EVAL-ADV7189BEB [ADI]

Multiformat SDTV Video Decoder; 多格式SDTV视频解码器
EVAL-ADV7189BEB
型号: EVAL-ADV7189BEB
厂家: ADI    ADI
描述:

Multiformat SDTV Video Decoder
多格式SDTV视频解码器

解码器 电视
文件: 总104页 (文件大小:870K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiformat SDTV Video Decoder  
ADV7189B  
FEATURES  
Multiformat video decoder supports NTSC-(J, M, 4.43),  
PAL-(B/D/G/H/I/M/N), SECAM  
0.5 V to 1.6 V analog signal input range  
Differential gain: 0.4% typ  
Integrates three 54 MHz, Noise Shaped Video®, 12-bit ADCs  
Clocked from a single 28 MHz crystal  
Differential phase: 0.4° typ  
Programmable video controls  
Peak white/hue/brightness/saturation/contrast  
Integrated on-chip video timing generator  
Free-run mode (generates stable video output with no I/P)  
VBI decode support for close captioning, WSS, CGMS, EDTV,  
Gemstar® 1×/2×  
Line-locked clock-compatible (LLC)  
Adaptive-Digital-Line-Length-Tracking (ADLLT™), signal  
processing, and enhanced FIFO management gives mini-  
TBC functionality  
5-line adaptive comb filters  
Proprietary architecture for locking to weak, noisy, and  
unstable video sources such as VCRs and tuners  
Power-down mode  
2-wire serial MPU interface (I2C®-compatible)  
3.3 V analog, 1.8 V digital core; 3.3 V IO supply  
2 temperature grades: 0°C to +70°C and –40°C to +85°C  
80-lead LQFP Pb-free package  
Subcarrier frequency lock and status information output  
Integrated AGC with adaptive peak white mode  
Macrovision® copy protection detection  
CTI (chroma transient improvement)  
DNR (digital noise reduction)  
Multiple programmable analog input formats  
CVBS (composite video)  
S-Video (Y/C)  
YPrPb component (VESA, MII, SMPTE, and BetaCam)  
12 analog video input channels  
Automatic NTSC/PAL/SECAM identification  
Digital output formats (8-bit/10-bit/16-bit/20-bit)  
ITU-R BT.656 YCrCb 4:2:2 output + HS, VS, and FIELD  
APPLICATIONS  
High-end DVD recorders  
Video projectors  
HDD-based PVRs/DVDRs  
LCD TVs  
Set-top boxes  
Professional video products  
AVR receivers  
GENERAL DESCRIPTION  
The ADV7189B integrated video decoder automatically detects  
and converts a standard analog baseband television signal, com-  
patible with worldwide standards NTSC, PAL, and SECAM into  
4:2:2 component video data-compatible with 20-, 16-, 10-, and  
8-bit CCIR601/CCIR656.  
The 12 analog input channels accept standard composite,  
S-Video, YPrPb video signals in an extensive number of  
combinations. AGC and clamp restore circuitry allow an  
input video signal peak-to-peak range of 0.5 V to 1.6 V.  
Alternatively, these can be bypassed for manual settings.  
The advanced and highly flexible digital output interface  
enables performance video decoding and conversion in line-  
locked, clock-based systems. This makes the device ideally  
suited for a broad range of applications with diverse analog  
video characteristics, including tape-based sources, broadcast  
sources, security/surveillance cameras, and professional  
systems.  
The fixed 54 MHz clocking of the ADCs and datapath for  
all modes allows very precise, accurate sampling and digital  
filtering. The line-locked clock output allows the output data  
rate, timing signals, and output clock signals to be synchronous,  
asynchronous, or line locked even with 5% line length variation.  
The output control signals allow glueless interface connections  
in almost any application. The ADV7189B modes are set up  
over a 2-wire, serial, bidirectional port (I2C-compatible).  
The 12-bit accurate A/D conversion provides professional  
quality video performance and is unmatched. This allows  
true 10-bit resolution in the 10-bit output mode.  
The ADV7189B is fabricated in a 3.3 V CMOS process. Its  
monolithic CMOS construction ensures greater functionality  
with lower power dissipation. The ADV7189B is packaged in a  
small, 80-lead LQFP Pb-free package.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
ADV7189B  
TABLE OF CONTENTS  
Introduction ...................................................................................... 4  
General Setup.............................................................................. 21  
SD Color Controls...................................................................... 23  
Clamp Operation........................................................................ 25  
Luma Filter.................................................................................. 26  
Chroma Filter.............................................................................. 29  
Gain Operation........................................................................... 30  
Chroma Transient Improvement (CTI) .................................. 34  
Digital Noise Reduction (DNR)............................................... 34  
Comb Filters................................................................................ 35  
AV Code Insertion and Controls ............................................. 38  
Synchronization Output Signals............................................... 40  
Sync Processing .......................................................................... 48  
VBI Data Decode ....................................................................... 48  
Pixel Port Configuration ............................................................... 60  
MPU Port Description................................................................... 61  
Register Accesses........................................................................ 62  
Register Programming............................................................... 62  
I2C Sequencer.............................................................................. 62  
I2C Register Maps ........................................................................... 63  
I2C Register Map Details ........................................................... 67  
I2C Interrupt Register Map ....................................................... 68  
I2C Programming Examples.......................................................... 90  
Examples Using 28 MHz Clock................................................ 90  
Examples Using 27 MHz Clock................................................ 94  
PCB Layout Recommendations.................................................... 97  
Analog Interface Inputs............................................................. 97  
Power Supply Decoupling ......................................................... 97  
PLL ............................................................................................... 97  
Digital Outputs (Both Data and Clocks) ................................ 97  
Digital Inputs .............................................................................. 98  
Antialiasing Filters ..................................................................... 98  
Analog Front End......................................................................... 4  
Standard Definition Processor ................................................... 4  
Functional Block Diagram .............................................................. 5  
Specifications..................................................................................... 6  
Electrical Characteristics............................................................. 6  
Video Specifications..................................................................... 7  
Timing Specifications .................................................................. 8  
Analog Specifications................................................................... 8  
Thermal Specifications ................................................................ 9  
Timing Diagrams.......................................................................... 9  
Absolute Maximum Ratings.......................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Analog Front End ........................................................................... 13  
Analog Input Muxing ................................................................ 13  
Global Control Registers ............................................................... 16  
Power-Save Modes...................................................................... 16  
Reset Control .............................................................................. 16  
Global Pin Control..................................................................... 17  
Global Status Registers................................................................... 19  
Identification............................................................................... 19  
Status 1 ......................................................................................... 19  
SD Autodetection Result ........................................................... 19  
Status 2 ......................................................................................... 19  
Status 3 ......................................................................................... 19  
Standard Definition Processor (SDP).......................................... 20  
SD Luma Path ............................................................................. 20  
SD Chroma Path......................................................................... 20  
Sync Processing........................................................................... 21  
VBI Data Recovery..................................................................... 21  
Rev. B | Page 2 of 104  
ADV7189B  
Crystal Load Capacitor Value Selection...................................98  
Outline Dimensions......................................................................101  
Ordering Guide .........................................................................101  
Typical Circuit Connection ...........................................................99  
REVISION HISTORY  
9/05—Rev. A to Rev. B  
7/05—Rev. 0 to Rev. A  
Changes to Table 1 ............................................................................6  
Changes to Table 2 ............................................................................7  
Changes to Table 3 and Table 4 .......................................................8  
Changes to Table 5 ............................................................................9  
Changes to Figure 6.........................................................................13  
Changes to Table 8 ..........................................................................14  
Update Table Formatting................................................................19  
Update Page Layout ........................................................................29  
Change to Table 34..........................................................................31  
Update Table Formatting................................................................39  
Change to Table 55..........................................................................40  
Changes to Figure 21 ......................................................................42  
Update Page Formatting.................................................................49  
Change Footnote Numbering in Table 84....................................67  
Change to Table 85..........................................................................68  
Change to Table 87..........................................................................90  
Change to Table 88..........................................................................91  
Change to Table Numbering..........................................................94  
Updated Format ................................................................. Universal  
Changes to Features..........................................................................1  
Changes to Analog Specifications...................................................6  
Changes to Table 7 ..........................................................................11  
Changes to Clamp Operation Section..........................................26  
Changes to Table 30 ........................................................................29  
Changes to Figure 12, Figure 13, Figure 14, and Figure 15 .......30  
Added CSFM[2:0] C-Shaping Filter Mode, Address 0x17[7]  
Section and Changes to Figure 16.................................................31  
Changes to Luma Gain Section.....................................................32  
Changes to Table 54 ........................................................................41  
Changes to VSEHO VS End Horizontal Position Odd,  
Address 0x33[7] Section.................................................................42  
Changes to Table 55 ........................................................................44  
Changes to Table 84 ........................................................................69  
Changes to Table 85 .......................................................................73  
Changes to Table 86 ........................................................................91  
Changes to Table 87 ........................................................................92  
Changes to Table 88 ........................................................................93  
Changes to Table 89 ........................................................................94  
Added XTAL Load Capacitor Value Section...............................99  
Inserted Figure 44; Renumbered Sequentially ............................99  
Changes to Figure 46 ....................................................................101  
Updated Outline Dimensions......................................................102  
Changes to Ordering Guide.........................................................102  
9/04—Revision 0: Initial Version  
Rev. B | Page 3 of 104  
ADV7189B  
INTRODUCTION  
The ADV7189B is a high quality, single chip, multiformat video  
decoder that automatically detects and converts PAL, NTSC,  
and SECAM standards in the form of composite, S-Video, and  
component video into a digital ITU-R BT.656 format.  
STANDARD DEFINITION PROCESSOR  
The ADV7189B is capable of decoding a large selection of base-  
band video signals in composite, S-Video, and component  
formats. The video standards supported by the ADV7189B  
include PAL B/D/I/G/H, PAL60, PAL M, PAL N, PAL Nc,  
NTSC M/J, NTSC 4.43, and SECAM B/D/G/K/L. The ADV7189B  
can automatically detect the video standard and process it  
accordingly. The ADV7189B has a 5-line, super-adaptive, 2D  
comb filter that gives superior chrominance and luminance  
separation when decoding a composite video signal. This highly  
adaptive filter automatically adjusts its processing mode  
according to video standard and signal quality with no user  
intervention required. Video user controls such as brightness,  
contrast, saturation, and hue are also available within the  
ADV7189B.  
The advanced and highly flexible digital output interface enables  
performance video decoding and conversion in line-locked,  
clock-based systems. This makes the device ideally suited for a  
broad range of applications with diverse analog video charac-  
teristics, including tape-based sources, broadcast sources,  
security/ surveillance cameras, and professional systems.  
ANALOG FRONT END  
The ADV7189B analog front end comprises three 12-bit noise  
shaped video ADCs that digitize the analog video signal before  
applying it to the standard definition processor. The analog front  
end employs differential channels to each ADC to ensure high  
performance in mixed-signal applications.  
The ADV7189B implements a patented adaptive-digital-line-  
length-tracking (ADLLT) algorithm to track varying video  
line lengths from sources such as a VCR. ADLLT enables the  
ADV7189B to track and decode poor quality video sources  
such as VCRs, noisy sources from tuner outputs, VCD players,  
and camcorders. The ADV7189B contains a chroma transient  
improvement (CTI) processor that sharpens the edge rate of  
chroma transitions, resulting in sharper vertical transitions.  
The front end also includes a 12-channel input mux that  
enables multiple video signals to be applied to the ADV7189B.  
Current and voltage clamps are positioned in front of each  
ADC to ensure the video signal remains within the range of  
the converter. Fine clamping of the video signals is performed  
downstream by digital fine clamping within the ADV7189B.  
The ADCs are configured to run in 4× oversampling mode.  
The ADV7189B can process a variety of VBI data services,  
such as closed captioning (CC), wide screen signaling (WSS),  
copy generation management system (CGMS), EDTV, Gemstar  
1×/2×, and extended data service (XDS). The ADV7189B  
is fully Macrovision certified; detection circuitry enables  
Type I, Type II, and Type III protection levels to be identified  
and reported to the user. The decoder is also fully robust to all  
Macrovision signal inputs.  
Rev. B | Page 4 of 104  
 
ADV7189B  
FUNCTIONAL BLOCK DIAGRAM  
OUTPUT FORMATTER  
Figure 1.  
Rev. B | Page 5 of 104  
 
ADV7189B  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
At AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.65 V to 2.0 V, operating temperature range,  
unless otherwise specified.  
Table 1.  
Parameter1, 2  
F
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
F
STATIC PERFORMANCE  
Resolution (Each ADC)  
Integral Nonlinearity  
Differential Nonlinearity  
DIGITAL INPUTS  
N
INL  
DNL  
12  
±±  
–0.95/+2  
Bits  
LSB  
LSB  
BSL at 54 MHz  
BSL at 54 MHz  
–1.5/+2.5  
–0.7/+0.7  
Input High Voltage  
Input Low Voltage  
VIH  
VIL  
IIN  
2
V
V
μA  
μA  
pF  
0.±  
Input Current3  
F
–50  
–10  
+50  
+10  
10  
All other pins  
Input Capacitance  
DIGITAL OUTPUTS  
Output High Voltage  
Output Low Voltage  
CIN  
VOH  
VOL  
ILEAK  
ISOURCE = 0.4 mA  
ISINK = 3.2 mA  
2.4  
V
V
μA  
μA  
pF  
0.4  
50  
10  
20  
High Impedance Leakage Current4  
F
All other pins  
Output Capacitance  
COUT  
POWER REQUIREMENTS5  
F
Digital Core Power Supply  
Digital I/O Power Supply  
PLL Power Supply  
Analog Power Supply  
Digital Core Supply Current  
Digital I/O Supply Current  
PLL Supply Current  
DVDD  
DVDDIO  
PVDD  
AVDD  
IDVDD  
IDVDDIO  
IPVDD  
1.65  
3.0  
1.65  
3.15  
1.±  
3.3  
1.±  
3.3  
±2  
2
10.5  
±5  
2
V
V
V
V
mA  
mA  
mA  
mA  
mA  
mA  
ms  
3.6  
2.0  
3.45  
Analog Supply Current  
IAVDD  
CVBS input6  
YPrPb input7  
F
F
1±0  
1.5  
20  
Power-Down Current  
Power-Up Time  
IPWRDN  
tPWRUP  
1 Temperature range: TMIN to TMAX, –40°C to +±5°C. (0°C to 70°C for ADV71±9BKSTZ)  
2 The min/max specifications are guaranteed over this range.  
3 Pin 36 and Pin 79.  
4 Pin 1, Pin 2, Pin 5 to Pin ±, Pin 12, Pin 17 to Pin 24, Pin 32 to Pin 35, Pin 73 to Pin 76, and Pin ±0.  
5 Guaranteed by characterization.  
6 ADC1 powered on.  
7 All three ADCs powered on.  
Rev. B | Page 6 of 104  
 
ADV7189B  
VIDEO SPECIFICATIONS  
Guaranteed by characterization. At AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.65 V to 2.0 V;  
operating temperature range, unless otherwise specified.  
Table 2.  
Parameter1, 2  
F
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
F
NONLINEAR SPECIFICATIONS  
Differential Phase  
Differential Gain  
Luma Nonlinearity  
NOISE SPECIFICATIONS  
SNR Unweighted  
DP  
DG  
LNL  
CVBS I/P, modulate 5-step  
CVBS I/P, modulate 5-step  
CVBS I/P, 5-step  
0.4  
0.4  
0.4  
0.6  
0.6  
0.7  
Degrees  
%
%
Luma ramp  
61  
63  
63  
65  
60  
dB  
dB  
dB  
Luma flat field  
Analog Front End Crosstalk  
LOCK TIME SPECIFICATIONS  
Horizontal Lock Range  
Vertical Lock Range  
–5  
40  
+5  
70  
%
Hz  
FSC Subcarrier Lock Range  
Color Lock In Time  
Sync Depth Range  
±1.3  
60  
Hz  
Lines  
%
20  
5
200  
200  
Color Burst Range  
%
Vertical Lock Time  
2
100  
Fields  
Lines  
Autodetection Switch Speed  
CHROMA SPECIFICATIONS  
Hue Accuracy  
Color Saturation Accuracy  
Color AGC Range  
HUE  
CL_AC  
1
1
Degrees  
%
%
5
400  
Chroma Amplitude Error  
Chroma Phase Error  
Chroma Luma Intermodulation  
LUMA SPECIFICATIONS  
Luma Brightness Accuracy  
Luma Contrast Accuracy  
0.4  
0.3  
0.1  
%
Degrees  
%
CVBS, 1 V I/P  
CVBS, 1 V I/P  
1
1
%
%
1 Temperature range: TMIN to TMAX, –40°C to +±5°C. (0°C to 70°C for ADV71±9BKSTZ).  
2 The min/max specifications are guaranteed over this range.  
Rev. B | Page 7 of 104  
 
