  
BT.653- 625/50-A.  
Teletext-ITU-  
BT.653- 625/50-B  
(WST).  
Teletext-ITU-  
BT.653- 625/50-C.  
525/60 (NTSC).  
Reserved.  
00 (default)  
01  
The default value of ADF_SDID [5:0] is 101010.  
Teletext-ITU-BT.653-  
525/60-B.  
DUPLICATE_ADF Enable Duplication/Spreading of  
Ancillary Data over Y and C Buses, Address 0x 63 [7], User  
Sub Map  
10  
11  
Teletext-ITU-BT.653-  
525/60-C or EIA516  
(NABTS).  
Teletext-ITU-BT.653-  
525/60-D.  
This bit determines whether the ancillary data is duplicated  
over both Y and C buses or if the data packets are spread  
between the two channels.  
Teletext-ITU-  
BT.653- 625/50-D.  
0 (default)—The ancillary data packet is spread across the Y and  
C data streams.  
VDP Ancillary Data Output  
Reading the data back via I2C may not be feasible for VBI data  
standards with high data rates (for example, teletext). An  
alternative is to place the sliced data in a packet in the line  
blanking of the digital output CCIR656 stream. This is available  
for all standards sliced by the VDP module.  
1—The ancillary data packet is duplicated on the Y and C data  
streams.  
ADF_MODE [1:0] Determine the Ancillary Data Output  
Mode, Address 0x62 [6:5], User Sub Map  
These bits determine if the ancillary data output mode is in byte  
mode or nibble mode.  
When data has been sliced on a given line, the corresponding  
ancillary data packet is placed immediately after the next EAV  
code that occurs at the output (that is, data sliced from multiple  
lines are not buffered up and then emitted in a burst). Note that  
the line number on which the packet is placed differs from the  
line number on which the data was sliced due to the vertical  
delay through the comb filters.  
Table 68.  
ADF_MODE  
[1:0]  
Description  
00 (default)  
Nibble mode.  
01  
10  
Byte mode, no code restrictions.  
Byte mode but 0x00 and 0xFF prevented (0x00  
replaced by 0x01, 0xFF replaced by 0xFE).  
Users can enable or disable the insertion of VDP decoded results  
into the 656 ancillary streams by using the ADF_ENABLE bit.  
11  
Reserved.  
ADF_ENABLE Enable Ancillary Data Output Through 656  
Stream, Address 0x62 [7], User Sub Map  
0 (default)—Disables insertion of VBI decoded data into  
ancillary 656 stream.  
1—Enables insertion of VBI decoded data into ancillary 656  
stream.  
Rev. 0 | Page 51 of 108  
ADV7184  
EP  
. The MSB B9 is the inverse EP. This ensures that  
The ancillary data packet sequence is explained in Table 69 and  
Table 70. The nibble output mode is the default mode of output  
from the ancillary stream when ancillary stream output is  
enabled. This format is in compliance with ITU-R BT.1364.  
restricted codes 0x00 and 0xFF do not occur.  
Line_number [9:0]. The line number of the line that  
immediately precedes the ancillary data packet. The line  
number is as per the numbering system in ITU-R BT.470.  
The line number runs from 1 to 625 in a 625 line system  
and from 1 to 263 in a 525 line system. Note the line  
number on which the packet is output differs from the line  
number on which the VBI data was sliced due to the  
vertical delay through the comb filters.  
Data Count. The data count specifies the number of  
UDWs in the ancillary stream for the standard. The total  
number of user data-words = 4 × Data Count. Padding  
words may be introduced to make the total number of  
UDWs divisible by four.  
Some definitions of the abbreviations used in Table 69 and  
Table 70 include:  
EP. Even parity for bits B8 to B2. This means that the parity  
bit EP is set so that an even number of 1s are in bits in B8  
to B2, including the parity bit, D8.  
CS. Checksum word. The CS word is used to increase  
confidence of the integrity of the ancillary data packet  
from the DID, SDID, and DC through user data-words  
(UDWs). It consists of 10 bits: a 9-bit calculated value and  
B9 as the inverse of B8. The checksum value B8 to B0 is  
equal to the 9 LSBs of the sum of the 9 LSBs of the DID,  
SDID, and DC and all UDWs in the packet. Prior to the  
start of the checksum count cycle all checksum and carry  
bits are pre-set to zero. Any carry resulting from the  
checksum count cycle is ignored.  
Table 69. Ancillary Data in Nibble Output Format  
Byte  
B9  
B8  
B7  
B6  
B5  
0
B4  
0
B3  
0
B2  
0
B1  
0
B0  
0
Description  
0
1
2
0
0
0
0
Ancillary data preamble  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DID (data identification  
word)  
EP  
EP  
3
4
EP  
EP  
0
I2C_DID6_2[4:0]  
0
0
0
0
SDID (secondary data  
identification word)  
I2C_SDID7_2[5:0]  
DC[4:0]  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
.
5
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
.
0
0
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
.
Data count  
6
padding[1:0]  
VBI_DATA_STD[3:0]  
Line_number[9:5]  
ID0 (user data-word 1)  
ID1 (user data-word 2)  
ID2 (user data-word 3)  
ID3 (user data-word 4)  
User data-word 5  
User data-word 6  
User data-word 7  
User data-word 8  
User data-word 9  
7
0
8
Even_Field  
Line_number[4:0]  
9
0
0
0
0
0
0
.
0
0
0
0
0
0
.
0
0
VDP_TTXT_TYPE[1:0]  
10  
11  
12  
13  
14  
.
VBI_WORD_1[7:4]  
VBI_WORD_1[3:0]  
VBI_WORD_2[7:4]  
VBI_WORD_2[3:0]  
VBI_WORD_3[7:4]  
.
.
.
.
[Pad 0x200. These  
padding words may or  
may not be present  
depending on ancillary  
data type.] User data-  
word XX  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
n-3  
n-2  
n-1  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
B8  
Checksum  
CS (checksum word)  
Rev. 0 | Page 52 of 108  
ADV7184  
Table 70. Ancillary Data in Byte Output Format1  
Byte  
B9  
B8  
B7  
B6  
B5  
0
B4  
0
B3  
0
B2  
0
B1  
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
.
B0  
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
.
Description  
0
0
0
0
0
Ancillary data preamble  
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
EP  
EP  
EP  
EP  
EP  
EP  
EP  
3
EP  
EP  
EP  
EP  
EP  
EP  
EP  
0
I2C_DID6_2[4:0]  
I2C_SDID7_2[5:0]  
DC[4:0]  
DID  
4
SDID  
5
0
Data count  
6
padding[1:0]  
VBI_DATA_STD[3:0]  
Line_number[9:5]  
ID0 (user data-word 1)  
ID1 (user data-word 2)  
ID2 (user data-word 3)  
ID3 (user data-word 4)  
User data-word 5  
User data-word 6  
User data-word 7  
User data-word 8  
User data-word 9  
7
0
8
Even_Field  
0
Line_number[4:0]  
9
0
0
0
VDP_TTXT_TYPE[1:0]  
10  
11  
12  
13  
14  
.
VBI_WORD_1[7:0]  
VBI_WORD_2[7:0]  
VBI_WORD_3[7:0]  
VBI_WORD_4[7:0]  
VBI_WORD_5[7:0]  
.
.
.
.
.
.
.
.
[Pad 0x200. These  
padding words may or  
may not be present  
depending on ancillary  
data type.] User data-  
word XX  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
n-3  
n-2  
n-1  
1
1
B8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Checksum  
1 This mode does not fully comply with ITU-R BT.1364.  
Example  
Structure of VBI Words in Ancillary Data Stream  
Each VBI data standard has been split into a clock-run-in  
For teletext (B-WST) the framing code byte is 11100100(0xE4),  
bits shown in the order of transmission. Thus, VBI_WORD_1 =  
0x27, VBI_WORD_2 = 0x00 and VBI_WORD_3 = 0x00.  
Translating them into UDWs in the ancillary data stream, for  
the nibble mode:  
(CRI), a framing code (FC) and a number of data bytes (n). The  
data packet in the ancillary stream includes only the FC and  
data bytes. The VBI_WORD_X in the ancillary data stream has  
the following format.  
Table 71. Structure of VBI Data-Words in Ancillary Stream  
UDW5 [5:2] = 0010  
Ancillary data byte  
number  
Byte  
Type  
Byte Description  
Framing code [23:16].  
Framing Code [15:8].  
Framing Code [7:0].  
1st data byte.  
UDW6 [5:2] = 0111  
VBI_WORD_1  
VBI_WORD_2  
VBI_WORD_3  
VBI_WORD_4  
FC0  
FC1  
FC2  
DB1  
UDW7 [5:2] = 0000 (undefined bits made zeros)  
UDW8 [5:2] = 0000 (undefined bits made zeros)  
UDW9 [5:2] = 0000 (undefined bits made zeros)  
UDW10 [5:2] = 0000 (undefined bits made zeros)  
and for the byte mode:  
VBI_WORD_N+3  
DBn  
Last (nth) data byte.  
VDP Framing Code  
UDW5 [9:2] = 0010_0111  
The length of the actual framing code depends on the VBI data  
standard. For uniformity, the length of the framing code  
reported in the ancillary data stream is always 24 bits. For  
standards with a lesser framing code length, the extra LSB bits  
are set to 0. The valid length of the framing code can be  
decoded from the VBI_DATA_STD bit available in ID0  
(UDW 1). The framing code is always reported in the inverse-  
transmission order. Table 72 shows the framing code and its  
valid length for VBI data standards supported by VDP.  
UDW6 [9:2] = 0000_0000 (undefined bits made zeros)  
UDW7 [9:2] = 0000_0000 (undefined bits made zeros)  
Rev. 0 | Page 53 of 108  
ADV7184  
Data Bytes  
The VBI_WORD_4 to VBI_WORD_N+3 contains the data-  
words that were decoded by the VDP in the transmission order.  
The position of bits in bytes is in the inverse transmission order.  
The number of VBI_WORDS for each VBI data standard and  
the total number of UDWs in the ancillary data stream is shown  
in Table 73.  
For example, closed caption has two user data bytes as shown in  
Table 77. The data bytes in the ancillary data stream would be:  
VBI_WORD_4 = Byte1 [7:0]  
VBI_WORD_5 = Byte2 [7:0]  
Table 72. Framing Code Sequence for Different VBI Standards  
Error Free Framing Code Bits  
(In Order of Transmission )  
Error Free Framing Code Reported by  
VDP (In Reverse Order of Transmission )  
VBI Standard  
Length in Bits  
TTXT_SYSTEM_A (PAL)  
TTXT_SYSTEM_B (PAL)  
TTXT_SYSTEM_B (NTSC)  
TTXT_SYSTEM_C (PAL and NTSC)  
TTXT_SYSTEM_D (PAL and NTSC)  
VPS (PAL)  
VITC (NTSC and PAL)  
WSS (PAL)  
GEMSTAR_1X (NTSC)  
GEMSTAR_2X (NTSC)  
CCAP (NTSC and PAL)  
CGMS (NTSC)  
8
8
8
8
8
16  
1
24  
3
11  
3
11100111  
11100100  
11100100  
11100111  
11100101  
10001010100011001  
0
000111100011110000011111  
001  
1001_1011_101  
001  
0
11100111  
00100111  
00100111  
11100111  
10100111  
1001100101010001  
0
111110000011110001111000  
100  
101_1101_1001  
100  
0
1
Table 73. Total User Data-Words for Different VBI Standards1  
Framing_code  
UDWs  
VBI Data  
Words  
Number of  
Padding Words  
VBI Standard  
ADF Mode  
Total UDWs  
00 (Nibble Mode)  
01,10 (Byte Mode)  
00 (Nibble Mode)  
01,10 (Byte Mode)  
00 (Nibble Mode)  
01,10 (Byte Mode)  
00 (Nibble Mode)  
01,10 (Byte Mode)  
00 (Nibble Mode)  
01,10 (Byte Mode)  
00 (Nibble Mode)  
01,10 (Byte Mode)  
00 (Nibble Mode)  
01,10 (Byte Mode)  
00 (Nibble Mode)  
01,10 (Byte Mode)  
00 (Nibble Mode)  
01,10 (Byte Mode)  
00 (Nibble Mode)  
01,10 (Byte Mode)  
00 (Nibble Mode)  
01,10 (Byte Mode)  
00 (Nibble Mode)  
01,10 (Byte Mode)  
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
74  
37  
84  
42  
68  
34  
66  
33  
68  
34  
26  
13  
18  
9
4
2
4
2
8
4
4
2
0
0
2
3
2
3
0
2
2
3
0
0
0
0
2
3
2
3
2
1
2
3
0
2
84  
44  
96  
52  
80  
44  
76  
42  
80  
44  
36  
20  
28  
16  
16  
12  
16  
12  
20  
12  
16  
12  
16  
12  
TTXT_SYSTEM_A (PAL)  
TTXT_SYSTEM_B (PAL)  
TTXT_SYSTEM_B (NTSC)  
TTXT_SYSTEM_C (PAL and NTSC)  
TTXT_SYSTEM_D (PAL and NTSC)  
VPS (PAL)  
VITC (NTSC and PAL)  
WSS (PAL)  
GEMSTAR_1X (NTSC)  
GEMSTAR_2X (NTSC)  
CCAP (NTSC and PAL)  
6
CGMS (NTSC)  
3 + 3  
1 The first four UDWs are always the ID.  
Rev. 0 | Page 54 of 108  
ADV7184  
I2C Interface  
VDP—Content-Based Data Update  
Dedicated I2C readback registers are available for CCAP,  
CGMS, WSS, Gemstar, VPS, PDC/UTC and VITC. Because  
teletext is a high data rate standard, data extraction is supported  
only through the ancillary data packet. The details of these  
registers and their access procedure are described next.  
For certain standards like WSS, CGMS, Gemstar, PDC, UTC,  
and VPS the information content in the signal transmitted  
remains the same over numerous lines and the user may want to  
be notified only when there is a change in the information  
content or loss of the information content. The user must  
enable content-based updating for the required standard  
through the GS_VPS_PDC_UTC_CB_CHANGE and  
WSS_CGMS_CB_CHANGE bits. Thus the AVAILABLE bit  
shows the availability of that standard only when its content  
changes.  
User Interface for I2C Readback Registers  
The VDP decodes all enabled VBI data standards in real time.  
Since the I2C access speed is much lower than the decoded  
rate, when the registers are being accessed they may be updated  
with data from the next line. In order to avoid this, VDP has  
a self-clearing CLEAR bit and an AVAILABLE status bit  
accompanying all the I2C readback registers.  
Content-based updating also applies to loss of data at the lines  
where some data was present before. Thus, for standards like  
VPS, Gemstar, CGMS, and WSS, if no data arrives in the next  
four lines programmed, the corresponding AVAILABLE bit in  
the VDP_STATUS register is set high and the content in the I2C  
registers for that standard is set to zero. The user has to write  
high to the corresponding CLEAR bit so that when a valid line  
is decoded after some time, the decoded results are available  
into the I2C registers, with the AVAILABLE status bit set high.  
The user has to clear the I2C readback register by writing a high  
to the CLEAR bit. This resets the state of the AVAILABLE bit to  
low and indicates that the data in the associated readback  
registers is not valid. After the VDP decodes the next line of the  
corresponding VBI data, the decoded data is placed in the I2C  
readback register and the AVAILABLE bit is set to HIGH to  
indicate that valid data is now available.  
If content-based updating is enabled, the AVAILABLE bit is set  
high (assuming the CLEAR bit was written) in the following cases:  
Though the VDP decodes this VBI data in subsequent lines if  
present, the decoded data is not updated to the readback  
registers until the CLEAR bit is set high again. However, this  
data is available through the 656 ancillary data packets.  
The data contents change.  
Data was being decoded and four lines with no data have  
been detected.  
The CLEAR and AVAILABLE bits are in the VDP_CLEAR  
(0x78, User Sub Map, write only) and VDP_STATUS (0x78,  
User Sub Map, read only) registers.  
No data was being decoded and new data is now being  
decoded.  
GS_VPS_PDC_UTC_CB_CHANGE Enable Content-Based  
Updating for Gemstar/VPS/PDC/UTC, Address 0x9C [5],  
User Sub Map  
Example I2C Readback Procedure  
The following tasks have to be performed to read one packet  
(line) of PDC data from the decoder.  
0—Disables content-based updating.  
1. Write 10 to I2C_GS_VPS_PDC_UTC[1:0] (0x9C, User Sub  
Map) to specify that PDC data has to be updated to I2C  
registers.  
1 (default)—Enables content-based updating.  
WSS_CGMS_CB_CHANGE Enable Content-Based Updating  
for WSS/CGMS, Address 0x9C [4], User Sub Map  
2. Write high to the GS_PDC_VPS_UTC_CLEAR bit (0x78,  
User Sub Map) to enable I2C register updating.  
0—Disables content-based updating.  
1 (default)—Enables content-based updating.  
3. Poll the GS_PDC_VPS_UTC_AVL bit (0x78, User Sub  
Map) going high to check the availability of the PDC  
packets.  
VDP—Interrupt-Based Reading of VDP I2C registers  
Some VDP status bits are also linked to the interrupt request  
controller so that the user does not have to poll the  
AVAILABLE status bit. The user can configure the video  
decoder to trigger an interrupt request on the INTRQ pin in  
response to the valid data available in I2C registers. This  
function is available for the following data types:  
4. Read the data bytes from the PDC I2C registers. To read  
another line or packet of data the above steps have to be  
repeated.  
To read a packet of CC, CGMS, or WSS data, steps 1 through 3  
only are required since they have dedicated registers.  
CGMS or WSS: The user can select between triggering an  
interrupt request each time sliced data is available or triggering  
an interrupt request only when the sliced data has changed.  
Selection is made via the WSS_CGMS_CB_CHANGE bit.  
Rev. 0 | Page 55 of 108  
ADV7184  
Gemstar, PDC, VPS, or UTC: The user can select between  
triggering an interrupt request each time sliced data is available  
or triggering an interrupt request only when the sliced data has  
changed. Selection is made via the GS_VPS_PDC_UTC_CB_  
CHANGE bit.  
VDP_VITC_MSKB Address 0x50 [6], User Sub Map  
0 (default)—Disables interrupt on VDP_VITC_Q signal.  
1—Enables interrupt on VDP_VITC_Q signal.  
Interrupt Status Register Details  
The sequence for the interrupt-based reading of the VDP I2C  
data registers is the following for the CCAP standard.  
The following read-only bits contain data detection information  
from the VDP module from the time the status bit has been last  
cleared or unmasked.  
1. User unmasks CCAP interrupt mask bit (0x50 Bit 0, User  
Sub Map = 1). CCAP data occurs on the incoming video.  
VDP slices CCAP data and places it in the VDP readback  
registers.  
2. The VDP CCAP available bit goes high and the VDP  
module signals to the interrupt controller to stimulate an  
interrupt request (for CCAP in this case).  
3. The user reads the interrupt status bits (User Sub Map) and  
sees that new CCAP data is available (0x4E Bit 0, User Sub  
Map = 1).  
VDP_CCAPD_Q Address 0x4E [0], User Sub Map  
0 (default)—CCAP data has not been detected.  
1—CCAP data has been detected.  
VDP_CGMS_WSS_CHNGD_Q Address 0x4E [2], User Sub  
Map  
0 (default)—CGMS or WSS data has not been detected.  
1—CGM or WSS data has been detected.  
4. The user writes 1 to the CCAP interrupt clear bit (0x4F  
Bit 0, User Sub Map = 1) in the Interrupt I2C space (this is  
a self-clearing bit). This clears the interrupt on the INTRQ  
pin but does NOT have an effect in the VDP I2C area.  
5. The user reads the CCAP data from the VDP I2C area.  
6. The user writes to a bit, CC_CLEAR in the VDP_STATUS  
[0] register, (0x78 Bit 0, User Sub Map = 1) to signify the  
CCAP data has been read (=> the VDP CCAP can be  
updated at the next occurrence of CCAP).  
VDP_GS_VPS_PDC_UTC_CHNG_Q Address 0x4E [4], User  
Sub Map  
0 (default)—Gemstar, PDC, UTC, or VPS data has not been  
detected.  
1—Gemstar, PDC, UTC, or VPS data has been detected.  
VDP_VITC_Q Address 0x4E [6], User Sub Map, read only  
0 (default)—VITC data has not been detected.  
1—VITC data has been detected.  
7. Back to step 2.  
Interrupt Mask Register Details  
Interrupt Status Clear Register Details  
The following bits set the interrupt mask on the signal from the  
VDP VBI data slicer.  
It is not necessary to write 0 to these write-only bits as they  
automatically reset when they are set (self-clearing).  
VDP_CCAPD_MSKB Address 0x50 [0], User Sub Map  
0 (default)—Disables interrupt on VDP_CCAPD_Q signal.  
1—Enables interrupt on VDP_CCAPD_Q signal.  
VDP_CCAPD_CLR Address 0x4F [0], User Sub Map  
1—Clears VDP_CCAP_Q bit.  
VDP_CGMS_WSS_CHNGD_CLR Address 0x4F [2], User  
Sub Map  
VDP_CGMS_WSS_CHNGD_MSKB Address 0x50 [2], User  
Sub Map  
1—Clears VDP_CGMS_WSS_CHNGD_Q bit.  
0 (default)—Disables interrupt on VDP_CGMS_WSS_  
CHNGD_Q signal.  
VDP_GS_VPS_PDC_UTC_CHNG_CLR Address 0x4F [4],  
User Sub Map  
1—Enables interrupt on VDP_CGMS_WSS_CHNGD_Q  
signal.  
1—Clears VDP_GS_VPS_PDC_UTC_CHNG_Q bit.  
VDP_GS_VPS_PDC_UTC_CHNG_MSKB Address 0x50 [4],  
User Sub Map  
VDP_VITC_CLR Address 0x4F [6], User Sub Map  
1—Clears VDP_VITC_Q bit.  
0 (default)—Disables interrupt on  
VDP_GS_VPS_PDC_UTC_CHNG_Q signal.  
1—Enables interrupt on VDP_GS_VPS_PDC_UTC_CHNG_Q  
signal.  
Rev. 0 | Page 56 of 108  
ADV7184  
I2C READBACK REGISTERS  
Teletext  
WST_PKT_DECOD_DISABLE Disable Hamming Decoding  
of Bytes in WST, Address 0x60 [3], User Sub Map  
0—Enables hamming decoding of WST packets  
Because teletext is a high data rate standard, the decoded bytes  
are available only as ancillary data. However, a TTX_AVL bit  
has been provided in I2C so that the user can check whether or  
not the VDP has detected teletext. Note that the TTXT_AVL bit  
is a plain status bit and does not use the protocol identified in  
the I2C Interface section.  
1 (default)—Disables hamming decoding of WST packets.  
For hamming coded bytes, the dehammed nibbles are output  
along with some error information from the hamming decoder  
as follows.  
Input Hamming Coded byte: {D3, P3, D2, P2, D1, P1, D0,  
P0} (bits in decoded order)  
TTXT_AVL Teletext Detected Status bit, Address 0x78 [7],  
User Sub Map, Read Only  
Output Dehammed byte: {E1, E0, 0, 0, D3, D2, D1, D0’}  
(Di’ – corrected bits, Ei error info).  
0—Teletext was not detected.  
1—Teletext was detected.  
Table 74. Explanation of Error Bits in the Dehammed  
Output Byte  
WST Packet Decoding  
E[1:0] Error Information  
Output Data Bitsin Nibble  
For WST ONLY, the VDP decodes the Magazine and Row  
address of WST teletext packets and further decodes the  
packet’s 8x4 hamming coded words. This feature can be  
disabled using WST_PKT_ DECOD_ DISABLE bit (Bit 3,  
register 0x60, User Sub Map). The feature is valid for WST only.  
00  
01  
10  
11  
No errors detected  
Error in P4  
Double error  
Single error found and  
corrected  
OK  
OK  
BAD  
OK  
Table 75 describes the different WST packets that are decoded.  
Table 75. WST Packet Description  
Packet  
Byte  
Description  
Header Packet  
(X/00)  
1Pst Byte  
Mag No. – Dehammed Byte 4.  
Row No. – Dehammed Byte 5.  
Page No. – Dehammed Byte 6.  
Page No. – Dehammed Byte 7.  
Control Bytes – Dehammed Byte 8 to Byte 13.  
Raw data bytes.  
2Pnd Byte  
3rd Byte  
4th Byte  
5th to 10th Byte  
11th to 42nd Byte  
1st Byte  
Text Packets  
(X/01 to X/25)  
Mag No. – Dehammed Byte 4.  
Row No. – Dehammed Byte 5.  
Raw data bytes.  
2nd Byte  
3rd to 42nd Byte  
1st Byte  
2nd Byte  
3rd Byte  
4th Byte to 10th Byte  
11th to 23rd Byte  
24th to 42nd Byte  
1st Byte  
2nd Byte  
3rd Byte  
4th Byte to 10th Byte  
11th to 23rd Byte  
24th to 42nd Byte  
1st Byte  
2nd Byte  
3rd Byte  
4th to 42nd Byte  
8/30 (Format 1) packet  
Desig Code = 0000 or 0001  
UTC  
Mag No. – Dehammed Byte 4.  
Row No. – Dehammed Byte 5.  
Desig Code. – Dehammed Byte 6.  
Dehammed Initial Teletext Page Byte 7 to Byte 12.  
UTC bytes – Dehammed Bytes 13 to Byte 25.  
Raw status bytes.  
8/30 (Format 2) packet  
Desig Code = 0010 or 0011  
PDC  
Mag No. – Dehammed Byte 4.  
Row No. – Dehammed Byte 5.  
Desig Code. – Dehammed Byte 6.  
Dehammed Initial Teletext Page Byte 7 to Byte 12.  
PDC bytes – Dehammed Byte 13 to Byte 25.  
Raw status bytes.  
X/26, X/27, X/28, X/29, X/30, X/311  
Mag No. – Dehammed Byte 4.  
Row No. – Dehammed Byte 5.  
Desig Code. – Dehammed Byte 6.  
Raw data bytes.  
1 For X/26, X/28 and M/29, further decoding needs 24x18 hamming decoding. Not supported at present.  
Rev. 0 | Page 57 of 108  
 