ADV7189B  
TIMING SPECIFICATIONS  
Guaranteed by characterization. AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.65 V to 2.0 V; operating  
temperature range, unless otherwise specified.  
Table 3.  
Parameter1, 2  
F
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
F
SYSTEM CLOCK AND CRYSTAL  
Nominal Frequency  
Frequency Stability  
I2C PORT  
SCLK Frequency  
2±.6363  
MHz  
ppm  
±50  
400  
kHz  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
SCLK Min Pulse Width High  
SCLK Min Pulse Width Low  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
SDA Setup Time  
SCLK and SDA Rise Time  
SCLK and SDA Fall Time  
Setup Time for Stop Condition  
RESET FEATURE  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t±  
0.6  
1.3  
0.6  
0.6  
100  
300  
300  
0.6  
Reset Pulse Width  
5
ms  
CLOCK OUTPUTS  
LLC1 Mark Space Ratio  
t9:t10  
45:55  
55:45  
% duty  
cycle  
LLC1 Rising to LLC2 Rising  
LLC1 Rising to LLC2 Falling  
DATA AND CONTROL OUTPUTS  
Data Output Transitional Time  
t11  
t12  
0.5  
0.5  
ns  
ns  
t13  
t14  
Negative clock edge to start of  
valid data (tACCESS = t10 – t13)  
End of valid data to negative  
clock edge (tHOLD = t9 + t14)  
3.4  
2.4  
ns  
ns  
Data Output Transitional Time  
Propagation Delay to Hi Z  
Max Output Enable Access Time  
Min Output Enable Access Time  
t15  
t16  
t17  
6
7
4
ns  
ns  
ns  
1 Temperature range: TMIN to TMAX, –40°C to +±5°C. (0°C to 70°C for ADV71±9BKSTZ).  
2 The min/max specifications are guaranteed over this range.  
ANALOG SPECIFICATIONS  
Guaranteed by characterization. AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.65 V to 2.0 V; operating  
temperature range, unless otherwise specified. Recommended Analog input video signal range 0.5 V to 1.5 V, typically 1 V p-p.  
Table 4.  
Parameter1, 2  
F
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
F
CLAMP CIRCUITRY  
External Clamp Capacitor  
Input Impedance  
Large Clamp Source Current  
Large Clamp Sink Current  
Fine Clamp Source Current  
Fine Clamp Sink Current  
0.1  
10  
0.75  
0.75  
60  
μF  
Clamps switched off  
MΩ  
mA  
mA  
μA  
60  
μA  
1 Temperature range: TMIN to TMAX, –40°C to +±5°C. (0°C to 70°C for ADV71±9BKSTZ).  
2 The min/max specifications are guaranteed over this range.  
Rev. B | Page ± of 104  
 
ADV7189B  
THERMAL SPECIFICATIONS  
Table 5.  
Parameter1, 2  
F
Symbol  
Test Conditions  
Min Typ  
Max Unit  
F
THERMAL CHARACTERISTICS  
Junction-to-Case Thermal Resistance  
Junction-to-Ambient Thermal Resistance (Still Air)  
θJC  
θJA  
4-layer PCB with solid ground plane  
4-layer PCB with solid ground plane  
7.6  
3±.1  
°C/W  
°C/W  
1 Temperature range: TMIN to TMAX, –40°C to +±5°C. (0°C to 70°C for ADV71±9BKSTZ)  
2 The min/max specifications are guaranteed over this range.  
TIMING DIAGRAMS  
t5  
t3  
t3  
SDA  
t1  
t6  
SCLK  
t4  
t7  
t8  
t2  
Figure 2. I2C Timing  
t9  
t10  
OUTPUT LLC 1  
OUTPUT LLC 2  
t11  
t12  
t13  
t14  
OUTPUTS P0–P19, VS,  
HS, FIELD,  
SFL  
Figure 3. Pixel Port and Control Output Timing  
OE  
t15  
t17  
P0–P19, HS,  
VS, FIELD,  
SFL  
t16  
OE  
Figure 4.  
Timing  
Rev. B | Page 9 of 104  
 
ADV7189B  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to abso-  
lute maximum rating conditions for extended periods may  
affect device reliability.  
Parameter  
Rating  
AVDD to GND  
4 V  
AVDD to AGND  
4 V  
DVDD to DGND  
2.2 V  
PVDD to AGND  
2.2 V  
DVDDIO to DGND  
DVDDIO to AVDD  
PVDD to DVDD  
DVDDIO – PVDD  
DVDDIO – DVDD  
4 V  
–0.3 V to +0.3 V  
–0.3 V to +0.3 V  
–0.3 V to +2 V  
–0.3 V to +2 V  
–0.3 V to +2 V  
–0.3 V to +2 V  
–0.3 V to DVDDIO + 0.3 V  
–0.3 V to DVDDIO + 0.3 V  
AGND – 0.3 V to AVDD + 0.3 V  
150°C  
AVDD – PVDD  
AVDD – DVDD  
Digital Inputs Voltage to DGND  
Digital Output Voltage to DGND  
Analog Inputs to AGND  
Maximum Junction Temperature  
(TJ Max)  
Storage Temperature Range  
–65°C to +150°C  
Infrared Reflow Soldering (20 sec) 260°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 10 of 104  
 
ADV7189B  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
VS  
HS  
1
2
3
4
5
6
7
8
9
60 AIN5  
59 AIN11  
58 AIN4  
DGND  
DVDDIO  
P15  
57 AIN10  
56 AGND  
55 CAPC2  
54 CAPC1  
53 AGND  
52 CML  
P14  
P13  
P12  
DGND  
ADV7189B  
TOP VIEW  
(Not to Scale)  
DVDD 10  
11  
51 REFOUT  
50 AVDD  
49 CAPY2  
48 CAPY1  
47 AGND  
46 AIN3  
INTRQ  
SFL 12  
NC 13  
DGND 14  
DVDDIO 15  
NC 16  
45 AIN9  
P11 17  
44 AIN2  
P10 18  
43 AIN8  
P9 19  
42 AIN1  
P8 20  
41 AIN7  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
NC = NO CONNECT  
Figure 5. 80-Lead LQFP Pin Configuration  
Rev. B | Page 11 of 104  
 
ADV7189B  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type Function  
3, 9, 14, 31, 71 DGND  
G
G
Digital Ground.  
Analog Ground.  
39, 40, 47, 53,  
56  
AGND  
4, 15  
10, 30, 72  
50  
DVDDIO  
DVDD  
AVDD  
PVDD  
AIN1toAIN12  
P
P
P
P
I
Digital I/O Supply Voltage (3.3 V).  
Digital Core Supply Voltage (1.± V).  
Analog Supply Voltage (3.3 V).  
PLL Supply Voltage (1.± V).  
3±  
42, 44, 46, 5±,  
60, 62, 41, 43,  
45, 57, 59, 61  
Analog Video Input Channels.  
11  
INTRQ  
NC  
O
Interrupt Request Output. Interrupt occurs when certain signals are detected on the input  
video. See the interrupt register map in Table ±6.  
No Connect Pins.  
13, 16, 25, 63,  
65, 69, 70, 77,  
7±  
35 to32, 24 to P0–P19  
17, ± to 5,  
O
Video Pixel Output Port.  
76 to 73  
2
1
±0  
67  
6±  
66  
HS  
VS  
FIELD  
SDA  
SCLK  
ALSB  
O
O
O
I/O  
I
Horizontal Synchronization Output Signal.  
Vertical Synchronization Output Signal.  
Field Synchronization Output Signal.  
I2C Port Serial Data Input/Output Pin.  
I2C Port Serial Clock Input (Max Clock Rate of 400 kHz).  
This pin selects the I2C address for the ADV71±9B. ALSB set to a Logic 0 sets the address for a  
write as 0x40; for ALSB set to a logic high, the address selected is 0x42.  
I
64  
27  
26  
29  
2±  
RESET  
LLC1  
I
System Reset Input, Active Low. A minimum low reset pulse width of 5 ms is required to reset  
the ADV71±9B circuitry.  
This is a line-locked output clock for the pixel data output by the ADV71±9B. Nominally 27 MHz,  
but varies up or down according to video line length.  
This is a divide-by-2 version of the LLC1 output clock for the pixel data output by the ADV71±9B.  
Nominally 13.5 MHz, but varies up or down according to video line length.  
This is the input pin for the 2±.6363 MHz crystal, or can be overdriven by an external 3.3 V,  
27 MHz clock oscillator source. In crystal mode, the crystal must be a fundamental crystal.  
O
O
I
LLC2  
XTAL  
XTAL1  
O
This pin should be connected to the 2±.6363 MHz crystal or left as a no connect if an external  
3.3 V, 27 MHz clock oscillator source is used to clock the ADV71±9B. In crystal mode, the crystal  
must be a fundamental crystal.  
36  
79  
PWRDN  
OE  
I
I
A logic low on this pin places the ADV71±9B in a power-down mode. Refer to Power  
Management Register in the I2C Register Maps section for more options on power-down  
modes for the ADV71±9B.  
When set to a logic low, OE enables the pixel output bus, P19 toP0 of the ADV71±9B. A logic  
high on the OE pin places Pins P19 to P0, HS, VS, SFL into a high impedance state.  
37  
12  
ELPF  
SFL  
I
The recommended external loop filter must be connected to this ELPF pin, as shown in  
Figure 46.  
Subcarrier Frequency Lock. This pin contains a serial output stream that can be used to lock the  
subcarrier frequency when this decoder is connected to any Analog Devices, Inc. digital video  
encoder.  
O
51  
52  
REFOUT  
CML  
O
O
Internal Voltage Reference Output. Refer to Figure 46 for a recommended capacitor network for  
this pin.  
The CML pin is a common-mode level for the internal ADCs. Refer to Figure 46 for a  
recommended capacitor network for this pin.  
4±, 49  
54, 55  
CAPY1, CAPY2  
CAPC1, CAPC2  
I
I
ADC’s Capacitor Network. Refer to Figure 46 for a recommended capacitor network for this pin.  
ADC’s Capacitor Network. Refer to Figure 46 for a recommended capacitor network for this pin.  
Rev. B | Page 12 of 104  
ADV7189B  
ANALOG FRONT END  
ANALOG INPUT MUXING  
ADC_SW_MAN_EN  
INSEL[3:0]  
INTERNAL  
MAPPING  
FUNCTIONS  
AIN1  
AIN7  
AIN2  
AIN8  
AIN3  
AIN9  
AIN4  
AIN10  
AIN5  
AIN11  
AIN6  
AIN12  
ADC0_SW[3:0]  
1
0
ADC0  
AIN3  
AIN9  
AIN4  
AIN10  
AIN5  
AIN11  
AIN6  
AIN12  
ADC1_SW[3:0]  
1
0
ADC1  
ADC2_SW[3:0]  
ADC2  
AIN2  
AIN8  
AIN5  
AIN11  
AIN6  
AIN12  
1
0
Figure 6. Internal Pin Connections  
ADI Recommended Input Muxing  
The ADV7189B has an integrated analog muxing section that  
allows more than one source of video signal to be connected to  
the decoder. Figure 6 outlines the overall structure of the input  
muxing provided in the ADV7189B.  
A maximum of 12 CVBS inputs can be connected and decoded  
by the ADV7189B. As seen in Figure 5, this means the sources  
have to be connected to adjacent pins on the IC. This calls for a  
careful design of the PCB layout, for example, ground shielding  
between all signals routed through tracks that are physically  
close together.  
As can be seen in Figure 6, there are two different ways in which  
the analog input muxes can be controlled:  
Control via functional registers (INSEL). Using INSEL[3:0]  
simplifies the setup of the muxes, and minimizes crosstalk  
between channels by pre-assigning the input channels.  
This is referred to as ADI recommended input muxing.  
INSEL[3:0] Input Selection, Address 0x00[3:0]  
The INSEL bits allow the user to select an input channel as well  
as the input format. Depending on the PCB connections, only  
a subset of the INSEL modes are valid. The INSEL[3:0] does  
not only switch the analog input muxing, it also configures the  
standard definition processor core to process CVBS (Comp),  
S-Video (Y/C), or component (YPbPr) format.  
Control via an I2C manual override (ADC_sw_man_en,  
ADC0_sw, ADC1_sw, ADC2_sw). This is provided for  
applications with special requirements, for example,  
number/combinations of signals that would not be  
served by the pre-assigned input connections. This is  
referred to as manual input muxing.  
Refer to Figure 7 for an overview of the two methods of  
controlling the ADV7189Bs input muxing.  
Rev. B | Page 13 of 104  
 