ADV7184  
CCAP  
CGMS and WSS  
Two bytes of decoded closed caption data are available in the  
I2C registers. The field information of the decoded CCAP data  
can be obtained from the CC_EVEN_FIELD bit (register 0x78).  
The CGMS and WSS data packets convey the same type of  
information for different video standards. WSS is for PAL and  
CGMS is for NTSC and hence the CGMS and WSS readback  
registers are shared. WSS is bi-phase coded; the VDP does a  
biphase decoding to produce the 14 raw WSS bits in the  
CGMS/WSS readback I2C registers and sets the  
CC_CLEAR Closed Caption Clear, Address 0x78 [0] User  
Sub Map, Write Only, Self Clearing  
1—Re-initializes the CCAP readback registers.  
CGMS_WSS_AVL bit.  
CC_AVL Closed Caption Available, Address 0x78 [0], User  
Sub Map, Read Only  
CGMS_WSS_CLEAR CGMS/WSS Clear, Address 0x78 [2],  
User Sub Map, Write Only, Self Clearing  
0—Closed captioning was not detected.  
1—Closed captioning was detected.  
1—Re-initializes the CGMS/WSS readback registers.  
CGMS_WSS_AVL CGMS/WSS Available Bit, Address 0x78  
[2], User Sub Map, Read Only  
CC_EVEN_FIELD Address 0x78 [1], User Sub Map, Read  
Only  
0—CGMS/WSS was not detected.  
1—CGMS/WSS was detected.  
Identifies the field from which the CCAP data was decoded.  
0—Closed captioning detected on an ODD field.  
CGMS_WSS_DATA_0[3:0] Address 0x7D [3:0]  
CGMS_WSS_DATA_1[7:0] Address 0x7E [7:0]  
CGMS_WSS_DATA_2[7:0] Address 0x7F [7:0]  
1—Closed captioning was detected on an EVEN field.  
VDP_CCAP_DATA_0 Address 0x79 [7:0], User Sub Map,  
Read Only  
User Sub Map, read only. These bits hold the decoded CGMS or  
WSS data.  
Decoded Byte 1 of CCAP data.  
Refer to Figure 37 and Figure 38 for the I2C to WSS and CGMS  
bit mapping.  
VDP_CCAP_DATA_1 Address 0x7A [7:0], User Sub Map,  
Read Only  
Decoded Byte 2 of CCAP data.  
VDP_CGMS_WSS_  
VDP_CGMS_WSS_DATA_2 DATA_1[5:0]  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
RUN-IN  
SEQUENCE  
START  
CODE  
ACTIVE  
VIDEO  
11.0μs  
38.4μs  
42.5μs  
Figure 37. WSS Waveform  
+100 IRE  
+70 IRE  
VDP_CGMS_WSS_  
DATA_0[3:0]  
REF  
VDP_CGMS_WSS_DATA_2  
VDP_CGMS_WSS_DATA_1  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
0 IRE  
49.1μs  
± 0.5μs  
–40 IRE  
11.2μs  
CRC SEQUENCE  
2.235μs  
± 20ns  
Figure 38. CGMS Waveform  
Rev. 0 | Page 58 of 108  
ADV7184  
Table 76. CGMS Readback Registers1  
Signal Name  
Register Location  
Address (User Sub Map)  
CGMS_WSS_DATA_0[3:0]  
CGMS_WSS_DATA_1[7:0]  
CGMS_WSS_DATA_2[7:0]  
VDP_CGMS_WSS_DATA_0 [3:0]  
VDP_CGMS_WSS_DATA_1 [7:0]  
VDP_CGMS_WSS_DATA_2 [7:0]  
125  
126  
127  
0x7D  
0x7E  
0x7F  
1 The register is a readback register; default value does not apply.  
10.5  
±
0.25μs  
12.91μs  
7 CYCLES  
OF 0.5035MHz  
(CLOCK RUN-IN)  
0
1
2
3 4 5 6  
7
0 1  
2
3
4 5  
6
7
S
T
A
R
T
P
A
R
I
T
Y
P
A
R
I
T
Y
50 IRE  
40 IRE  
VDP_CCAP_DATA_0 VDP_CCAP_DATA_1  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003μs  
27.382μs  
33.764μs  
Figure 39.CCAP Waveform and Decoded Data Correlation  
Table 77. CCAP Readback Registers1  
Signal Name  
Register Location  
VDP_CCAP_DATA_0[7:0]  
VDP_CCAP_DATA_1[7:0]  
Address (User Sub Map)  
121 0x79  
122 0x7A  
CCAP_BYTE_1[7:0]  
CCAP_BYTE_2[7:0]  
1 The register is a readback register; default value does not apply.  
TO  
BIT0, BIT1  
BIT88, BIT89  
VITC WAVEFORM  
Figure 40. VITC Waveform and Decoded Data Correlation  
VITC  
VITC_CLEAR VITC Clear, Address 0x78 [6], User Sub Map,  
Write Only, Self Clearing  
VITC has a sync sequence of 10 in between each data byte.  
The VDP strips these syncs from the data stream to give out  
only the data bytes. The VITC results are available in  
VDP_VITC_DATA_0 to VDP_VITC_DATA_8 registers  
(Register 0x92 to Register 0x9A, User Sub Map).  
1—Re-initializes the VITC readback registers.  
VITC_AVL VITC Available, Address 0x78 [6], User Sub Map  
0—VITC data was not detected.  
1—VITC data was detected.  
The VITC has a CRC byte at the end; the in-between syncs  
are also used in this CRC calculation. Since the in-between  
syncs are not given out, the CRC is also calculated internally.  
The calculated CRC is also available for the user in  
VITC_CALC_CRC register (Resister 0x9B, User Sub Map).  
Once the VDP completes decoding the VITC line, the  
VITC_DATA and VITC_CALC_CRC registers are updated  
and VITC_AVL bit is set.  
VITC Readback Registers  
See Figure 40 for the I2C to VITC bit mapping.  
Rev. 0 | Page 59 of 108  
ADV7184  
Table 78. VITC Readback Registers1  
Signal Name  
Register Location  
Address (User Sub Map)  
VITC_DATA_0[7:0]  
VITC_DATA_1[7:0]  
VITC_DATA_2[7:0]  
VITC_DATA_3[7:0]  
VITC_DATA_4[7:0]  
VITC_DATA_5[7:0]  
VITC_DATA_6[7:0]  
VITC_DATA_7[7:0]  
VITC_DATA_8[7:0]  
VITC_CALC_CRC[7:0]  
VDP_VITC_DATA_0[7:0]  
VDP_VITC_DATA_1[7:0]  
VDP_VITC_DATA_2[7:0]  
VDP_VITC_DATA_3[7:0]  
VDP_VITC_DATA_4[7:0]  
VDP_VITC_DATA_5[7:0]  
VDP_VITC_DATA_6[7:0]  
VDP_VITC_DATA_7[7:0]  
VDP_VITC_DATA_8[7:0]  
VDP_VITC_CALC_CRC[7:0]  
(VITC bits [9:2])  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
(VITC bits [19:12])  
(VITC bits [29:22])  
(VITC bits [39:32])  
(VITC bits [49:42])  
(VITC bits [59:52])  
(VITC bits [69:62])  
(VITC bits [79:72])  
(VITC bits [89:82])  
1 The register is a readback register; default value does not apply.  
VPS  
VPS/PDC/UTC/GEMSTAR  
The VPS data bits are bi-phase decoded by the VDP. The  
decoded data is available in both the ancillary stream and in the  
I2C readback registers. VPS decoded data is available in the  
VDP_GS_VPS_PDC_UTC_0 to VDP_VPS_PDC_UTC_12  
registers (addresses 0x84 – 0x90, User Sub Map). The GS_VPS_  
PDC_UTC_AVL bit is set if the user had programmed  
I2C_GS_VPS_PDC_UTC to 01, as explained in Table 79.  
The readback registers for VPS, PDC and UTC have been  
shared. Gemstar is a high data rate standard and so is available  
only through the ancillary stream; however, for evaluation  
purposes any one line of Gemstar is available through I2C  
registers sharing the same register space as PDC, UTC, and  
VPS. Thus only one standard out of VPS, PDC, UTC, and  
Gemstar can be read through the I2C at a time.  
GEMSTAR  
The user has to program I2C_GS_VPS_PDC_UTC[1:0]  
(register address 0x9C, User Sub Map)to identify the data that  
should be made available in the I2C registers.  
The Gemstar decoded data is made available in the ancillary  
stream and any one line of Gemstar is also available in I2C  
registers for evaluation purposes. In order to obtain Gemstar  
results in I2C registers, the user has to program  
I2C_GS_VPS_PDC_UTC (VDP) [1:0] Address 0x9C [6:5],  
User Sub Map  
Specifies which standard result to be available for I2C readback.  
I2C_GS_VPS_PDC_UTC to 00, as explained in Table 79.  
VDP supports auto detection of Gemstar standard between  
Gemstar 1× or Gemstar 2× and decodes accordingly. For this  
auto detection mode to work the user has to set  
Table 79. I2C_GS_VPS_PDC_UTC[1:0] Function  
I2C_GS_VPS_PDC_UTC[1:0] Description  
00 (default)  
Gemstar 1x/2x.  
VPS.  
PDC.  
AUTO_DETECT_GS_TYPE I2C bit (register 0x61, User Sub  
Map) and program the decoder to decode Gemstar 2× on the  
required lines through line programming. The type of Gemstar  
decoded can be determined by observing the bit  
01  
10  
11  
UTC.  
GS_DATA_TYPE bit (Register 0x78, User Sub Map).  
GS_PDC_VPS_UTC_CLEAR GS/PDC/VPS/UTC Clear,  
Address 0x78 [4], User Sub Map, Write Only, Self Clearing  
AUTO_DETECT_GS_TYPE, Address 0x61 [4], User Sub Map  
0 (default)—Disables autodetection of Gemstar type.  
1—Enables autodetection.  
1—Re-initializes the GS/PDC/VPS/UTC data readback  
registers.  
GS_PDC_VPS_UTC_AVL GS/PDC/VPS/UTC Available ,  
Address 0x78 [4], User Sub Map, Read Only  
GS_DATA_TYPE, Address 0x78 [5], User Sub Map, Read  
Only  
0—One of GS, PDC, VPS or UTC data was not detected.  
1—One of GS, PDC, VPS, or UTC data was detected.  
Identifies the decoded Gemstar data type.  
0—Gemstar 1× mode is detected. Read 2 data bytes from 0x84.  
1—Gemstar 2× mode is detected. Read 4 data bytes from 0x84.  
VDP_GS_VPS_PDC_UTC Readback Registers  
The Gemstar data that is available in the I2C register could be  
from any line of the input video on which Gemstar was  
decoded. To read the Gemstar data on a particular video line,  
the user should use the Manual Configuration as described in  
Table 65 and Table 66 and enable Gemstar decoding on the  
required line only.  
See Table 80.  
Rev. 0 | Page 60 of 108  
ADV7184  
Table 80. GS /VPS/PDC/UTC Readback Registers1  
Address (User Sub Map)  
Signal Name  
Register Location  
Dec  
Hex  
GS_VPS_PDC_UTC_BYTE_0[7:0]  
GS_VPS_PDC_UTC_BYTE_1[7:0]  
GS_VPS_PDC_UTC_BYTE_2[7:0]  
GS_VPS_PDC_UTC_BYTE_3[7:0]  
VPS_PDC_UTC_BYTE_4[7:0]  
VPS_PDC_UTC_BYTE_5[7:0]  
VPS_PDC_UTC_BYTE_6[7:0]  
VPS_PDC_UTC_BYTE_7[7:0]  
VPS_PDC_UTC_BYTE_8[7:0]  
VPS_PDC_UTC_BYTE_9[7:0]  
VPS_PDC_UTC_BYTE_10[7:0]  
VPS_PDC_UTC_BYTE_11[7:0]  
VPS_PDC_UTC_BYTE_12[7:0]  
VDP_GS_VPS_PDC_UTC_0[7:0]  
VDP_GS_VPS_PDC_UTC_1[7::0]  
VDP_GS_VPS_PDC_UTC_2[7:0]  
VDP_GS_VPS_PDC_UTC_3[7:0]  
VDP_VPS_PDC_UTC_4[7:0]  
VDP_VPS_PDC_UTC_5[7:0]  
VDP_VPS_PDC_UTC_6[7:0]  
VDP_VPS_PDC_UTC_7[7:0]  
VDP_VPS_PDC_UTC_8[7:0]  
VDP_VPS_PDC_UTC_9[7:0]  
VDP_VPS_PDC_UTC_10[7:0]  
VDP_VPS_PDC_UTC_11[7:0]  
VDP_VPS_PDC_UTC_12[7:0]  
132d  
133d  
134d  
135d  
136d  
137d  
138d  
139d  
140d  
141d  
142d  
143d  
144d  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
1 The register is a readback register; default value does not apply.  
The block is configured via I2C in the following ways:  
PDC/UTC  
GDECEL[15:0] allows data recovery on selected video lines  
on even fields to be enabled and disabled.  
GDECOL[15:0] enables the data recovery on selected lines  
for odd fields.  
GDECAD configures the way in which data is embedded  
in the video data stream.  
PDC and UTC are data transmitted through teletext packet  
8/30 format 2 (magazine 8, row 30, design_code 2 or 3), and  
packet 8/30 format 1 (magazine 8, row 30, design_code 0 or 1).  
Hence, if PDC or UTC data is to be read through I2C, the  
corresponding teletext standard (WST or PAL System B) should  
be decoded by VDP. The whole teletext decoded packet is  
output on the ancillary data stream. The user can look for the  
magazine number, row number and design_code and qualify  
the data as PDC, UTC or none of these.  
The recovered data is not available through I2C, but is inserted  
into the horizontal blanking period of an ITU-R BT656-  
compatible data stream. The data format is intended to comply  
with the recommendation by the International  
Telecommunications Union, ITU-R BT.1364. For more  
information, see the ITU website at www.itu.ch. See Figure 41.  
If PDC/UTC packets have been identified, Byte 0 to Byte 12 are  
updated to the GS_VPS_PDC_UTC_0 to VPS_PDC_UTC_12  
registers, and the GS_VPS_PDC_UTC_AVL bit set. The full  
packet data is also available in the ancillary data format.  
GDE_SEL_OLD_ADF, Address 0x4C [3], User Map  
Note that the data available in the I2C register depends on the  
status of the WST_PKT_DECODE_DISABLE bit (Bit 3,  
subaddress 0x60, User Sub Map).  
The ADV7184 has a new ancillary data output block that can  
be used by the VDP data slicer and the VBI System 2 data  
slicer. The new ancillary data formatter is used by setting  
GDE_SEL_OLD_ADF = 0 (this is the default setting). If this bit  
is set low, refer to Table 69 and Table 70 for information about  
how the data is packaged in the ancillary data stream.  
VBI System 2  
The user has an option of using a different VBI data slicer called  
VBI System 2. This data slicer is used to decode Gemstar and  
Closed Caption VBI signals only.  
To use the old ancillary data formatter (to be backward-  
compatible with the ADV7183B), set GDE_SEL_OLD_ADF = 1.  
The ancillary data format in this section refers to the ADV7183B-  
compatible ancillary data formatter.  
Using this system, the Gemstar data is only available in the  
ancillary data stream. A special mode enables one line of data to  
be read back via I2C. For details on how to get I2C readback  
when using the VBI System 2 data slicer, see the ADI  
applications note on ADV7184 VBI processing.  
0 (default)—Enables new ancillary data system (for use with  
VDP and VBI System 2).  
1—Enables old ancillary data system (for use with VBI System 2  
only; ADV7183B-compatible).  
Gemstar Data Recovery  
The Gemstar-compatible data recovery block (GSCD) supports  
1× and 2× data transmissions. In addition, it can serve as a  
closed caption decoder. Gemstar-compatible data transmissions  
can occur only in NTSC. Closed caption data can be decoded in  
both PAL and NTSC.  
Rev. 0 | Page 61 of 108  
ADV7184  
The format of the data packet depends on the following criteria:  
Entries within the packet are as follows:  
Transmission is 1× or 2×.  
Fixed preamble sequence of 0x00, 0xFF, 0xFF.  
Data is output in 8-bit or 4-bit format (see the description  
of the GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C [0] bit).  
Data identification word (DID). The value for the DID  
marking a Gemstar or CCAP data packet is 0x140 (10-bit  
value).  
Data is closed caption (CCAP) or Gemstar-compatible.  
Secondary data identification word (SDID), which contains  
information about the video line from which data was  
retrieved, whether the Gemstar transmission was of 1× or  
2× format, and whether it was retrieved from an even or  
odd field.  
Data packets are output if the corresponding enable bit is set  
(see the GDECEL[15:0] and GDECOL[15:0] descriptions), and  
if the decoder detects the presence of data. This means that for  
video lines where no data has been decoded, no data packet is  
output even if the corresponding line enable bit is set.  
Data count byte, giving the number of user data-words that  
follow.  
Each data packet starts immediately after the EAV code of the  
preceding line. Figure 41 and Table 81 show the overall  
structure of the data packet.  
User data section.  
Optional padding to ensure that the length of the user  
data-word section of a packet is a multiple of four bytes  
(requirement as set in ITU-R BT.1364).  
Checksum byte.  
Table 81 lists the values within a generic data packet that is  
output by the ADV7184 in 8-bit format.  
DATA IDENTIFICATION  
SECONDARY DATA IDENTIFICATION  
DATA  
COUNT  
OPTIONAL PADDING CHECK  
00  
FF  
FF  
DID  
SDID  
USER DATA  
BYTES  
SUM  
PREAMBLE FOR ANCILLARY DATA  
USER DATA (4 OR 8 WORDS)  
Figure 41. Gemstar and CCAP Embedded Data Packet (Generic)  
Table 81. Generic Data Output Packet  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
0
D[0]  
0
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
2X  
0
0
0
SDID  
line[3:0]  
5
0
0
DC[1]  
word1[7:4]  
word1[3:0]  
word2[7:4]  
word2[3:0]  
word3[7:4]  
word3[3:0]  
word4[7:4]  
word4[3:0]  
DC[0]  
0
0
Data count (DC)  
6
0
0
0
0
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
11  
12  
13  
14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
0
0
Rev. 0 | Page 62 of 108  
ADV7184  
Table 82. Data Byte Allocation  
Raw Information Bytes  
Retrieved from the Video Line  
User Data-Words  
(Including Padding)  
2×  
1
1
0
0
GDECAD  
Padding Bytes  
DC[1:0]  
10  
01  
01  
01  
4
4
2
2
0
1
0
1
8
4
4
4
0
0
0
2
Gemstar Bit Names  
CS[8:2]. The checksum is provided to determine the  
integrity of the ancillary data packet. It is calculated by  
summing up D[8:2] of DID, SDID, the data count byte, and  
all UDWs, and ignoring any overflow during the  
summation. Since all data bytes that are used to calculate  
the checksum have their 2 LSBs set to 0, the CS[1:0] bits  
are also always 0.  
DID. The data identification value is 0x140 (10-bit value).  
Care has been taken that in 8-bit systems, the two LSBs do  
not carry vital information.  
EP  
EP and . The EP bit is set to ensure even parity on the  
data-word D[8:0]. Even parity means there is always an  
even number of 1s within the D[8:0] bit arrangement. This  
EP  
includes the EP bit.  
describes the logic inverse of EP  
EP  
CS[8]  
CS[8]  
describes the logic inversion of CS[8]. The value  
is included in the checksum entry of the data packet  
and is output on D[9]. The  
is output to ensure that the  
reserved codes of 00 and FF cannot happen.  
to ensure that the reserved values of 0x00 and 0xFF do not  
occur. Table 83 to Table 88 outline the possible data  
packages.  
EF. Even field identifier. EF = 1 indicates that the data was  
recovered from a video line on an even field.  
2X. This bit indicates whether the data sliced was in  
Gemstar 1× or 2× format. A high indicates 2× format.  
Gemstar 2× Format, Half-Byte Output Mode  
Half-byte output mode is selected by setting CDECAD = 0; full-  
byte output mode is selected by setting CDECAD = 1. See the  
GDECAD Gemstar Decode Ancillary Data Format, Address  
0x4C [0] section.  
line[3:0]. This entry provides a code that is unique for each  
of the possible 16 source lines of video from which  
Gemstar data may have been retrieved. Refer to Table 91  
and Table 92.  
Gemstar 1× Format  
Half-byte output mode is selected by setting CDECAD = 0, full-  
byte output mode is selected by setting CDECAD = 1. See the  
GDECAD Gemstar Decode Ancillary Data Format, Address  
0x4C [0] section.  
DC[1:0]. Data count value. The number of UDWs in the  
packet divided by 4. The number of UDWs in any packet  
must be an integral number of 4. Padding is required at the  
end, if necessary, as set in ITU-R BT.1364. See Table 82.  
The 2X bit determines whether the raw information  
retrieved from the video line was 2 or 4 bytes. The state of  
the GDECAD bit affects whether the bytes are transmitted  
straight (that is, two bytes transmitted as two bytes) or  
whether they are split into nibbles (that is, two bytes  
transmitted as four half bytes). Padding bytes are then  
added where necessary.  
Rev. 0 | Page 63 of 108  
ADV7184  
Table 83. Gemstar 2× Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
0
0
SDID  
1
line[3:0]  
5
0
0
0
0
0
Data count  
1
0
6
0
0
0
0
Gemstar word1[7:4]  
Gemstar word1[3:0]  
Gemstar word2[7:4]  
Gemstar word2[3:0]  
Gemstar word3[7:4]  
Gemstar word3[3:0]  
Gemstar word4[7:4]  
Gemstar word4[3:0]  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
11  
12  
13  
14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 84. Gemstar 2× Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
0
D[0]  
Description  
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
0
line[3:0]  
0
0
0
4
EP  
EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
0
0
Data count  
1
6
Gemstar word1[7:0]  
Gemstar word2[7:0]  
Gemstar word3[7:0]  
Gemstar word4[7:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
8
0
0
9
0
0
10  
CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 85. Gemstar 1× Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
3
0
1
0
1
0
line[3:0]  
0
0
0
4
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
0
SDID  
0
5
0
0
0
0
0
0
Data count  
1
6
0
0
0
0
Gemstar word1[7:4]  
Gemstar word1[3:0]  
Gemstar word2[7:4]  
Gemstar word2[3:0]  
User data-words  
User data-words  
User data-words  
User data-words  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Checksum  
Rev. 0 | Page 64 of 108  
ADV7184  
Table 86. Gemstar 1× Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
EP  
EP  
EP  
EP  
EF  
0
0
0
SDID  
line[3:0]  
5
0
0
0
0
Data count  
0
1
6
Gemstar word1[7:0]  
Gemstar word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 0x200  
UDW padding 0x200  
Checksum  
7
0
0
8
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 87. NTSC CCAP Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
1
1
0
0
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
0
SDID  
0
5
0
0
0
0
Data count  
6
0
0
0
0
CCAP word1[7:4]  
CCAP word1[3:0]  
CCAP word2[7:4]  
CCAP word2[3:0]  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 88. NTSC CCAP Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
1
1
0
0
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
EP  
EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
Data count  
6
CCAP word1[7:0]  
CCAP word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 0x200  
UDW padding 0x200  
Checksum  
7
0
0
8
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Rev. 0 | Page 65 of 108  
ADV7184  
Table 89. PAL CCAP Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
0
0
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
0
SDID  
0
5
0
0
0
0
Data count  
6
0
0
0
0
CCAP word1[7:4]  
CCAP word1[3:0]  
CCAP word2[7:4]  
CCAP word2[3:0]  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 90. PAL CCAP Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
0
D[0]  
Description  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
EP  
EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
Data Count  
6
CCAP word1[7:0]  
CCAP word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 200h  
UDW padding 200h  
Checksum  
7
0
0
8
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
NTSC CCAP Data  
See the GDECEL[15:0] Gemstar Decoding Even Lines, Address  
0x48 [7:0]; Address 0x49 [7:0] and GDECOL[15:0] Gemstar  
Decoding Odd Lines, Address 0x4A [7:0]; Address 0x4B [7:0]  
sections.  
Half-byte output mode is selected by setting CDECAD = 0, the  
full-byte mode is enabled by CDECAD = 1. See the GDECAD  
Gemstar Decode Ancillary Data Format, Address 0x4C [0]  
section. The data packet formats are shown in Table 87 and  
Table 88. Only closed caption data can be embedded in the  
output data stream.  
GDECEL[15:0] Gemstar Decoding Even Lines, Address 0x48  
[7:0]; Address 0x49 [7:0]  
The 16 bits of the GDECEL[15:0] are interpreted as a collection  
of 16 individual line decode enable signals. Each bit refers to a  
line of video in an even field. Setting the bit enables the decoder  
block trying to find Gemstar or closed caption-compatible data  
on that particular line. Setting the bit to 0 prevents the decoder  
from trying to retrieve data. See Table 91 and Table 92.  
NTSC closed caption data is sliced on Line 21d on even and  
odd fields. The corresponding enable bit has to be set high. See  
the GDECAD Gemstar Decode Ancillary Data Format, Address  
0x4C [0] and GDECOL[15:0] Gemstar Decoding Odd Lines,  
Address 0x4A [7:0]; Address 0x4B [7:0] sections.  
PAL CCAP Data  
To retrieve closed caption data services on NTSC (Line 284),  
GDECEL[11] must be set.  
Half-byte output mode is selected by setting CDECAD = 0, full-  
byte output mode is selected by setting CDECAD = 1. See the  
GDECAD Gemstar Decode Ancillary Data Format, Address  
0x4C [0] section. Table 89and Table 90 list the bytes of the data  
packet.  
To retrieve closed caption data services on PAL (Line 335),  
GDECEL[14] must be set.  
The default value of GDECEL[15:0] is 0x0000. This setting  
instructs the decoder not to attempt to decode Gemstar or  
CCAP data from any line in the even field. The user should only  
enable Gemstar slicing on lines where VBI data is expected.  
Only closed caption data can be embedded in the output data  
stream. PAL closed caption data is sliced from Line 22 and  
Line 335. The corresponding enable bits have to be set.  
Rev. 0 | Page 66 of 108  
ADV7184  
Table 91. NTSC Line Enable Bits and Corresponding Line  
Numbering  
GDECOL[15:0] Gemstar Decoding Odd Lines, Address 0x4A  
[7:0]; Address 0x4B [7:0]  
Line Number  
Line[3:0] (ITU-R BT.470)  
The 16 bits of the GDECOL[15:0] form a collection of 16  
individual line decode enable signals. See Table 91 and Table 92.  
Enable Bit  
GDECOL[0]  
GDECOL[1]  
GDECOL[2]  
GDECOL[3]  
GDECOL[4]  
GDECOL[5]  
GDECOL[6]  
GDECOL[7]  
GDECOL[8]  
GDECOL[9]  
GDECOL[10]  
GDECOL[11]  
Comment  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
0
1
2
3
4
5
6
7
8
9
10  
11  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
To retrieve closed caption data services on NTSC (Line 21),  
GDECOL[11] must be set.  
To retrieve closed caption data services on PAL (Line 22),  
GDECOL[14] must be set.  
The default value of GDEC0L[15:0] is 0x0000. This setting  
instructs the decoder not to attempt to decode Gemstar or  
CCAP data from any line in the odd field. The user should only  
enable Gemstar slicing on lines where VBI data is expected.  
Gemstar or  
GDECAD Gemstar Decode Ancillary Data Format, Address  
0x4C [0]  
closed caption  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
9
10  
11  
22  
23  
24  
25  
GDECOL[12]  
GDECOL[13]  
GDECOL[14]  
GDECOL[15]  
GDECEL[0]  
GDECEL[1]  
GDECEL[2]  
GDECEL[3]  
GDECEL[4]  
GDECEL[5]  
GDECEL[6]  
GDECEL[7]  
GDECEL[8]  
GDECEL[9]  
GDECEL[10]  
GDECEL[11]  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
The decoded data from Gemstar-compatible transmissions or  
closed caption transmission is inserted into the horizontal  
blanking period of the respective line of video. A potential  
problem can arise if the retrieved data bytes have the value 0x00  
or 0xFF. In an ITU-R BT.656-compatible data stream, those  
values are reserved and used only to form a fixed preamble.  
273 (10)  
274 (11)  
275 (12)  
276 (13)  
277 (14)  
278 (15)  
279 (16)  
280 (17)  
281 (18)  
282 (19)  
283 (20)  
284 (21)  
The GDECAD bit allows the data to be inserted into the  
horizontal blanking period in two ways:  
Insert all data straight into the data stream, even the  
reserved values of 0x00 and 0xFF, if they occur. This may  
violate the output data format specification ITU-R BT.1364.  
Split all data into nibbles and insert the half-bytes over  
double the number of cycles in a 4-bit format.  
Gemstar or  
closed caption  
0 (default)—The data is split into half-bytes and inserted.  
1—The data is output straight in 8-bit format.  
12  
13  
14  
15  
285 (22)  
286 (23)  
287 (24)  
288 (25)  
GDECEL[12]  
GDECEL[13]  
GDECEL[14]  
GDECEL[15]  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Rev. 0 | Page 67 of 108  
ADV7184  
Table 92. PAL Line Enable Bits and Corresponding Line  
Numbering  
The active video content (luminance magnitude) over a line of  
video is summed together. At the end of a line, this accumulated  
value is compared with a threshold and a decision is made as to  
whether or not a particular line is black. The threshold value  
needed may depend on the type of input signal; some control is  
provided via LB_TH[4:0].  
Line Number  
Line[3:0] (ITU-R BT.470)  
Enable Bit  
GDECOL[0]  
GDECOL[1]  
GDECOL[2]  
GDECOL[3]  
GDECOL[4]  
GDECOL[5]  
GDECOL[6]  
GDECOL[7]  
GDECOL[8]  
GDECOL[9]  
GDECOL[10]  
GDECOL[11]  
GDECOL[12]  
GDECOL[13]  
GDECOL[14]  
GDECOL[15]  
GDECEL[0]  
GDECEL[1]  
GDECEL[2]  
GDECEL[3]  
GDECEL[4]  
GDECEL[5]  
GDECEL[6]  
GDECEL[7]  
GDECEL[8]  
GDECEL[9]  
GDECEL[10]  
GDECEL[11]  
GDECEL[12]  
GDECEL[13]  
GDECEL[14]  
GDECEL[15]  
Comment  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Closed caption  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Closed caption  
Not valid  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
321 (8)  
322 (9)  
323 (10)  
324 (11)  
325 (12)  
326 (13)  
327 (14)  
328 (15)  
329 (16)  
330 (17)  
331 (18)  
332 (19)  
333 (20)  
334 (21)  
335 (22)  
336 (23)  
Detection at the Start of a Field  
The ADV7184 expects a section of at least six consecutive black  
lines of video at the top of a field. Once those lines are detected,  
register LB_LCT[7:0] reports back the number of black lines  
that were actually found. By default, the ADV7184 starts  
looking for those black lines in sync with the beginning of  
active video, for example, straight after the last VBI video line.  
LB_SL[3:0] allows the user to set the start of letterbox detection  
from the beginning of a frame on a line-by-line basis. The  
detection window closes in the middle of the field.  
9
Detection at the End of a Field  
10  
11  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
9
10  
11  
The ADV7184 expects at least six continuous lines of black video  
at the bottom of a field before reporting the number of lines  
actually found via the LB_LCB[7:0] value. The activity window  
for letterbox detection (end of field) starts in the middle of an  
active field. Its end is programmable via LB_EL[3:0].  
Detection at the Midrange  
Some transmissions of wide screen video include subtitles  
within the lower black box. If the ADV7184 finds at least two  
black lines followed by some more nonblack video, for example,  
the subtitle, followed by the remainder of the bottom black  
block, it reports a midcount via LB_LCM[7:0]. If no subtitles are  
found, LB_LCM[7:0] reports the same number as LB_LCB[7:0].  
There is a 2-field delay in the reporting of any line count  
parameters.  
There is no letterbox detected bit. Read the LB_LCT[7:0] and  
LB_LCB[7:0] register values to conclude whether or not the  
letterbox-type video is present in software.  
Letterbox Detection  
Incoming video signals may conform to different aspect ratios  
(16:9 wide screen or 4:3 standard). For certain transmissions in  
the wide screen format, a digital sequence (WSS) is transmitted  
with the video signal. If a WSS sequence is provided, the aspect  
ratio of the video can be derived from the digitally decoded bits  
WSS contains.  
LB_LCT[7:0] Letterbox Line Count Top, Address 0x9B [7:0];  
LB_LCM[7:0] Letterbox Line Count Mid, Address 0x9C [7:0];  
LB_LCB[7:0] Letterbox Line Count Bottom, Address 0x9D  
[7:0]  
Table 93. LB_LCx Access Information1  
Signal Name  
LB_LCT[7:0]  
LB_LCM[7:0]  
LB_LCB[7:0]  
Address  
In the absence of a WSS sequence, letterbox detection may be  
used to find wide screen signals. The detection algorithm  
examines the active video content of lines at the start and end of  
a field. If black lines are detected, this may indicate that the  
currently shown picture is in wide screen format.  
0x9B  
0x9C  
0x9D  
1 This register is a readback register; default value does not apply.  
Rev. 0 | Page 68 of 108  
ADV7184  
6
4
LB_TH[4:0] Letterbox Threshold Control, Address 0xDC [4:0]  
Table 94. LB_TH Function  
2
LB_TH[4:0]  
Description  
01100  
(default)  
Default threshold for detection of black lines.  
0
01101 to  
10000  
00000 to  
01011  
Increase threshold (need larger active video  
content before identifying nonblack lines).  
Decrease threshold (even small noise levels can  
cause the detection of nonblack lines).  
–2  
–4  
–6  
–8  
LB_SL[3:0] Letterbox Start Line, Address 0xDD [7:4]  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
The LB_SL[3:0] bits are set at 0100 by default. For an NTSC  
signal, this window is from Line 23 to Line 286.  
FREQUENCY (MHz)  
Figure 43. PAL IF Compensation Filter Responses  
By changing the bits to 0101, the detection window starts on  
Line 24 and ends on Line 287.  
See Table 102 for programming details.  
I2C Interrupt System  
LB_EL[3:0] Letterbox End Line, Address 0xDD [3:0]  
The ADV7184 has a comprehensive interrupt register set. This  
map is located in the User Sub Map. See Table 103 for details of  
the interrupt register map. Figure 46 describes how to access  
this map.  
The LB_EL[3:0] bits are set at 1101 by default. This means that  
letterbox detection window ends with the last active video line.  
For an NTSC signal, this window is from Line 262 to Line 525.  
By changing the bits to 1100, the detection window starts on  
Line 261 and ends on Line 254.  
Interrupt Request Output Operation  
INTRQ  
When an interrupt event occurs, the interrupt pin  
goes low with a programmable duration given by  
INTRQ_DUR_SEL[1:0]  
IF Compensation Filter  
IFFILTSEL[2:0] IF Filter Select Address 0xF8 [2:0]  
The IFFILTSEL[2:0] register allows the user to compensate for  
SAW filter characteristics on a composite input as would be  
observed on tuner outputs. Figure 42 and Figure 43 show IF  
filter compensation for NTSC and PAL.  
INTRQ_DURSEL[1:0], Interrupt Duration Select  
Address 0x40 [7:6], User Sub Map  
Table 95. INTRQ_DUR_SEL  
INTRQ_DURSEL[1:0] Description  
The options for this feature are as follows:  
00 (default)  
3 XTAL periods.  
Bypass mode (default)  
NTSC—consists of three filter characteristics  
PAL—consists of three filter characteristics  
01  
10  
11  
15 XTAL periods.  
63 XTAL periods.  
Active until cleared.  
6
When the active-until-cleared interrupt duration is selected,  
and the event that caused the interrupt is no longer in force,  
the interrupt persists until it is masked or cleared.  
4
2
For example, if the ADV7184 loses lock, an interrupt is gener-  
0
INTRQ  
ated and the  
the locked state,  
SD_LOCK bit is either masked or cleared.  
pin goes low. If the ADV7184 returns to  
–2  
–4  
–6  
–8  
–10  
–12  
INTRQ  
continues to drive low until the  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (MHz)  
Figure 42. NTSC IF Compensation Filter Responses  
Rev. 0 | Page 69 of 108  
ADV7184  
Multiple Interrupt Events  
Interrupt Drive Level  
If interrupt event 1 occurs and then interrupt event 2 occurs  
before the system controller has cleared or masked interrupt  
event 1, the ADV7184 does not generate a second interrupt  
signal. The system controller should check all unmasked  
interrupt status bits since more than one may be active.  
The ADV7184 resets with open drain enabled and all interrupts  
INTRQ  
masked off. Therefore  
reset. 01 or 10 has to be written to INTRQ_OP_SEL[1:0] for a  
INTRQ  
is in a high impedance state after  
logic level to be driven out from the  
pin.  
It is also possible to write to a register in the ADV7184 that  
Macrovision Interrupt Selection Bits  
INTRQ  
manually asserts the  
pin. This bit is MPU_STIM_INTRQ.  
The user can select between pseudo sync pulse and color stripe  
detection as follows:  
INTRQ_OP_SEL[1:0], Interrupt Duration Select  
Address 0x40 [1:0], User Sub Map  
MV_INTRQ_SEL[1:0], Macrovision Interrupt Selection Bits  
Address 0x40 [5:4], User Sub Map  
Table 96. INTRQ_OP_SEL  
INTRQ_OP_SEL[1:0] Description  
Table 97. MV_INTRQ_SEL  
00 (default)  
Open drain.  
MV_INTRQ_SEL  
[1:0]  
01  
10  
11  
Drive low when active.  
Drive high when active.  
Reserved.  
Description  
00  
Reserved.  
01 (default)  
10  
11  
Pseudo sync only.  
Color stripe only.  
Either pseudo sync or color stripe.  
Additional information relating to the interrupt system is  
detailed in Table 104.  
Rev. 0 | Page 70 of 108  
ADV7184  
PIXEL PORT CONFIGURATION  
SWPC Swap Pixel Cr/Cb, Address 0x27 [7]  
0 (default)—No swapping is allowed.  
The ADV7184 has a very flexible pixel port that can be config-  
ured in a variety of formats to accommodate downstream ICs.  
Table 98 and Table 99 summarize the various functions that the  
ADV7184s pins can have in different modes of operation.  
1—The Cr and Cb values can be swapped.  
LLC_PAD_SEL[2:0] LLC1 Output Selection, Address 0x8F [6:4]  
The following I2C write allows the user to select between LLC1  
(nominally at 27 MHz) and LLC2 (nominally at 13.5 MHz).  
The ordering of components (Cr vs. Cb, CHA/B/C, for  
example) can be changed. Refer to the SWPC Swap Pixel Cr/Cb,  
Address 0x27 [7] section. Table 98 indicates the default  
positions for the Cr/Cb components.  
The LLC2 signal is useful for LLC2-compatible wide bus  
(16-bit) output modes. See the OF_SEL[3:0] Output Format  
Selection, Address 0x03 [5:2] section for additional  
information. The LLC2 signal and data on the data bus are  
synchronized. By default, the rising edge of LLC1/LLC2 is  
aligned with the Y data; the falling edge occurs when the data  
bus holds C data. The polarity of the clock, and therefore the  
Y/C assignments to the clock edges, can be altered by using the  
Polarity LLC pin.  
OF_SEL[3:0] Output Format Selection, Address 0x03 [5:2]  
The modes in which the ADV7184 pixel port can be configured  
are under the control of OF_SEL[3:0]. See Table 99 for details.  
The default LLC frequency output on the LLC1 pin is approxi-  
mately 27 MHz. For modes that operate with a nominal data  
rate of 13.5 MHz (0001, 0010), the clock frequency on the LLC1  
pin stays at the higher rate of 27 MHz. For information on  
outputting the nominal 13.5 MHz clock on the LLC1 pin, see  
the LLC_PAD_SEL[2:0] LLC1 Output Selection, Address 0x8F  
[6:4] section.  
000 (default)—The output is nominally 27 MHz LLC on the  
LLC1 pin.  
101—The output is nominally 13.5 MHz LLC on the LLC1 pin.  
Table 98. P15–P0 Output/Input Pin Mapping  
Data Port Pins P[15:0]  
Format, and Mode  
Video Out, 8-Bit, 4:2:2  
Video Out, 16-Bit, 4:2:2  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
YCrCb[7:0]OUT  
Y[7:0]OUT  
CrCb[7:0] OUT  
Table 99. Standard Definition Pixel Port Modes  
Pixel Port Pins P[15: 0]  
P[7: 0]  
OF_SEL[3:0]  
0010  
Format  
P[15:8]  
16-Bit at LLC2 4:2:2  
Y[7:0]  
CrCb[7:0]  
0011 (default)  
0110-1111  
8-Bit at LLC1 4:2:2 (default)  
Reserved  
YCrCb[7:0] (default)  
Three-State  
Reserved. Do not use.  
Rev. 0 | Page 71 of 108  
 
ADV7184  
MPU PORT DESCRIPTION  
The ADV7184 supports a 2-wire (I2C-compatible) serial inter-  
face. Two inputs, serial data (SDA) and serial clock (SCLK),  
carry information between the ADV7184 and the system I2C  
master controller. Each slave device is recognized by a unique  
address. The ADV7184s I2C port allows the user to set up and  
configure the decoder and to read back captured VBI data. The  
ADV7184 has two possible slave addresses for both read and  
write operations, depending on the logic level on the ALSB pin.  
These four unique addresses are shown in Table 100. The ALSB  
pin controls Bit 1 of the slave address. By altering the ALSB, it is  
possible to control two ADV7184s in an application without  
having a conflict with the same slave address. The LSB (Bit 0)  
sets either a read or write operation. Logic 1 corresponds to a  
read operation; Logic 0 corresponds to a write operation.  
The ADV7184 acts as a standard slave device on the bus. The  
data on the SDA pin is eight bits long, supporting the 7-bit  
addresses plus the R/W bit. The ADV7184 has 249 subaddresses  
to enable access to the internal registers. It therefore interprets  
the first byte as the device address and the second byte as the  
starting subaddress. The subaddresses auto-increment, allowing  
data to be written to or read from the starting subaddress. A  
data transfer is always terminated by a stop condition. The user  
can also access any unique subaddress register on a one-by-one  
basis without updating all the registers.  
Stop and start conditions can be detected at any stage during the  
data transfer. If these conditions are asserted out of sequence with  
normal read and write operations, they cause an immediate  
jump to the idle condition. During a given SCLK high period,  
the user should issue only one start condition, one stop condition,  
or a single stop condition followed by a single start condition. If  
an invalid subaddress is issued by the user, the ADV7184 does  
not issue an acknowledge and returns to the idle condition.  
Table 100. I2C Address  
ALSB  
R/W  
Slave Address  
0x40  
0x41  
0x42  
0x43  
0
0
1
1
0
1
0
1
If in autoincrement mode the highest subaddress is exceeded,  
the following action is taken:  
To control the device on the bus, a specific protocol must be  
followed. First, the master initiates a data transfer by  
1. In read mode, the highest subaddress register contents  
continue to be output until the master device issues a no  
acknowledge. This indicates the end of a read. In a no  
acknowledge condition the SDA line is not pulled low on  
the ninth pulse.  
establishing a start condition, which is defined by a high-to-low  
transition on SDA while SCLK remains high. This indicates that  
an address/data stream follows. All peripherals respond to the  
start condition and shift the next eight bits (7-bit address +  
R/W bit). The bits are transferred from MSB down to LSB. The  
peripheral that recognizes the transmitted address responds by  
pulling the data line low during the ninth clock pulse; this is  
known as an acknowledge bit. All other devices withdraw from  
the bus at this point and maintain an idle condition. The idle  
condition is where the device monitors the SDA and SCLK lines,  
waiting for the start condition and the correct transmitted  
address. The R/W bit determines the direction of the data.  
Logic 0 on the LSB of the first byte means the master writes  
information to the peripheral. Logic 1 on the LSB of the first  
byte means the master reads information from the peripheral.  
2. In write mode, the data for the invalid byte is not loaded  
into any subaddress register, a no acknowledge is issued by  
the ADV7184, and the part returns to the idle condition.  
SDATA  
SCLOCK  
S
P
1–7  
8
9
1–7  
8
9
1–7  
DATA  
8
9
START ADDR R/W ACK SUBADDRESS ACK  
ACK  
STOP  
Figure 44. Bus Data Transfer  
WRITE  
S
S
SLAVE ADDR A(S) SUB ADDR  
LSB = 0  
A(S)  
A(S)  
DATA  
A(S)  
DATA  
A(M)  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S) SUB ADDR  
S
SLAVE ADDR A(S)  
DATA  
DATA  
A(M) P  
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A(S) = NO-ACKNOWLEDGE BY SLAVE  
A(M) = NO-ACKNOWLEDGE BY MASTER  
Figure 45. Read and Write Sequence  
Rev. 0 | Page 72 of 108  
 
ADV7184  
USER MAP  
USER SUB MAP  
REGISTER ACCESSES  
The MPU can write to or read from most of the ADV7184s  
registers, excepting the registers that are read only or write only.  
The subaddress register determines which register the next read  
or write operation accesses. All communications with the part  
through the bus start with an access to the subaddress register.  
A read/write operation is then performed from/to the target  
address, which then increments to the next address until a stop  
command on the bus is performed.  
2
COMMON I C SPACE  
ADDRESS 0x00 0x3F  
ADDRESS 0x0E BIT 5 = 0b  
ADDRESS 0x0E BIT 5 = 1b  
2
2
I C SPACE  
ADDRESS 0x40 0xFF  
I C SPACE  
ADDRESS 0x40 0x9C  
REGISTER PROGRAMMING  
NORMAL REGISTER SPACE  
INTERRUPT AND VDP REGISTER SPACE  
The I2C Register Maps section describes each register in terms  
of its configuration. After the part has been accessed over the  
bus and a read/write operation is selected, the subaddress is set  
up. The subaddress register determines to/from which register  
the operation takes place. Table 103and Table 104 list the  
various operations under the control of the subaddress register.  
Figure 46: Register Access —User Map and User Sub Map  
I2C SEQUENCER  
An I2C sequencer is used when a parameter exceeds eight bits,  
and is therefore distributed over two or more I2C registers, for  
example, HSB [11:0].  
As can be seen in Figure 46, the registers in the ADV7184 are  
arranged into two maps: the User Map (enabled by default) and  
the User Sub Map. The User Sub Map has controls for the  
interrupt and VDP functionality on the ADV7184 and the User  
Map controls everything else.  
When such a parameter is changed using two or more I2C write  
operations, the parameter may hold an invalid value for the  
time between the first and last I2C being completed. In other  
words, the top bits of the parameter may already hold the new  
value while the remaining bits of the parameter still hold the  
previous value.  
The User Map and the User Sub Map consist of a common  
space from address 0x00 to 0x3F. Depending on how Bit 5 in  
register 0x0E (SUB_USR_EN) is set, the register map then splits  
in two sections.  
To avoid this problem, the I2C sequencer holds the already  
updated bits of the parameter in local memory; all bits of the  
parameter are updated together once the last register write  
operation has completed.  
SUB_USR_EN, Address 0x0E [5]  
This bit splits the register map at register 0x40.  
The correct operation of the I2C sequencer relies on the  
following:  
0 (default)—The register map does not split and the User Map  
is enabled.  
All I2C registers for the parameter in question must be  
written to in order of ascending addresses. For example, for  
HSB[10:0], write to Address 0x34 first, followed by 0x35.  
1—The register map splits and the User Sub Map is enabled.  
No other I2C taking place between the two (or more) I2C  
writes for the sequence. For example, for HSB[10:0], write  
to Address 0x34 first, immediately followed by 0x35.  
Rev. 0 | Page 73 of 108  
 
ADV7184  
I2C REGISTER MAPS  
USER MAP  
The collective name for the registers in Table 101 below is the User Map.  
Table 101. User Map Register Details  
Address  
Reset  
Value  
Dec Hex Register Name  
RW 7  
6
5
4
3
2
1
0
(Hex)  
0
1
3
4
7
8
00 Input Ctrl  
RW VID_SEL.3  
RW  
VID_SEL.2  
ENHSPLL  
TOD  
VID_SEL.1  
BETACAM  
OF_SEL.3  
VID_SEL.0  
INSEL.3  
ENVSPROC  
OF_SEL.1  
TIM_OE  
INSEL.2  
INSEL.1  
INSEL.0  
00000000 00  
11001000 C8  
01 Video Selection  
03 Output Ctrl  
04 Ext Output Ctrl  
RW VBI_EN  
RW BT656-4  
OF_SEL.2  
OF_SEL.0  
BL_C_VBI  
SD_DUP_AV 00001100 0C  
RANGE 01xx0101 45  
EN_SFL_PIN  
07 Autodetect Enable RW AD_SEC525_EN AD_SECAM_EN AD_N443_EN AD_P60_EN  
AD_PALN_EN AD_PALM_EN AD_NTSC_EN AD_PAL_EN 01111111 7F  
08 Contrast  
RW CON.7  
RW BRI.7  
RW HUE.7  
CON.6  
BRI.6  
CON.5  
BRI.5  
CON.4  
BRI.4  
CON.3  
BRI.3  
CON.2  
BRI.2  
CON.1  
BRI.1  
CON.0  
BRI.0  
10000000 80  
00000000 00  
00000000 00  
10 0A Brightness  
11 0B Hue  
HUE.6  
HUE.5  
HUE.4  
HUE.3  
HUE.2  
HUE.1  
HUE.0  
DEF_VAL_  
AUTO_EN  
12 0C Default Value Y  
13 0D Default Value C  
14 0E ADI Ctrl  
RW DEF_Y.5  
RW DEF_C.7  
DEF_Y.4  
DEF_C.6  
DEF_Y.3  
DEF_Y.2  
DEF_C.4  
DEF_Y.1  
DEF_C.3  
DEF_Y.0  
DEF_C.2  
DEF_VAL_EN 00110110 36  
DEF_C.5  
DEF_C.1  
DEF_C.0  
01111100 7C  
00000000 00  
00000000 00  
SUB_USR_EN  
PWRDN  
15 0F Power Mgmt  
16 10 Status 1  
RW RES  
PDBP  
FB_PWRDN  
LOST_LOCK  
MVCS T3  
R
COL_KILL  
AD_RESULT.2 AD_RESULT.1 AD_RESULT.0 FOLLOW_PW FSC_LOCK  
FSC NSTD LL NSTD MV AGC DET MV PS DET  
IN_LOCK  
---  
---  
---  
---  
---  
18 12 Status 2  
R
MVCS DET  
19 13 Status 3  
R
PAL_SW_LOCK INTERLACE  
STD FLD LEN FREE_RUN_ACT CVBS  
SD_OP_50Hz GEMD  
INST_HLOCK ---  
19 13 Analog Ctrl Internal  
W
XTAL_TTL_SEL  
00000000 00  
00010010 12  
0000xxxx 00  
00000001 01  
10010011 93  
11110001 F1  
00000xxx 00  
01011000 58  
11100001 E1  
10101110 AE  
11110100 F4  
00000000 00  
1111xxxx F0  
xxxxxxxx 00  
00010010 12  
01000001 41  
10000100 84  
00000000 00  
00000010 02  
00000000 00  
00000001 01  
10000000 80  
11000000 C0  
00010001 11  
01000011 43  
00000001 01  
00000000 00  
00000000 00  
00000000 00  
00000000 00  
xxxx0000 00  
11101111 EF  
00001000 08  
00001000 08  
00100100 24  
20 14 Analog Clamp Ctrl RW  
21 15 Digital Clamp Ctrl 1 RW  
23 17 Shaping Filter Ctrl  
CCLEN  
DCT.0  
DCT.1  
RW CSFM.2  
CSFM.1  
CSFM.0  
YSFM.4  
YSFM.3  
YSFM.2  
YSFM.1  
YSFM.0  
24 18 Shaping Filter Ctrl 2 RW WYSFMOVR  
WYSFM.4  
WYSFM.3  
NSFSEL.1  
WYSFM.2  
NSFSEL.0  
WYSFM.1  
PSFSEL.1  
WYSFM.0  
PSFSEL.0  
25 19 Comb Filter Ctrl  
29 1D ADI Ctrl 2  
RW  
RW TRI_LLC  
RW SWPC  
RW  
EN28XTAL  
39 27 Pixel Delay Ctrl  
43 2B Misc Gain Ctrl  
44 2C AGC Mode Ctrl  
45 2D Chroma Gain Ctrl 1  
46 2E Chroma Gain Ctrl 2  
47 2F Luma Gain Ctrl 1  
48 30 Luma Gain Ctrl 2  
49 31 VSYNC Field Ctrl 1  
50 32 VSYNC Field Ctrl 2  
51 33 VSYNC Field Ctrl 3  
52 34 HSYNC Pos Ctrl 1  
53 35 HSYNC Pos Ctrl 2  
54 36 HSYNC Pos Ctrl 3  
55 37 Polarity  
AUTO_PDC_EN CTA.2  
CKE  
CTA.1  
CTA.0  
LTA.1  
LTA.0  
PW_UPD  
CAGC.0  
CMG.8  
CMG.0  
LMG.8  
LMG.0  
RW  
LAGC.2  
CAGT.0  
CMG.6  
LGAT.0  
LMG.6  
LAGC.1  
CMG.5  
LMG.5  
LAGC.0  
CMG.4  
LMG.4  
CAGC.1  
CMG.9  
CMG.1  
LMG.9  
LMG.1  
W
CAGT.1  
CMG.7  
LAGT.1  
LMG.7  
CMG.11  
CMG.3  
LMG.11  
LMG.3  
CMG.10  
CMG.2  
LMG.10  
LMG.2  
W
W
W
RW  
NEWAVMODE HVSTIM  
RW VSBHO  
RW VSEHO  
RW  
VSBHE  
VSEHE  
HSB.10  
HSB.6  
HSE.6  
HSB.9  
HSB.5  
HSE.5  
PVS  
HSB.8  
HSE.10  
HSB.2  
HSE.2  
HSE.9  
HSB.1  
HSE.1  
HSE.8  
RW HSB.7  
RW HSE.7  
RW PHS  
HSB.4  
HSE.4  
HSB.3  
HSB.0  
HSE.3  
HSE.0  
PF  
PCLK  
56 38 NTSC Comb Ctrl  
57 39 PAL Comb Ctrl  
58 3A ADC Ctrl  
RW CTAPSN.1  
RW CTAPSP.1  
RW  
CTAPSN.0  
CTAPSP.0  
CCMN.2  
CCMP.2  
CCMN.1  
CCMP.1  
CCMN.0  
CCMP.0  
PDN_ADC0  
YCMN.2  
YCMN.1  
YCMN.0  
YCMP.0  
PDN_ADC3  
YCMP.2  
YCMP.1  
PDN_ADC1  
PDN_ADC2  
61 3D Man Window Ctrl  
65 41 Resample Ctrl  
72 48 Gemstar Ctrl 1  
73 49 Gemstar Ctrl 2  
74 4A Gemstar Ctrl 3  
75 4B Gemstar Ctrl 4  
76 4C Gemstar Ctrl 5  
77 4D CTI DNR Ctrl 1  
78 4E CTI DNR Ctrl 2  
80 50 CTI DNR Ctrl 4  
81 51 Lock Count  
RW  
CKILLTHR.2  
SFL_INV  
CKILLTHR.1  
CKILLTHR.0  
RW  
RW GDECEL.15  
RW GDECEL.7  
RW GDECOL.15  
RW GDECOL.7  
RW  
GDECEL.14  
GDECEL.6  
GDECOL.14  
GDECOL.6  
GDECEL.13  
GDECEL.5  
GDECOL.13  
GDECOL.5  
GDECEL.12  
GDECEL.4  
GDECOL.12  
GDECOL.4  
GDECEL.11  
GDECEL.3  
GDECOL.11  
GDECOL.3  
GDECEL.10  
GDECEL.2  
GDECOL.10  
GDECOL.2  
GDECEL.9  
GDECEL.1  
GDECOL.9  
GDECOL.1  
GDECEL.8  
GDECEL.0  
GDECOL.8  
GDECOL.0  
GDECAD  
CTI_EN  
RW  
DNR_EN  
CTI_C_TH.5  
DNR_TH.5  
COL.2  
CTI_AB.1  
CTI_C_TH.3  
DNR_TH.3  
COL.0  
CTI_AB.0  
CTI_C_TH.2  
DNR_TH.2  
CIL.2  
CTI_AB_EN  
CTI_C_TH.1  
DNR_TH.1  
CIL.1  
RW CTI_C_TH.7  
RW DNR_TH.7  
RW FSCLE  
CTI_C_TH.6  
DNR_TH.6  
SRLS  
CTI_C_TH.4  
DNR_TH.4  
COL.1  
CTI_C_TH.0  
DNR_TH.0  
CIL.0  
Free Run  
143 8F Line Length1  
LLC_PAD_  
SEL_MAN  
LLC_PAD_  
SEL.1  
LLC_PAD_  
SEL.0  
W
00000000 00  
153 99 CCAP 1  
154 9A CCAP 2  
R
R
CCAP1.7  
CCAP2.7  
CCAP1.6  
CCAP2.6  
CCAP1.5  
CCAP2.5  
CCAP1.4  
CCAP2.4  
CCAP1.3  
CCAP2.3  
CCAP1.2  
CCAP2.2  
CCAP1.1  
CCAP2.1  
CCAP1.0  
CCAP2.0  
---  
---  
---  
---  
Rev. 0 | Page 74 of 108  
 