ADV7189B  
CONNECTING  
ANALOG SIGNALS  
TO ADV7189  
ADI-RECOMMENDED  
INPUT MUXING; SEE TABLE 9  
YES  
NO  
SET INSEL[3:0] FOR REQUIRED  
MUXING CONFIGURATION  
SET INSEL[3:0] TO  
CONFIGURE ADV7189B TO  
DECODE VIDEO FORMAT:  
CVBS: 0000  
YC: 0110  
YPrPb: 1001  
USE MANUAL INPUT MUXING  
(ADC_SW_MAN_EN, ADC0_SW,  
ADC1_SW, ADC2_SW)  
Figure 7. Input Muxing Overview  
Table 8. Input Channel Switching Using INSEL[3:0]  
Table 9. Input Channel Assignments  
Description  
Input  
Channel No.  
Pin  
ADI Recommended Input Muxing Control  
INSEL[3:0]  
INSEL[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
Analog Input Pins  
CVBS1 = AIN1 (default)  
CVBS2 = AIN2  
CVBS3 = AIN3  
CVBS4 = AIN4  
CVBS5 = AIN5  
CVBS6 = AIN6  
Y1 = AIN1  
Video Format  
Composite  
Composite  
Composite  
Composite  
Composite  
Composite  
YC  
AIN7  
AIN1  
AIN±  
AIN2  
AIN9  
AIN3  
AIN10  
AIN4  
AIN11  
AIN5  
AIN12  
AIN6  
41  
42  
43  
44  
45  
46  
57  
5±  
59  
60  
61  
62  
CVBS7  
CVBS1  
CVBS±  
CVBS2  
CVBS9  
CVBS3  
CVBS10  
CVBS4  
CVBS11  
CVBS5  
Not Available  
CVBS6  
YC1-Y  
YC2-Y  
YC3-Y  
YC1-C  
YC2-C  
YC3-C  
YPrPb1-Y  
YPrPb2-Y  
YPrPb2-Pb  
YPrPb1-Pb  
YPrPb1-Pr  
YPrPb2-Pr  
C1 = AIN4  
Y2 = AIN2  
C2 = AIN5  
Y3 = AIN3  
YC  
YC  
YC  
YC  
0111  
1000  
1001  
C3 = AIN6  
YC  
Y1 = AIN1  
PB1 = AIN4  
PR1 = AIN5  
Y2 = AIN2  
YPrPb  
YPrPb  
YPrPb  
YPrPb  
ADI-recommended input muxing is designed to minimize  
crosstalk between signal channels and to obtain the highest  
level of signal integrity. Table 9 summarizes how the PCB lay-  
out should connect analog video signals to the ADV7189B.  
1010  
PB2 = AIN3  
YPrPb  
It is strongly recommended to connect any unused analog input  
pins to AGND to act as a shield.  
PR2 = AIN6  
YPrPb  
1011  
1100  
1101  
1110  
1111  
CVBS7 = AIN7  
CVBS± = AIN±  
CVBS9 = AIN9  
CVBS10 = AIN10  
CVBS11 = AIN11  
Composite  
Composite  
Composite  
Composite  
Composite  
Inputs AIN7 to AIN11 should be connected to AGND when  
only six input channels are used. This improves the quality  
of the sampling due to better isolation between channels.  
AIN12 is not under the control of INSEL[3:0]. It can only be  
routed to ADC0/ADC1/ADC2 by manual muxing. See Table 10  
for further details.  
Rev. B | Page 14 of 104  
ADV7189B  
This means INSEL must be used to tell the ADV7189B whether  
the input signal is of component, YC, or CVBS format.  
Manual Input Muxing  
By accessing a set of manual override muxing registers, the  
analog input muxes of the ADV7189B can be controlled  
directly. This is referred to as manual input muxing.  
Restrictions in the channel routing are imposed by the analog  
signal routing inside the IC; every input pin cannot be routed  
to each ADC. Refer to Figure 6 for an overview on the routing  
capabilities inside the chip. The three mux sections can be  
controlled by the reserved control signal buses ADC0/ADC1/  
ADC2_sw[3:0]. Table 10 explains the control words used.  
Manual input muxing overrides other input muxing control  
bits, for example, INSEL. The manual muxing is activated by  
setting the ADC_SW_MAN_EN bit. It only affects the analog  
switches in front of the ADCs.  
SETADC_sw_man_en, Manual Input Muxing Enable,  
Address C4[7]  
This means if the settings of INSEL and the manual input  
muxing registers (ADC0/1/2_sw) contradict each other, the  
ADC0/ADC1/ADC2_sw settings apply and INSEL is ignored.  
ADC0_sw[3:0], ADC0 Mux Configuration, Address 0xC3[3:0]  
ADC1_sw[3:0], ADC1 Mux Configuration, Address 0xC3[7:4]  
ADC2_sw[3:0], ADC2 Mux Configuration, Address 0xC4[3:0]  
Manual input muxing controls only the analog input muxes.  
INSEL[3:0] still has to be set so the follow-on blocks process  
the video data in the correct format.  
Table 10. Manual Mux Settings for All ADCs (SETADC_sw_man_en = 1)  
ADC0_sw[3:0]  
ADC0 Connected To:  
No Connection  
AIN1  
AIN2  
AIN3  
ADC1_sw[3:0]  
ADC1 Connected To:  
No Connection  
No Connection  
No Connection  
AIN3  
ADC2_sw[3:0]  
0000  
0001  
0010  
0011  
ADC2 Connected To:  
No Connection  
No Connection  
AIN2  
No Connection  
No Connection  
AIN5  
0000  
0001  
0010  
0011  
0100  
0101  
0000  
0001  
0010  
0011  
0100  
0101  
AIN4  
AIN5  
AIN4  
AIN5  
0100  
0101  
0110  
AIN6  
0110  
AIN6  
0110  
AIN6  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
No Connection  
No Connection  
AIN7  
AIN±  
AIN9  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
No Connection  
No Connection  
No Connection  
No Connection  
AIN9  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
No Connection  
No Connection  
No Connection  
AIN±  
No Connection  
No Connection  
AIN11  
AIN10  
AIN11  
AIN10  
AIN11  
1110  
AIN12  
1110  
AIN12  
1110  
AIN12  
1111  
No Connection  
1111  
No Connection  
1111  
No Connection  
Rev. B | Page 15 of 104  
ADV7189B  
GLOBAL CONTROL REGISTERS  
PWRDN_ADC_0, Address 0x3A[3]  
Register control bits listed in this section affect the whole chip.  
When PWRDN_ADC_0 is 0 (default), the ADC is in normal  
operation.  
POWER-SAVE MODES  
Power-Down  
When PWRDN_ADC_0 is 1, ADC 0 is powered down.  
PDBP, Address 0x0F[2]  
The digital core of the ADV7189B can be shut down by using a  
PWRDN_ADC_1, Address 0x3A[2]  
pin (  
) and a bit (  
, see below). The PDBP con-  
PWRDN  
trols which of the two has the higher priority. The default is to  
give the pin ( ) priority. This allows the user to have the  
PWRDN  
When PWRDN_ADC_1 is 0 (default), the ADC is in normal  
operation.  
PWRDN  
When PWRDN_ADC_1 is 1, ADC 1 is powered down.  
ADV7189B powered down by default.  
PWRDN_ADC_2, Address 0x3A[1]  
When PDBD is 0 (default), the digital core power is controlled  
by the  
pin (the bit is disregarded).  
PWRDN  
When PWRDN_ADC_2 is 0 (default), the ADC is in normal  
operation.  
When PDBD is 1, the bit has priority (the pin is disregarded).  
When PWRDN_ADC_2 is 1, ADC 2 is powered down.  
PWRDN, Address 0x0F[5]  
RESET CONTROL  
Chip Reset (RES), Address 0x0F[7]  
Setting the PWRDN bit switches the ADV7189B into a chip-  
wide power-down mode. The power down stops the clock  
from entering the digital section of the chip, thereby freezing  
its operation. No I2C bits are lost during power down. The  
PWRDN bit also affects the analog blocks and switches them  
into low current modes. The I2C interface itself is unaffected,  
and remains operational in power-down mode.  
Setting this bit, equivalent to controlling the  
pin on the  
RESET  
ADV7189B, issues a full chip reset. All I2C registers get reset to  
their default values. Note: Some register bits do not have a reset  
value specified. They keep their last written value. These bits are  
marked as having a reset value of x in the register table. After  
the reset sequence, the part immediately starts to acquire the  
incoming video signal.  
The ADV7189B leaves the power-down state if the PWRDN bit  
is set to 0 (via I2C), or if the overall part is reset using the  
pin.  
RESET  
After setting the RES bit, or initiating a reset via the pin, the  
part returns to the default mode of operation with respect to  
its primary mode of operation. All I2C bits are loaded with  
their default values, making this bit self-clearing.  
Note: PDBP must be set to 1 for the PWRDN bit to power down  
the ADV7189B.  
When PWRDN is 0 (default), the chip is operational.  
When PWRDN is 1, the ADV7189B is in chip-wide power down.  
ADC Power-Down Control  
Executing a software reset takes approximately 2 ms. However,  
it is recommended to wait 5 ms before any further I2C writes are  
performed.  
The I2C master controller receives a no-acknowledge condi-  
tion on the ninth clock cycle when chip reset is implemented.  
See the MPU Port Description section for a full description.  
The ADV7189B contains three 12-bit ADCs (ADC 0, ADC 1,  
and ADC 2). If required, it is possible to power down each ADC  
individually.  
When RES is 0 (default), operation is normal.  
When RES is 1, the reset sequence starts.  
The ADCs should be powered down when in:  
CVBS mode. ADC 1 and ADC 2 should be powered down  
to save on power consumption.  
S-Video mode. ADC 2 should be powered down to save on  
power consumption.  
Rev. B | Page 16 of 104  
 
ADV7189B  
Individual drive strength controls are provided via the  
DR_STR_XX bits.  
GLOBAL PIN CONTROL  
Three-State Output Drivers  
TOD, Address 0x03[6]  
When TIM_OE is 0 (default), HS, VS, and FIELD are three-  
stated according to the TOD bit.  
This bit allows the user to three-state the output drivers of the  
ADV7189B.  
When TIM_OE is 1, HS, VS, and FIELD are forced active all  
the time.  
Upon setting the TOD bit, the P[19:0], HS, VS, FIELD, and SFL  
pins are three-stated.  
Drive Strength Selection (Data)  
DR_STR[1:0] Address 0xF4[5:4]  
The timing pins (HS/VS/FIELD) can be forced active via the  
TIM_OE bit. For more information on three-state control, refer  
to the Three-State LLC Drivers and the Timing Signals Output  
Enable sections.  
For EMC and crosstalk reasons, it can be desirable to strengthen  
or weaken the drive strength of the output drivers. The  
DR_STR[1:0] bits affect the P[19:0] output drivers.  
Individual drive strength controls are provided via the  
DR_STR_XX bits.  
For more information on three-state control, refer to the Drive  
Strength Selection (Clock) and the Drive Strength Selection  
(Sync) sections.  
The ADV7189B supports three-stating via a dedicated pin.  
Table 11. DR_STR_C Function  
When set high, the  
pin three-states the output drivers for  
OE  
P[19:0], HS, VS, FIELD, and SFL. The output drivers are three-  
stated if the TOD bit or the pin is set high.  
DR_STR_C[1:0]  
Description  
00  
Low drive strength (1×).  
Medium low drive strength (2×).  
Medium high drive strength (3×).  
High drive strength (4×).  
OE  
01 (default)  
10  
11  
When TOD is 0 (default), the output drivers are enabled.  
When TOD is 1, the output drivers are three-stated.  
Three-State LLC Drivers  
Drive Strength Selection (Clock)  
TRI_LLC, Address 0x1D[7]  
DR_STR_C[1:0] Address 0xF4[3:2]  
This bit allows the output drivers for the LLC1 pin and LLC2  
pin of the ADV7189B to be three-stated. For more information  
on three-state control, refer to the Three-State Output Drivers  
and the Timing Signals Output Enable sections.  
The DR_STR_C[1:0] bits can be used to select the strength of  
the clock signal output driver (LLC pin). For more information,  
refer to the Drive Strength Selection (Sync) and the Drive  
Strength Selection (Data) sections.  
Table 12. DR_STR_C Function  
Individual drive strength controls are provided via the  
DR_STR_XX bits.  
DR_STR_C[1:0]  
Description  
00  
Low drive strength (1×).  
Medium low drive strength (2×).  
Medium high drive strength (3×).  
High drive strength (4×).  
When TRI_LLC is 0 (default), the LLC pin drivers work  
according to the DR_STR_C[1:0] setting (pin enabled).  
01 (default)  
10  
11  
When TRI_LLC is 1, the LLC pin drivers are three-stated.  
Timing Signals Output Enable  
Drive Strength Selection (Sync)  
TIM_OE, Address 0x04[3]  
DR_STR_S[1:0] Address 0xF4[1:0]  
The TIM_OE bit should be regarded as an addition to the  
TOD bit. Setting it high forces the output drivers for HS, VS,  
and FIELD into the active (that is, driving) state even if the  
TOD bit is set. If set to low, the HS, VS, and FIELD pins are  
three-stated dependent on the TOD bit. This functionality is  
useful if the decoder is to be used as a timing generator only.  
This may be the case if only the timing signals are to be  
extracted from an incoming signal, or if the part is in free-  
run mode where a separate chip can output, for instance, a  
company logo.  
The DR_STR_S[1:0] bits allow the user to select the strength of  
the synchronization signals with which HS, VS, and F are driven.  
For more information, refer to the Drive Strength Selection  
(Clock) and the Drive Strength Selection (Data) sections.  
Table 13. DR_STR_S Function  
DR_STR_S[1:0]  
Description  
00  
Low drive strength (1×).  
Medium low drive strength (2×).  
Medium high drive strength (3×).  
High drive strength (4×).  
01 (default)  
10  
11  
For more information on three-state control, refer to the Three-  
State Output Drivers and the Three-State LLC Drivers sections.  
Rev. B | Page 17 of 104  
 
ADV7189B  
Enable Subcarrier Frequency Lock Pin  
Polarity LLC Pin  
EN_SFL_PIN Address 0x04[1]  
PCLK Address 0x37[0]  
The EN_SFL_PIN bit enables the output of subcarrier lock  
information (also known as GenLock) from the ADV7189B  
core to an encoder in a decoder-encoder back-to-back  
arrangement.  
The polarity of the clock that leaves the ADV7189B via the  
LLC1 and LLC2 pins can be inverted using the PCLK bit.  
Changing the polarity of the LLC clock output can be necessary  
to meet the setup-and-hold time expectations of follow-on  
chips.  
When EN_SFL_PIN is 0 (default), the subcarrier frequency  
lock output is disabled.  
Note: This bit also inverts the polarity of the LLC2 clock.  
When PCLK is 0, the LLC output polarity is inverted.  
When EN_SFL_PIN is 1, the subcarrier frequency lock  
information is presented on the SFL pin.  
When PCLK is 1 (default), the LLC output polarity is normal  
(as per the Timing Diagrams).  
Rev. B | Page 1± of 104  
ADV7189B  
GLOBAL STATUS REGISTERS  
Table 15. STATUS 1 Function  
Four registers provide summary information about the video  
decoder. The IDENT register allows the user to identify the  
revision code of the ADV7189B. The other three registers  
contain status bits from the ADV7189B.  
STATUS 1[7:0]  
Bit Name  
Description  
0
1
IN_LOCK  
LOST_LOCK  
In lock (right now).  
Lost lock (since last read of  
this register).  
2
3
FSC_LOCK  
FOLLOW_PW AGC follows peak white  
algorithm.  
FSC locked (right now).  
IDENTIFICATION  
IDENT[7:0] Address 0x11[7:0]  
This register provides identification of the revision of  
the ADV7189B.  
4
5
6
7
AD_RESULT.0 Result of autodetection.  
AD_RESULT.1 Result of autodetection.  
AD_RESULT.2 Result of autodetection.  
An identification value of 0x11 indicates the ADV7189,  
released silicon.  
COL_KILL  
Color kill active.  
STATUS 2  
STATUS_2[7:0], Address 0x12[7:0]  
Table 16. STATUS 2 Function  
An identification value of 0x13 indicates the ADV7189B silicon.  
STATUS 1  
STATUS_1[7:0] Address 0x10[7:0]  
STATUS 2[7:0] Bit Name  
Description  
0
MVCS DET  
Detected Macrovision color  
striping.  
Macrovision color striping  
protection. Conforms to  
Type 3 if high, to Type 2 if  
low.  
Detected Macrovision  
pseudo sync pulses.  
Detected Macrovision AGC  
pulses.  
This read-only register provides information about the internal  
status of the ADV7189B. These bits are used to set VS free run  
(coast) frequency. See the VS_Coast[1:0], Address  
0xF9[3:2]section and COL[2:0] Count Out-of-Lock, Address  
0x51[5:3] for information on the timing.  
1
MVCS T3  
2
3
MV_PS DET  
Depending on the setting of the FSCLE bit, the Status[0] and  
Status[1] are based solely on horizontal timing information or  
on the horizontal timing and lock status of the color subcarrier.  
See the FSCLE FSC Lock Enable, Address 0x51[7] section.  
MV_AGC DET  
4
5
LL_NSTD  
FSC_NSTD  
Line length is nonstandard.  
FSC frequency is  
nonstandard.  
SD AUTODETECTION RESULT  
6
7
Reserved  
Reserved  
AD_RESULT[2:0] Address 0x10[6:4]  
The AD_RESULT[2:0] bits report back on the findings from  
the autodetection block. For more information on enabling  
the autodetection block, see the General Setup section. For  
information on configuring it, see the Autodetection of SD  
Modes section.  
STATUS 3  
STATUS_3[7:0], Address 0x13[7:0]  
Table 17. STATUS 3 Function  
STATUS 3[7:0] Bit Name  
Description  
0
INST_HLOCK  
Horizontal lock indicator  
(instantaneous).  
Gemstar Detect.  
Flags whether 50 Hz or  
60 Hz is present at output.  
Table 14. AD_RESULT Function  
AD_RESULT[2:0]  
Description  
1
2
GEMD  
SD_OP_50HZ  
000  
001  
010  
011  
100  
101  
110  
111  
NTSM-MJ  
NTSC-443  
PAL-M  
PAL-60  
PAL-BGHID  
SECAM  
3
4
Reserved for future use.  
FREE_RUN_ACT ADV71±9B outputs a blue  
screen (see the DEF_VAL_EN  
Default Value Enable,  
PAL-Combination N  
SECAM 525  
Address 0x0C[0] section).  
5
STD_FLD_LEN  
Field length is correct for  
currently selected video  
standard.  
6
7
INTERLACED  
Interlaced video detected  
(field sequence found).  
Reliable sequence of  
PAL_SW_LOCK  
swinging bursts detected.  
Rev. B | Page 19 of 104  
 
ADV7189B  
STANDARD DEFINITION PROCESSOR (SDP)  
STANDARD DEFINITION PROCESSOR  
MACROVISION  
DETECTION  
STANDARD  
AUTODETECTION  
SLLC  
CONTROL  
VBI DATA  
RECOVERY  
LUMA  
DIGITAL  
FINE  
DIGITIZED CVBS  
DIGITIZED Y (YC)  
LUMA  
2D COMB  
LUMA  
FILTER  
GAIN  
CONTROL  
LUMA  
RESAMPLE  
CLAMP  
LINE  
AV  
SYNC  
EXTRACT  
RESAMPLE  
CONTROL  
VIDEO DATA  
OUTPUT  
LENGTH  
CODE  
PREDICTOR  
INSERTION  
CHROMA  
DIGITAL  
FINE  
MEASUREMENT  
BLOCK (= >I C)  
DIGITIZED CVBS  
DIGITIZED C (YC)  
CHROMA  
DEMOD  
CHROMA  
FILTER  
GAIN  
CONTROL  
CHROMA  
RESAMPLE  
CHROMA  
2D COMB  
2
CLAMP  
VIDEO DATA  
PROCESSING  
BLOCK  
F
SC  
RECOVERY  
Figure 8. Block Diagram of the Standard Definition Processor  
A block diagram of the ADV7189Bs standard definition  
processor (SDP) is shown in Figure 8.  
SD CHROMA PATH  
The input signal is processed by the following blocks:  
The ADV7189B block can handle standard definition video in  
CVBS, YC, and YPrPb formats. It can be divided into a lumi-  
nance and chrominance path. If the input video is of a composite  
type (CVBS), both processing paths are fed with the CVBS input.  
Digital Fine Clamp. This block uses a high precision  
algorithm to clamp the video signal.  
Chroma Demodulation. This block employs a color sub-  
carrier (FSC) recovery unit to regenerate the color subcarrier  
for any modulated chroma scheme. The demodulation  
block then performs an AM demodulation for PAL and  
NTSC and an FM demodulation for SECAM.  
SD LUMA PATH  
The input signal is processed by the following blocks:  
Digital Fine Clamp. This block uses a high precision  
algorithm to clamp the video signal.  
Chroma Filter Block. This block contains a chroma  
decimation filter (CAA) with a fixed response, and some  
shaping filters (CSH) that have selectable responses.  
Luma Filter Block. This block contains a luma decimation  
filter (YAA) with a fixed response, and some shaping filters  
(YSH) that have selectable responses.  
Gain Control. Automatic gain control (AGC) can operate  
on several different modes, including gain based on the  
color subcarriers amplitude, gain based on the depth of  
the horizontal sync pulse on the luma channel, or fixed  
manual gain.  
Luma Gain Control. The automatic gain control (AGC)  
can operate on a variety of different modes, including gain  
based on the depth of the horizontal sync pulse, peak white  
mode, and fixed manual gain.  
Chroma Resample. The chroma data is digitally resampled  
to keep it perfectly aligned with the luma data. The  
resampling is done to correct for static and dynamic line-  
length errors of the incoming video signal.  
Luma Resample. To correct for line-length errors and  
dynamic line-length changes, the data is digitally resampled.  
Luma 2D Comb. The two-dimensional comb filter  
provides YC separation.  
Chroma 2D Comb. The two-dimensional, 5-line,  
superadaptive comb filter provides high quality YC  
separation in case the input signal is CVBS.  
AV Code Insertion. At this point, the decoded luma (Y)  
signal is merged with the retrieved chroma values. AV  
codes (as per ITU-R. BT-656) can be inserted.  
AV Code Insertion. At this point, the demodulated chroma  
(Cr and Cb) signal is merged with the retrieved luma  
values. AV codes (as per ITU-R. BT-656) can be inserted.  
Rev. B | Page 20 of 104  
 
ADV7189B  
SYNC PROCESSING  
GENERAL SETUP  
Video Standard Selection  
The ADV7189B extracts syncs embedded in the video data  
stream. There is currently no support for external HS/VS  
inputs. The sync extraction has been optimized to support  
imperfect video sources such as VCRs with head switches. The  
actual algorithm used employs a coarse detection based on a  
threshold crossing followed by a more detailed detection using  
an adaptive interpolation algorithm. The raw sync information  
is sent to a line-length measurement and prediction block. The  
output of this is then used to drive the digital resampling  
section to ensure that the ADV7189B outputs 720 active pixels  
per line.  
The VID_SEL[3:0] register allows the user to force the digital  
core into a specific video standard. Under normal circumstances,  
this should not be necessary. The VID_SEL[3:0] bits default to  
an autodetection mode that supports PAL, NTSC, SECAM, and  
variants thereof. The following section provides more informa-  
tion on the autodetection system.  
Autodetection of SD Modes  
To guide the autodetect system of the ADV7189B, individ-  
ual enable bits are provided for each of the supported video  
standards. Setting the relevant bit to 0 inhibits the standard  
from being detected automatically. Instead, the system picks  
the closest of the remaining enabled standards. The results of  
the autodetection can be read back via the status registers. See  
the Global Status Registers section for more information.  
The sync processing on the ADV7189B also includes the  
following specialized postprocessing blocks that filter and  
condition the raw sync information retrieved from the  
digitized analog video.  
Vsync Processor. This block provides extra filtering of  
the detected Vsyncs to give improved vertical lock.  
VID_SEL[3:0] Address 0x00[7:4]  
Table 18. VID_SEL Function  
VID_SEL[3:0]  
Description  
Hsync Processor. The Hsync processor is designed to filter  
incoming Hsyncs that are corrupted by noise, providing  
much improved performance for video signals with stable  
time base but poor SNR.  
0000 (default)  
Autodetect (PAL BGHID) <–> NTSC J (no  
pedestal), SECAM.  
Autodetect (PAL BGHID) <–> NTSC M  
(pedestal), SECAM.  
Autodetect (PAL N) (pedestal) <–> NTSC J (no  
pedestal), SECAM.  
Autodetect (PAL N) (pedestal) <–> NTSC M  
(pedestal), SECAM.  
0001  
0010  
0011  
VBI DATA RECOVERY  
The ADV7189B can retrieve the following information from  
the input video:  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
NTSC J (1).  
NTSC M (1).  
PAL 60.  
NTSC 4.43 (1).  
Wide-screen signaling (WSS)  
Copy generation management system (CGMS)  
Closed captioning (CC)  
PAL BGHID.  
PAL N[= PAL BGHID (with pedestal)].  
PAL M (without pedestal).  
PAL M.  
PAL Combination N.  
PAL Combination N (with pedestal).  
SECAM.  
Macrovision protection presence  
EDTV data  
Gemstar-compatible data slicing  
The ADV7189B is also capable of automatically detecting  
the incoming video standard with respect to  
SECAM (with pedestal).  
AD_SEC525_EN Enable Autodetection of SECAM 525  
Line Video, Address 0x07[7]  
Color subcarrier frequency  
Field rate  
Setting AD_SEC525_EN to 0 (default), disables the  
autodetection of a 525-line system with a SECAM style,  
FM-modulated color component.  
Line rate  
Setting AD_SEC525_EN to 1 enables the detection.  
The ADV7189B can configure itself to support PAL-BGHID,  
PAL-M/N, PAL-combination N, NTSC-M, NTSC-J, SECAM  
50 Hz/60 Hz, NTSC4.43, and PAL60.  
AD_SECAM_EN Enable Autodetection of SECAM,  
Address 0x07[6]  
Setting AD_SECAM_EN to 0 disables the autodetection of  
SECAM.  
Setting AD_SECAM_EN to 1 (default) enables the detection.  
Rev. B | Page 21 of 104  
 
ADV7189B  
AD_N443_EN Enable Autodetection of NTSC 443,  
Address 0x07[5]  
SFL_INV Subcarrier Frequency Lock Inversion  
This bit controls the behavior of the PAL switch bit in the SFL  
(GenLock Telegram) data stream. It was implemented to solve  
some compatibility issues with video encoders. It solves two  
problems as follows:  
Setting AD_N443_EN to 0 disables the autodetection of NTSC  
style systems with a 4.43 MHz color subcarrier.  
Setting AD_N443_EN to 1 (default) enables the detection.  
First, the PAL switch bit is only meaningful in PAL. Some  
encoders (including Analog Devices encoders) also look at the  
state of this bit in NTSC.  
AD_P60_EN Enable Autodetection of PAL60,  
Address 0x07[4]  
Setting AD_P60_EN to 0 disables the autodetection of PAL  
systems with a 60 Hz field rate.  
Second, there was a design change in Analog Devices encoders  
from ADV717x to ADV719x. The older versions used the SFL  
(GenLock Telegram) bit directly, while the later ones invert the  
bit prior to using it. The reason for this is the inversion  
compensated for the 1-line delay of an SFL (GenLock Telegram)  
transmission.  
Setting AD_P60_EN to 1 (default) enables the detection.  
AD_PALN_EN Enable Autodetection of PAL N,  
Address 0x07[3]  
Setting AD_PALN_EN to 0 disables the detection of the  
PAL N standard.  
As a result, ADV717x encoders need the PAL switch bit in the  
SFL (GenLock Telegram) to be 1 for NTSC to work. Also,  
ADV7190/ADV7191/ADV7194 encoders need the PAL switch  
bit in the SFL to be 0 to work in NTSC. If the state of the PAL  
switch bit is wrong, a 180° phase shift occurs.  
Setting AD_PALN_EN to 1 (default) enables the detection.  
AD_PALM_EN Enable Autodetection of PAL M,  
Address 0x07[2]  
Setting AD_PALM_EN to 0 disables the autodetection of PAL M.  
Setting AD_PALM_EN to 1 (default), enables the detection.  
In a decoder/encoder back-to-back system in which SFL is used,  
this bit must be set up properly for the specific encoder used.  
SFL_INV Address 0x41[6]  
AD_NTSC_EN Enable Autodetection of NTSC,  
Address 0x07[1]  
Setting SFL_INV[6] to 0 makes the part SFL-compatible with  
ADV7190/ADV7191/ADV7194 encoders.  
Setting AD_NTSC_EN to 0 disables the detection of standard  
NTSC.  
Setting SFL_INV to 1 (default) makes the part SFL-compatible  
with ADV717x/ADV7173x encoders.  
Setting AD_NTSC_EN to 1 (default) enables the detection.  
Lock-Related Controls  
AD_PAL_EN Enable Autodetection of PAL,  
Address 0x07[0]  
Lock information is presented to the user through Bits[1:0] of  
the Status 1 register. See the STATUS_1[7:0] Address 0x10[7:0]  
section. Figure 9 outlines the signal flow and the controls avail-  
able to influence the way the lock status information is generated.  
Setting AD_PAL_EN to 0 disables the detection of standard PAL.  
Setting AD_PAL_EN to 1 (default) enables the detection.  
SELECT THE RAW LOCK SIGNAL  
SRLS  
FILTER THE RAW LOCK SIGNAL  
CIL[2:0], COL[2:0]  
TIME_WIN  
1
0
0
1
FREE_RUN  
COUNTER INTO LOCK  
COUNTER OUT OF LOCK  
STATUS 1 [0]  
STATUS 1 [1]  
F
LOCK  
SC  
MEMORY  
TAKE F LOCK INTO ACCOUNT  
SC  
FSCLE  
Figure 9. Lock-Related Signal Path  
Rev. B | Page 22 of 104  
ADV7189B  
Table 20. CIL Function  
SRLS Select Raw Lock Signal, Address 0x51[6]  
CIL[2:0]  
Description  
Using the SRLS bit, the user can choose between two sources for  
determining the lock status (per Bits[1:0] in the Status 1 register).  
000  
1
001  
2
010  
011  
100 (default)  
101  
110  
5
10  
100  
500  
1000  
100000  
The time_win signal is based on a line-to-line evaluation of  
the horizontal synchronization pulse of the incoming video.  
It reacts quickly.  
The free_run signal evaluates the properties of the  
incoming video over several fields, and takes vertical  
synchronization information into account.  
111  
COL[2:0] Count Out-of-Lock, Address 0x51[5:3]  
Setting SRLS to 0 (default) selects the free_run signal.  
Setting SRLS to 1 selects the time_win signal.  
FSCLE FSC Lock Enable, Address 0x51[7]  
COL[2:0] determines the number of consecutive lines for which  
the out-of-lock condition must be true before the system switches  
into unlocked state, and reports this via Status 0[1:0]. It counts  
the value in lines of video.  
The FSCLE bit allows the user to choose whether the status  
of the color subcarrier loop is taken into account when the  
overall lock status is determined and presented via Bits[1:0]  
in Status Register 1. This bit must be set to 0 when operating  
the ADV7189B in YPrPb component mode in order to generate  
a reliable HLOCK status bit.  
Table 21. COL Function  
COL[2:0]  
Description  
000  
1
001  
2
010  
5
011  
10  
100 (default)  
101  
110  
100  
500  
1000  
100000  
Setting FSCLE to 0 (default) makes the overall lock status  
dependent on only the horizontal sync lock.  
Setting FSCLE to 1 makes the overall lock status dependent on  
the horizontal sync lock and FSC lock.  
111  
SD COLOR CONTROLS  
VS_Coast[1:0], Address 0xF9[3:2]  
These registers allow the user to control picture appearance  
including control of the active data in the event of video being  
lost. These controls are independent of any other controls. For  
instance, brightness control is independent from picture clamp-  
ing, although both controls affect the signal’s dc level.  
These bits are used to set VS free-run (coast) frequency.  
Table 19. VS_COAST[1:0] Function  
VS_COAST[1:0]  
Description  
00 (default)  
Auto coast mode—follows VS  
frequency from last video input  
CON[7:0] Contrast Adjust, Address 0x08[7:0]  
This register allows the user to adjust the contrast of the picture.  
Table 22. CON Function  
01  
10  
11  
Forces 50 Hz coast mode  
Forces 60 Hz coast mode  
Reserved  
CON[7:0]  
0x±0 (default)  
0x00  
Description  
Gain on luma channel = 1  
Gain on luma channel = 0  
Gain on luma channel = 2  
CIL[2:0] Count Into Lock, Address 0x51[2:0]  
CIL[2:0] determines the number of consecutive lines for which  
the into lock condition must be true before the system switches  
into the locked state and reports this via Status 0[1:0]. It counts  
the value in lines of video.  
0xFF  
SD_SAT_Cb[7:0] SD Saturation Cb Channel, Address  
0xE3[7:0]  
This register allows the user to control the gain of the Cb channel  
only. The user can adjust the saturation of the picture.  
Table 23. SD_SAT_Cb Function  
SD_SAT_Cb[7:0] Description  
0x±0 (default)  
0x00  
0xFF  
Chroma gain = 0 dB  
Gain on Cb channel = −42 dB  
Gain on Cb channel = +6 dB  
Rev. B | Page 23 of 104  
 