ADV7184  
Address  
Reset  
Dec Hex Register Name  
155 9B Letterbox 1  
156 9C Letterbox 2  
157 9D Letterbox 3  
195 C3 ADC Switch 1  
196 C4 ADC Switch 2  
220 DC Letterbox Ctrl1  
221 DD Letterbox Ctrl2  
RW 7  
6
5
4
3
2
1
0
Value  
---  
(Hex)  
---  
R
R
R
LB_LCT.7  
LB_LCT.6  
LB_LCM.6  
LB_LCB.6  
ADC1_SW.2  
LB_LCT.5  
LB_LCM.5  
LB_LCB.5  
LB_LCT.4  
LB_LCM.4  
LB_LCB.4  
LB_LCT.3  
LB_LCM.3  
LB_LCB.3  
ADC0_SW.3  
ADC2_SW.3  
LB_TH.3  
LB_EL.3  
LB_LCT.2  
LB_LCM.2  
LB_LCB.2  
ADC0_SW.2  
ADC2_SW.2  
LB_TH.2  
LB_EL.2  
LB_LCT.1  
LB_LCM.1  
LB_LCB.1  
ADC0_SW.1  
ADC2_SW.1  
LB_TH.1  
LB_EL.1  
LB_LCT.0  
LB_LCM.0  
LB_LCB.0  
LB_LCM.7  
LB_LCB.7  
---  
---  
---  
---  
RW ADC1_SW.3  
RW ADC_SW_MAN  
RW  
ADC1_SW.1 ADC1_SW.0  
ADC0_SW.0 xxxxxxxx 00  
ADC2_SW.0 0xxxxxxx 00  
LB_TH.4  
LB_TH.0  
10101100 AC  
01001100 4C  
RW LB_SL.3  
LB_SL.2  
LB_SL.1  
LB_SL.0  
LB_EL.0  
222 DE ST Noise Readback 1 R  
ST_NOISE_VLD ST_NOISE.10 ST_NOISE.9  
ST_NOISE.3 ST_NOISE.2 ST_NOISE.1  
ST_NOISE.8  
ST_NOISE.0  
---  
---  
---  
---  
223 DF ST Noise Readback 2 R ST_NOISE.7  
ST_NOISE.6  
ST_NOISE.5  
ST_NOISE.4  
225 E1 SD Offset Cb  
226 E2 SD Offset Cr  
RW SD_OFF_CB.7 SD_OFF_CB.6 SD_OFF_CB.5 SD_OFF_CB.4 SD_OFF_CB.3 SD_OFF_CB.2 SD_OFF_CB.1  
RW SD_OFF_CR.7 SD_OFF_CR.6 SD_OFF_CR.5 SD_OFF_CR.4 SD_OFF_CR.3 SD_OFF_CR.2 SD_OFF_CR.1  
RW SD_SAT_CB.7 SD_SAT_CB.6 SD_SAT_CB.5 SD_SAT_CB.4 SD_SAT_CB.3 SD_SAT_CB.2 SD_SAT_CB.1  
RW SD_SAT_CR.7 SD_SAT_CR.6 SD_SAT_CR.5 SD_SAT_CR.4 SD_SAT_CR.3 SD_SAT_CR.2 SD_SAT_CR.1  
SD_OFF_CB.0 10000000 80  
SD_OFF_CR.0 10000000 80  
SD_SAT_CB.0 10000000 80  
SD_SAT_CR.0 10000000 80  
227 E3 SD Saturation CB  
228 E4 SD Saturation Cr  
229 E5 NTSC V bit begin  
230 E6 NTSC V bit end  
231 E7 NTSC F bit toggle  
232 E8 PAL V bit begin  
233 E9 PAL V bit end  
234 EA PAL F bit toggle  
235 EB Vblank Ctrl 1  
236 EC Vblank Ctrl2  
RW NVBEGDELO  
RW NVENDDELO  
RW NFTOGDELO  
RW PVBEGDELO  
RW PVENDDELO  
RW PFTOGDELO  
RW NVBIOLCM.1  
RW NVBIOCCM.1  
NVBEGDELE  
NVENDDELE  
NFTOGDELE  
PVBEGDELE  
PVENDDELE  
PFTOGDELE  
NVBIOLCM.0  
NVBEGSIGN NVBEG.4  
NVENDSIGN NVEND.4  
NFTOGSIGN NFTOG.4  
NVBEG.3  
NVEND.3  
NFTOG.3  
PVBEG.3  
NVBEG.2  
NVEND.2  
NFTOG.2  
PVBEG.2  
NVBEG.1  
NVEND.1  
NFTOG.1  
PVBEG.1  
NVBEG.0  
NVEND.0  
NFTOG.0  
PVBEG.0  
PVEND.0  
PFTOG.0  
00100101 25  
00000100 04  
01100011 63  
01100101 65  
00010100 14  
01100011 63  
PVBEGSIGN  
PVBEG.4  
PVENDSIGN PVEND.4  
PFTOGSIGN PFTOG.4  
NVBIELCM.1 NVBIELCM.0  
PVEND.3  
PFTOG.3  
PVBIOLCM.1  
PVEND.2  
PFTOG.2  
PVBIOLCM.0  
PVEND.1  
PFTOG.1  
PVBIELCM.1  
PVBIECCM.1  
PVBIELCM.0 01010101 55  
PVBIECCM.0 01010101 55  
NVBIOCCM.0 NVBIECCM.1 NVBIECCM.0  
PVBIOCCM.1 PVBIOCCM.0  
237 ED FB_STATUS  
R
FB_STATUS.3 FB_STATUS.2 FB_STATUS.1 FB_STATUS.0  
---  
FB_MODE.0 00010000 10  
MAN_ALPHA_ MAN_ALPHA_ MAN_ALPHA_ MAN_ALPHA_ MAN_ALPHA_ MAN_ALPHA_ MAN_ALPHA_  
---  
237 ED FB_CONTROL1  
W
FB_INV  
CVBS_RGB_SEL FB_MODE.1  
238 EE FB_CONTROL 2  
RW FB_CSC_MAN VAL.6  
VAL.5  
VAL.4  
VAL.3  
VAL.2  
VAL.1  
VAL.0  
00000000 00  
FB_SP_  
RW ADJUST.3  
FB_SP_  
ADJUST.2  
FB_SP_  
ADJUST.1  
FB_SP_  
ADJUST.0  
CNTR_  
ENABLE  
FB_EDGE_  
SHAPE..2  
FB_EDGE_  
SHAPE.1  
FB_EDGE_  
SHAPE.0  
239 EF FB_CONTROL 3  
240 F0 FB_CONTROL 4  
241 F1 FB_CONTROL 5  
243 F3 AFE_CONTROL 1  
244 F4 Drive Strength  
248 F8 IF Comp Ctrl  
01001010 4A  
RW  
FB_DELAY.3  
FB_DELAY.2  
FB_DELAY.1  
FB_DELAY.0 01000100 44  
RGB_IP_SEL 00001100 0C  
RW CNTR_LEVEL.1 CNTR_LEVEL.0 FB_LEVEL.1  
FB_LEVEL.0  
CNTR_MODE.1 CNTR_MODE.0  
RW ADC3_SW.3  
ADC3_SW.2  
ADC3_SW.1 ADC3_SW.0  
AA_FILT_EN.3 AA_FILT_EN.2 AA_FILT_EN.1 AA_FILT_EN.0 00000000 00  
RW  
RW  
DR_STR  
DR_STR.0  
DR_STR_C  
DR_STR_C.0  
IFFILTSEL.2  
DR_STR_S  
IFFILTSEL.1  
DR_STR_S.0 xx010101 15  
IFFILTSEL.0  
00000000 00  
VS_COAST_  
MODE.1  
VS_COAST_  
MODE.0  
EXTEND_VS_  
MIN_FREQ  
EXTEND_VS_  
MAX_FREQ  
249 F9 VS Mode Ctrl  
RW  
00000000 00  
PEAKING_  
RW GAIN.7  
PEAKING_  
GAIN.6  
PEAKING_  
GAIN.5  
PEAKING_  
GAIN.4  
PEAKING_  
GAIN.3  
PEAKING_  
GAIN.2  
PEAKING_  
GAIN.1  
PEAKING_  
GAIN.0  
251 FB Peaking Ctrl  
01000000 40  
00000100 04  
252 FC Coring Threshold 2 RW DNR_TH2.7  
DNR_TH2.6  
DNR_TH2.5  
DNR_TH2.4  
DNR_TH2.3  
DNR_TH2.2  
DNR_TH2.1  
DNR_TH2.0  
Rev. 0 | Page 75 of 108  
ADV7184  
Table 102 provides a detailed description of the registers located in the User Map.  
Table 102. User Map Detailed Description  
Bit  
Address  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x00  
Input Control  
INSEL [3:0]. The INSEL bits allow the user to  
select an input channel as well as the input  
format.  
0
0
0
0
CVBS in on AIN1, SCART: G on  
AIN6/AIN9, B on AIN4/AIN7, R on  
AIN5/AIN8  
Composite and SCART RGB  
(RGB analog input options  
selectable via RGB_IP_SEL)  
0
0
0
0
0
1
1
0
CVBS in on AIN2, SCART: G on  
AIN6/AIN9, B on AIN4/AIN7, R on  
AIN5/AIN8  
CVBS in on AIN3, SCART: G on  
AIN6/AIN9, B on AIN4/AIN7, R on  
AIN5/AIN8  
0
0
0
0
1
1
1
0
0
1
0
1
CVBS in on AIN4, SCART: G on AIN9,  
B on AIN7, R on AIN8  
CVBS in on AIN5, SCART: G on AIN9,  
B on AIN7, R on AIN8  
CVBS in on AIN6, SCART: G on AIN9,  
B on AIN7, R on AIN8  
0
0
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
Y on AIN1, C on AIN4  
S-Video  
YPbPr  
Y on AIN2, C on AIN5  
Y on AIN3, C on AIN6  
Y on AIN1, Pb on AIN4, Pr on AIN5  
Y on AIN2, Pb on AIN3, Pr on AIN6  
CVBS in on AIN7, SCART: G on AIN6, Composite and SCART RGB  
B on AIN4, R on AIN5  
(RGB analog input options  
selectable via RGB_IP_SEL)  
1
1
1
1
1
1
0
0
1
0
1
0
CVBS in on AIN8, SCART: G on AIN6,  
B on AIN4, R on AIN5  
CVBS in on AIN9, SCART: G on AIN6,  
B on AIN4, R on AIN5  
CVBS in on AIN10, SCART: G on  
AIN6/AIN9, B on AIN4/AIN7, R on  
AIN5/AIN8  
1
1
1
1
CVBS in on AIN11, SCART: G on  
AIN6/AIN9, B on AIN4/AIN7, R on  
AIN5/AIN8  
VID_SEL [7:3]. The VID_SEL bits allow the  
user to select the input video standard.  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
Auto-detect PAL (BGHID), NTSC  
(without pedestal), SECAM  
Auto-detect PAL (BGHID), NTSC (M)  
(with pedestal), SECAM  
Auto-detect PAL (N), NTSC (M)  
(without pedestal), SECAM  
Auto-detect PAL (N), NTSC (M) (with  
pedestal), SECAM  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
NTSC(J)  
NTSC(M)  
PAL 60  
NTSC 4.43  
PAL BGHID  
PAL N (BGHID without pedestal)  
PAL M (without pedestal)  
PAL M  
PAL combination N  
PAL combination N  
SECAM (with pedestal)  
SECAM (with pedestal)  
Set to default  
0x01  
Video Selection  
Reserved.  
0
0
0
ENVSPROC  
0
1
Disable VSYNC processor  
Enable VSYNC processor  
Set to default  
Reserved.  
BETACAM  
0
0
1
Standard video input  
Betacam input enable  
Disable HSYNC processor  
Enable HSYNC processor  
Set to default  
ENHSPLL  
Reserved.  
0
1
1
Rev. 0 | Page 76 of 108  
ADV7184  
Bit  
3
Address  
Register  
Bit Description  
7
6
5
4
2
1
0
Comments  
Notes  
0x03  
Output Control  
SD_DUP_AV. Duplicates the AV codes from  
the luma into the chroma path.  
0
AV codes to suit 8-bit interleaved  
data output  
1
AV codes duplicated (for 16-bit  
interfaces)  
Reserved.  
0
Set as default  
Reserved  
OF_SEL [3:0]. Allows the user to choose  
from a set of output formats.  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Reserved  
16-bit @ LLC1 4:2:2  
8-bit @ LLC1 4:2:2 ITU-R BT.656  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
TOD. Three-state output drivers. This bit  
allows the user to three-state the output  
drivers: P[19:0], HS, VS, FIELD, and SFL.  
0
1
Output pins enabled  
Drivers three-stated  
See also TIM_OE and TRI_LLC  
VBI_EN. Allows VBI data (Lines 1 to 21) to be  
passed through with only a minimum  
amount of filtering performed.  
0
1
All lines filtered and scaled  
Only active video region filtered  
0x04  
Extended Output Control RANGE. Allows the user to select the range  
of output values. Can be BT656 compliant,  
or can fill the whole accessible number  
range.  
0
1
16 < Y < 235, 16 < C < 240  
1 < Y < 254, 1 < C < 254  
ITU-R BT.656  
Extended range  
EN_SFL_PIN  
0
1
SFL output is disabled  
SFL output enables  
connecting encoder and  
decoder directly  
SFL information output on the SFL  
pin  
BL_C_VBI. Blank chroma during VBI. If set,  
enables data in the VBI region to be passed  
through the decoder undistorted.  
0
1
Decode and output color  
Blank Cr and Cb  
During VBI  
TIM_OE. Timing signals output enable.  
0
1
HS, VS, F three-stated  
HS, VS, F forced active  
Controlled by TOD  
Reserved.  
Reserved.  
x
x
1
BT656-4. Allows the user to select  
an output mode-compatible with  
ITU- R BT656-3/4.  
0
1
BT656-3-complatible  
BT656-4-compatible  
0x07  
Autodetect Enable  
AD_PAL_EN. PAL B/G/I/H autodetect  
enable.  
0
1
Disable  
Enable  
AD_NTSC_EN. NTSC autodetect enable.  
AD_PALM_EN. PAL M autodetect enable.  
AD_PALN_EN. PAL N autodetect enable.  
AD_P60_EN. PAL 60 autodetect enable.  
AD_N443_EN. NTSC443 autodetect enable.  
AD_SECAM_EN. SECAM autodetect enable.  
0
1
Disable  
Enable  
0
1
Disable  
Enable  
0
1
Disable  
Enable  
0
1
Disable  
Enable  
0
1
Disable  
Enable  
0
1
Disable  
Enable  
AD_SEC525_EN. SECAM 525 autodetect  
enable.  
0
1
1
Disable  
Enable  
0x08  
0x09  
Contrast Register  
Reserved.  
CON[7:0]. Contrast adjust. This is the user  
control for contrast adjustment.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Luma gain = 1  
0x00 Gain = 0;  
0x80 Gain = 1;  
0xFF Gain = 2  
Reserved.  
1
Rev. 0 | Page 77 of 108  
ADV7184  
Bit  
3
Address  
Register  
Bit Description  
7
6
5
4
2
1
0
Comments  
Notes  
0x0A  
Brightness Register  
BRI[7:0]. This register controls the  
brightness of the video signal.  
0
0
0
0
0
0
0
0
0x00 = 0mV  
0x7F = +204mV  
0x80 = -204mV  
0x0B  
0x0C  
Hue Register  
HUE[7:0]. This register contains the value for  
the color hue adjustment.  
0
0
0
0
0
0
0
0
0
1
Hue range =–90° to +90°  
Default Value Y  
DEF_VAL_EN. Default value enable.  
Free-run mode dependent on  
DEF_VAL_AUTO_EN  
Force free-run mode on and output  
blue screen  
DEF_VAL_AUTO_EN. Default value.  
0
1
Disable free-run mode  
When lock is lost, free-run  
mode can be enabled to  
output stable timing, clock,  
and a set color.  
Enable automatic free-run mode  
(blue screen)  
DEF_Y[5:0]. Default value Y. This register  
holds the Y default value.  
0
0
0
1
1
1
1
1
0
1
1
1
Y[7:0] = {DEF_Y[5:0],0, 0}  
Default Y value output in free-  
run mode.  
0x0D  
0x0E  
Default Value C  
ADI Control  
DEF_C[7:0]. Default value C. The Cr and Cb  
default values are defined in this register.  
0
0
0
0
Cr[7:0] = DEF_C[7:4],0, 0, 0, 0}  
Cb[7:0] = DEF_C[3:0], 0, 0, 0, 0}  
Default Cb/Cr value output in  
free-run mode. Default values  
give blue screen output.  
Reserved..  
0
0
0
Set as default  
SUB_USR_EN. Enables the user to access  
the User Sub Map  
0
1
Access User Map  
See Figure 46.  
Access User Sub Map  
Set as default  
Reserved.  
Reserved.  
FB_PWRDN  
0
0
0x0F  
Power Management  
0
Set to default  
0
1
FB input operational  
FB input in power save mode  
Chip power-down controlled by pin  
Bit has priority (pin disregarded)  
Set to default  
PDBP. Power-down bit priority selects  
between PWRDN bit or pin.  
0
1
Reserved.  
0 0  
PWRDN. Power-down places the decoder in  
a full power-down mode.  
0
1
System functional  
Powered down  
See PDBP, 0x0F Bit 2.  
Reserved.  
0
Set to default  
RES. Chip Reset loads all I2C bits with default  
values.  
0
1
Normal operation  
Start reset sequence  
Executing reset takes approx.  
2 ms. Self-clearing.  
0x10  
Status Register 1  
(Read Only)  
IN_LOCK  
x
In lock (right now) = 1  
Lost lock (since last read) = 1  
Fsc lock (right now) = 1  
Peak white AGC mode active = 1  
NTSM-MJ  
Provides information about  
the internal status of the  
decoder.  
LOST_LOCK  
FSC_LOCK  
FOLLOW_PW  
x
x
x
AD_RESULT[2:0]. Autodetection result  
reports the standard of the Input video.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Detected standard  
NTSC-443  
PAL-M  
PAL-60  
PAL-BGHID  
SECAM  
PAL combination N  
SECAM 525  
COL_KILL  
MVCS DET  
MVCS T3  
x
Color kill is active = 1  
MV color striping detected  
MV color striping type  
MV pseudo Sync detected  
MV AGC pulses detected  
Nonstandard line length  
Fsc frequency nonstandard  
Color Kill  
0x12  
0x13  
Status Register 2  
(Read Only)  
x
1 = Detected  
0 = Type 2; 1 = Type 3  
1 = Detected  
1 = Detected  
1 = Detected  
1 = Detected  
x
MV_PS DET  
MV_AGC DET  
LL_NSTD  
x
x
x
FSC_NSTD  
Reserved.  
INST_HLOCK  
GEMD  
x
x
x
Status Register 3  
(Read only)  
x
1 = horizontal lock achieved  
1 = Gemstar Data detected  
Unfiltered  
x
When GEMD bit goes HIGH, it  
will remain HIGH until end of  
active video lines in that field.  
SD_OP_50HZ  
x
SD field rate detect  
0 = SD 60 Hz detected;  
1 = SD 50 Hz detected.  
CVBS  
x
Result of CVBS/YC autodetection  
1 = Free-run mode active  
0 = Y/C; 1 = CVBS  
FREE_RUN_ACT  
STD FLD_LEN  
INTERLACED  
x
Blue screen output  
x
1 = Field length standard  
Correct field length found  
Field sequence found  
x
1 = Interlaced video detected  
Rev. 0 | Page 78 of 108  
ADV7184  
Bit  
3
Address  
Register  
Bit Description  
7
6
5
4
2
1
0
Comments  
Notes  
PAL_SW_LOCK  
x
1 = Swinging burst detected  
Reliable swinging burst  
sequence  
0x13  
Analogue Control Internal Reserved.  
(Write Only)  
0
0
XTAL_TTL_SEL  
0
1
Crystal used to derive 28.63636 MHz  
clock  
External TTL level clock supplied  
Reserved.  
Reserved.  
0
0
0
0
0
0
0
0
0
0x14  
0x15  
Analog Clamp Control  
Digital Clamp Control 1  
0
1
x
0
x
Set to default  
CCLEN. Current clamp enable allows the  
user to switch off the current sources in the  
analog front.  
0
1
Current sources switched off  
Current sources enabled  
Reserved.  
Reserved.  
Set to default  
0
x
x
Set to default  
DCT[1:0]. Digital clamp timing determines  
the time constant of the digital fine clamp  
circuitry.  
0
0
1
1
0
1
0
1
Slow (TC = 1 sec)  
Medium (TC = 0.5 sec)  
Fast (TC = 0.1 sec)  
TC dependent on video  
Set to default  
Reserved.  
0
0x17  
Shaping Filter Control  
YSFM[4:0]. Selects Y-shaping filter mode  
when in CVBS only mode.  
0
0
0
0
0
0
0
0
0
1
Auto wide notch for poor quality  
sources or wide-band filter with  
Comb for good quality input  
Auto narrow notch for poor quality  
sources or wideband filter with  
comb for good quality input  
Decoder selects optimum Y-  
shaping filter depending on  
CVBS quality.  
Allows the user to select a wide range of  
low-pass and notch filters.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
SVHS 1  
SVHS 2  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
SVHS 7  
SVHS 8  
SVHS 9  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR601)  
PAL NN1  
PAL NN2  
PAL NN3  
PAL WN 1  
PAL WN 2  
NTSC NN1  
NTSC NN2  
NTSC NN3  
NTSC WN1  
NTSC WN2  
NTSC WN3  
Reserved  
Auto selection 15 MHz  
Auto selection 2.17 MHz  
If one of these modes is  
If either auto mode is selected, the decoder  
selects the optimum Y filter depending on  
the CVBS video source quality (good vs.  
bad).  
selected, the decoder does  
not change filter modes.  
Depending on video quality, a  
fixed filter response (the one  
selected) is used for good and  
bad quality video.  
0x17  
Shaping Filter Control  
(cont.)  
CSFM[2:0].  
0
0
0
0
0
1
Automatically selects a C filter  
based on video standard and  
quality.  
C-shaping filter mode allows the selection  
from a range of low-pass chrominance  
filters.  
If either auto mode is selected, the decoder  
selects the optimum C filter depending on  
the CVBS video source quality (good vs.  
bad). Non-auto settings force a C filter for all  
standards and quality of CVBS video.  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
SH1  
Selects a C filter for all video  
standards and for good and  
bad video.  
SH2  
SH3  
SH4  
SH5  
Wideband mode  
Reserved. Do not use.  
Reserved. Do not use.  
SVHS 1  
0x18  
Shaping Filter Control 2  
WYSFM[4:0]. Wideband Y-shaping filter  
mode allows the user to select which Y  
shaping filter is used for the Y component  
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
Rev. 0 | Page 79 of 108  
ADV7184  
Bit  
3
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
~
1
Address  
Register  
Bit Description  
7
6
5
4
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
~
1
2
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
~
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
~
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
~
1
Comments  
SVHS 2  
Notes  
of Y/C, YPbPr, B/W input signals; it is also  
used when a good quality input CVBS  
signal is detected. For all other inputs, the  
Y- shaping filter chosen is controlled by  
YSFM[4:0].  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
SVHS 7  
SVHS 8  
SVHS 9  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR 601)  
Reserved. Do not use.  
Reserved. Do not use.  
Reserved. Do not use.  
Set to default  
Auto selection of best filter  
Reserved.  
0
0
WYSFMOVR. Enables the use of automatic  
WYSFN filter.  
0
1
Manual select filter using  
WYSFM[4:0]  
0x19  
Comb Filter Control  
PSFSEL[1:0]. Controls the signal bandwidth  
that is fed to the comb filters (PAL).  
0
0
1
1
0
1
0
1
Narrow  
Medium  
Wide  
Widest  
NSFSEL[1:0]. Controls the signal bandwidth  
that is fed to the comb filters (NTSC).  
0
0
1
1
0
1
0
1
Narrow  
Medium  
Medium  
Wide  
Reserved.  
Reserved.  
EN28XTAL  
1
1
1
0
1
0
Set as default  
0x1D  
0x27  
ADI Control 2  
0
x
x
x
Set to default  
0
1
Use 27 MHz crystal  
Use 28..63636 MHz crystal  
LLC pin active  
TRI_LLC  
0
1
LLC pin three-stated  
No Delay  
Pixel Delay Control  
LTA[1:0]. Luma timing adjust allows the  
user to specify a timing difference between  
chroma and luma samples.  
0
1
1
1
0
0
0
1
CVBS mode LTA[1:0] = 00b  
S-Video mode LTA[1:0]= 01b  
YPrPb mode LTA[1:0] = 01b  
Luma 1 clk (37 nS) delayed  
Luma 2 clk (74 nS) early  
Luma 1 clk (37 nS) early  
Set to Zero  
Reserved.  
0
CTA[2:0]. Chroma timing adjust allows a  
specified timing difference between the  
luma and chroma samples.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Not valid setting  
Chroma + 2 pixels (early)  
Chroma + 1 pixel (early)  
No delay  
CVBS mode CTA[2:0] = 011b  
S-Video mode  
CTA[2:0] = 101b  
YPrPb mode CTA[2:0] = 110b  
Chroma − 1 pixel (late)  
Chroma − 2 pixels (late)  
Chroma − 3 pixels (late)  
Not valid setting  
AUTO_PDC_EN. Automatically programs  
the LTA/CTA values to align luma and  
chroma at the output for all modes of  
operation.  
0
1
Use values in LTA[1:0] and CTA[2:0]  
for delaying luma/chroma  
LTA and CTA values determined  
automatically  
SWPC. Allows the Cr and Cb samples to be  
swapped.  
0
1
No Swapping  
Swap the Cr and Cb O/P samples  
Update once per video line  
Update once per field  
Set to default  
0x2B  
Misc Gain Control  
PW_UPD. Peak white update determines  
the rate of gain.  
0
1
Peak white must be enabled.  
See LAGC[2:0]  
Reserved.  
1
0
0
0
0
CKE. Color kill enable allows the color kill  
0
Color kill disabled  
For SECAM color kill, threshold  
Rev. 0 | Page 80 of 108  
ADV7184  
Bit  
3
Address  
Register  
Bit Description  
7
6
5
4
2
1
0
Comments  
Notes  
function to be switched on and off.  
is set at 8%. See CKILLTHR[2:0]  
1
Color kill enabled  
Set to default  
Reserved.  
1
0x2C  
AGC Mode Control  
CAGC[1:0]. Chroma automatic gain control  
selects the basic mode of operation for the  
AGC in the chroma path.  
0
0
1
1
0
1
0
1
Manual fixed gain  
Use luma gain for chroma  
Automatic gain  
Freeze chroma gain  
Set to 1  
Use CMG[11:0]  
Based on color burst  
Reserved.  
1
1
LAGC[2:0]. Luma automatic gain control  
selects the mode of operation for the gain  
control in the luma path.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Manual fixed gain  
AGC peak white algorithm off  
AGC peak white algorithm on  
Reserved  
Use LMG[11:0]  
Blank level to sync tip  
Blank level to sync tip  
Reserved  
Reserved  
Reserved  
Freeze gain  
Reserved.  
1
Set to 1  
0x2D  
Chroma Gain Control 1  
CMG[11:8]. Chroma manual gain can be  
used to program a desired manual chroma  
gain. Reading back from this register in AGC  
mode gives the current gain.  
0
1
0
0
CAGC[1:0] settings decide in  
which mode CMG[11:0]  
operates  
Reserved.  
1
1
Set to 1  
CAGT[1:0]. Chroma automatic gain timing  
allows adjustment of the chroma AGC  
tracking speed.  
0
0
1
1
0
0
1
0
1
0
Slow (TC = 2 s)  
Medium (TC = 1 s)  
Fast (TC = 0.2 s)  
Adaptive  
Has an effect only if CAGC[1:0]  
is set to auto gain (10)  
0x2E  
0x2F  
Chroma Gain Control 2  
Luma Gain Control 1  
CMG[7:0]. Chroma manual gain lower 8 bits.  
See CMG[11:8] for description.  
0
1
0
1
0
x
0
x
0
x
0
x
CMG[11:0] = 750d; gain is 1 in NTSC Min value is 0d (G = –60 dB)  
CMG[11:0] = 741d; gain is 1 in PAL  
Max value is 3750 (G = 5)  
LMG[11:8]. Luma manual gain can be used  
to program a desired manual chroma gain,  
or to read back the actual gain value used.  
LAGC[1:0] settings decide in which  
mode LMG[11:0] operates  
Reserved.  
Set to 1  
LAGT[1:0]. Luma automatic gain timing  
allows adjustment of the luma AGC tracking  
speed.  
0
0
1
1
x
0
1
0
1
x
Slow (TC = 2 s)  
Only has an effect if LAGC[1:0]  
is set to auto gain (001, 010,  
011,or 100)  
Medium (TC = 1 s)  
Fast (TC = 0.2 s)  
Adaptive  
0x30  
0x31  
Luma Gain Control 2  
LMG[7:0]. Luma manual gain can be used to  
program a desired manual chroma gain or  
read back the actual used gain value.  
x
x
x
x
x
x
LMG[11:0] = 1128dec; gain is 1 in  
NTSC LMG[11:0] = 1222d; gain is 1 in NTSC 1024 (G = 0.90); PAL (G =  
PAL  
Min value  
0.84)  
Max value  
NTSC 4095 (G = 3.63);  
PAL (G = 3.35)  
VS and FIELD Control 1  
Reserved.  
0
1
0
Set to default  
HVSTIM. Selects where within a line of video  
the VS signal is asserted.  
0
1
Start of line relative to HSE  
Start of line relative to HSB  
HSE = HSYNC end  
HSB = HSYNC begin  
NEWAVMODE. Sets the EAV/SAV mode.  
0
1
EAV/SAV codes generated to suit  
ADI encoders  
Manual VS/Field position controlled  
by Registers 0x32, 0x33, and 0xE5–  
0xEA  
Reserved.  
Reserved.  
0
0
0
0
Set to default  
0x32  
VSYNC Field Control 2  
NEWAVMODE bit must be set  
high.  
0
0
0
0
1
Set to default  
VSBHE  
0
1
VS goes high in the middle of the  
line (even field)  
VS changes state at the start of the  
line (even field)  
VSBHO  
0
1
VS goes high in the middle of the  
line (odd field)  
VS changes state at the start of the  
line (odd field)  
0x33  
VSYNC Field Control 3  
Reserved.  
VSEHE  
0
0
0
1
0
0
Set to default  
0
1
VS goes low in the middle of the line NEWAVMODE bit must be set  
(even field)  
high.  
VS changes state at the start of the  
line (even field)  
Rev. 0 | Page 81 of 108  
ADV7184  
Bit  
3
Address  
Register  
Bit Description  
7
6
5
4
2
1
0
Comments  
Notes  
VSEHO  
0
VS goes low in the middle of the line  
(odd field)  
1
VS changes state at the start of the  
line odd field  
0x34  
HS Position Control 1  
HSE[10:8]. HS end allows the positioning of  
the HS output within the video line.  
0
0
0
HS output ends HSE[10:0] pixels  
after the falling edge of HSYNC  
Using HSB and HSE the user  
can program the position and  
length of the output HSYNC  
Reserved.  
0
Set to 0  
HSB[10:8]. HS begin allows the positioning  
of the HS output within the video line.  
0
0
0
HS output starts HSB[10:0] pixels  
after the falling edge of HSYNC  
Reserved.  
0
0
Set to 0  
0x35  
HS Position Control 2  
HSB[7:0]. See above, using HSB[10:0] and  
HSE[10:0], the user can program the  
position and length of HS output signal.  
0
0
0
0
0
0
0
0
0
0
1
0
0
0x36  
0x37  
HS Position Control 3  
Polarity  
HSE[7:0]. See above.  
0
0
0
1
PCLK. Sets the polarity of LLC1.  
Invert polarity  
Normal polarity as per the timing  
diagrams  
Reserved.  
0
0
Set to 0  
PF. Sets the FIELD polarity.  
0
1
Active high  
Active low  
Reserved.  
0
Set to 0  
PVS. Sets the VS Polarity.  
0
1
Active high  
Active low  
Reserved.  
0
Set to 0  
PHS. Sets HS Polarity.  
0
1
Active high  
Active low  
0x38  
NTSC Comb Control  
YCMN[2:0]. Luma Comb Mode, NTSC.  
0
1
1
1
1
0
0
0
1
1
0
0
1
0
1
Adaptive 3-line, 3-tap luma  
Use low-pass notch  
Fixed luma comb (2-line)  
Fixed luma comb (3-Line)  
Fixed luma comb (2-line)  
Top lines of memory  
All lines of memory  
Bottom lines of memory  
3-line adaptive for CTAPSN = 01  
4-line adaptive for CTAPSN = 10  
5-line adaptive for CTAPSN = 11  
CCMN[2:0]. Chroma Comb Mode, NTSC.  
0
0
0
Disable chroma comb  
1
1
0
0
0
1
Fixed 2-line for CTAPSN = 01  
Fixed 3-line for CTAPSN = 10  
Fixed 4-line for CTAPSN = 11  
Fixed 3-line for CTAPSN = 01  
Fixed 4-line for CTAPSN = 10  
Fixed 5-line for CTAPSN = 11  
Fixed 2-line for CTAPSN = 01  
Fixed 3-line for CTAPSN = 10  
Fixed 4-line for CTAPSN = 11  
Top lines of memory  
All lines of memory  
1
1
1
1
0
1
Bottom lines of memory  
CTAPSN[1:0]. Chroma Comb Taps, NTSC.  
YCMP[2:0]. Luma Comb mode, PAL.  
0
0
1
1
0
1
0
1
Not used  
Adapts 3 lines – 2 lines  
Adapts 5 lines – 3 lines  
Adapts 5 lines – 4 lines  
Adaptive 5-line, 3-tap luma comb  
Use low-pass notch  
0x39  
PAL Comb Control  
0
1
1
1
1
0
0
1
1
1
0
0
0
0
1
Fixed luma comb  
Top lines of memory  
All lines of memory  
Fixed luma comb (5-line)  
Fixed luma comb (3-line)  
Bottom lines of memory  
CCMP[2:0]. Chroma Comb mode, PAL.  
0
0
0
3-line adaptive for CTAPSP = 01  
4-line adaptive for CTAPSP = 10  
5-line adaptive for CTAPSP = 11  
1
1
0
0
0
1
Disable chroma comb  
Fixed 2-line for CTAPSP = 01  
Fixed 3-line for CTAPSP = 10  
Fixed 4-line for CTAPSP = 11  
Top lines of memory  
All lines of memory  
1
1
1
1
0
1
Fixed 3-line for CTAPSP = 01  
Fixed 4-line for CTAPSP = 10  
Fixed 5-line for CTAPSP = 11  
Fixed 2-line for CTAPSP = 01  
Fixed 3-line for CTAPSP = 10  
Fixed 4-line for CTAPSP = 11  
Bottom lines of memory  
Rev. 0 | Page 82 of 108  
ADV7184  
Bit  
3
Address  
Register  
Bit Description  
7
0
0
1
1
6
0
1
0
1
5
4
2
1
0
Comments  
Notes  
CTAPSP[1:0]. Chroma comb taps, PAL.  
Not used  
Adapts 5-lines – 2 lines (2 taps)  
Adapts 5 lines – 3 lines (3 taps)  
Adapts 5 lines – 4 lines (4 taps)  
ADC3 normal operation  
Power down ADC3  
ADC2 normal operation  
Power down ADC2  
ADC1 normal operation  
Power down ADC1  
ADC0 normal operation  
Power down ADC0  
Set as default  
0x3A  
ADC Control  
PWRDN_ADC_3. Enables power-down of  
ADC3.  
0
1
PWRDN_ADC_2. Enables power-down of  
ADC2.  
0
1
PWRDN_ADC_1. Enables power-down of  
ADC1.  
0
1
PWRDN_ADC_0. Enables power-down of  
ADC0.  
0
1
Reserved.  
0
0
0
1
0x3D  
Manual Window Control  
Reserved.  
0
0
1
1
Set to default  
CKILLTHR[2:0].  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Kill at 0.5%  
CKE = 1 enables the color kill  
function and must be enabled  
for CKILLTHR[2:0] to take  
effect.  
Kill at 1.5%  
Kill at 2.5%  
Kill at 4%  
Kill at 8.5%  
Kill at 16%  
Kill at 32%  
Reserved  
Reserved.  
Reserved.  
0
Set to default  
0x41  
Resample Control  
0
0
0
0
0
1
Set to default  
SFL_INV. Controls the behavior of the PAL  
switch bit.  
0
1
SFL compatible with  
ADV7190/ADV7191/ ADV7194 &  
ADV73xx encoders  
SFL compatible with ADV717x  
encoders  
Reserved.  
0
0
0
Set to default  
0x48  
0x49  
Gemstar Control 1  
Gemstar Control 2  
GDECEL[15:8]. See the Comments column.  
GDECEL[7:0]. See above.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GDECEL[15:0]. 16 individual enable LSB = Line 10; MSB = Line 25  
bits that select the lines of video  
(even field Lines 10–25) that the  
decoder checks for Gemstar-  
compatible data.  
Default = Do not check for  
Gemstar-compatible data on  
any lines [10–25] in even fields  
0x4A  
0x4B  
Gemstar Control 3  
Gemstar Control 4  
GDECOL[15:8]. See the Comments column.  
GDECOL[7:0]. See above.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GDECOL[15:0]. 16 individual enable LSB = Line 10; MSB = Line 25  
bits that select the lines of video  
Default = Do not check for  
(odd field Lines 10–25) that the  
Gemstar-compatible data on  
decoder checks for Gemstar-  
any lines [10–25] in odd fields  
compatible data.  
0x4C  
0x4D  
Gemstar Control 5  
CTI DNR Control 1  
GDECAD. Controls the manner in which  
decoded Gemstar data is inserted into the  
horizontal blanking period.  
0
1
Split data into half byte  
To avoid 00/FF code.  
Output in straight 8-bit format  
Reserved.  
x
x
x
x
0
0
0
Undefined  
CTI_EN. CTI enable  
0
1
Disable CTI  
Enable CTI  
CTI_AB_EN. Enables the mixing of the  
transient improved chroma with the  
original signal.  
0
1
Disable CTI alpha blender  
Enable CTI alpha blender  
CTI_AB[1:0]. Controls the behavior of the  
alpha-blend circuitry.  
0
0
1
1
0
1
0
1
Sharpest mixing  
Sharp mixing  
Smooth  
Smoothest  
Reserved.  
0
Set to default  
DNR_EN. Enable or bypass the DNR block.  
0
1
Bypass the DNR block  
Enable the DNR block  
Set to default  
Reserved.  
1
0
1
0
0x4E  
0x50  
0x51  
CTI DNR Control 2  
CTI DNR Control 4  
Lock Count  
CTI_CTH[7:0]. Specifies how big the  
amplitude step must be to be steepened by  
the CTI block.  
0
0
0
0
1
1
0
0
0
0
0
0
Set to 0x04 for A/V input; set to  
0x0A for tuner input  
DNR_TH[7:0]. Specifies the maximum edge  
that is interpreted as noise and is therefore  
blanked.  
0
0
CIL[2:0]. Count-into-lock determines the  
number of lines the system must remain in  
0
0
0
0
0
1
1 line of video  
2 lines of video  
Rev. 0 | Page 83 of 108  
ADV7184  
Bit  
3
Address  
Register  
Bit Description  
lock before showing a locked status.  
7
6
5
4
2
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
0
1
0
1
Comments  
Notes  
5 lines of video  
10 lines of video  
100 lines of video  
500 lines of video  
1000 lines of video  
100000 lines of video  
1 line of video  
COL[2:0]. Count-out-of-lock determines the  
number of lines the system must remain  
out-of-lock before showing a lost-locked  
status.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2 lines of video  
5 lines of video  
10 lines of video  
100 lines of video  
500 lines of video  
1000 lines of video  
100000 lines of video  
Over field with vertical info  
Line-to-line evaluation  
SRLS. Select raw lock signal. Selects the  
determination of the lock status.  
0
1
FSCLE. Fsc lock enable.  
0
1
Lock status set only by horizontal  
lock  
Lock status set by horizontal lock  
and subcarrier lock.  
0x69  
Config 1  
SDM_SEL[1:0]  
0
0
1
0
1
0
INSEL selects Analog I/P Muxing  
CVBS – AIN11  
S-Video – Y on AIN10 and C on  
AIN12  
1
1
CVBS/S-Video autodetect  
CVBS on AIN11  
Y on AIN11  
C on AIN12  
Reserved.  
Reserved.  
0
0
0
0
0
0
x
0x8F  
Free Run Line Length 1  
0
0
0
Set to default  
LLC_PAD_SEL [2:0]. Enables manual  
selection of clock for LLC1 pin.  
0
1
0
0
0
1
LLC1 (nominal 27 MHz) selected out  
on LLC1 pin  
LLC2 (nominally 13.5 MHz) selected For 16-bit 4:2:2 out,  
out on LLC1 pin  
OF_SEL[3:0 = 0010  
Reserved.  
0
x
Set to default  
0x99  
0x9A  
0x9B  
0x9C  
CCAP1 (Read Only)  
CCAP2 (Read Only)  
CCAP1[7:0]. Closed caption data register.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
CCAP1[7] contains parity bit for byte Only for use with VBI System 2  
0
CCAP2[7:0]. Closed caption data register.  
LB_LCT[7:0]. Letterbox data register.  
LB_LCM[7:0]. Letterbox data register.  
x
x
x
CCAP2[7] contains parity bit for byte Only for use with VBI System 2  
0
Letterbox 1  
(Read Only)  
Reports the number of black lines  
detected at the top of active video. active video at the start and at  
This feature examines the  
the end of each field. It  
enables format detection  
even if the video is not  
accompanied by a CGMS or  
Letterbox 2  
(Read Only)  
Reports the number of black lines  
detected in the bottom half of  
active video if subtitles are detected.  
0x9D  
0xC3  
Letterbox 3  
(Read Only)  
LB_LCB[7:0]. Letterbox data register.  
x
x
x
x
x
x
x
x
Reports the number of black lines  
WSS sequence.  
detected at the bottom of active  
video.  
ADC SWITCH 1  
ADC0_SW[3:0]. Manual muxing control for  
ADC0.  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No connection  
AIN1  
SETADC_SW_MAN_EN = 1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
No connection  
No connection  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
No connection  
No connection  
0xC3  
ADC SWITCH 1  
ADC1_SW[3:0]. Manual muxing control for  
0
0
0
0
SETADC_SW_MAN_EN = 1  
Rev. 0 | Page 84 of 108  
ADV7184  
Bit  
3
Address  
Register  
(cont.)  
Bit Description  
ADC1.  
7
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
6
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
5
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
4
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
1
0
Comments  
No connection  
No connection  
AIN3  
Notes  
AIN4  
AIN5  
AIN6  
No connection  
No connection  
No connection  
No connection  
AIN9  
AIN10  
AIN11  
AIN12  
No connection  
No connection  
No connection  
AIN2  
0xC4  
ADC SWITCH 2  
ADC2_SW[3:0]. Manual muxing control for  
ADC2.  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
SETADC_SW_MAN_EN = 1  
No connection  
No connection  
AIN5  
AIN6  
No connection  
No connection  
No connection  
AIN8  
No connection  
No connection  
AIN11  
AIN12  
No connection  
Reserved.  
x
x
x
ADC_SW_MAN_EN. Enables manual setting  
of the input signal muxing.  
0
1
Disable  
Enable  
0xDC  
0xDD  
Letterbox Control 1  
Letterbox Control 2  
LB_TH [4:0]. Sets the threshold value that  
determines if a line is black.  
0
1
1
1
1
0
0
0
0
Default threshold for the detection  
of black lines.  
Reserved.  
1
0
0
1
1
0
Set as default  
LB_EL[3:0]. Programs the end line of the  
activity window for LB detection (end of  
field).  
LB detection ends with the last line  
of active video on a field,  
1100b: 262/525.  
LB_SL[3:0]. Programs the start line of the  
activity window for LB detection (start of  
field).  
0
Letterbox detection aligned with  
the start of active video,  
0100b: 23/286 NTSC.  
0xDE  
ST Noise Readback 1  
(Read Only)  
ST_NOISE[10:0] Sync Tip noise  
Measurement  
ST_NOISE[10:8]  
ST_NOISE_VLD  
x
x
x
x
1 = ST_NOISE[10:0] measurement  
valid  
0 = ST_NOISE[10:0] measurement  
invalid  
Reserved.  
x
x
x
x
x
x
x
x
0xDF  
0xE1  
0xE2  
0xE3  
ST Noise Readback 2  
(Read Only)  
ST_NOISE[7:0] See ST_NOISE[10:0] above  
x
0
0
0
x
0
0
0
x
0
0
0
x
0
0
0
SD Offset Cb  
SD_OFF_CB [7:0]. Adjusts the hue by  
selecting the offset for the Cb channel.  
1
1
1
0
0
0
0
0
0
0
0
0
SD Offset Cr  
SD_OFF_CR [7:0]. Adjusts the hue by  
selecting the offset for the Cr channel.  
SD Saturation Cb  
SD_SAT_CB [7:0]. Adjusts the saturation of  
the picture by affecting gain on the Cb  
channel.  
Chroma gain = 0 dB  
Chroma gain = 0 dB  
NTSC default (BT.656)  
0xE4  
0xE5  
SD Saturation Cr  
NTSC V Bit Begin  
SD_SAT_CR [7:0]. Adjusts the saturation of  
the picture by affecting gain on the Cr  
channel.  
1
0
0
0
0
0
0
0
1
0
0
0
1
NVBEG[4:0]. How many lines after lCOUNT  
rollover to set V high.  
Rev. 0 | Page 85 of 108  
ADV7184  
Bit  
3
Address  
Register  
Bit Description  
7
6
5
4
2
1
0
Comments  
Notes  
NVBEGSIGN  
0
Set to low when manual  
programming  
1
Not suitable for user programming  
No delay  
NVBEGDELE. Delay V bit going high by one  
line relative to NVBEG (even field).  
0
1
Additional delay by 1 line  
No delay  
NVBEGDELO. Delay V bit going high by one  
line relative to NVBEG (odd field).  
0
1
Additional delay by 1 line  
NTSC default (BT.656)  
0xE6  
NTSC V Bit End  
NTSC F Bit Toggle  
PAL V Bit Begin  
PAL V Bit End  
NVEND[4:0]. How many lines after lCOUNT  
rollover to set V low.  
0
0
0
0
0
0
1
0
0
NVENDSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user programming  
No delay  
NVENDDELE. Delay V bit going low by one  
line relative to NVEND (even field).  
0
1
Additional delay by 1 line  
No delay  
NVENDDELO. Delay V bit going low by one  
line relative to NVEND (odd field).  
0
1
Additional delay by 1 line  
NTSC default  
0xE7  
0xE8  
0xE9  
0xEA  
0xEB  
NFTOG[4:0]. How many lines after lCOUNT  
rollover to toggle F signal.  
0
0
1
0
0
1
1
0
1
0
0
1
1
1
0
1
NFTOGSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user programming  
No delay  
NFTOGDELE. Delay F transition by one line  
relative to NFTOG (even field).  
0
1
Additional delay by 1 line  
No delay  
NFTOGDELO. Delay F transition by one line  
relative to NFTOG (odd field).  
0
1
Additional delay by 1 line  
PAL default (BT.656)  
PVBEG[4:0]. How many lines after lCOUNT  
rollover to set V high.  
PVBEGSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user programming  
No delay  
PVBEGDELE. Delay V bit going high by one  
line relative to PVBEG (even field).  
0
1
Additional delay by 1 line  
No delay  
PVBEGDELO. Delay V bit going high by one  
line relative to PVBEG (odd field).  
0
1
Additional delay by 1 line  
PAL default (BT.656)  
PVEND[4:0]. How many lines after lCOUNT  
rollover to set V low.  
PVENDSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user programming  
No delay  
PVENDDELE. Delay V bit going low by one  
line relative to PVEND (even field).  
0
1
Additional delay by 1 line  
No delay  
PVENDDELO. Delay V bit going low by one  
line relative to PVEND (odd field).  
0
1
Additional delay by 1 line  
PAL default (BT.656)  
PAL F Bit Toggle  
PFTOG[4:0]. How many lines after lCOUNT  
rollover to toggle F signal.  
PFTOGSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user programming  
No delay  
PFTOGDELE. Delay F transition by one line  
relative to PFTOG (even field).  
0
1
Additional delay by 1 line  
No delay  
PFTOGDELO. Delay F transition by one line  
relative to PFTOG (odd field).  
0
1
Additional delay by 1 line  
VBI ends 1 line earlier (line 335)  
ITU-R BT.470 compliant (Line 336)  
VBI ends 1 line later (line 337)  
VBI ends 2 lines later (line 338)  
VBI ends 1 line earlier (line 22)  
ITU-R BT.470 compliant (Line 23)  
VBI ends 1 line later (line 24)  
VBI ends 2 lines later (line 25)  
VBI ends 1 line earlier (line 282)  
ITU-R BT.470 compliant (Line 283)  
VBI ends 1 line later (line 284)  
V Blank Control 1  
PVBIELCM[1:0]. PAL VBI even field line  
control.  
0
0
1
1
0
1
0
1
Controls position of first active  
(comb filtered) line after VBI  
on even field in PAL  
PVBIOLCM[1:0]. PAL VBI odd field line  
control.  
0
0
1
1
0
1
0
1
Controls position of first active  
(comb filtered) line after VBI  
on odd field in PAL  
NVBIELCM[1:0]. NTSC VBI even field line  
control.  
0
0
1
0
1
0
Controls position of first active  
(comb filtered) line after VBI  
on even field in NTSC  
Rev. 0 | Page 86 of 108  
ADV7184  
Bit  
3
Address  
Register  
Bit Description  
7
6
5
4
2
1
0
Comments  
Notes  
1
1
VBI ends 2 lines later (line 285)  
VBI ends 1 line earlier (line 20)  
ITU-R BT.470 compliant (Line 21)  
VBI ends 1 line later (line 22)  
VBI ends 2 lines later (line 23)  
Color output beginning line 335  
PVBIOLCM[1:0]. NTSC VBI odd field line  
control.  
0
0
1
1
0
1
0
1
Controls position of first active  
(comb filtered) line after VBI  
on odd field in NTSC  
0xEC  
V Blank Control 2  
PVBIECCM[1:0]. PAL VBI even field color  
control.  
0
0
0
1
Controls the position of first  
line that outputs color after  
VBI on even field in PAL  
ITU-R BT.470 compliant color output  
beginning Line 336  
1
1
0
1
Color output beginning line 337  
Color output beginning line 338  
Color output beginning line 22  
PVBIOCCM[1:0]. PAL VBI odd field color  
control.  
0
0
0
1
Controls the position of first  
line that outputs color after  
VBI on odd field in PAL  
ITU-R BT.470 compliant color output  
beginning Line 23  
1
1
0
1
Color output beginning line 24  
Color output beginning line 25  
Color output beginning line 282  
NVBIECCM[1:0]. NTSC VBI even field color  
control.  
0
0
0
1
Controls the position of first  
line that outputs color after  
VBI on even field in NTSC  
ITU-R BT.470 compliant color output  
beginning Line 283  
1
1
0
1
VBI ends 1 line later (line 284)  
Color output beginning line 285  
Color output beginning line 20  
NVBIOCCM[1:0]. NTSC VBI odd field color  
control.  
0
0
0
1
Controls the position of first  
line that outputs color after  
VBI on odd field in NTSC  
ITU-R BT.470 compliant color output  
beginning Line 21  
1
1
0
1
Color output beginning line 22  
Color output beginning line 23  
0xED  
FB_STATUS (Read Only)  
Reserved.  
x
x
x
x
FB_STATUS[3:0]. Provides information  
about the status of the FB pin.  
FB_STATUS.0  
x
FB_RISE, 1 = There has been a rising Self-clearing bit  
edge on FB pin since last I2C read  
FB_STATUS.1  
x
FB_FALL, 1 = there has been a  
falling edge on FB pin since last I2C  
read  
Self-clearing bit  
FB_STATUS.2  
FB_STATUS.3  
x
FB_STAT, Instantaneous value of FB  
signal at time of I2C read  
x
FB_HIGH, Indicates that the FB  
signal has gone high since the last  
I2C read  
Self-clearing bit  
0xED  
FB_CONTROL 1  
(Write Only)  
FB_MODE[1:0]. Selects FB mode.  
0
0
0
1
Static switch mode – full RGB or full  
CVBS data  
Fixed alpha blending, See  
MAN_ALPHA_VAL[6:0]  
1
1
0
1
Dynamic switching (fast mux)  
Dynamic switching with edge  
enhancement  
0
1
CVBS source  
Selects either CVBS or RGB to  
be O/P  
RGB source  
0
1
FB pin active high  
FB pin active low  
0
0
0
0
0
1
0
0xEE  
0xEF  
FB_CONTROL 2  
FB_CONTROL 3  
MAN_ALPHA_VAL[6:0]. Determines in what  
proportion the video from the CVBS source  
and the RGB source are blended.  
0
0
0
0
FB_CSC_MAN  
0
1
Automatic configuration of the CSC CSC is used to convert RGB  
for SCART support  
portion of SCART signal to  
YCrCb  
Enable manual programming of  
CSC  
FB_EDGE_SHAPE[2:0]  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
Improves picture transition for  
high speed fast blank  
switching  
CNTR_ENABLE  
0
Contrast reduction mode disabled –  
FB signal interpreted as Bi-level  
signal  
Rev. 0 | Page 87 of 108  
ADV7184  
Bit  
3
Address  
Register  
Bit Description  
7
0
0
6
1
1
5
0
0
4
0
0
2
1
0
Comments  
Notes  
1
Contrast reduction mode enabled –  
FB signal interpreted as Tri-level  
signal  
FB_SP_ADJUST  
FB_DELAY[3:0]  
Adjusts FB timing in reference to the Each LSB corresponds to 1/8  
sampling clock  
of a clock cycle  
0xF0  
0xF1  
FB_CONTROL 4  
FB_CONTROL 5  
0
1
0
0
Delay on FB signal in 28.63636 MHz  
clock cycles  
Reserved.  
RGB_IP_SEL  
0
1
SD RGB input for FB on AIN7, AIN8  
and AIN9  
SD RGB input for FB on AIN4, AIN5  
and AIN6  
Reserved.  
0
Set to Zero  
25%  
CNTR_MODE[1:0]. Allows adjustment of  
contrast level in the contrast reduction box.  
0
0
1
1
0
1
0
1
50%  
75%  
100%  
FB_LEVEL[1:0]. Controls reference level for  
fast blank comparator.  
0
0
1
1
0
1
0
1
CNTR_ENABLE = 0, FB threshold =  
1.4 V  
CNTR_ENABLE – 1, FB threshold =  
1.6 V  
CNTR_ENABLE = 0, FB threshold =  
1.6 V  
CNTR_ENABLE – 1, FB threshold =  
1.8 V  
CNTR_ENABLE = 0, FB threshold =  
1.8 V  
CNTR_ENABLE – 1, FB threshold =  
2 V  
CNTR_ENABLE = 0, FB threshold =  
2 V  
CNTR_ENABLE – 1, FB threshold =  
Not Used  
CNTR_LEVEL[1:0]. Controls reference level  
for contrast reduction comparator.  
0
0
1
1
0
1
0
1
0.4 V contrast reduction threshold  
0.6 V contrast reduction threshold  
0.8 V contrast reduction threshold  
Not used  
CNTR_ENABLE = 1  
0xF3  
AFE_  
CONTROL 1  
AA_FILT_EN[0]  
AA_FILT_EN[1]  
AA_FILT_EN[2]  
AA_FILT_EN[3]  
ADC3_SW[3:0]  
0
1
Disables the internal antialiasing  
filter on Channel 0  
Enables the internal antialiasing  
filter on Channel 0  
0
1
Disables the internal antialiasing  
filter on Channel 1  
Enables the internal antialiasing  
filter on Channel 1  
0
1
Disables the internal antialiasing  
filter on Channel 2  
Enables the internal antialiasing  
filter on Channel 2  
0
1
Disables the internal antialiasing  
filter on Channel 3  
Enables the internal antialiasing  
filter on Channel 3  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
No connection  
No connection  
No connection  
No connection  
AIN4  
No connection  
No connection  
No connection  
No connection  
AIN7  
No connection  
No connection  
No connection  
Rev. 0 | Page 88 of 108  
ADV7184  
Bit  
3
Address  
Register  
Bit Description  
7
1
1
1
6
1
1
1
5
0
1
1
4
1
0
1
2
1
0
Comments  
Notes  
No connection  
No connection  
No connection  
0xF4  
Drive Strength  
DR_STR_S[1:0]. Selects the drive strength  
for the sync output signals.  
0
0
1
1
0
1
0
1
Reserved  
Medium-low drive strength (2x)  
Medium-high drive strength (3x)  
High drive strength (4x)  
Reserved  
DR_STR_C[1:0]. Selects the drive strength  
for the clock output signal.  
0
0
1
1
0
1
0
1
Medium-low drive strength (2x)  
Medium-high drive strength (3x)  
High drive strength (4x)  
Reserved  
DR_STR[1:0]. Selects the drive strength for  
the data output signals. Can be increased or  
decreased for EMC or crosstalk reasons.  
0
0
1
1
0
1
0
1
Medium-low drive strength (2x)  
Medium-high drive strength (3x)  
High drive strength (4x)  
No delay  
Reserved.  
x
x
0xF8  
IF Comp Control  
IFFILTSEL[2:0] IF filter selection for PAL and  
NTSC  
0
0
0
Bypass mode  
0dB  
2 MHz  
−3 dB  
5 MHz  
+2 dB  
NTSC Filters  
0
0
0
1
0
1
1
0
1
0
1
0
−6 dB  
+3.5 dB  
+5 dB  
−10 dB  
Reserved  
3 MHz  
−2 dB  
6 MHz  
+2 dB  
+3 dB  
+5 dB  
PAL Filters  
1
1
1
0
1
1
1
0
1
−5 dB  
−7 dB  
Reserved.  
0
0
0
0
0
0xF9  
VS Mode Control  
EXTEND_VS_MAX_FREQ  
0
1
Limit maximum VSYNC frequency to  
66.25 Hz (475 lines/frame)  
Limit maximum VSYNC frequency to  
70.09 Hz (449 lines/frame)  
EXTEND_VS_MIN_FREQ  
VS_COAST_MODE[1:0]  
0
1
Limit minimum VSYNC frequency to  
42.75 Hz (731 lines/frame)  
Limit minimum VSYNC frequency to  
39.51 Hz (791 lines/frame)  
0
0
1
1
0
1
0
1
Auto coast mode  
50 Hz coast mode  
60 Hz coast mode  
Reserved  
This value sets up the output  
coast frequency.  
Reserved.  
0
0
0
1
0
0
0
0
0xFB  
0xFC  
Peaking Control  
PEAKING_GAIN[7:0]  
0
0
0
1
0
0
0
0
Increases/decreases the gain for  
high frequency portions of the  
video signal  
Coring Threshold 2  
DNR_TH2[7:0]  
0
0
0
0
Specifies the max. edge that is  
interpreted as noise and therefore  
blanked  
Rev. 0 | Page 89 of 108  
ADV7184  
USER SUB MAP  
The collective name for the subaddress registers in Table 103 is User Sub Map. To access the User Sub Map, SUB_USR_EN in Register  
Address 0x0E (User Map) must be programmed to 1.  
Table 103. User Sub Map Register Details  
Address  
Reset  
Value  
R
Dec Hex Register Name  
W
7
6
5
4
3
2
1
0
(Hex)  
Interrupt  
64 40 Configuration 0  
INTRQ_DUR_  
RW SEL.1  
INTRQ_DUR_  
SEL.0  
MV_INTRQ_  
SEL.1  
MV_INTRQ_  
SEL.0  
MPU_STIM_I  
NTRQ  
INTRQ_OP_  
SEL.1  
INTRQ_OP_  
SEL.0  
0001x000 10  
--- ---  
SD_FR_  
HNG_Q  
66 42 Interrupt Status 1  
67 43 Interrupt Clear 1  
68 44 Interrupt Mask 1  
69 45 Raw Status 2  
R
MV_PS_CS_Q  
SD_UNLOCK_Q SD_LOCK_Q  
SD_UNLOCK_  
CLR  
SD_FR_  
W
RW  
MV_PS_CS_CLR CHNG_CLR  
SD_LOCK_CLR x0000000 00  
MV_PS_CS  
_MSKB  
SD_FR_  
CHNG_MSKB  
SD_UNLOCK_  
MSKB  
SD_LOCK_  
MSKB  
x0000000 00  
MPU_STIM_  
INTRQ  
R
EVEN_FIELD  
CCAPD  
---  
---  
---  
---  
MPU_STIM_I  
NTRQ_Q  
SD_FIELD_  
CHNGD_Q  
70 46 Interrupt Status 2  
71 47 Interrupt Clear 2  
R
GEMD_Q  
CCAPD_Q  
CCAPD_CLR  
MPU_STIM_  
INTRQ_CLR  
SD_FIELD_  
CHNGD_CLR  
W
GEMD_CLR  
0xx00000 00  
SD_FIELD_  
CHNGD_  
MSKB  
MPU_STIM_  
RW INTRQ_MSKB  
72 48 Interrupt Mask 2  
73 49 Raw Status 3  
GEMD_MSKB  
SD_V_LOCK  
CCAPD_MSKB 0xx00000 00  
R
SCM_LOCK  
SD_H_LOCK  
SD_H_LOCK_  
SD_AD_CHNG_Q CHNG_Q  
SD_OP_50Hz ---  
---  
PAL_SW_LK_  
CHNG_Q  
SCM_LOCK_  
CHNG_Q  
SD_V_LOCK_  
CHNG_Q  
SD_OP_  
CHNG_Q  
74 4A Interrupt Status 3  
75 4B Interrupt Clear 3  
76 4C Interrupt Mask 3  
R
---  
---  
PAL_SW_LK_  
CHNG_CLR  
SCM_LOCK_  
CHNG_CLR  
SD_AD_CHNG_ SD_H_LOCK_  
SD_V_LOCK_  
CHNG_CLR  
SD_OP_  
CHNG_CLR  
W
RW  
CLR  
CHNG_CLR  
xx000000 00  
PAL_SW_LK_  
CHNG_MSKB  
SCM_LOCK_  
CHNG_MSKB  
SD_AD_CHNG_ SD_H_LOCK_  
SD_V_LOCK_  
CHNG_MSKB  
SD_OP_  
CHNG_MSKB xx000000 00  
MSKB  
CHNG_MSKB  
VDP_GS_  
VPS_PDC_  
UTC_CHNG_Q  
VDP_  
CGMS_WSS_  
CHNGD_Q  
VDP_  
VITC_Q  
VDP_CCAPD_  
Q
78 4E Interrupt Status 4  
79 4F Interrupt Clear 4  
80 50 Interrupt Mask 4  
R
---  
---  
VDP_GS_VPS_  
PDC_UTC_  
CHNG_CLR  
VDP_  
VITC_CLR  
VDP_CGMS_WSS_  
CHNGD_CLR  
VDP_CCAPD_  
CLR  
W
RW  
00x0x0x0 00  
00x0x0x0 00  
VDP_GS_VPS_  
PDC_UTC_  
CHNG_MSKB  
VDP_  
VITC_MSKB  
VDP_CGMS_WSS_  
CHNGD_MSKB  
VDP_CCAPD_  
MSKB  
WST_PKT_  
DECOD_DISABLE MAN_ENABLE  
VDP_TTXT_TYPE_ VDP_TTXT_  
VDP_TTXT_  
TYPE_MAN.0 10001000 88  
96 60 VDP_Config_1  
97 61 VDP_Config_2  
RW  
RW  
TYPE_MAN.1  
AUTO_DETECT_  
GS_TYPE  
0001xx00 10  
98 62 VDP_ADF_Config_1 RW ADF_ENABLE  
99 63 VDP_ADF_Config_2 RW DUPLICATE ADF  
ADF_MODE.1  
ADF_MODE.0  
ADF_SDID.5  
ADF_DID.4  
ADF_DID.3  
ADF_DID.2  
ADF_DID.1  
ADF_DID.0  
00010101 15  
0x101010 2A  
ADF_SDID.4  
ADF_SDID.3  
ADF_SDID.2  
ADF_SDID.1  
ADF_SDID.0  
VBI_DATA_  
P318.3  
VBI_DATA_  
P318.2  
VBI_DATA_  
P318.1  
VBI_DATA_  
P318.0  
100 64 VDP_LINE_00E  
101 65 VDP_LINE_00F  
102 66 VDP_LINE_010  
103 67 VDP_LINE_011  
104 68 VDP_LINE_012  
105 69 VDP_LINE_013  
106 6A VDP_LINE_014  
107 6B VDP_LINE_015  
108 6C VDP_LINE_016  
109 6D VDP_LINE_017  
110 6E VDP_LINE_018  
111 6F VDP_LINE_019  
112 70 VDP_LINE_01A  
RW MAN_LINE_PGM  
VBI_DATA_P6_ VBI_DATA_  
0xxx0000 00  
VBI_DATA_  
P6_N23.1  
VBI_DATA_  
P6_N23.0  
VBI_DATA_P319_ VBI_DATA_P319_ VBI_DATA_  
N286.3 N286.2 P319_N286.1  
VBI_DATA_  
P319_N286.0 00000000 00  
RW N23.3  
P6_N23.2  
VBI_DATA_P7_ VBI_DATA_  
VBI_DATA_  
P7_N24.1  
VBI_DATA_  
P7_N24.0  
VBI_DATA_P320_ VBI_DATA_P320_ VBI_DATA_  
N287.3 N287.2 P320_N287.1  
VBI_DATA_  
P320_N287.0 00000000 00  
RW N24.3  
P7_N24.2  
VBI_DATA_P8_ VBI_DATA_  
VBI_DATA_  
P8_N25.1  
VBI_DATA_  
P8_N25.0  
VBI_DATA_P321_ VBI_DATA_P321_ VBI_DATA_  
N288.3  
VBI_DATA_  
P321_N288.0 00000000 00  
RW N25.3  
P8_N25.2  
N288.2  
P321_N288.1  
VBI_DATA_  
RW VBI_DATA_P9.3 P9.2  
VBI_DATA_  
P9.1  
VBI_DATA_  
P9.0  
VBI_DATA_  
P322.3  
VBI_DATA_  
VBI_DATA_  
P322.0  
VBI_DATA_P322.2 P322.1  
VBI_DATA_  
00000000 00  
00000000 00  
VBI_DATA_P10. VBI_DATA_  
VBI_DATA_  
P10.1  
VBI_DATA_  
P10.0  
VBI_DATA_  
P323.0  
RW 3  
P10.2  
VBI_DATA_P323.3 VBI_DATA_P323.2 P323.1  
VBI_DATA_P11. VBI_DATA_  
VBI_DATA_  
P11.1  
VBI_DATA_  
P11.0  
VBI_DATA_P324_ VBI_DATA_P324_ VBI_DATA_  
VBI_DATA_  
P324_N272.0 00000000 00  
RW 3  
P11.2  
N272.3  
VBI_DATA_P325_ VBI_DATA_P325_ VBI_DATA_  
N273.3 N273.2 P325_N273.1  
VBI_DATA_P326_ VBI_DATA_P326_ VBI_DATA_  
N274.3 N274.2 P326_N274.1  
VBI_DATA_P327_ VBI_DATA_P327_ VBI_DATA_  
N275.3 N275.2 P327_N275.1  
N272.2  
P324_N272.1  
VBI_DATA_P12_ VBI_DATA_  
VBI_DATA_  
P12_N10.1  
VBI_DATA_  
P12_N10.0  
VBI_DATA_  
P325_N273.0 00000000 00  
RW N10.3  
P12_N10.2  
VBI_DATA_P13_ VBI_DATA_  
VBI_DATA_  
P13_N11.1  
VBI_DATA_  
P13_N11.0  
VBI_DATA_  
P326_N274.0 00000000 00  
RW N11.3  
P13_N11.2  
VBI_DATA_P14_ VBI_DATA_  
VBI_DATA_  
P14_N12.1  
VBI_DATA_  
P14_N12.0  
VBI_DATA_  
P327_N275.0 00000000 00  
RW N12.3  
P14_N12.2  
VBI_DATA_P15_ VBI_DATA_P15_ VBI_DATA_  
RW N13.3 N13.2 P15_N13.1  
VBI_DATA_P15_ VBI_DATA_P328_ VBI_DATA_P328_ VBI_DATA_  
N13.0 N276.3 N276.2 P328_N276.1  
VBI_DATA_  
P328_N276.0 00000000 00  
VBI_DATA_P16_ VBI_DATA_P16_ VBI_DATA_  
RW N14.3  
N14.2 P16_N14.1  
VBI_DATA_P16_ VBI_DATA_P329_ VBI_DATA_P329_ VBI_DATA_  
N14.0 N277.3 N277.2 P329_N277.1  
VBI_DATA_P17_ VBI_DATA_P330_ VBI_DATA_P330_ VBI_DATA_  
N15.0 N278.3 N278.2 P330_N278.1  
VBI_DATA_  
P329_N277.0 00000000 00  
VBI_DATA_P17_ VBI_DATA_P17_ VBI_DATA_  
RW N15.3 N15.2 P17_N15.1  
VBI_DATA_  
P330_N278.0 00000000 00  
Rev. 0 | Page 90 of 108  
 