ADV7189B  
The hue adjustment value is fed into the AM color demodulation  
block. Therefore, it only applies to video signals that contain  
chroma information in the form of an AM modulated carrier  
(CVBS or Y/C in PAL or NTSC). It does not affect SECAM  
and does not work on component video inputs (YPrPb).  
SD_SAT_Cr[7:0] SD Saturation Cr Channel, Address  
0xE4[7:0]  
This register allows the user to control the gain of the Cr  
channel only.  
Table 24. SD_SAT_Cr Function  
SD_SAT_Cr[7:0] Description  
Table 28. HUE Function  
HUE[7:0]  
0x00 (default)  
0x7F  
Description  
0x±0 (default)  
0x00  
0xFF  
Chroma gain = 0 dB  
Gain on Cb channel = −42 dB  
Gain on Cb channel = +6 dB  
Phase of the chroma signal = 0°  
Phase of the chroma signal = –90°  
Phase of the chroma signal = +90°  
0x±0  
SD_OFF_Cb[7:0] SD Offset Cb Channel, Address  
0xE1[7:0]  
DEF_Y[5:0] Default Value Y, Address 0x0C[7:2]  
When the ADV7189B loses lock on the incoming video signal  
or when there is no input signal, the DEF_Y[5:0] register allows  
the user to specify a default luma value to be output. This value  
is used under the following conditions:  
This register allows the user to select an offset for data on the  
Cr channel only and adjust the hue of the picture. There is a  
functional overlap with the Hue[7:0] register.  
Table 25. SD_OFF_Cb Function  
SD_OFF_Cb[7:0] Description  
If DEF_VAL_AUTO_EN bit is set to high, and the  
ADV7189B lost lock to the input video signal. This is  
the intended mode of operation (automatic mode).  
0x±0 (default)  
0x00  
0xFF  
0 offset applied to the Cb channel  
−312 mV offset applied to the Cb channel  
+312 mV offset applied to the Cb channel  
The DEF_VAL_EN bit is set, regardless of the lock status of  
the video decoder. This is a forced mode that can be useful  
during configuration.  
SD_OFF_Cr[7:0] SD Offset Cr Channel, Address  
0xE2[7:0]  
The DEF_Y[5:0] values define the 6 MSBs of the output video.  
The remaining LSBs are padded with 0s. For example, in 10-bit  
mode, the output is Y[9:0] = {DEF_Y[5:0], 0, 0, 0, 0}.  
This register allows the user to select an offset for data on the  
Cr channel only and adjust the hue of the picture. There is a  
functional overlap with the Hue[7:0] register.  
DEF_Y[5:0] is 0x0D (Blue) is the default value for Y.  
Register 0x0C has a default value of 0x36.  
Table 26. SD_OFF_Cr Function  
SD_OFF_Cr[7:0] Description  
0x±0 (default)  
0x00  
0xFF  
0 offset applied to the Cr channel  
−312 mV offset applied to the Cr channel  
+312 mV offset applied to the Cr channel  
DEF_C[7:0] Default Value C, Address 0x0D[7:0]  
The DEF_C[7:0] register complements the DEF_Y[5:0] value.  
It defines the 4 MSBs of Cr and Cb values to be output if  
BRI[7:0] Brightness Adjust, Address 0x0A[7:0]  
The DEF_VAL_AUTO_EN bit is set to high and the  
ADV7189B can’t lock to the input video (automatic mode).  
This register controls the brightness of the video signal through  
the ADV7189B. It allows the user to adjust the brightness of the  
picture.  
DEF_VAL_EN bit is set to high (forced output).  
Table 27. BRI Function  
The data that is finally output from the ADV7189B for the  
chroma side is Cr[7:0] = {DEF_C[7:4], 0, 0, 0, 0}, Cb[7:0] =  
{DEF_C[3:0], 0, 0, 0, 0}.  
BRI[7:0]  
0x00 (default)  
0x7F  
Description  
Offset of the luma channel = 0IRE  
Offset of the luma channel = +100IRE  
Offset of the luma channel = –100IRE  
In full 10-bit output mode, two extra LSBs of value 00 are  
appended.  
0xFF  
HUE[7:0] Hue Adjust, Address 0x0B[7:0]  
DEF_C[7:0] is 0x7C (blue) is the default value for Cr and Cb.  
This register contains the value for the color hue adjustment.  
It allows the user to adjust the hue of the picture.  
HUE[7:0] has a range of 90°, with 0x00 equivalent to an  
adjustment of 0°. The resolution of HUE[7:0] is 1 bit = 0.7°.  
Rev. B | Page 24 of 104  
ADV7189B  
The clamping can be divided into two sections:  
DEF_VAL_EN Default Value Enable, Address 0x0C[0]  
This bit forces the use of the default values for Y, Cr, and Cb.  
Refer to the descriptions for DEF_Y and DEF_C for additional  
information. In this mode, the decoder also outputs a stable  
27 MHz clock, HS, and VS.  
Clamping before the ADC (analog domain): current sources.  
Clamping after the ADC (digital domain): digital  
processing block.  
The ADCs can digitize an input signal only if it resides within  
the ADCs 1.6 V input voltage range. An input signal with a dc  
level that is too large or too small is clipped at the top or bottom  
of the ADC range.  
Setting DEF_VAL_EN to 0 (default) outputs a colored screen  
determined by user-programmable Y, Cr, and Cb values when  
the decoder free-runs. Free-run mode is turned on and off by the  
DEF_VAL_AUTO_EN bit.  
The primary task of the analog clamping circuits is to ensure  
the video signal stays within the valid ADC input window, so  
the analog-to-digital conversion can take place. It is not neces-  
sary to clamp the input signal with a very high accuracy in the  
analog domain as long as the video signal fits the ADC range.  
Setting DEF_VAL_EN to 1 forces a colored screen output  
determined by user-programmable Y, Cr, and Cb values.  
This overrides picture data even if the decoder is locked.  
DEF_VAL_AUTO_EN Default Value Automatic Enable,  
Address 0x0C[1]  
After digitization, the digital fine clamp block corrects for any  
remaining variations in dc level. Since the dc level of an input  
video signal refers directly to the brightness of the picture  
transmitted, it is important to perform a fine clamp with high  
accuracy; otherwise, brightness variations can occur. Dynamic  
changes in the dc level lead to visually objectionable artifacts so  
it is recommended not to use dynamic changes.  
This bit enables the automatic use of the default values for Y, Cr,  
and Cb when the ADV7189B cannot lock to the video signal.  
Setting DEF_VAL_AUTO_EN to 0 disables free-run mode.  
If the decoder is unlocked, it outputs noise.  
Setting DEF_VAL_EN to 1 (default) enables free-run mode.  
A colored screen set by the user-programmable Y, Cr, and Cb  
values is displayed when the decoder loses lock.  
The clamping scheme has to complete two tasks. It must be  
able to acquire a newly connected video signal with a com-  
pletely unknown dc level, and it must maintain the dc level  
during normal operation.  
CLAMP OPERATION  
The input video is ac-coupled into the ADV7189B through a  
0.1 μF capacitor. The recommended range of the input video  
signal range be 0.5 V to 1.6 V (typically 1 V p-p). If the signal  
exceeds the range, it cannot be processed correctly in the decoder.  
Because the input is ac-coupled into the decoder, its dc value  
needs to be restored. This process is referred to as clamping the  
video. This section explains the general process of clamping on  
the ADV7189B and shows the different ways in which a user can  
configure its behavior.  
For quickly acquiring an unknown video signal, the large current  
clamps can be activated. It is assumed the amplitude of the  
video signal is of a nominal value at this point. Control of the  
coarse and fine current clamp parameters is performed auto-  
matically by the decoder.  
Standard definition video signals may have excessive noise  
on them. In particular, CVBS signals transmitted by terrestrial  
broadcast and demodulated using a tuner usually show very  
large levels of noise (>100 mV). A voltage clamp is unsuitable  
for this type of video signal. Instead, the ADV7189B employs a  
set of four current sources that cause coarse (>0.5 mA) and fine  
(<0.1 mA) currents to flow into and away from the high imped-  
ance node that carries the video signal (see Figure 10).  
The ADV7189B uses a combination of current sources and a  
digital processing block for clamping, as shown in Figure 10.  
The analog processing channel shown is replicated three times  
inside the IC. While only one single channel (and only one  
ADC) is needed for a CVBS signal, two independent channels  
are needed for YC (S-VHS) type signals, and three independent  
channels are needed to allow component signals (YPrPb) to  
be processed.  
FINE  
CURRENT  
SOURCES  
COARSE  
CURRENT  
SOURCES  
DATA  
SDP  
WITH DIGITAL  
PROCESSOR  
FINE CLAMP  
(DPP)  
ANALOG  
VIDEO  
INPUT  
PRE-  
ADC  
CLAMP CONTROL  
Figure 10. Clamping Overview  
Rev. B | Page 25 of 104  
 
ADV7189B  
The following sections describe the I2C signals that can be  
used to influence the behavior of the clamping block on the  
ADV7189B.  
The luma antialias filter decimates the oversampled video  
using a high quality, linear phase, low-pass filter that pre-  
serves the luma signal while at the same time attenuating  
out-of-band components. The luma antialias filter (YAA)  
has a fixed response.  
CCLEN Current Clamp Enable, Address 0x14[4]  
The current clamp enable bit allows the user to switch off the  
current sources in the analog front end altogether. This can be  
useful if the incoming analog video signal is clamped externally.  
Luma shaping filters (YSH). The shaping filter block is  
a programmable low-pass filter with a wide variety of  
responses. It can be used to selectively reduce the luma  
video signal bandwidth (needed prior to scaling, for  
example). For some video sources that contain high  
frequency noise, reducing the bandwidth of the luma  
signal improves visual picture quality. A follow-on video  
compression stage can work more efficiently if the video  
is low-pass filtered.  
When CCLEN is 0, the current sources are switched off.  
When CCLEN is 1 (default), the current sources are enabled.  
DCT[1:0] Digital Clamp Timing, Address 0x15[6:5]  
The clamp timing register determines the time constant of the  
digital fine clamp circuitry. It is important to realize that the  
digital fine clamp reacts very quickly because it is supposed to  
immediately correct any residual dc level error for the active  
line. The time constant of the digital fine clamp must be much  
quicker than the one from the analog blocks.  
The ADV7189B has two responses for the shaping filter:  
one that is used for good quality CVBS, component, and  
S-VHS type sources, and a second for nonstandard CVBS  
signals.  
By default, the time constant of the digital fine clamp is adjusted  
dynamically to suit the currently connected input signal.  
The YSH filter responses also include a set of notches for  
PAL and NTSC. However, it is recommended to use the  
comb filters for YC separation.  
Table 29. DCT Function  
DCT[1:0]  
Description  
Digital resampling filter. This block is used to allow dynamic  
resampling of the video signal to alter parameters such as the  
time base of a line of video. Fundamentally, the resampler is  
a set of low-pass filters. The actual response is chosen by the  
system with no requirement for user intervention.  
00  
01  
Slow (TC = 1 sec)  
Medium (TC = 0.5 sec)  
Fast (TC = 0.1 sec)  
Determined by the ADV71±9B, depending on  
the I/P video parameters  
10 (default)  
11  
Figure 12 through Figure 15 show the overall response of all  
filters together. Unless otherwise noted, the filters are set into  
a typical wideband mode.  
DCFE Digital Clamp Freeze Enable, Address 0x15[4]  
This register bit allows the user to freeze the digital clamp loop  
at any time. It is intended for users who would like to do their  
own clamping. Users should disable the current sources for  
analog clamping via the appropriate register bits, wait until the  
digital clamp loop settles, and then freeze it via the DCFE bit.  
Y-Shaping Filter  
For input signals in CVBS format, the luma shaping filters play  
an essential role in removing the chroma component from a  
composite signal. YC separation must aim for the best possible  
crosstalk reduction while still retaining as much bandwidth  
(especially on the luma component) as possible. High quality  
YC separation can be achieved by using the internal comb filters  
of the ADV7189B. Comb filtering, however, relies on the  
frequency relationship of the luma component (multiples of the  
video line rate) and the color subcarrier (FSC). For good quality  
CVBS signals, this relationship is known; the comb filter  
algorithms can be used to separate out luma and chroma with  
high accuracy.  
When DCFE is 0 (default), the digital clamp is operational.  
When DCFE is 1, the digital clamp loop is frozen.  
LUMA FILTER  
Data from the digital fine clamp block is processed by three sets  
of filters. Note: The data format at this point is CVBS for CVBS  
input or luma only for Y/C and YPrPb input formats.  
Luma antialias filter (YAA). The ADV7189B receives video  
at a rate of 27 MHz. (In the case of 4× oversampled video,  
the ADCs sample at 54 MHz, and the first decimation is  
performed inside the DPP filters. Therefore, the data rate  
into the ADV7189B is always 27 MHz.) The ITU-R BT.601  
recommends a sampling frequency of 13.5 MHz.  
With nonstandard video signals, the frequency relationship may  
be disturbed, and the comb filters may not be able to remove all  
crosstalk artifacts in an optimum fashion without the assistance  
of the shaping filter block.  
Rev. B | Page 26 of 104  
 
ADV7189B  
YSFM[4:0] Y-Shaping Filter Mode, Address 0x17[4:0]  
An automatic mode for Y-shaped filtering is provided. In this  
mode, the ADV7189B evaluates the quality of the incoming  
video signal and selects the filter responses in accordance with  
the signal quality and video standard. YFSM, WYSFMOVR,  
and WYSFM allow the user to manually override these  
automatic decisions in part or in full.  
The Y-shaping filter mode bits allow the user to select from  
a wide range of low-pass and notch filters. When switched in  
automatic mode, the filter is selected based on other register  
selections, for example, detected video standard, as well as  
properties extracted from the incoming video itself, for example,  
quality, time base stability. The automatic selection always picks  
the widest possible bandwidth for the video input encountered.  
The luma shaping filter has three control registers:  
YSFM[4:0] allows the user to manually select a shaping  
filter mode (applied to all video signals) or to enable an  
automatic selection (dependent on video quality and  
video standard).  
If the YSFM settings specify a filter (that is, YSFM is set  
to values other than 00000 or 00001), the chosen filter is  
applied to all video, regardless of its quality.  
In automatic selection mode, the notch filters are only used  
for bad quality video signals. For all other video signals, wide  
band filters are used.  
WYSFMOVR allows the user to manually override the  
WYSFM decision.  
WYSFM[4:0] allows the user to select a different shaping  
filter mode for good quality CVBS, component (YPrPb),  
and S-VHS (YC) input signals.  
WYSFMOVR Wideband Y-Shaping Filter Override,  
Address 0x18[7]  
Setting the WYSFMOVR bit enables the use of the WYSFM[4:0]  
settings for good quality video signals. For more information,  
refer to the general discussion of the luma-shaping filters in the  
Y-Shaping Filter section and the flowchart shown in Figure 11.  
In automatic mode, the system preserves the maximum possible  
bandwidth for good CVBS sources (since they can successfully  
be combed) as well as for luma components of YPrPb and YC  
sources, since they need not be combed. For poor quality signals,  
the system selects from a set of proprietary shaping filter  
responses that complements comb filter operation in order to  
reduce visual artifacts. The decisions of the control logic are  
shown in Figure 11.  
When WYSFMOVR is 0, the shaping filter for good quality  
video signals is selected automatically.  
Setting WYSFMOVR to 1 (default) enables manual override via  
WYSFM[4:0].  
SET YSFM  
YSFM IN AUTO MODE?  
00000 OR 00001  
YES  
NO  
VIDEO  
QUALITY  
BAD  
GOOD  
USE YSFM SELECTED  
FILTER REGARDLESS FOR  
GOOD AND BAD VIDEO  
AUTO SELECT LUMA  
SHAPING FILTER TO  
COMPLEMENT COMB  
WYSFMOVR  
1
0
SELECT WIDEBAND  
FILTER AS PER  
WYSFM[4:0]  
SELECT AUTOMATIC  
WIDEBAND FILTER  
Figure 11. YSFM and WYSFM Control Flowchart  
Rev. B | Page 27 of 104  
ADV7189B  
Table 30. YSFM Function  
YSFM[4:0] Description  
WYSFM[4:0] Wide Band Y-Shaping Filter Mode,  
Address 0x18[4:0]  
0'0000  
Automatic selection including a wide-notch  
The WYSFM[4:0] bits allow the user to manually select a shaping  
filter for good quality video signals, for example, CVBS with  
stable time base, luma component of YPrPb, luma component  
of YC. The WYSFM bits are only active if the WYSFMOVR bit  
is set to 1. See the general discussion of the shaping filter settings  
in the Y-Shaping Filter section.  
response (PAL/NTSC/SECAM)  
Automatic selection including a narrow-notch  
response (PAL/NTSC/SECAM)  
SVHS 1  
SVHS 2  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
0'0001  
(default)  
0'0010  
0'0011  
0'0100  
0'0101  
0'0110  
0'0111  
0'1000  
0'1001  
0'1010  
0'1011  
0'1100  
0'1101  
0'1110  
0'1111  
1'0000  
1'0001  
1'0010  
1'0011  
1'0100  
1'0101  
1'0110  
1'0111  
1'1000  
1'1001  
1'1010  
1'1011  
1'1100  
1'1101  
1'1110  
1'1111  
Table 31. WYSFM Function  
WYSFM[4:0]  
Description  
Do not use  
Do not use  
SVHS 1  
0'0000  
0'0001  
0'0010  
SVHS 7  
SVHS ±  
SVHS 9  
0'0011  
SVHS 2  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 1± (CCIR 601)  
PAL NN 1  
PAL NN 2  
PAL NN 3  
PAL WN 1  
PAL WN 2  
NTSC NN 1  
NTSC NN 2  
NTSC NN 3  
NTSC WN 1  
NTSC WN 2  
NTSC WN 3  
Reserved  
0'0100  
SVHS 3  
0'0101  
SVHS 4  
0'0110  
SVHS 5  
0'0111  
SVHS 6  
0'1000  
SVHS 7  
0'1001  
SVHS ±  
0'1010  
SVHS 9  
0'1011  
0'1100  
0'1101  
0'1110  
0'1111  
1'0000  
1'0001  
1'0010  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 1± (CCIR 601)  
Do not use  
1'0011 (default)  
1'0100–1'1111  
Rev. B | Page 2± of 104  
ADV7189B  
COMBINED Y ANTIALIAS, NTSC NOTCH FILTERS,  
Y RESAMPLE  
COMBINED Y ANTIALIAS, S-VHS LOW-PASS FILTERS,  
Y RESAMPLE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
0
2
4
6
8
10  
12  
Figure 15 . NTSC Notch Filter Response  
FREQUENCY (MHz)  
Figure 12. Y S-VHS Combined Responses  
CHROMA FILTER  
The filter plots in Figure 12 show the S-VHS 1 (narrowest) to  
S-VHS 18 (widest) shaping filter settings. Figure 14 shows the  
PAL notch filter responses. The NTSC-compatible notches are  
shown in Figure 15.  
Data from the digital fine clamp block is processed by three sets  
of filters. Note: the data format at this point is CVBS for CVBS  
inputs, or chroma only for Y/C or Cr/Cb interleaved for YCrCb  
input formats.  
COMBINED Y ANTIALIAS, CCIR MODE SHAPING FILTER,  
Y RESAMPLE  
Chroma Antialias Filter (CAA). The ADV7189B over-  
samples the CVBS by a factor of 2 and the Chroma/UV  
by a factor of 4. A decimating filter (CAA) is used to  
preserve the active video band and to remove any out-of-  
band components. The CAA filter has a fixed response.  
0
–20  
–40  
Chroma Shaping Filters (CSH). The shaping filter block  
can be programmed to perform a variety of low-pass  
responses. It can be used to selectively reduce the band-  
width of the chroma signal for scaling or compression.  
–60  
–80  
–100  
–120  
Digital Resampling Filter. This block is used to allow  
dynamic resampling of the video signal to alter parameters  
such as the time base of a line of video. Fundamentally, the  
resampler is a set of low-pass filters. The actual response is  
chosen by the system without user intervention.  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 13. Y S-VHS 18 Extra Wideband Filter (CCIR 601 Compliant)  
COMBINED Y ANTIALIAS, NTSC NOTCH FILTERS,  
Y RESAMPLE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
The plots in Figure 16 show the overall response of all filters  
together.  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 14. PAL Notch Filter Response  
Rev. B | Page 29 of 104  
 
ADV7189B  
GAIN OPERATION  
CSFM[2:0] C-Shaping Filter Mode, Address 0x17[7]  
The gain control within the ADV7189B is done on a purely  
digital basis. The input ADCs support a 12-bit range, mapped  
into a 1.6 V analog voltage range. Gain correction takes place  
after the digitization in the form of a digital multiplier.  
The C-shaping filter mode bits allow the user to select from a  
range of low-pass filters, SH1 to SH5, and wideband mode for  
the chrominance signal. The auto-selection options  
automatically select from the filter options to give the specified  
response. (See settings 000 and 001 in Table 32).  
Advantages of this architecture over the commonly used  
programmable gain amplifier (PGA) before the ADCs include  
the fact that the gain is now completely independent of supply,  
temperature, and process variations.  
Table 32. CSFM Function  
CSFM[2:0]  
000 (default)  
001  
Description  
Autoselect 1.5 MHz bandwidth  
Autoselect 2.17 MHz bandwidth  
As shown in Figure 17, the ADV7189B can decode a video signal  
as long as it fits into the ADC window. The two components to  
this are the amplitude of the input signal and the dc level it resides  
on. The dc level is set by the clamping circuitry (see the Clamp  
Operation section).  
010  
011  
100  
101  
SH1  
SH2  
SH3  
SH4  
110  
SH5  
111  
Wideband mode  
If the amplitude of the analog video signal is too high, clipping  
can occur, resulting in visual artifacts. The analog input range  
of the ADC, together with the clamp level, determines the  
maximum supported amplitude of the video signal.  
COMBINED C ANTIALIAS, C SHAPING FILTER,  
C RESAMPLER  
0
–10  
–20  
–30  
–40  
–50  
The minimum supported amplitude of the input video is  
determined by the ADV7189Bs ability to retrieve horizontal  
and vertical timing and to lock to the colorburst, if present.  
There are separate gain control units for luma and chroma data.  
Both can operate independently of each other. The chroma unit,  
however, can also take its gain value from the luma path.  
The possible AGC modes are summarized in Table 33.  
It is possible to freeze the automatic gain control loops. This  
causes the loops to stop updating, and the AGC determined  
gain at the time of the freeze to stay active until the loop is  
either unfrozen or the gain mode of operation is changed.  
–60  
0
1
2
3
4
5
6
FREQUENCY (MHz)  
Figure 16. Chroma Shaping Filter Responses  
Figure 16 shows the responses of SH1 (narrowest) to SH5  
(widest) in addition to the wideband mode.  
The currently active gain from any of the modes can be read  
back. Refer to the description of the dual-function manual gain  
registers, LG[11:0] Luma Gain and CG[11:0] Chroma Gain, in  
the Luma Gain and the Chroma Gain sections.  
ANALOG VOLTAGE  
RANGE SUPPORTED BY ADC (1.6V RANGE FOR ADV7189B)  
MAXIMUM  
VOLTAGE  
SDP  
(GAIN SELECTION ONLY)  
DATA  
PRE-  
ADC  
PROCESSOR  
(DPP)  
GAIN  
CONTROL  
MINIMUM  
VOLTAGE  
CLAMP  
LEVEL  
Figure 17. Gain Control Overview  
Rev. B | Page 30 of 104  
 
ADV7189B  
Table 33. AGC Modes  
Input Video Type  
Luma Gain  
Chroma Gain  
Any  
Manual gain luma.  
Manual gain chroma.  
CVBS  
Dependent on horizontal sync depth.  
Dependent on color burst amplitude.  
Taken from luma path.  
Peak White.  
Dependent on color burst amplitude.  
Taken from luma path.  
Y/C  
Dependent on horizontal sync depth.  
Peak White.  
Dependent on color burst amplitude.  
Taken from luma path.  
Dependent on color burst amplitude.  
Taken from luma path.  
YPrPb  
Dependent on horizontal sync depth.  
Taken from luma path.  
Luma Gain  
Table 35. LAGT Function  
LAGC[2:0] Luma Automatic Gain Control, Address  
0x2C[7:0]  
LAGT[1:0]  
Description  
00  
01  
10  
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Fast (TC = 0.2 sec)  
Adaptive  
The luma automatic gain control mode bits select the mode of  
operation for the gain control in the luma path. There are ADI  
internal parameters to customize the peak white gain control.  
Contact ADI sakes for more information.  
11 (default)  
Table 34. LAGC Function  
LG[11:0] Luma Gain, Address 0x2F[3:0]; Address  
0x30[7:0]; LMG[11:0] Luma Manual Gain, Address  
0x2F[3:0]; Address 0x30[7:0]  
LAGC[2:0]  
Description  
000  
Manual fixed gain (use LMG[11:0])  
001  
AGC (blank level to sync tip); peak white  
algorithm off  
Luma Gain[11:0] is a dual-function register. If written to, a  
desired manual luma gain can be programmed. This gain  
becomes active if the LAGC[2:0] mode is switched to manual  
fixed gain. Equation 1 shows how to calculate a desired gain. If  
read back, this register returns the current gain value.  
Depending on the setting in the LAGC[2:0] bits, this is one of  
the following values:  
010 (default)  
AGC (blank level to sync tip); peak white  
algorithm on  
011  
100  
101  
110  
111  
Reserved  
Reserved  
Reserved  
Reserved  
Freeze gain  
Luma manual gain value (LAGC[2:0] set to luma manual  
gain mode)  
LAGT[1:0] Luma Automatic Gain Timing, Address  
0x2F[7:6]  
The luma automatic gain timing register allows the user to  
influence the tracking speed of the luminance automatic gain  
control. Note this register only has an effect if the LAGC[2:0]  
register is set to 001, 010, 011, or 100 (automatic gain control  
modes).  
Luma automatic gain value (LAGC[2:0] set to any of the  
automatic modes)  
Table 36. LG/LMG Function  
LG[11:0]/LMG[11:0] Read/Write Description  
LMG[11:0] = X  
Write  
Manual gain for  
luma path  
If peak white AGC is enabled and active (see the  
LG[11:0]  
Read  
Actually used gain  
STATUS_1[7:0] Address 0x10[7:0] section), the actual gain  
update speed is dictated by the peak white AGC loop and, as a  
result, the LAGT settings have no effect. As soon as the part  
leaves peak white AGC, LAGT becomes relevant again.  
(
0 < LG 4095  
)
Luma_Gain =  
= 0...2  
(1)  
2048  
The update speed for the peak white algorithm can be  
customized by the use of internal parameters. Contact ADI  
for more information.  
Rev. B | Page 31 of 104  
ADV7189B  
Table 38. Betacam Levels  
For example, program the ADV7189B into manual fixed gain  
mode with a desired gain of 0.89:  
Betacam  
Variant  
(mV)  
Betacam  
SMPTE  
(mV)  
Name (mV)  
MII (mV)  
1. Use Equation 1 to convert the gain:  
0.89 × 2048 = 1822.72  
Y
0 to 714  
0 to 714  
0 to  
700  
0 to 700 (incl.  
7.5%  
pedestal)  
Range (incl. 7.5%  
pedestal)  
U and –467 to +467  
2. Truncate to integer value:  
1822.72 = 1822  
–505 to  
+505  
–350  
to  
+350  
–324 to +324  
V
3. Convert to hexadecimal:  
1822d = 0x71E  
Range  
Sync  
2±6  
2±6  
300  
300  
4. Split into two registers and program:  
Luma Gain Control 1[3:0] = 0x7  
Depth  
Luma Gain Control 2[7:0] = 0x1E  
PW_UPD Peak White Update, Address 0x2B[0]  
5. Enable Manual Fixed Gain Mode:  
Set LAGC[2:0] to 000  
The peak white and average video algorithms determine the  
gain based on measurements taken from the active video. The  
PW_UPD bit determines the rate of gain change. LAGC[2:0]  
must be set to the appropriate mode to enable the peak white or  
average video mode in the first place. For more information, refer  
to the LAGC[2:0] Luma Automatic Gain Control, Address  
0x2C[7:0] section.  
BETACAM Enable Betacam Levels, Address 0x01[5]  
If YPrPb data is routed through the ADV7189B, the automatic  
gain control modes can target different video input levels, as  
outlined in. Note the BETACAM bit is valid only if the input  
mode is YPrPb (component). The BETACAM bit sets the target  
value for AGC operation. A review of the following sections is  
useful.  
Setting PW_UPD to 0 updates the gain once per video line.  
Setting PW_UPD to 1 (default) updates the gain once per field.  
Chroma Gain  
INSEL[3:0] Input Selection, Address 0x00[3:0] to find out  
how component video (YPrPb) can be routed through the  
ADV7189B.  
CAGC[1:0] Chroma Automatic Gain Control,  
Address 0x2C[1:0]  
Video Standard Selection to select the various standards,  
for example, with and without pedestal.  
The two bits of color automatic gain control mode select  
the basic mode of operation for automatic gain control in the  
chroma path.  
The automatic gain control (AGC) algorithms adjust the levels  
based on the setting of the BETACAM bit. See Table 37.  
Table 39. CAGC Function  
Table 37. BETACAM Function  
CAGC[1:0]  
Description  
BETACAM Description  
00  
01  
Manual fixed gain (use CMG[11:0]).  
Use luma gain for chroma.  
Automatic gain (based on color burst).  
Freeze chroma gain.  
0 (default) Assuming YPrPb is selected as input format.  
Selecting PAL with pedestal selects MII.  
Selecting PAL without pedestal selects SMPTE.  
Selecting NTSC with pedestal selects MII.  
Selecting NTSC without pedestal selects SMPTE.  
10 (default)  
11  
CAGT[1:0] Chroma Automatic Gain Timing,  
Address 0x2D[7:6]  
1
Assuming YPrPb is selected as input format.  
Selecting PAL with pedestal selects BETACAM.  
The chroma automatic gain timing register allows the user  
to influence the tracking speed of the chroma automatic gain  
control. This register has an effect only if the CAGC[1:0]  
register is set to 10 (automatic gain).  
Selecting PAL without pedestal selects BETACAM  
variant.  
Selecting NTSC with pedestal selects BETACAM.  
Selecting NTSC without pedestal selects  
BETACAM variant.  
Table 40. CAGT Function  
CAGT[1:0]  
Description  
00  
01  
10  
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Fast (TC = 0.2 sec)  
Adaptive  
11 (default)  
Rev. B | Page 32 of 104  
ADV7189B  
CG[11:0] Chroma Gain, Address 0x2D[3:0];  
Address 0x2E[7:0]; CMG[11:0] Chroma Manual Gain,  
Address 0x2D[3:0]; Address 0x2E[7:0]  
If color kill is enabled and if the color carrier of the incoming  
video signal is less than the threshold for 128 consecutive video  
lines, color processing is switched off (black and white output).  
To switch the color processing back on, another 128 consecutive  
lines with a color burst greater than the threshold are required.  
Chroma Gain[11:0] is a dual-function register. If written to, a  
desired manual chroma gain can be programmed. This gain  
becomes active if the CAGC[1:0] mode is switched to manual  
fixed gain. Refer to Equation 2 for calculating a desired gain. If  
read back, this register returns the current gain value. Depending  
on the setting in the CAGC[1:0] bits, this is either  
The color kill option only works for input signals with a modu-  
lated chroma part. For component input (YPrPb), there is no  
color kill.  
Setting CKE to 0 disables color kill.  
Setting CKE to 1 (default), enables color kill.  
Chroma manual gain value (CAGC[1:0] set to chroma  
manual gain mode)  
CKILLTHR[2:0] Color Kill Threshold, Address 0x3D[6:4]  
Chroma automatic gain value (CAGC[1:0] set to any of the  
automatic modes)  
The CKILLTHR[2:0] bits allow the user to select a threshold  
for the color kill function. The threshold applies to only QAM-  
based (NTSC and PAL) or FM-modulated (SECAM) video  
standards.  
Table 41. CG/CMG Function  
CG[11:0]/CMG[11:0] Read/Write Description  
CMG[11:0]  
Write  
Manual gain for chroma  
path.  
Currently active gain.  
To enable the color kill function, the CKE bit must be set. For  
settings 000, 001, 010, and 011, chroma demodulation inside  
the ADV7189B may not work satisfactorily for poor input  
video signals.  
CG[11:0]  
Read  
(
0 < CG 4095  
)
Chroma _ Gain =  
= 0...4  
(2)  
1024  
Table 42. CKILLTHR Function  
For example, freezing the automatic gain loop and reading back  
the CG[11:0] register results in a value of 0x47A.  
Description  
CKILLTHR[2:0] SECAM  
NTSC, PAL  
000  
001  
010  
011  
100 (default)  
101  
110  
No color kill.  
Kill at < 0.5%  
Kill at < 1.5%  
Kill at < 2.5%  
Kill at < 4.0%  
Kill at < ±.5% (default)  
Kill at < 16.0%  
Kill at < 32.0%  
1. Convert the readback value to decimal  
0x47A = 1146d  
Kill at < 5%.  
Kill at < 7%.  
Kill at < ±%.  
Kill at < 9.5%.  
Kill at < 15%.  
Kill at < 32%.  
Reserved for ADI  
internal use only. Do  
not select.  
2. Apply Equation 2 to convert the readback value  
1146/1024 = 1.12  
CKE Color Kill Enable, Address 0x2B[6]  
The color kill enable bit allows the optional color kill function  
to be switched on or off.  
111  
For QAM-based video standards (PAL and NTSC) as well as  
FM-based systems (SECAM), the threshold for the color kill  
decision is selectable via the CKILLTHR[2:0] bits.  
Rev. B | Page 33 of 104  
ADV7189B  
CHROMA TRANSIENT IMPROVEMENT (CTI)  
The signal bandwidth allocated for chroma is typically much  
smaller than that of luminance. In the past, this was a valid  
way to fit a color video signal into a given overall bandwidth  
because the human eye is less sensitive to chrominance than  
to luminance.  
For the alpha blender to be active, the CTI block must be  
enabled via the CTI_EN bit.  
Setting CTI_AB_EN to 0 disables the CTI alpha blender.  
Setting CTI_AB_EN to 1 (default) enables the CTI alpha-blend  
mixing function.  
The uneven bandwidth, however, can lead to visual artifacts in  
sharp color transitions. At the border of two bars of color, both  
components (luma and chroma) change at the same time (see  
Figure 18). Due to the higher bandwidth, the signal transition  
of the luma component is usually a lot sharper than that of the  
chroma component. The color edge is not sharp but is blurred,  
in the worst case, over several pixels.  
CTI_AB[1:0] Chroma Transient Improvement Alpha  
Blend, Address 0x4D[3:2]  
The CTI_AB[1:0] controls the behavior of alpha-blend circuitry  
that mixes the sharpened chroma signal with the original one. It  
thereby controls the visual impact of CTI on the output data.  
For CTI_AB[1:0] to become active, the CTI block must be  
enabled via the CTI_EN bit, and the alpha blender must be  
switched on via CTI_AB_EN.  
LUMA SIGNAL WITH A  
TRANSITION, ACCOMPANIED  
LUMA  
SIGNAL  
BY A CHROMA TRANSITION  
Sharp blending maximizes the effect of CTI on the picture, but  
can also increase the visual impact of small amplitude, high  
frequency chroma noise.  
ORIGINAL, "SLOW" CHROMA  
DEMODULATED  
TRANSITION PRIOR TO CTI  
CHROMA  
SHARPENED CHROMA  
TRANSITION AT THE  
OUTPUT OF CTI  
SIGNAL  
Table 43. CTI_AB Function  
CTI_AB[1:0] Description  
Figure 18. CTI Luma/Chroma Transition  
00  
Sharpest mixing between sharpened and original  
chroma signal.  
The chroma transient improvement block examines the input  
video data. It detects transitions of chroma, and can be pro-  
grammed to “steepen” the chroma edges in an attempt to  
artificially restore lost color bandwidth. The CTI block,  
however, operates only on edges above a certain threshold  
to ensure that noise is not emphasized. Care has also been  
taken to ensure that edge ringing and undesirable saturation  
or hue distortion are avoided.  
01  
10  
Sharp mixing.  
Smooth mixing.  
Smoothest alpha blend function.  
11 (default)  
CTI_C_TH[7:0] CTI Chroma Threshold, Address  
0x4E[7:0]  
The CTI_C_TH[7:0] value is an unsigned, 8-bit number speci-  
fying how big the amplitude step in a chroma transition is to be  
steepened by the CTI block. Programming a small value into  
this register causes even smaller edges to be steepened by the  
CTI block. Making CTI_C_TH[7:0] a large value causes the  
block to only improve large transitions.  
Chroma transient improvements are needed primarily for sig-  
nals that experienced severe chroma bandwidth limitation. For  
those types of signals, it is strongly recommended to enable the  
CTI block via CTI_EN.  
CTI_EN Chroma Transient Improvement Enable,  
Address 0x4D[0]  
The default value for CTI_C_TH[7:0] is 0x08, indicating  
the threshold for the chroma edges prior to CTI.  
The CTI_EN bit enables the CTI function. If set to 0, the CTI  
block is inactive and the chroma transients are left untouched.  
DIGITAL NOISE REDUCTION (DNR)  
Digital noise reduction is based on the assumption that high  
frequency signals with low amplitude are probably noise and  
their removal, therefore, improves picture quality.  
Setting CTI_EN to 0 disables the CTI block.  
Setting CTI_EN to 1 (default) enables the CTI block.  
CTI_AB_EN Chroma Transient Improvement  
Alpha Blend Enable, Address 0x4D[1]  
DNR_EN Digital Noise Reduction Enable, Address  
0x4D[5]  
The CTI_AB_EN bit enables an alpha-blend function within  
the CTI block. If set to 1, the alpha blender mixes the transient  
improved chroma with the original signal. The sharpness of the  
alpha blending can be configured via the CTI_AB[1:0] bits.  
The DNR_EN bit enables the DNR block or bypasses it.  
Setting DNR_EN to 0 bypasses DNR (disables it).  
Setting DNR_EN to 1 (default) enables digital noise reduction  
on the luma data.  
Rev. B | Page 34 of 104  
 