ADV7184  
Address  
Reset  
R
Dec Hex Register Name  
113 71 VDP_LINE_01B  
114 72 VDP_LINE_01C  
115 73 VDP_LINE_01D  
116 74 VDP_LINE_01E  
117 75 VDP_LINE_01F  
118 76 VDP_LINE_020  
119 77 VDP_LINE_021  
120 78 VDP_STATUS_CLEAR  
120 78 VDP_STATUS  
121 79 VDP_CCAP_DATA_0  
W
7
6
5
4
3
2
1
0
Value  
(Hex)  
VBI_DATA_P18_ VBI_DATA_P18_ VBI_DATA_  
RW N16.3 N16.2 P18_N16.1  
VBI_DATA_P18_ VBI_DATA_P331_ VBI_DATA_P331_ VBI_DATA_  
N16.0 N279.3 N279.2 P331_N279.1  
VBI_DATA_  
P331_N279.0 00000000 00  
VBI_DATA_P19_ VBI_DATA_ VBI_DATA_P19_ VBI_DATA_P19_ VBI_DATA_P332_ VBI_DATA_P332_ VBI_DATA_  
N17.1 N17.0 N280.3 N280.2 P332_N280.1  
VBI_DATA_P20_ VBI_DATA_P20_ VBI_DATA_P333_ VBI_DATA_P333_ VBI_DATA_  
N18.1 N18.0 N281.3 N281.2 P333_N281.1  
VBI_DATA_P21_ VBI_DATA_P21_ VBI_DATA_P334_ VBI_DATA_P334_ VBI_DATA_  
N19.1 N19.0 N282.3 N282.2 P334_N282.1  
VBI_DATA_P22_ VBI_DATA_P22_ VBI_DATA_P335_ VBI_DATA_P335_ VBI_DATA_  
N20.1 N20.0 N283.3 N283.2 P335_N283.1  
VBI_DATA_P23_ VBI_DATA_P23_ VBI_DATA_P336_ VBI_DATA_P336_ VBI_DATA_  
N21.1 N21.0 N284.3 N284.2 P336_N284.1  
VBI_DATA_P24_ VBI_DATA_P24_ VBI_DATA_P337_ VBI_DATA_P337_ VBI_DATA_  
VBI_DATA_  
P332_N280.0 00000000 00  
RW N17.3  
P19_N17.2  
VBI_DATA_P20_ VBI_DATA_  
VBI_DATA_  
P333_N281.0 00000000 00  
RW N18.3  
P20_N18.2  
VBI_DATA_P21_ VBI_DATA_  
VBI_DATA_  
P334_N282.0 00000000 00  
RW N19.3  
P21_N19.2  
VBI_DATA_P22_ VBI_DATA_  
VBI_DATA_  
P335_N283.0 00000000 00  
RW N20.3  
P22_N20.2  
VBI_DATA_P23_ VBI_DATA_  
VBI_DATA_  
P336_N284.0 00000000 00  
RW N21.3  
P23_N21.2  
VBI_DATA_P24_ VBI_DATA_  
VBI_DATA_  
P337_N285.0 00000000 00  
RW N22.3  
P24_N22.2  
N22.1  
N22.0  
N285.3  
N285.2  
P337_N285.1  
GS_PDC_VPS_  
UTC_CLEAR  
CGMS_WSS_  
CLEAR  
W
R
VITC_CLEAR  
CC_CLEAR  
00000000 00  
GS_PDC_VPS_  
TTXT_AVL  
VITC_AVL  
CCAP_  
GS_DATA_TYPE UTC_AVL  
CGMS_WSS_AVL CC_EVEN_FIELD CC_AVL  
CCAP_  
---  
---  
---  
---  
R
CCAP_BYTE_1.7 BYTE_1.6  
CCAP_BYTE_1.5 CCAP_BYTE_1.4 CCAP_BYTE_1.3 CCAP_BYTE_1.2 CCAP_BYTE_1.1 BYTE_1.0  
CCAP_  
CCAP_BYTE_2.7 BYTE_2.6  
CCAP_  
122 7A VDP_CCAP_DATA_1  
125 7D CGMS_WSS_DATA_0  
126 7E CGMS_WSS_DATA_1  
127 7F CGMS_WSS_DATA_2  
R
R
R
R
CCAP_BYTE_2.5 CCAP_BYTE_2.4 CCAP_BYTE_2.3 CCAP_BYTE_2.2 CCAP_BYTE_2.1 BYTE_2.0  
---  
---  
---  
---  
---  
---  
---  
---  
zero  
zero  
zero  
CGMS_WSS.13 CGMS_WSS.12 CGMS_WSS.11  
CGMS_WSS.5 CGMS_WSS.4 CGMS_WSS.3  
zero  
CGMS_CRC.5  
CGMS_CRC.4  
CGMS_WSS.10  
CGMS_WSS.2  
CGMS_CRC.3  
CGMS_WSS.9  
CGMS_WSS.1  
CGMS_CRC.2  
CGMS_WSS.8  
CGMS_WSS.0  
CGMS_CRC.1  
CGMS_WSS.7  
CGMS_CRC.0  
CGMS_WSS.6  
VDP_GS_VPS_  
132 84 PDC_UTC_0  
GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_  
UTC_BYTE_0.7 UTC_BYTE_0.6 UTC_BYTE_0.5 UTC_BYTE_0.4 UTC_BYTE_0.3  
GS_VPS_PDC_  
UTC_BYTE_0.2  
GS_VPS_PDC_  
UTC_BYTE_0.1  
GS_VPS_PDC_  
UTC_BYTE_0.0  
R
R
R
R
R
R
R
R
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
VDP_GS_VPS_  
133 85 PDC_UTC_1  
GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_  
UTC_BYTE_1.7 UTC_BYTE_1.6 UTC_BYTE_1.5 UTC_BYTE_1.4 UTC_BYTE_1.3  
GS_VPS_PDC_  
UTC_BYTE_1.2  
GS_VPS_PDC_  
UTC_BYTE_1.1  
GS_VPS_PDC_  
UTC_BYTE_1.0  
VDP_GS_VPS_  
134 86 PDC_UTC_2  
GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_  
UTC_BYTE_2.7 UTC_BYTE_2.6 UTC_BYTE_2.5 UTC_BYTE_2.4 UTC_BYTE_2.3  
GS_VPS_PDC_  
UTC_BYTE_2.2  
GS_VPS_PDC_  
UTC_BYTE_2.1  
GS_VPS_PDC_  
UTC_BYTE_2.0  
VDP_GS_VPS_  
135 87 PDC_UTC_3  
GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_ GS_VPS_PDC_  
UTC_BYTE_3.7 UTC_BYTE_3.6 UTC_BYTE_3.5 UTC_BYTE_3.4 UTC_BYTE_3.3  
GS_VPS_PDC_  
UTC_BYTE_3.2  
GS_VPS_PDC_  
UTC_BYTE_3.1  
GS_VPS_PDC_  
UTC_BYTE_3.0  
VDP_VPS_PDC_  
136 88 UTC_4  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
VPS_PDC_  
BYTE_4.7  
BYTE_4.6  
BYTE_4.5  
BYTE_4.4  
BYTE_4.3  
BYTE_4.2  
BYTE_4.1  
UTC_BYTE_4.0  
VDP_VPS_PDC_  
137 89 UTC_5  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
VPS_PDC_  
UTC_BYTE_5.0  
BYTE_5.7  
BYTE_5.6  
BYTE_5.5  
BYTE_5.4  
BYTE_5.3  
BYTE_5.2  
BYTE_5.1  
VDP_VPS_PDC_  
138 8A UTC_6  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
VPS_PDC_  
UTC_BYTE_6.0  
BYTE_6.7  
BYTE_6.6  
BYTE_6.5  
BYTE_6.4  
BYTE_6.3  
BYTE_6.2  
BYTE_6.1  
VDP_VPS_PDC_  
139 8B UTC_7  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
VPS_PDC_  
UTC_BYTE_7.0  
BYTE_7.7  
BYTE_7.6  
BYTE_7.5  
BYTE_7.4  
BYTE_7.3  
BYTE_7.2  
BYTE_7.1  
VPS_PDC_UTC_  
BYTE_8.2  
VDP_VPS_PDC_  
140 8C UTC_8  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
BYTE_8.7 BYTE_8.6 BYTE_8.5 BYTE_8.4 BYTE_8.3  
VPS_PDC_UTC_  
BYTE_8.1  
VPS_PDC_  
UTC_BYTE_8.0  
R
R
R
R
---  
---  
---  
---  
---  
---  
---  
---  
VDP_VPS_PDC_  
141 8D UTC_9  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
VPS_PDC_  
BYTE_9.7  
BYTE_9.6  
BYTE_9.5  
BYTE_9.4  
BYTE_9.3  
BYTE_9.2  
BYTE_9.1  
UTC_BYTE_9.0  
VDP_VPS_PDC_  
142 8E UTC_10  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
VPS_PDC_  
UTC_BYTE_10.0  
BYTE_10.7  
BYTE_10.6  
BYTE_10.5  
BYTE_10.4  
BYTE_10.3  
BYTE_10.2  
BYTE_10.1  
VDP_VPS_PDC_  
143 8F UTC_11  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
VPS_PDC_  
UTC_BYTE_11.0  
BYTE_11.7  
BYTE_11.6  
BYTE_11.5  
BYTE_11.4  
BYTE_11.3  
BYTE_11.2  
BYTE_11.1  
VDP_VPS_PDC_  
144 90 UTC_12  
VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_ VPS_PDC_UTC_  
VPS_PDC_  
UTC_BYTE_12.0  
R
R
R
R
R
R
R
R
R
R
BYTE_12.7  
BYTE_12.6  
BYTE_12.5  
BYTE_12.4  
BYTE_12.3  
BYTE_12.2  
BYTE_12.1  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
146 92 VDP_VITC_DATA_0  
147 93 VDP_VITC_DATA_1  
148 94 VDP_VITC_DATA_2  
149 95 VDP_VITC_DATA_3  
150 96 VDP_VITC_DATA_4  
151 97 VDP_VITC_DATA_5  
152 98 VDP_VITC_DATA_6  
153 99 VDP_VITC_DATA_7  
154 9A VDP_VITC_DATA_8  
VITC_DATA_1.7 VITC_DATA_1.6 VITC_DATA_1.5 VITC_DATA_1.4 VITC_DATA_1.3 VITC_DATA_1.2  
VITC_DATA_2.7 VITC_DATA_2.6 VITC_DATA_2.5 VITC_DATA_2.4 VITC_DATA_2.3 VITC_DATA_2.2  
VITC_DATA_3.7 VITC_DATA_3.6 VITC_DATA_3.5 VITC_DATA_3.4 VITC_DATA_3.3 VITC_DATA_3.2  
VITC_DATA_4.7 VITC_DATA_4.6 VITC_DATA_4.5 VITC_DATA_4.4 VITC_DATA_4.3 VITC_DATA_4.2  
VITC_DATA_5.7 VITC_DATA_5.6 VITC_DATA_5.5 VITC_DATA_5.4 VITC_DATA_5.3 VITC_DATA_5.2  
VITC_DATA_6.7 VITC_DATA_6.6 VITC_DATA_6.5 VITC_DATA_6.4 VITC_DATA_6.3 VITC_DATA_6.2  
VITC_DATA_7.7 VITC_DATA_7.6 VITC_DATA_7.5 VITC_DATA_7.4 VITC_DATA_7.3 VITC_DATA_7.2  
VITC_DATA_8.7 VITC_DATA_8.6 VITC_DATA_8.5 VITC_DATA_8.4 VITC_DATA_8.3 VITC_DATA_8.2  
VITC_DATA_9.7 VITC_DATA_9.6 VITC_DATA_9.5 VITC_DATA_9.4 VITC_DATA_9.3 VITC_DATA_9.2  
VITC_DATA_1.1  
VITC_DATA_2.1  
VITC_DATA_3.1  
VITC_DATA_4.1  
VITC_DATA_5.1  
VITC_DATA_6.1  
VITC_DATA_7.1  
VITC_DATA_8.1  
VITC_DATA_9.1  
VITC_CRC.1  
VITC_DATA_1.0  
VITC_DATA_2.0  
VITC_DATA_3.0  
VITC_DATA_4.0  
VITC_DATA_5.0  
VITC_DATA_6.0  
VITC_DATA_7.0  
VITC_DATA_8.0  
VITC_DATA_9.0  
VITC_CRC.0  
155 9B VDP_VITC_CALC_CRC R VITC_CRC.7  
VITC_CRC.6  
VITC_CRC.5  
VITC_CRC.4  
VITC_CRC.3  
VITC_CRC.2  
I2C_GS_VPS_  
RW PDC_UTC.1  
I2C_GS_VPS_  
PDC_UTC.0  
WSS_CGMS_  
UTC_CB_CHANGE CB_CHANGE  
GS_VPS_PDC_  
156 9C VDP_OUTPUT_SEL  
00110000 30  
Rev. 0 | Page 91 of 108  
ADV7184  
Table 104 provides a detailed description of the registers located in the User Sub Map.  
Table 104. User Sub Map Detailed Description  
User Sub Map  
Bit  
Address Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
1
0
0
1
0
1
Comments  
Notes  
0x40  
Interrupt Configuration 1 INTRQ_OP_SEL[1:0]. Interrupt Drive Level  
Select  
Open drain  
Drive low when active  
Drive high when active  
Reserved  
MPU_STIM_INTRQ[1:0]. Manual Interrupt  
Set Mode  
0
1
Manual interrupt mode disabled  
Manual interrupt mode enabled  
Not used  
Reserved  
x
MV_INTRQ_SEL[1:0]. Macrovision  
Interrupt Select  
0
0
1
1
0
1
0
1
Reserved  
Pseudo sync only  
Color stripe only  
Pseudo sync or color stripe  
3 XTAL periods  
INTRQ_DUR_SEL[1:0]. Interrupt duration  
Select  
0
0
1
1
0
1
0
1
15 XTAL periods  
63 XTAL periods  
Active until cleared  
No change  
0x42  
Interrupt Status 1  
(Read Only)  
SD_LOCK_Q  
0
1
These bits can be cleared or  
masked in Registers 0x43 and  
0x44, respectively.  
SD input has caused the decoder to  
go from an unlocked state to a  
locked state  
SD_UNLOCK_Q  
0
1
No change  
SD input has caused the decoder to  
go from a locked state to an  
unlocked state  
Reserved  
x
Reserved  
x
Reserved  
x
SD_FR_CHNG_Q  
0
1
No Change  
Denotes a change in the free-run  
status  
MV_PS_CS_Q  
0
1
No Change  
Pseudo sync/color striping detected.  
See Reg 0x40 MV_INTRQ_SEL[1:0]  
for selection  
Reserved  
x
x
x
0x43  
Interrupt Clear 1  
(Write Only)  
SD_LOCK_CLR  
0
1
Do not clear  
Clears SD_LOCK_Q bit  
Do not clear  
SD_UNLOCK_CLR  
0
1
Clears SD_UNLOCK_Q bit  
Not used  
Reserved  
0
Reserved  
0
Not used  
Reserved  
0
Not used  
SD_FR_CHNG_CLR  
0
1
Do not clear  
Clears SD_FR_CHNG_Q bit  
Do not clear  
MV_PS_CS_CLR  
0
1
Clears MV_PS_CS_Q bit  
Not used  
Reserved  
0x44  
Interrupt Mask 1  
(Read/Write)  
SD_LOCK_MSKB  
0
1
Masks SD_LOCK_Q bit  
Unmasks SD_LOCK_Q bit  
Masks SD_UNLOCK_Q bit  
Unmasks SD_UNLOCK_Q bit  
Not used  
SD_UNLOCK_MSKB  
0
1
Reserved  
0
Reserved  
0
Not used  
Reserved  
0
Not used  
SD_FR_CHNG_MSKB  
0
1
Masks SD_FR_CHNG_Q bit  
Unmasks SD_FR_CHNG_Q bit  
Masks MV_PS_CS_Q bit  
Unmasks MV_PS_CS_Q bit  
Not used  
MV_PS_CS_MSKB  
Reserved  
0
1
Rev. 0 | Page 92 of 108  
ADV7184  
User Sub Map  
Bit  
Address Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x45  
Raw Status 2 (Read Only)  
CCAPD  
These bits are status bits only.  
They cannot be cleared or  
masked. Register 0x46 is used  
for this purpose.  
0
No CCAPD data detected – VBI  
system 2  
1
CCAPD data detected – VBI system 2  
Reserved  
x
x
x
EVEN_FIELD  
0
1
Current SD Field is Odd Numbered  
Current SD Field is Even Numbered  
Reserved  
x
x
MPU_STIM_INTRQ  
0
1
MPU_STIM_INT = 0  
MPU_STIM_INT = 1  
0x46  
Interrupt Status 2  
(Read Only)  
CCAPD_Q  
GEMD_Q  
0
1
Closed captioning not detected in  
the input video signal – VBI system 2 masked by registers 0x47 and  
These bits can be cleared or  
0x48, respectively.  
Closed captioning data detected in  
the video input signal – VBI system 2  
Note that interrupt in register  
0x46 for the CCAP, Gemstar,  
CGMS and WSS data is using  
the Mode 1 data slicer.  
0
1
Gemstar data not detected in the  
input video signal– VBI system 2  
Gemstar data detected in the input  
video signal– VBI system 2  
Reserved  
x
x
0
x
x
0
SD_FIELD_CHNGD_Q  
0
1
SD signal has not changed Field  
from ODD to Even or Vice versa  
SD signal has changed Field from  
ODD to Even or Vice versa  
Reserved  
x
Not used  
Reserved  
x
Not used  
MPU_STIM_INTRQ_Q  
0
1
Manual interrupt not Set  
Manual interrupt Set  
Do not clear – VBI system 2  
Clears CCAPD_Q bit – VBI system 2  
Do not clear  
0x47  
Interrupt Clear 2  
(Write Only)  
CCAPD_CLR  
GEMD_CLR  
0
1
Note that interrupt in register  
0x46 for the CCAP, Gemstar,  
CGMS and WSS data is using  
the Mode 1 data slicer.  
0
1
Clears GEMD_Q bit  
Reserved  
SD_FIELD_CHNGD_CLR  
0
1
Do not Clear  
Clears SD_FIELD_CHNGD_Q bit  
Not used  
Reserved  
x
Reserved  
x
Not used  
MPU_STIM_INTRQ_CLR  
0
1
Do not clear  
Clears MPU_STIM_INTRQ_Q bit  
Masks CCAPD_Q bit – VBI system 2  
0x48  
Interrupt Mask 2  
(Read/Write)  
CCAPD_MSKB  
GEMD_MSKB  
0
1
Note that interrupt in register  
0x46 for the CCAP, Gemstar,  
CGMS and WSS data is using  
the Mode 1 data slicer.  
Unmasks CCAPD_Q bit – VBI system  
2
0
1
Masks GEMD_Q bit – VBI system 2  
Unmasks GEMD_Q bit – VBI system  
2
Reserved  
Not used  
SD_FIELD_CHNGD_MSKB  
0
1
Masks SD_FIELD_CHNGD_Q bit  
Unmasks SD_FIELD_CHNGD_Q bit  
Not used  
Reserved  
0 0  
MPU_STIM_INTRQ_MSKB  
0
1
Masks MPU_STIM_INTRQ_Q bit  
Unmasks MPU_STIM_INTRQ_Q bit  
SD 60 Hz signal output  
0x49  
Raw Status 3  
(Read Only)  
SD_OP_50Hz. SD 60/50Hz frame rate at  
output  
0
1
These bits are status bits only.  
They cannot be cleared or  
masked. Register 0x4A is used  
for this purpose.  
SD 50 Hz signal output  
SD_V_LOCK  
0
1
SD vertical sync lock not established  
SD vertical sync lock established  
SD_H_LOCK  
0
1
SD horizontal sync lock not  
established  
SD horizontal sync lock established  
Not used  
Reserved  
x
SCM_LOCK  
0
1
SECAM lock not established  
SECAM lock established  
Not used  
Reserved  
Reserved  
Reserved  
x
x
Not used  
x
Not used  
Rev. 0 | Page 93 of 108  
ADV7184  
User Sub Map  
Bit  
Address Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x4A  
Interrupt Status 3  
(Read Only)  
SD_OP_CHNG_Q. SD 60/50 Hz frame rate  
at output  
0
No Change in SD signal standard  
detected at the output  
These bits can be cleared and  
masked by Registers 0x4B and  
0x4C, respectively.  
1
A Change in SD signal standard is  
detected at the output  
SD_V_LOCK_CHNG_Q  
0
1
No change in SD vertical sync lock  
status  
SD vertical sync lock status has  
changed  
SD_H_LOCK_CHNG_Q  
0
1
No change in SD horizontal sync  
lock status  
SD horizontal sync lock status has  
changed  
SD_AD_CHNG_Q. SD autodetect changed  
x
No change in AD_RESULT[2:0] bits in  
Status Register 1  
AD_RESULT[2:0] bits in Status  
Register 1 have changed  
SCM_LOCK_CHNG_Q. SECAM Lock  
PAL_SW_LK_CHNG_Q  
0
1
No change in SECAM Lock status  
SECAM lock status has changed  
x
No change in PAL swinging burst  
lock status  
PAL swinging burst lock status has  
changed  
Reserved  
x
x
x
Not used  
Reserved  
x
x
x
Not used  
0x4B  
0x4C  
0x4E  
Interrupt Clear 3  
(Write Only)  
SD_OP_CHNG_CLR  
0
1
Do not clear  
Clears SD_OP_CHNG_Q bit  
Do not clear  
SD_V_LOCK_CHNG_CLR  
SD_H_LOCK_CHNG_CLR  
SD_AD_CHNG_CLR  
0
1
Clears SD_V_LOCK_CHNG_Q bit  
Do not clear  
0
1
Clears SD_H_LOCK_CHNG_Q bit  
Do not clear  
0
1
Clears SD_AD_CHNG_Q bit  
Do not clear  
SCM_LOCK_CHNG_CLR  
PAL_SW_LK_CHNG_CLR  
0
1
Clears SCM_LOCK_CHNG_Q bit  
Do not clear  
0
1
Clears PAL_SW_LK_CHNG_Q bit  
Not used  
Reserved  
Reserved  
Not used  
Interrupt Mask 2  
(Read/Write)  
SD_OP_CHNG_MSKB  
0
1
Masks SD_OP_CHNG_Q bit  
Unmasks SD_OP_CHNG_Q bit  
Masks SD_V_LOCK_CHNG_Q bit  
Unmasks SD_V_LOCK_CHNG_Q bit  
Masks SD_H_LOCK_CHNG_Q bit  
Unmasks SD_H_LOCK_CHNG_Q bit  
Masks SD_AD_CHNG_Q bit  
Unmasks SD_AD_CHNG_Q bit  
Masks SCM_LOCK_CHNG_Q bit  
Unmasks SCM_LOCK_CHNG_Q bit  
Masks PAL_SW_LK_CHNG_Q bit  
Unmasks PAL_SW_LK_CHNG_Q bit  
Not used  
SD_V_LOCK_CHNG_ MSKB  
SD_H_LOCK_CHNG_ MSKB  
SD_AD_CHNG_ MSKB  
0
1
0
1
0
1
SCM_LOCK_CHNG_ MSKB  
PAL_SW_LK_CHNG_ MSKB  
0
1
0
1
Reserved  
Reserved  
Not used  
Interrupt Status 4  
(Read Only)  
VDP_CCAPD_Q  
0
1
Closed captioning not detected  
Closed captioning detected  
These bits can be cleared and  
masked by Registers 0x4F and  
0x50, respectively.  
Reserved  
x
Note that interrupt in register  
0x4E for the CCAP, Gemstar,  
CGMS, WSS,VPS,PDC, UTC and  
VITC data is using the VDP data  
slicer.  
VDP_CGMS_WSS_CHNGD_Q. See 0x9C Bit  
4of User Sub Map to determine whether  
interrupt is issued for a change in  
detected data or for when data is  
detected regardless of content  
0
1
CGMS/WSS data is not changed/not  
available  
CGMS/WSS data is  
changed/available  
Reserved  
x
VDP_GS_VPS_PDC_UTC_CHNG_Q. See  
0x9C Bit 5of User Sub Map to determine  
0
Gemstar/PDC/VPS/UTC data is not  
changed/available  
Rev. 0 | Page 94 of 108  
ADV7184  
User Sub Map  
Bit  
Address Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
whether interrupt is issued for a change in  
detected data or for when data is  
detected regardless of content  
1
Gemstar/PDC/VPS/UTC data is  
changed/available  
Reserved  
x
VDP_VITC_Q  
0
1
VITC data is not available in the VDP  
VITC data is available in the VDP  
Reserved  
x
0x4F  
Interrupt Clear 4  
(Write Only)  
VDP_CCAPD_CLR  
0
1
Do not clear  
Note that interrupt in register  
0x4E for the CCAP, Gemstar,  
CGMS, WSS,VPS,PDC, UTC and  
VITC data is using the VDP data  
slicer.  
Clears VDP_CCAPD_Q  
Reserved  
x
VDP_CGMS_WSS_CHNGD_CLR  
0
1
Do not clear  
Clears VDP_CGMS_WSS_CHNGD_Q  
Reserved  
x
VDP_GS_VPS_PDC_UTC_  
CHNG_CLR  
0
1
Do not clear  
Clears  
VDP_GS_VPS_PDC_UTC_CHNG_Q  
Reserved  
x
VDP_VITC_CLR  
0
1
Do not clear  
Clears VDP_VITC_Q  
Reserved  
x
0x50  
Interrupt Mask 4  
VDP_CCAPD_MSKB  
0
1
Masks VDP_CCAPD_Q  
Note that interrupt in register  
0x4E for the CCAP, Gemstar,  
CGMS, WSS,VPS,PDC, UTC and  
VITC data is using the VDP data  
slicer.  
Unmasks VDP_CCAP_D_Q  
Reserved  
x
VDP_CGMS_WSS_CHNGD_MSKB  
0
1
Masks VDP_CGMS_WSS_CHNGD_Q  
Unmasks  
VDP_CGMS_WSS_CHNGD_Q  
Reserved  
x
VDP_GS_VPS_PDC_UTC_  
CHNG_MSKB  
0
1
Masks  
VDP_GS_VPS_PDC_UTC_CHNG_Q  
Unmasks  
VDP_GS_VPS_PDC_UTC_CHNG_Q  
Reserved  
x
VDP_VITC_MSKB  
0
1
Masks VDP_VITC_Q  
Unmasks VDP_VITC_Q  
Reserved  
x
0x60  
VDP_Config_1  
VDP_TTXT_TYPE_MAN[1:0]  
0
0
0
1
PAL: Teletext-ITU-BT.653-625/50-A  
NTSC: Reserved  
PAL: Teletext-ITU-BT.653-625/50-B  
(WST)  
NTSC: Teletext-ITU-BT.653-525/60-B  
PAL: Teletext-ITU-BT.653-625/50-C  
1
1
0
1
NTSC: Teletext-ITU-BT.653-525/60-C  
OR EIA516 (NABTS)  
PAL: Teletext-ITU-BT.653-625/50-D  
NTSC: Teletext-ITU-BT.653-525/60-D  
VDP_TTXT_TYPE_MAN_ENABLE  
WST_PKT_DECOD_DISABLE  
0
1
User programming of teletext type  
disabled  
User programming of teletext type  
enabled  
0
1
Enable hamming decoding of WST  
packets  
Disable hamming decoding of WST  
packets  
Reserved  
1
0
0
0
0
0
0
0x61  
0x62  
VDP_Config_2  
Reserved  
x
x
0
0
0
1
AUTO_DETECT_GS_TYPE  
0
1
Disable autodetection of Gemstar  
type  
Enable autodetection of Gemstar  
type  
Reserved  
VDP_ADF_Config_1  
ADF_DID[4:0]  
1
0
1
User specified DID sent in the  
ancillary data stream with VDP  
decoded data  
ADF_MODE[1:0]  
0
0
0
1
Nibble mode  
Byte mode, no code restrictions  
Rev. 0 | Page 95 of 108  
ADV7184  
User Sub Map  
Bit  
Address Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
1
0
Byte mode with 0x00 and 0xFF  
prevented  
1
1
Reserved  
ADF_ENABLE  
0
1
Disable insertion of VBI decoded  
data into ancillary 656 stream  
Enable insertion of VBI decoded  
data into ancillary 656 stream  
0x63  
VDP_ADF_Config_2  
ADF_SDID[5:0]  
1
0
1
0
1
0
User-specified SDID sent in the  
ancillary data stream with VDP  
decoded data  
Reserved  
x
DUPLICATE_ADF  
0
1
Ancillary data packet is spread  
across the Y and C data streams  
Ancillary data packet is duplicated  
on the Y and C data streams  
0x64  
VDP_LINE_00E  
VBI_DATA_P318[3:0]  
0
0
0
0
Sets VBI standard to be decoded  
from line 318 (PAL). NTSC – N/A  
Reserved  
0
0
0
MAN_LINE_PGM  
0
1
Decode default standards on the  
lines indicated in Table 64.  
Manually program the VBI standard If set to 1, all VBI_DATA_Px_Ny  
to be decoded on each line. See  
Table 65  
bits must set as desired.  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
VDP_LINE_00F  
VDP_LINE_010  
VDP_LINE_011  
VDP_LINE_012  
VDP_LINE_013  
VDP_LINE_014  
VDP_LINE_015  
VDP_LINE_016  
VDP_LINE_017  
VDP_LINE_018  
VDP_LINE_019  
VDP_LINE_01A  
VBI_DATA_P319_N286[3:0]  
VBI_DATA_P6_N23[3:0]  
VBI_DATA_P320_N287[3:0]  
VBI_DATA_P7_N24[3:0]  
VBI_DATA_P321_N288[3:0]  
VBI_DATA_P8_N25[3:0]  
VBI_DATA_P322[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Sets VBI standard to be decoded  
from line 319 (PAL), 286 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Sets VBI standard to be decoded  
from line 6 (PAL), 23 (NTSC)  
Sets VBI standard to be decoded  
from line 320 (PAL), 287 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 7 (PAL), 24 (NTSC)  
Sets VBI standard to be decoded  
from line 321 (PAL), 288 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 8 (PAL), 25 (NTSC)  
Sets VBI standard to be decoded  
from line 322 (PAL), NTSC – N/A  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
VBI_DATA_P9[3:0]  
Sets VBI standard to be decoded  
from line 9 (PAL), NTSC – N/A  
VBI_DATA_P323[3:0]  
Sets VBI standard to be decoded  
from line 323 (PAL), NTSC –N/A  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
VBI_DATA_P10[3:0]  
Sets VBI standard to be decoded  
from line 10 (PAL), NTSC – N/A  
VBI_DATA_P324_N272[3:0]  
VBI_DATA_P11[3:0]  
Sets VBI standard to be decoded  
from line 324 (PAL), 272 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 11 (PAL), NTSC – N/A  
VBI_DATA_P325_N273[3:0]  
VBI_DATA_P12_N10[3:0]  
VBI_DATA_P326_N274[3:0]  
VBI_DATA_P13_N11[3:0]  
VBI_DATA_P327_N275[3:0]  
VBI_DATA_P14_N12[3:0]  
VBI_DATA_P328_N276[3:0]  
VBI_DATA_P15_N13[3:0]  
VBI_DATA_P329_N277[3:0]  
VBI_DATA_P16_N14[3:0]  
VBI_DATA_P330_N278[3:0]  
Sets VBI standard to be decoded  
from line 325 (PAL), 273(NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 12 (PAL), 10 (NTSC)  
Sets VBI standard to be decoded  
from line 326 (PAL), 274 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 13 (PAL), 11 (NTSC)  
Sets VBI standard to be decoded  
from line 327 (PAL), 275 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 14 (PAL), 12 (NTSC)  
Sets VBI standard to be decoded  
from line 328 (PAL), 276 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 15 (PAL), 13 (NTSC)  
Sets VBI standard to be decoded  
from line 329 (PAL), 277 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 16 (PAL), 14 (NTSC)  
Sets VBI standard to be decoded  
from line 330 (PAL), 278 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
Rev. 0 | Page 96 of 108  
ADV7184  
User Sub Map  
Bit  
Address Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
effective  
VBI_DATA_P17_N15[3:0]  
0
0
0
0
0
0
0
0
0
0
0
Sets VBI standard to be decoded  
from line 17 (PAL), 15 (NTSC)  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
VDP_LINE_01B  
VBI_DATA_P331_N279[3:0]  
VBI_DATA_P18_N16[3:0]  
VBI_DATA_P332_N280[3:0]  
VBI_DATA_P19_N17[3:0]  
VBI_DATA_P333_N281[3:0]  
VBI_DATA_P20_N18[3:0]  
VBI_DATA_P334_N282[3:0]  
VBI_DATA_P21_N19[3:0]  
VBI_DATA_P335_N283[3:0]  
VBI_DATA_P22_N20[3:0]  
VBI_DATA_P336_N284[3:0]  
VBI_DATA_P23_N21[3:0]  
VBI_DATA_P337_N285[3:0]  
VBI_DATA_P24_N22[3:0]  
0
0
0
0
Sets VBI standard to be decoded  
from line 331 (PAL), 279 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Sets VBI standard to be decoded  
from line 18 (PAL), 16 (NTSC)  
VDP_LINE_01C  
VDP_LINE_01D  
VDP_LINE_01E  
VDP_LINE_01F  
VDP_LINE_020  
VDP_LINE_021  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Sets VBI standard to be decoded  
from line 332 (PAL), 280 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 19 (PAL), 17 (NTSC)  
Sets VBI standard to be decoded  
from line 333 (PAL), 281 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 20 (PAL), 18 (NTSC)  
Sets VBI standard to be decoded  
from line 334 (PAL), 282 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 21 (PAL), 19 (NTSC)  
Sets VBI standard to be decoded  
from line 335 (PAL), 283 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 22 (PAL), 20 (NTSC)  
Sets VBI standard to be decoded  
from line 336 (PAL), 284 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 23 (PAL), 21 (NTSC)  
Sets VBI standard to be decoded  
from line 337 (PAL), 285 (NTSC)  
MAN_LINE_PGM must be set  
to 1 for these bits to be  
effective  
Sets VBI standard to be decoded  
from line 24 (PAL), 22 (NTSC)  
VDP_STATUS (Read Only) CC_AVL  
CC_EVEN_FIELD  
0
1
Closed captioning not detected  
Closed captioning detected  
CC_CLEAR resets the CC_AVL  
bit  
0
1
Closed captioning decoded from  
odd field  
Closed captioning decoded from  
even field  
CGMS_WSS_AVL  
0
1
CGMS/WSS not detected  
CGMS/WSS detected  
CGMS_WSS_CLEAR resets the  
CGMS_WSS_AVL bit  
Reserved  
0
GS_PDC_VPS_UTC_AVL  
0
1
VPS not detected  
VPS detected  
GS_PDC_VPS_UTC_CLEAR  
resets the  
GS_PDC_VPS_UTC_AVL bit  
GS_DATA_TYPE  
VITC_AVL  
0
1
Gemstar 1x detected  
Gemstar 2x detected  
VITC not detected  
VITC detected  
0
1
VITC_CLEAR resets the  
VITC_AVL bit  
TTXT_AVL  
0
1
Teletext not detected  
Teletext detected  
0x78  
VDP_STATUS_CLEAR  
(Write Only)  
CC_CLEAR  
0
1
Do not re-initialize the CCAP  
registers  
This is a self-clearing bit  
This is a self-clearing bit  
Re-initializes the CCAP readback  
registers  
Reserved  
0
CGMS_WSS_CLEAR  
0
1
Do not re-initialize the CGMS/WSS  
registers  
Re-initializes the CGMS/WSS  
readback registers  
Reserved  
0
GS_PDC_VPS_UTC_CLEAR  
0
1
Do not re-initialize the GS/PDC/VPS/ This is a self-clearing bit  
UTC registers  
Refreshes the GS/PDC/VPS/UTC  
readback registers  
Reserved  
0
VITC_CLEAR  
0
1
Do not re-initialize the VITC registers This is a self-clearing bit  
Re-initializes the VITC readback  
registers  
Reserved  
0
Rev. 0 | Page 97 of 108  
ADV7184  
User Sub Map  
Bit  
Address Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x79  
0x7A  
0x7D  
VDP_CCAP_DATA_0 (Read CCAP_BYTE_1[7:0]  
Only)  
VDP_CCAP_DATA_1 (Read CCAP_BYTE_2[7:0]  
Only)  
x
x
x
x
x
x
x
x
Decoded Byte 1 of CCAP  
x
x
x
x
x
x
x
x
x
x
x
x
Decoded Byte 2 of CCAP  
VDP_CGMS_WSS_DATA_0 CGMS_CRC[5:2]  
Decoded CRC sequence for CGMS  
(Read Only)  
VDP_CGMS_WSS_DATA_1 CGMS_WSS[13:8]  
(Read Only)  
Reserved  
0
0
0
x
0
x
0x7E  
0x7F  
x
x
x
x
x
x
x
x
Decoded CGMS/WSS data  
Decoded CRC sequence for CGMS  
Decoded CGMS/WSS data  
CGMS_CRC[1:0]  
x
x
x
x
VDP_CGMS_WSS_DATA_2 CGMS_WSS[7:0]  
(Read Only)  
x
x
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
VDP_GS_VPS_PDC_UTC_0 GS_VPS_PDC_UTC_BYTE_0[7:0]  
(Read Only)  
VDP_GS_VPS_PDC_UTC_1 GS_VPS_PDC_UTC_BYTE_1[7:0]  
(Read Only)  
VDP_GS_VPS_PDC_UTC_2 GS_VPS_PDC_UTC_BYTE_2[7:0]  
(Read Only)  
VDP_GS_VPS_PDC_UTC_3 GS_VPS_PDC_UTC_BYTE_3[7:0]  
(Read Only)  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
Decoded Gemstar/VPS/PDC/UTC  
data  
Decoded Gemstar/VPS/PDC/UTC  
data  
Decoded Gemstar/VPS/PDC/UTC  
data  
Decoded Gemstar/VPS/PDC/UTC  
data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VPS/PDC/UTC data  
Decoded VITC data  
VDP_VPS_PDC_UTC_4  
(Read Only)  
VDP_VPS_PDC_UTC_5  
(Read Only)  
VDP_VPS_PDC_UTC_6  
(Read Only)  
VDP_VPS_PDC_UTC_7  
(Read Only)  
VDP_VPS_PDC_UTC_8  
(Read Only)  
VDP_VPS_PDC_UTC_9  
(Read Only)  
VDP_VPS_PDC_UTC_10  
(Read Only)  
VDP_VPS_PDC_UTC_11  
(Read Only)  
VPS_PDC_UTC_BYTE_4[7:0]  
VPS_PDC_UTC_BYTE_5[7:0]  
VPS_PDC_UTC_BYTE_6[7:0]  
VPS_PDC_UTC_BYTE_7[7:0]  
VPS_PDC_UTC_BYTE_8[7:0]  
VPS_PDC_UTC_BYTE_9[7:0]  
VPS_PDC_UTC_BYTE_10[7:0]  
VPS_PDC_UTC_BYTE_11[7:0]  
VPS_PDC_UTC_BYTE_12[7:0]  
VITC_DATA_0[7:0]  
VDP_VPS_PDC_UTC_12  
(Read Only)  
VDP_VITC_DATA_0  
(Read Only)  
VDP_VITC_DATA_1  
(Read Only)  
VITC_DATA_1[7:0]  
Decoded VITC data  
VDP_VITC_DATA_2  
(Read Only)  
VITC_DATA_2[7:0]  
Decoded VITC data  
VDP_VITC_DATA_3  
(Read Only)  
VITC_DATA_3[7:0]  
Decoded VITC data  
VDP_VITC_DATA_4  
(Read Only)  
VITC_DATA_4[7:0]  
Decoded VITC data  
VDP_VITC_DATA_5  
(Read Only)  
VITC_DATA_5[7:0]  
Decoded VITC data  
VDP_VITC_DATA_6  
(Read Only)  
VITC_DATA_6[7:0]  
Decoded VITC data  
VDP_VITC_DATA_7  
(Read Only)  
VITC_DATA_7[7:0]  
Decoded VITC data  
VDP_VITC_DATA_8  
(Read Only)  
VITC_DATA_8[7:0]  
Decoded VITC data  
VDP_VITC_CALC_CRC  
(Read Only)  
VITC_CRC[7:0]  
Decoded VITC CRC data  
VDP_OUTPUT_SEL  
Reserved  
WSS_CGMS_CB_CHANGE  
0
1
Disable content-based updating of  
CGMS and WSS data  
Enable content-based updating of  
CGMS and WSS data  
The AVAILABLE bit shows the  
availability of data only when  
its content has changed.  
GS_VPS_PDC_UTC_CB_CHANGE  
I2C_GS_VPS_PDC_UTC[1:0]  
0
1
Disable content-based updating of  
Gemstar, VPS, PDC and UTC data  
Enable content-based updating of  
Gemstar, VPS, PDC and UTC data  
0
0
1
1
0
1
0
1
Gemstar 1x/2x  
Standard expected to be  
decoded  
VPS  
PDC  
UTC  
Rev. 0 | Page 98 of 108  
ADV7184  
I2C PROGRAMMING EXAMPLES  
Note: These scripts are applicable to a system with the analog inputs arranged as shown in Figure 50. The input selection registers change  
in accordance with how the PCB is laid out.  
MODE 1 CVBS INPUT  
Composite video on AIN10. All standards are supported through autodetect, 8-bit, 4:2:2, ITU-R BT.656 output on P15 to P8.  
Table 105. Mode 1 CVBS Input  
Register Address  
Register Value  
0x0E  
0x41  
0xFA  
0x47  
0x17  
0x71  
0xA2  
0x6A  
0xA0  
0x01  
0x03  
0x80  
0x46  
0x00  
0xFF  
0x30  
0xC9  
0x40  
0x3C  
0xCA  
0xD5  
0xFF  
Notes  
0x00  
0x17  
0x19  
0x1D  
0x3A  
0x3B  
0x3D  
0x3E  
0x3F  
0xF3  
0xF9  
0x0E  
0x52  
0x54  
0x7F  
0x81  
CVBS on AIN 10.  
Set CSFM to SH1.  
Split filter control.  
Enable 28.63636 MHz crystal mode.  
Power down ADC1, ADC2 and ADC3.  
Recommended setting.  
MWE enable manual window, color kill threshold to 2.  
BLM optimization.  
BGB optimization  
Enable antialias filter on ADC0.  
Set maximum v lock range.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
0x90  
0x91  
0x92  
0x93  
0x94  
0xB1  
0xB6  
0xC0  
0xCF  
0xD0  
0xD1  
0xD6  
0xD7  
0xE5  
0x08  
0x9A  
0x50  
0x4E  
0xB9  
0xDD  
0xE2  
0x51  
0x00  
0x0E  
Rev. 0 | Page 99 of 108  
 