ADV7189B  
NTSC Comb Filter Settings  
DNR_TH[7:0] DNR Noise Threshold, Address 0x50[7:0]  
Used for NTSC-M/J CVBS inputs.  
The DNR_TH[7:0] value is an unsigned 8-bit number used to  
determine the maximum edge that is interpreted as noise and  
therefore blanked from the luma data. Programming a large  
value into DNR_TH[7:0] causes the DNR block to interpret  
even large transients as noise and remove them. The effect on  
the video data is, therefore, more visible.  
NSFSEL[1:0] Split Filter Selection NTSC, Address  
0x19[3:2]  
The NSFSEL[1:0] control selects how much of the overall signal  
bandwidth is fed to the combs. A narrow split filter selection  
gives better performance on diagonal lines, but leaves more dot  
crawl in the final output image. The opposite is true for selecting  
a wide bandwidth split filter.  
Programming a small value causes only small transients to be  
seen as noise and to be removed.  
Table 44. NSFSEL Function  
NSFSEL[1:0]  
The recommended DNR_TH[7:0] setting for A/V inputs is  
0x04, and the recommended DNR_TH[7:0] setting for tuner  
inputs is 0x0A.  
Description  
Narrow  
00 (default)  
01  
10  
11  
Medium  
Medium  
Wide  
The default value for DNR_TH[7:0] is 0x08, indicating the  
threshold for maximum luma edges to be interpreted as noise.  
COMB FILTERS  
CTAPSN[1:0] Chroma Comb Taps NTSC, Address  
0x38[7:6]  
Table 45. CTAPSN Function  
The comb filters of the ADV7189B have been greatly improved  
to automatically handle video of all types, standards, and levels  
of quality. The NTSC and PAL configuration registers allow the  
user to customize comb filter operation, depending on which  
video standard is detected (by autodetection) or selected (by  
manual programming). In addition to the bits listed in this  
section, there are some further ADI internal controls; contact  
ADI sales for more information.  
CTAPSN[1:0]  
Description  
00  
01  
Do not use.  
NTSC chroma comb adapts 3 lines (3 taps) to  
2 lines (2 taps).  
10 (default)  
11  
NTSC chroma comb adapts 5 lines (5 taps) to  
3 lines (3 taps).  
NTSC chroma comb adapts 5 lines (5 taps) to  
4 lines (4 taps).  
Rev. B | Page 35 of 104  
 
ADV7189B  
CCMN[2:0] Chroma Comb Mode NTSC, Address 0x38[5:3]  
Table 46. CCMN Function  
CCMN[2:0]  
Description  
Configuration  
0xx (default)  
Adaptive comb mode.  
Adaptive 3-line chroma comb for CTAPSN = 01.  
Adaptive 4-line chroma comb for CTAPSN = 10.  
Adaptive 5-line chroma comb for CTAPSN = 11.  
100  
101  
Disable chroma comb.  
Fixed chroma comb (top lines of line memory).  
Fixed 2-line chroma comb for CTAPSN = 01.  
Fixed 3-line chroma comb for CTAPSN = 10.  
Fixed 4-line chroma comb for CTAPSN = 11.  
Fixed 3-line chroma comb for CTAPSN = 01.  
Fixed 4-line chroma comb for CTAPSN = 10.  
Fixed 5-line chroma comb for CTAPSN = 11.  
Fixed 2-line chroma comb for CTAPSN = 01.  
Fixed 3-line chroma comb for CTAPSN = 10.  
Fixed 4-line chroma comb for CTAPSN = 11.  
110  
111  
Fixed chroma comb (all lines of line memory).  
Fixed chroma comb (bottom lines of line memory).  
YCMN[2:0] Luma Comb Mode NTSC, Address 0x38[2:0]  
Table 47.YCMN Function  
YCMN[2:0]  
0xx (default)  
100  
101  
110  
Description  
Configuration  
Adaptive comb mode.  
Disable luma comb.  
Fixed luma comb (top lines of line memory).  
Fixed luma comb (all lines of line memory).  
Fixed luma comb (bottom lines of line memory).  
Adaptive 3-line (3 taps) luma comb.  
Use low-pass/notch filter; see the Y-Shaping Filter section.  
Fixed 2-line (2 taps) luma comb.  
Fixed 3-line (3 taps) luma comb.  
Fixed 2-line (2 taps) luma comb.  
111  
Table 48. PSFSEL Function  
PSFSEL[1:0]  
PAL Comb Filter Settings  
Description  
Narrow  
Medium  
Wide  
Used for PAL-B/G/H/I/D, PAL-M, PAL-Combinational N, PAL-  
60, and NTSC443 CVBS inputs.  
00  
01 (default)  
PSFSEL[1:0] Split Filter Selection PAL, Address 0x19[1:0]  
10  
11  
Widest  
The PSFSEL[1:0] control selects how much of the overall signal  
bandwidth is fed to the combs. A wide split filter selection  
eliminates dot crawl, but shows imperfections on diagonal lines.  
The opposite is true for selecting a narrow bandwidth split filter.  
Rev. B | Page 36 of 104  
ADV7189B  
CTAPSP[1:0] Chroma Comb Taps PAL, Address 0x39[7:6]  
Table 49. CTAPSP Function  
CTAPSP[1:0]  
Description  
00  
01  
Do not use.  
PAL chroma comb adapts 5 lines (3 taps) to  
3 lines (2 taps); cancels cross luma only.  
10  
PAL chroma comb adapts 5 lines (5 taps) to  
3 lines (3 taps); cancels cross luma and hue error less well.  
11 (default)  
PAL chroma comb adapts 5 lines (5 taps) to  
4 lines (4 taps); cancels cross luma and hue error well.  
CCMP[2:0] Chroma Comb Mode PAL, Address 0x39[5:3]  
Table 50. CCMP Function  
CCMP[2:0]  
Description  
Configuration  
0xx (default)  
Adaptive comb mode.  
Adaptive 3-line chroma comb for CTAPSP = 01.  
Adaptive 4-line chroma comb for CTAPSP = 10.  
Adaptive 5-line chroma comb for CTAPSP = 11.  
100  
101  
Disable chroma comb.  
Fixed chroma comb (top lines of line memory).  
Fixed 2-line chroma comb for CTAPSP = 01.  
Fixed 3-line chroma comb for CTAPSP = 10.  
Fixed 4-line chroma comb for CTAPSP = 11.  
Fixed 3-line chroma comb for CTAPSP = 01.  
Fixed 4-line chroma comb for CTAPSP = 10.  
Fixed 5-line chroma comb for CTAPSP = 11.  
Fixed 2-line chroma comb for CTAPSP = 01.  
Fixed 3-line chroma comb for CTAPSP = 10.  
Fixed 4-line chroma comb for CTAPSP = 11.  
110  
111  
Fixed chroma comb (all lines of line memory).  
Fixed chroma comb (bottom lines of line memory).  
YCMP[2:0] Luma Comb Mode PAL, Address 0x39[2:0]  
Table 51. YCMP Function  
YCMP[2:0]  
0xx (default)  
100  
101  
110  
Description  
Configuration  
Adaptive comb mode.  
Disable luma comb.  
Fixed luma comb (top lines of line memory).  
Fixed luma comb (all lines of line memory).  
Fixed luma comb (bottom lines of line memory).  
Adaptive 5 lines (3 taps) luma comb.  
Use low-pass/notch filter, see the Y-Shaping Filter section.  
Fixed 3 lines (2 taps) luma comb.  
Fixed 5 lines (3 taps) luma comb.  
Fixed 3 lines (2 taps) luma comb.  
111  
Rev. B | Page 37 of 104  
ADV7189B  
AV CODE INSERTION AND CONTROLS  
This section describes the I2C-based controls that affect:  
In an 8-/10-bit-wide output interface (Cb/Y/Cr/Y interleaved  
data), the AV codes are defined as FF/00/00/AV, with AV being  
the transmitted word that contains information about H/V/F.  
Insertion of AV codes into the data stream.  
Data blanking during the vertical blank interval (VBI).  
In this output interface mode, the following assignment takes  
place: Cb = FF, Y = 00, Cr = 00, and Y = AV.  
The range of data values permitted in the output data  
stream.  
In a 16-/20-bit output interface where Y and Cr/Cb are delivered  
via separate data buses, the AV code is over the whole  
16/20 bits. The SD_DUP_AV bit allows the user to replicate the  
AV codes on both busses, so the full AV sequence can be found  
on the Y bus as well as on the Cr/Cb bus. See Figure 19.  
The relative delay of luma vs. chroma signals.  
Note: Some of the decoded VBI data is being inserted dur-  
ing the horizontal blanking interval. See the Gemstar Data  
Recovery section for more information.  
When SD_DUP_AV is 0 (default), the AV codes are in single  
fashion (to suit 8-/10-bit interleaved data output).  
BT656-4 ITU Standard BT-R.656-4 Enable, Address  
0x04[7]  
When SD_DUP_AV is 1, the AV codes are duplicated (for  
16-/20-bit interfaces).  
The ITU has changed the position for toggling of the V bit  
within the SAV EAV codes for NTSC between Revisions 3 and  
Revision 4. The BT656-4 standard bit allows the user to select  
an output mode that is compliant with either the previous or the  
new standard. For further information, review the standard at  
www.itu.int.  
VBI_EN Vertical Blanking Interval Data Enable,  
Address 0x03[7]  
The VBI enable bit allows data such as intercast and closed-  
caption data to be passed through the luma channel of the  
decoder with a minimal amount of filtering. All data for Line 1  
to Line 21 is passed through and available at the output port.  
The ADV7189B does not blank the luma data, and automatically  
switches all filters along the luma data path into their widest  
bandwidth. For active video, the filter settings for YSH and YPK  
are restored.  
Note the standard change affects NTSC only, and has no  
bearing on PAL.  
When BT656-4 is 0 (default), the BT656-3 specification is used.  
The V bit goes low at EAV of Lines 10 and 273.  
When BT656-4 is 1, the BT656-4 specification is used.  
The V bit goes low at EAV of Lines 20 and 283.  
Refer to the BL_C_VBI Blank Chroma during VBI section for  
information on the chroma path.  
SD_DUP_AV Duplicate AV Codes, Address 0x03[0]  
When VBI_EN is 0 (default), all video lines are filtered/scaled.  
When VBI_EN is 1, only the active video region is filtered/scaled.  
Depending on the output interface width, it can be necessary to  
duplicate the AV codes from the luma path into the chroma path.  
SD_DUP_AV = 1  
SD_DUP_AV = 0  
16-/20-BIT INTERFACE  
16-/20-BIT INTERFACE  
8-/10-BIT INTERFACE  
Y DATA BUS  
FF  
FF  
00  
00  
AV  
AV  
Y
00  
AV  
Y
Cb/Y/Cr/Y  
INTERLEAVED  
FF  
00  
00  
AV  
Cb  
Cr/Cb DATA BUS  
00  
00  
Cb  
FF  
00  
Cb  
AV CODE SECTION  
AV CODE SECTION  
AV CODE SECTION  
Figure 19. AV Code Duplication Control  
Rev. B | Page 3± of 104  
 