ADV7184  
MODE 2 S-VIDEO INPUT  
Y on AIN2 and C on AIN3. All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P15 to P8.  
Table 106. Mode 2 S-Video Input  
Register Address  
0x1D  
0x3A  
0x3B  
0x3D  
0x3E  
0x3F  
0x69  
0xC3  
0xC4  
0xF3  
Register Value  
0x47  
0x13  
0x71  
0xA2  
0x6A  
0xA0  
0x03  
0x32  
0xFF  
0x03  
0x03  
0x80  
0x46  
0x00  
0xFF  
Notes  
Enable 28.63636 MHz crystal mode.  
Power down ADC2 and ADC3.  
Recommended setting.  
MWE enable manual window, color kill threshold to 2.  
BLM optimization.  
BGB optimization.  
Set SDM_SEL to 03 for YC/CVBS auto AIN11, AIN12.  
Manually mux Y signal on AIN2 to ADC0 and C signal on AIN3 to ADC1.  
Manual mux enable.  
Enable anti-alias filter on ADC0 and ADC1.  
Set maximum v lock range.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
0xF9  
0x0E  
0x52  
0x54  
0x7F  
0x81  
0x90  
0x91  
0x92  
0x93  
0x94  
0xB1  
0xB6  
0xC0  
0xCF  
0xD0  
0xD1  
0xD6  
0xD7  
0xE5  
0x30  
0xC9  
0x40  
0x3C  
0xCA  
0xD5  
0xFF  
0x08  
0x9A  
0x50  
0x4E  
0xB9  
0xDD  
0xE2  
0x51  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
0x0E  
Rev. 0 | Page 100 of 108  
 
ADV7184  
MODE 3 525I/625I YPRPB INPUT  
Y on AIN6, Pr on AIN4, and Pb on AIN5. All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P15 to P8.  
Table 107. Mode 3 YPrPb Input 525i/625i  
Register Address  
0x8D  
0x00  
0x1D  
0x27  
0x3A  
0x3B  
0x3D  
0x3E  
Register Value  
0x83  
0x09  
0x47  
0x98  
0x11  
0x71  
0xA2  
0x6A  
0xA0  
0xF9  
0x00  
0x46  
0xB5  
0x07  
0x03  
0x80  
0x46  
0x00  
0xFF  
Notes  
Recommended setting.  
Set YPrPb mode. Note: Writes below to registers 0xC3 and 0xC4, overrides INSEL YPrPb setting.  
Enable 28.63636 MHz crystal mode.  
Swap Cr and Cb, Y/C delay correction.  
Power down ADC3.  
Recommended setting.  
MWE enable manual window, color kill threshold to 2.  
BLM optimization.  
BGB optimization.  
Recommended setting.  
Recommended setting.  
Manually mux Y signal on AIN6 to ADC0, Pr signal on AIN4 to ADC1.  
Manual mux enable, Pb signal on AIN5 to ADC2.  
Enable anti-alias filter on ADC0, ADC1 and ADC2.  
Set maximum v lock range.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
0x3F  
0xB4  
0xB5  
0xC3  
0xC4  
0xF3  
0xF9  
0x0E  
0x52  
0x54  
0x7F  
0x81  
0x90  
0x91  
0x92  
0x93  
0x94  
0x7E  
0xB1  
0xB6  
0xC0  
0xCF  
0xD0  
0xD1  
0xD6  
0xE5  
0x30  
0xC9  
0x40  
0x3C  
0xCA  
0xD5  
0x73  
0xFF  
0x08  
0x9A  
0x50  
0x4E  
0xB9  
0xDD  
0x51  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
0x0E  
Rev. 0 | Page 101 of 108  
 
ADV7184  
MODE 4 SCART—S-VIDEO OR CVBS AUTODETECT  
Y/CVBS Input on AIN11, C INPUT on AIN12, 8-bit, ITU-R BT.656 output on P15 to P8.  
Table 108. Mode 4 SCART CVBS/S-Video Autodetect on AIN 11/ AIN12  
Register Address  
0x1D  
0x3A  
0x3B  
0x3D  
0x3E  
0x3F  
0x69  
0xF3  
0xF9  
0x0E  
0x52  
0x54  
0x7F  
0x81  
0x90  
0x91  
0x92  
Register Value  
0x47  
0x13  
0x71  
0xA2  
0x6A  
0xA0  
0x03  
0x03  
0x03  
0x80  
0x46  
0x00  
0xFF  
0x30  
0xC9  
0x40  
0x3C  
0xCA  
0xD5  
0xFF  
Notes  
Enable 28.63636 MHz crystal mode.  
Power down ADC2 and ADC3.  
Recommended Setting  
MWE enable manual window, color kill threshold to 2.  
BLM optimization.  
BGB optimization.  
Set SDM_SEL to 03 for YC/CVBS auto AIN11, AIN12.  
Enable anti-alias filter on ADC0 and ADC1.  
Set maximum v lock range  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
0x93  
0x94  
0xB1  
0xB6  
0xC0  
0xCF  
0xD0  
0xD1  
0xD6  
0xD7  
0xE5  
0x08  
0x9A  
0x50  
0x4E  
0xB9  
0xDD  
0xE2  
0x51  
0x00  
0x0E  
Rev. 0 | Page 102 of 108  
 
ADV7184  
MODE 5 SCART FAST BLANK—CVBS AND RGB  
CVBS Input on AIN11, B INPUT on AIN7, R INPUT on AIN8, G INPUT on AIN9; 8-bit, ITU-R BT.656 output on P15 to P8.  
Table 109. Mode 5 SCART CVBS/S-Video Autodetect on AIN 11/ AIN12  
Register Address  
0x00  
0x17  
0x19  
0x1D  
0x3A  
0x3B  
0x3D  
0x3E  
0x3F  
0x4D  
0x67  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0xC5  
0xED  
0xF3  
0xF9  
0x0E  
0x49  
0x52  
0x54  
0x7F  
0x81  
0x90  
0x91  
0x92  
0x93  
0x94  
0xB1  
0xB6  
0xC0  
0xCF  
0xD0  
0xD1  
0xD6  
0xD7  
0xE5  
0x0E  
Register Value  
0x0F  
0x41  
0xFA  
0x47  
0x10  
0x71  
0xA2  
0x6A  
0xA0  
0xEE  
0x01  
0xD0  
0x04  
0x01  
0x00  
0x04  
0x08  
0x02  
0x00  
0x00  
0x12  
0x0F  
0x03  
0x80  
0x01  
0x46  
0x00  
0xFF  
0x30  
0xC9  
0x40  
0x3C  
0xCA  
0xD5  
0xFF  
0x08  
0x9A  
0x50  
0x4E  
0xB9  
0xDD  
0xE2  
0x51  
0x00  
Notes  
CVBS on AIN11.  
Set CSFM to SH1.  
Split filter control.  
Enable 28.63636 MHz crystal mode.  
Power up all four ADCs.  
Recommended setting.  
MWE enable manual window, color kill threshold to 2.  
BLM optimization.  
BGB optimization.  
Disable CTI  
Format 422.  
Manual gain channels A, B, C.  
Manual gain channels A, B, C.  
Manual gain channels A, B, C.  
Manual gain channels A, B, C.  
Manual offsets A to 64d, B and C to 512d.  
Manual offsets A to 64d, B and C to 512d.  
Manual offsets A to 64d, B and C to 512d.  
Manual offsets A to 64d, B and C to 512d.  
Recommended write.  
Enable dynamic fast blank mode.  
Enable anti-alias filter on all ADCs.  
Set maximum v lock range.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. 0 | Page 103 of 108  
 
ADV7184  
MODE 6 SCART RGB INPUT (STATIC FAST BLANK)—CVBS AND RGB  
CVBS Input on AIN11, B INPUT on AIN7, R INPUT on AIN8, G INPUT on AIN9, 8-bit, ITU-R BT.656 output on P15 to P8.  
Table 110. Mode 6 SCART CVBS/S-Video Autodetect on AIN 11/ AIN12  
Register Address  
0x00  
0x1D  
0x3A  
0x3B  
0x3D  
0x3E  
0x3F  
0x4D  
0x67  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x93  
0x94  
0x95  
0x96  
0xC5  
0xED  
0xF3  
0xF9  
0x0E  
0x52  
0x54  
0x7F  
0x81  
0x90  
0x91  
0x92  
0x93  
0x94  
0xB1  
0xB6  
0xC0  
0xCF  
0xD0  
0xD1  
0xD6  
0xD7  
0xE5  
0x0E  
Register Value  
0x0F  
0x47  
0x10  
0x71  
0xA2  
0x6A  
0xA0  
0xEE  
0x01  
0xD0  
0x04  
0x01  
0x00  
0x04  
0x08  
0x02  
0x00  
0x78  
0x23  
0x11  
0xC0  
0x00  
0xC4  
0x0F  
0x03  
0x80  
0x46  
0x00  
0xFF  
0x30  
0xC9  
0x40  
0x3C  
0xCA  
0xD5  
0xFF  
0x08  
0x9A  
0x50  
0x4E  
0xB9  
0xDD  
0xE2  
0x51  
0x00  
Notes  
CVBS on AIN11.  
Enable 28.63636 MHz crystal mode.  
Power up all four ADCs.  
Recommended setting.  
MWE enable manual window, color kill threshold to 2.  
BLM optimization.  
BGB optimization.  
Disable CTI.  
Format 422.  
Manual gain channels A, B, C.  
Manual gain channels A, B, C.  
Manual gain channels A, B, C.  
Manual gain channels A, B, C.  
Manual offsets A to 64d, B and C to 512d.  
Manual offsets A to 64d, B and C to 512d.  
Manual offsets A to 64d, B and C to 512d.  
Manual offsets A to 64d, B and C to 512d.  
Clamp optimization  
Clamp optimization  
Clamp optimization  
Clamp optimization  
Recommended write.  
Enable static switching mode and select RGB input.  
Enable anti-alias filter on all ADCs.  
Set maximum v lock range.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. 0 | Page 104 of 108  
 
ADV7184  
PCB LAYOUT RECOMMENDATIONS  
The ADV7184 is a high precision, high speed mixed-signal  
device. To achieve the maximum performance from the part, it  
is important to have a well laid out PCB board. The following is  
a guide for designing a board using the ADV7184.  
It is also recommended to use a single ground plane for the  
entire board. This ground plane should have a space between  
the analog and digital sections of the PCB (see Figure 48).  
ADV7184  
ANALOG  
SECTION  
DIGITAL  
SECTION  
ANALOG INTERFACE INPUTS  
Care should be taken when routing the inputs on the PCB.  
Track lengths should be kept to a minimum, and 75 Ω trace  
impedances should be used when possible. Trace impedances  
other than 75 Ω increase the chance of reflections.  
Figure 48. PCB Ground Layout  
Experience has repeatedly shown that the noise performance is  
the same or better with a single ground plane. Using multiple  
ground planes can be detrimental because each separate ground  
plane is smaller, and long ground loops can result.  
POWER SUPPLY DECOUPLING  
It is recommended to decouple each power supply pin with  
0.1 μF and 10 nF capacitors. The fundamental idea is to have a  
decoupling capacitor within about 0.5 cm of each power pin.  
Also, avoid placing the capacitor on the opposite side of the PC  
board from the ADV7184, as doing so interposes resistive vias  
in the path. The decoupling capacitors should be located  
between the power plane and the power pin. Current should  
flow from the power plane to the capacitor to the power pin. Do  
not make the power connection between the capacitor and the  
power pin. Placing a via underneath the 100 nF capacitor pads,  
down to the power plane, is generally the best approach (see  
Figure 47).  
In some cases, using separate ground planes is unavoidable. For  
those cases, it is recommended to place a single ground plane  
under the ADV7184. The location of the split should be under the  
ADV7184. For this case, it is even more important to place  
components wisely because the current loops are much longer  
(current takes the path of least resistance). An example of a current  
loop: power plane to ADV7184 to digital output trace to digital  
data receiver to digital ground plane to analog ground plane.  
PLL  
Place the PLL loop filter components as close as possible to the  
ELPF pin. Do not place any digital or other high frequency  
traces near these components. Use the values suggested in  
Figure 50 with tolerances of 10% or less.  
VDD  
GND  
VIA TO SUPPLY  
VIA TO GND  
10nF  
100nF  
DIGITAL OUTPUTS (BOTH DATA AND CLOCKS)  
Try to minimize the trace length that the digital outputs have to  
drive. Longer traces have higher capacitance, which requires  
more current, which causes more internal digital noise. Shorter  
traces reduce the possibility of reflections.  
Figure 47. Recommended Power Supply Decoupling  
It is particularly important to maintain low noise and good  
stability of PVDD. Careful attention must be paid to regulation,  
filtering, and decoupling. It is highly desirable to provide  
separate regulated supplies for each of the analog circuitry  
groups (AVDD, DVDD, DVDDIO, and PVDD).  
Adding a 30 Ω to 50 Ω series resistor can suppress reflections,  
reduce EMI, and reduce the current spikes inside the ADV7184.  
If series resistors are used, place them as close as possible to the  
ADV7184 pins. However, try not to add vias or extra length to  
the output trace to make the resistors closer.  
Some graphic controllers use substantially different levels of  
power when active (during active picture time) and when idle  
(during horizontal and vertical sync periods). This can result in  
a measurable change in the voltage supplied to the analog  
supply regulator, which can, in turn, produce changes in the  
regulated analog supply voltage. This can be mitigated by  
regulating the analog supply, or at least PVDD, from a different,  
cleaner power source, for example, from a 12 V supply.  
If possible, limit the capacitance that each of the digital outputs  
drives to less than 15 pF. This can easily be accomplished by  
keeping traces short and by connecting the outputs to only one  
device. Loading the outputs with excessive capacitance increases  
the current transients inside the ADV7184, creating more  
digital noise on its power supplies.  
Rev. 0 | Page 105 of 108  
ADV7184  
Use the following guidelines to ensure correct operation:  
DIGITAL INPUTS  
The digital inputs on the ADV7184 are designed to work with  
3.3 V signals, and are not tolerant of 5 V signals. Extra  
components are needed if 5 V logic signals are required to be  
applied to the decoder.  
Use the correct, 28.63636 MHz, frequency crystal.  
Tolerance should be 50 ppm or better.  
User a parallel-resonant crystal.  
Know the Cload for the crystal part selected. The values of  
the C1 and C2 capacitors must be calculated using this Cload  
value.  
XTAL AND LOAD CAPACITOR VALUES SELECTION  
Figure 49 shows an example reference clock circuit for the  
ADV7184. Special care must be taken when using a crystal  
circuit to generate the reference clock for the ADV7184. Small  
variations in reference clock frequency may cause autodetection  
issues and impair the ADV7184 performance.  
To find C1 and C2, use the following formula:  
C = 2(Cload − Cstray) − Cpg  
XTAL  
28.63636MHz  
where Cstray is usually 2 pF to 3 pF, depending on board traces,  
and Cpg (pin-to-ground capacitance) is 4 pF for the ADV7184.  
R = 1MΩ  
Example:  
C1 = 47pF  
C2 = 47pF  
Cload = 30 pF. C1 = 50 pF, C2 = 50 pF (in this case 47 pF is the  
nearest real-life cap value to 50 pF)  
Figure 49. Crystal Circuit  
Rev. 0 | Page 106 of 108  
 
ADV7184  
TYPICAL CIRCUIT CONNECTION  
An example of how to connect the ADV7184 video decoder is shown in Figure 50. For a detailed schematic diagram for the ADV7184,  
refer to the ADV7184 evaluation note, which can be obtained from a local ADI representative.  
FERRITE BEAD  
DVDDIO  
(3.3V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33μF  
10μF  
0.1μF  
0.01μF  
DGND  
DGND  
DGND  
DGND  
FERRITE BEAD  
PVDD  
(1.8V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33μF  
10μF  
0.1μF  
0.01μF  
AGND  
AGND  
AGND  
AGND  
AGND DGND  
FERRITE BEAD  
AVDD  
(3.3V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33μF  
10μF  
0.1μF  
0.01μF  
AGND  
AGND  
AGND  
AGND  
FERRITE BEAD  
DVDD  
(1.8V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33μF  
10μF  
0.1μF  
0.01μF  
DGND  
DGND  
DGND  
DGND  
AGND  
19Ω  
CVBS1  
S-VIDEO  
Y
C
FB  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
AIN1  
AIN7  
AIN2  
AIN8  
AIN3  
AIN9  
AIN4  
AIN10  
AIN5  
AIN11  
AIN6  
AIN12  
F_BLNK  
BLUE  
MULTIFORMAT PIXEL PORT  
RED/C  
P15–P8 8-BIT  
ITU-R BT.656 PIXEL DATA @ 27MHz  
P7–P0 Cb AND Cr 16-BIT  
ADV7184  
GREEN  
CVBS/Y  
19Ω  
ITU-R BT.656 PIXEL DATA @ 13.5MHz  
P15–P8 Y 16-BIT  
P9  
ITU-R BT.656 PIXEL DATA @ 13.5MHz  
P10  
P11  
P12  
P13  
P14  
P15  
Pr  
Pb  
Y
19Ω  
CVBS0  
LLC1  
LLC2  
27MHz OUTPUT CLOCK  
13.5MHz OUTPUT CLOCK  
CAPY1  
CAPY2  
+
AGND  
0.1μF  
0.1μF  
10μF  
0.1μF  
0.1μF  
1nF  
1nF  
OE  
OUTPUT ENABLE I/P  
AGND  
CAPC1  
CAPC2  
+
10μF  
AGND  
INT  
SFL  
HS  
VS  
FIELD  
INTERRUPT O/P  
SFL O/P  
HS O/P  
VS O/P  
FIELD O/P  
CML  
+
10μF  
0.1μF  
10μF  
REFOUT  
+
0.1μF  
28.6363MHz  
AGND  
XTAL  
1
47pF  
DGND  
1MΩ  
DVDDIO  
ELPF  
XTAL1  
2
1
10nF  
SELECT I C  
ADDRESS  
47pF  
1.7kΩ  
82nF  
DGND  
DVSS  
ALSB  
DVDDIO DVDDIO  
PVDD  
2kΩ  
2kΩ  
100Ω  
100Ω  
SCLK  
SDA  
MPU INTERFACE  
CONTROL LINES  
DVDDIO  
4.7kΩ  
RESET  
RESET  
AGND  
DGND  
100nF  
1
DGND  
LOAD CAP VALUES  
ARE DEPENDENT ON  
CRYSTAL ATTRIBUTES.  
AGND  
DGND  
Figure 50. Typical Connection Diagram  
Rev. 0 | Page 107 of 108  
 
ADV7184  
OUTLINE DIMENSIONS  
16.20  
16.00 SQ  
15.80  
0.75  
0.60  
0.45  
1.60  
MAX  
80  
61  
60  
1
PIN 1  
14.20  
14.00 SQ  
13.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.10 MAX  
COPLANARITY  
20  
41  
0.15  
0.05  
40  
21  
SEATING  
PLANE  
VIEW A  
0.65  
0.38  
0.32  
0.22  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BEC  
Figure 51. 80-Lead Low Profile Quad Flat Package [LQFP]  
(ST-80-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
–40°C to +85°C  
Package Description  
Package Option  
ADV7184BSTZ2  
Low Profile Quad Flat Package (LQFP)  
Evaluation Board  
ST-80-2  
EVAL-ADV7184EB  
1 The ADV7184 is a Pb-free, environmentally friendly product. It is manufactured using the most up-to-date materials and processes. The coating on the leads of each  
device is 100% pure Sn electroplate. The device is suitable for Pb-free applications, and is able to withstand surface-mount soldering at up to 255°C ( 5°C). In addition,  
it is backward-compatible with conventional SnPb soldering processes. This means that the electroplated Sn coating can be soldered with SnPb solder pastes at  
conventional reflow temperatures of 220°C to 235°C.  
2 Z = Pb-free part.  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent Rights to  
use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05479–0–7/05(0)  
Rev. 0 | Page 108 of 108  
 

相关型号:

EVAL-ADV7189BEB

Multiformat SDTV Video Decoder
ADI

EVAL-ADV7189EBM

Multiformat SDTV Video Decoder
ADI

EVAL-ADV7280AEBZ

10-Bit, 4 x Oversampled SDTV Video Decoder with Deinterlacer
ADI

EVAL-ADV7280AMEBZ

10-Bit, 4 x Oversampled SDTV Video Decoder with Deinterlacer
ADI

EVAL-ADV7281MAEBZ

10-Bit, 4 Oversampled SDTV Video Decoder with Differential Inputs
ADI

EVAL-ADV7281MEBZ

10-Bit, 4 Oversampled SDTV Video Decoder with Differential Inputs
ADI

EVAL-ADV7282AEBZ

10-Bit, 4x Oversampled SDTV Video Decoder with Differential Inputs
ADI

EVAL-ADV7282AMEBZ

10-Bit, 4x Oversampled SDTV Video Decoder with Differential Inputs
ADI

EVAL-ADV7282MEBZ

10-Bit, 4 Oversampled SDTV Video Decoder with Differential Inputs and Deinterlacer
ADI

EVAL-ADV7320EB

Multiformat 216 MHz Video Encoder with Six NSV 12-Bit DACs
ADI

EVAL-ADV7321EB

Multiformat 216 MHz Video Encoder with Six NSV 12-Bit DACs
ADI

EVAL-ADV7322EB

Multiformat 11-Bit HDTV Video Encoder
ADI