ADV7189B  
LTA[1:0] Luma Timing Adjust, Address 0x27[1:0]  
BL_C_VBI Blank Chroma During VBI, Address 0x04[2]  
The Luma Timing Adjust register allows the user to specify a  
timing difference between chroma and luma samples.  
Setting BL_C_VBI high, the Cr and Cb values of all VBI lines  
are blanked. This is done so any data that may arrive during  
VBI is not decoded as color and output through Cr and Cb.  
As a result, it is possible to send VBI lines into the decoder,  
then output them through an encoder again, undistorted.  
Without this blanking, any wrongly decoded color is encoded  
by the video encoder; therefore, the VBI lines are distorted.  
Note there is a certain functionality overlap with the CTA[2:0]  
register. For manual programming, use the following defaults:  
CVBS input LTA[1:0] = 00  
YC input LTA[1:0] = 01  
YPrPb input LTA[1:0] = 01  
Setting BL_C_VBI to 0 decodes and outputs color during VBI.  
Setting BL_C_VBI to 1 (default) blanks Cr and Cb values  
during VBI.  
Table 53. LTA Function  
LTA[1:0]  
Description  
RANGE Range Selection, Address 0x04[0]  
00 (default)  
No delay.  
01  
10  
11  
Luma 1 CLK (37 ns) delayed.  
Luma 2 CLK (74 ns) early.  
Luma 1 CLK (37 ns) early.  
AV codes (as per ITU-R BT-656, formerly known as CCIR-656)  
consist of a fixed header made up of 0xFF and 0x00 values.  
These two values are reserved and are not to be used for active  
video. Additionally, the ITU specifies that the nominal range  
for video should be restricted to values between 16 and 235  
for luma and 16 to 240 for chroma.  
CTA[2:0] Chroma Timing Adjust, Address 0x27[5:3]  
The Chroma timing adjust register allows the user to specify a  
timing difference between chroma and luma samples. This can  
be used to compensate for external filter group delay differences  
in the luma vs. chroma path, and to allow a different number of  
pipeline delays while processing the video downstream. Review  
this functionality together with the LTA[1:0] register.  
The RANGE bit allows the user to limit the range of values  
output by the ADV7189B to the recommended value range.  
This bit ensures the reserved values of 255d (0xFF) and 00d  
(0x00) are not presented on the output pins unless they are  
part of an AV code header.  
Table 52. RANGE Function  
RANGE  
The chroma can be delayed/advanced only in chroma pixel  
steps. One chroma pixel step is equal to two luma pixels. The  
programmable delay occurs after demodulation, where one can  
no longer delay by luma pixel steps.  
Description  
16 ≤ C/P ≤ 240  
1 ≤ C/P ≤ 254  
0
16 ≤ Y ≤ 235  
1 ≤ Y ≤ 254  
1 (default)  
AUTO_PDC_EN Automatic Programmed Delay Control,  
Address 0x27[6]  
For manual programming, use the following defaults:  
CVBS input CTA[2:0] = 011.  
YC input CTA[2:0] = 101.  
YPrPb input CTA[2:0] = 110.  
Enabling the AUTO_PDC_EN function activates a function  
within the ADV7189B that automatically programs the LTA[1:0]  
and CTA[2:0] to have the chroma and luma data match delays  
for all modes of operation. If set, manual registers LTA[1:0]  
and CTA[2:0] are not used by the ADV7189B. If the automatic  
mode is disabled (via setting the AUTO_PDC_EN bit to 0), the  
values programmed into the LTA[1:0] and CTA[2:0] registers  
become active.  
Table 54. CTA Function  
CTA[2:0]  
Description  
000  
Not used.  
001  
010  
011 (default)  
100  
101  
Chroma + 2 chroma pixel (early).  
Chroma + 1 chroma pixel (early).  
No delay.  
Chroma – 1 chroma pixel (late).  
Chroma – 2 chroma pixel (late).  
Chroma – 3 chroma pixel (late).  
Not used.  
When AUTO_PDC_EN is 0, the ADV7189B uses the LTA[1:0]  
and CTA[2:0] values for delaying luma and chroma samples.  
Refer to the LTA[1:0] Luma Timing Adjust, Address 0x27[1:0]  
and the CTA[2:0] Chroma Timing Adjust, Address 0x27[5:3]  
sections.  
110  
111  
When AUTO_PDC_EN is 1 (default), the ADV7189B auto-  
matically determines the LTA and CTA values to have luma  
and chroma aligned at the output.  
Rev. B | Page 39 of 104  
ADV7189B  
SYNCHRONIZATION OUTPUT SIGNALS  
HSE[10:0] HS End, Address 0x34[2:0], Address 0x36[7:0]  
HS Configuration  
The position of this edge is controlled by placing a binary num-  
ber into HSE[10:0]. The number applied offsets the edge with  
respect to an internal counter that is reset to 0 immediately after  
EAV Code FF, 00, 00, XY (see Figure 20). HSE is set to  
The following controls allow the user to configure the behavior  
of the HS output pin only:  
Beginning of HS signal via HSB[10:0]  
End of HS signal via HSE[10:0]  
Polarity of HS using PHS  
00000000000b, which is 0 LLC1 clock cycles from count[0].  
The default value of HSE[10:0] is 000, indicating that the HS  
pulse ends zero pixels after falling edge of HS.  
For example:  
The HS Begin and HS End registers allow the user to freely  
position the HS output (pin) within the video line. The values  
in HSB[10:0] and HSE[10:0] are measured in pixel units from  
the falling edge of HS. Using both values, the user can program  
both the position and length of the HS output signal.  
1. To shift the HS toward active video by 20 LLC1s, add  
20 LLC1s to both HSB and HSE, that is, HSB[10:0] =  
[00000010110], HSE[10:0] = [00000010100].  
2. To shift the HS away from active video by 20 LLC1s,  
add 1696 LLC1s to both HSB and HSE (for NTSC), that  
is, HSB[10:0] =[1101010010], HSE[10:0] = [11010100000]  
(1696 is derived from the NTSC total number of pixels =  
1716).  
HSB[10:0] HS Begin, Address 0x34[6:4], Address  
0x35[7:0]  
The position of this edge is controlled by placing a binary  
number into HSB[10:0]. The number applied offsets the edge  
with respect to an internal counter that is reset to 0 immediately  
after EAV code FF, 00, 00, XY (see Figure 20). HSB is set to  
00000000010b, which is 2 LLC1 clock cycles from count[0].  
To move 20 LLC1s away from active video is equal to subtracting  
20 from 1716 and adding the result in binary to both HSB[10:0]  
and HSE[10:0].  
PHS Polarity HS, Address 0x37[7]  
The default value of HSB is 0x002, indicating that the HS pulse  
starts two pixels after the falling edge of HS.  
The polarity of the HS pin can be inverted using the PHS bit.  
When PHS is 0 (default), HS is active high.  
When PHS is 1, HS is active low.  
Table 55. HS Timing Parameters (See Figure 20)  
Characteristic  
HS to Active Video (LLC1 Active Video  
Clock Cycles) Samples/Line  
(HSE[10:0]) (Default) (C in Figure 20) (Default) (D in Figure 20)  
Total LLC1  
Clock Cycles  
(E in Figure 20)  
HS Begin Adjust  
(HSB[10:0]) (Default)  
HS End Adjust  
Standard  
NTSC  
00000000010b  
00000000010b  
00000000000b  
00000000000b  
272  
276  
720Y + 720C = 1440  
640Y + 640C = 12±0  
1716  
1560  
NTSC Square  
Pixel  
PAL  
00000000010b  
00000000000b  
2±4  
720Y + 720C = 1440  
172±  
LLC1  
PIXEL  
Cr  
Y
FF  
00  
EAV  
00  
XY  
80  
10  
80  
10  
80  
10  
FF  
00  
00  
SAV  
XY  
Cb  
Y
Cr  
Y
Cb  
Y
Cr  
BUS  
ACTIVE  
VIDEO  
H BLANK  
ACTIVE VIDEO  
HS  
HSE[10:0]  
4 LLC1  
HSB[10:0]  
C
D
D
E
E
Figure 20. HS Timing  
Rev. B | Page 40 of 104  
 
ADV7189B  
VSBHO VS Begin Horizontal Position Odd, Address 0x32[7]  
VS and FIELD Configuration  
The VSBHO and VSBHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) becomes active.  
Some follow-on chips require the VS pin to change state only  
when HS is high/low.  
The following controls allow the user to configure the behav-  
ior of the VS and FIELD output pins, as well as to generate  
embedded AV codes:  
ADV encoder-compatible signals via NEWAVMODE  
When VSBHO is 0 (default), the VS pin goes high at the middle  
of a line of video (odd field).  
PVS, PF  
HVSTIM  
When VSBHO is 1, the VS pin changes state at the start of a line  
(odd field).  
VSBHO, VSBHE  
VSEHO, VSEHE  
For NTSC control:  
VSBHE VS Begin Horizontal Position Even, Address 0x32[6]  
The VSBHO and VSBHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) becomes active.  
Some follow-on chips require the VS pin to change state only  
when HS is high/low.  
NVBEGDELO, NVBEGDELE, NVBEGSIGN,  
NVBEG[4:0]  
When VSBHE is 0 (default), the VS pin goes high at the middle  
of a line of video (even field).  
NVENDDELO, NVENDDELE, NVENDSIGN,  
NVEND[4:0]  
When VSBHE is 1, the VS pin changes state at the start of a line  
(even field).  
NFTOGDELO, NFTOGDELE, NFTOGSIGN,  
NFTOG[4:0]  
VSEHO VS End Horizontal Position Odd, Address 0x33{7]  
The VSEHO and VSEHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) becomes active.  
Some follow-on chips require the VS pin to change state only  
when HS is high/low.  
For PAL control:  
PVBEGDELO, PVBEGDELE, PVBEGSIGN,  
PVBEG[4:0]  
PVENDDELO, PVENDDELE, PVENDSIGN,  
PVEND[4:0]  
When VSEHO is 0, the VS pin goes low (inactive) at the middle  
of a line of video (odd field).  
When VSEHO is 1 (default), the VS pin changes state at the  
start of a line (odd field).  
PFTOGDELO, PFTOGDELE, PFTOGSIGN,  
PFTOG[4:0]  
VSEHE VS End Horizontal Position Even, Address 0x33[6]  
NEWAVMODE New AV Mode, Address 0x31[4]  
The VSEHO and VSEHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) becomes active.  
Some follow-on chips require the VS pin to change state only  
when HS is high/low.  
When NEWAVMODE is 0, EAV/SAV codes are generated to  
suit ADI encoders. No adjustments are possible.  
Setting NEWAVMODE to 1 (default) enables the manual  
position of the VSYNC, Field, and AV codes using  
Registers 0x34 to 0x37 and Register 0xE5 to 0xEA. Default  
register settings are CCIR656 compliant; see Figure 21 for NTSC  
and Figure 26 for PAL. For recommended manual user settings,  
see Table 56 and Figure 22 for NTSC; see Table 57 and Figure 27  
for PAL.  
When VSEHE is 0 (default), the VS pin goes low (inactive) at  
the middle of a line of video (even field).  
When VSEHE is 1, the VS pin changes state at the start of a line  
(even field).  
PVS Polarity VS, Address 0x37[5]  
HVSTIM Horizontal VS Timing, Address 0x31[3]  
The polarity of the VS pin can be inverted using the PVS bit.  
When PVS is 0 (default), VS is active high. When PVS is 1, VS is  
active low.  
The HVSTIM bit allows the user to select where the VS signal  
is being asserted within a line of video. Some interface circuitry  
can require VS to go low while HS is low.  
PF Polarity FIELD, Address 0x37[3]  
When HVSTIM is 0 (default) the start of the line is relative  
to HSE.  
The polarity of the FIELD pin can be inverted using the PF bit.  
When PF is 0 (default), FIELD is active high. When PF is 1,  
FIELD is active low.  
When HVSTIM is 1, the start of the line is relative to HSB.  
Rev. B | Page 41 of 104  
ADV7189B  
FIELD 1  
525  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
19  
20  
21  
22  
OUTPUT  
VIDEO  
H
V
1
BT.656-4  
NVBEG[4:0] = 0x5  
NVEND[4:0] = 0x4  
REG 0x04. BIT 7 = 1  
F
NFTOG[4:0] = 0x3  
FIELD 2  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
283  
284  
285  
OUTPUT  
VIDEO  
H
V
1
BT.656-4  
REG 0x04. BIT 7 = 1  
NVBEG[4:0] = 0x5  
NVEND[4:0] = 0x4  
F
NFTOG[4:0] = 0x3  
1
APPLIES IF NEMAVMODE = 0:  
MUST BE MANUALLY SHIFTED IF NEWAVMODE = 1.  
Figure 21. NTSC Default (BT.656). The polarity of H, V, and F is embedded in the data.  
FIELD 1  
525  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
21  
22  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
FIELD  
OUTPUT  
NVBEG[4:0] = 0x0  
NVEND[4:0] = 0x3  
NFTOG[4:0] = 0x5  
FIELD 2  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
284  
285  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
NVBEG[4:0] = 0x0  
NVEND[4:0] = 0x3  
FIELD  
OUTPUT  
NFTOG[4:0] = 0x5  
Figure 22. NTSC Typical Vsync/Field Positions Using Register Writes Shown in Table 56  
Rev. B | Page 42 of 104  
ADV7189B  
Table 56. Recommended User Settings for NTSC (See Figure 22)  
Register  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0xE5  
0xE6  
0xE7  
Register Name  
Write  
0x1A  
0x±1  
0x±4  
0x00  
0x00  
0x7D  
0xA1  
0x41  
0x±4  
0x06  
Vsync Field Control 1  
Vsync Field Control 2  
Vsync Field Control 3  
Hsync Position Control 1  
Hsync Position Control 2  
Hsync Position Control 3  
Polarity  
NTSV_V_Bit_Beg  
NTSC_V_Bit_End  
NTSC_F_Bit_Tog  
NVBEGDELO NTSC Vsync Begin Delay on Odd Field,  
Address 0xE5[7]  
1
NVBEGSIGN  
0
When NVBEGDELO is 0 (default), there is no delay.  
ADVANCE BEGIN OF  
VSYNC BY NVBEG[4:0]  
DELAY BEGIN OF  
VSYNC BY NVBEG[4:0]  
Setting NVBEGDELO to 1 delays Vsync going high on an odd  
field by a line relative to NVBEG.  
NOT VALID FOR USER  
PROGRAMMING  
NVBEGDELE NTSC Vsync Begin Delay on Even Field,  
Address 0xE5[6]  
ODD FIELD?  
YES  
NO  
When NVBEGDELE is 0 (default), there is no delay.  
Setting NVBEGDELE to 1 delays Vsync going high on an even  
field by a line relative to NVBEG.  
NVBEGDELO  
1
NVBEGDELE  
1
0
0
NVBEGSIGN NTSC Vsync Begin Sign, Address 0xE5[5]  
Setting NVBEGSIGN to 0 delays the start of Vsync. Set for user  
manual programming.  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
Setting NVBEGSIGN to 1 (default), advances the start of Vsync.  
Not recommended for user programming.  
VSBHO  
1
VSBHE  
1
NVBEG[4:0] NTSC Vsync Begin, Address 0xE5[4:0]  
The default value of NVBEG is 00101, indicating the NTSC  
Vsync begin position.  
0
0
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
For all NTSC/PAL Vsync timing controls, both the V bit in the  
AV code and the Vsync on the VS pin are modified.  
VSYNC BEGIN  
Figure 23. NTSC Vsync Begin  
Rev. B | Page 43 of 104  
ADV7189B  
For all NTSC/PAL Vsync timing controls, both the V bit in the  
AV code and the Vsync on the VS pin are modified.  
1
NVENDSIGN  
0
NFTOGDELO NTSC Field Toggle Delay on Odd Field,  
Address 0xE7[7]  
ADVANCE END OF  
VSYNC BY NVEND[4:0]  
DELAY END OF VSYNC  
BY NVEND[4:0]  
When NFTOGDELO is 0 (default), there is no delay.  
NOT VALID FOR USER  
PROGRAMMING  
Setting NFTOGDELO to 1 delays the field toggle/transition  
on an odd field by a line relative to NFTOG.  
ODD FIELD?  
YES  
NO  
NFTOGDELE NTSC Field Toggle Delay on Even Field,  
Address 0xE7[6]  
NVENDDELO  
1
NVENDDELE  
1
When NFTOGDELE is 0 (default), there is no delay.  
0
0
Setting NFTOGDELE to 1 delays the field toggle/transition on  
an even field by a line relative to NFTOG.  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
1
NFTOGSIGN  
0
ADVANCE TOGGLE OF  
FIELD BY NFTOG[4:0]  
DELAY TOGGLE OF  
FIELD BY NFTOG[4:0]  
VSEHO  
1
VSEHE  
1
0
0
NOT VALID FOR USER  
PROGRAMMING  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
ODD FIELD?  
YES  
NO  
VSYNC END  
NFTOGDELO  
1
NFTOGDELE  
1
Figure 24. NTSC Vsync End  
0
0
NVENDDELO NTSC Vsync End Delay on Odd Field,  
Address 0xE6[7]  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
When NVENDDELO is 0 (default), there is no delay.  
Setting NVENDDELO to 1 delays Vsync from going low on  
an odd field by a line relative to NVEND.  
FIELD  
TOGGLE  
NVENDDELE NTSC Vsync End Delay on Even Field,  
Address 0xE6[6]  
Figure 25. NTSC FIELD Toggle  
NFTOGSIGN NTSC Field Toggle Sign, Address 0xE7[5]  
When NVENDDELE is set to 0 (default), there is no delay.  
Setting NFTOGSIGN to 0 delays the field transition. Set for  
user manual programming.  
Setting NVENDDELE to 1 delays Vsync from going low on  
an even field by a line relative to NVEND.  
Setting NFTOGSIGN to 1 (default) advances the field  
transition. Not recommended for user programming.  
NVENDSIGN NTSC Vsync End Sign, Address 0xE6[5]  
Setting NVENDSIGN to 0 (default) delays the end of Vsync.  
Set for user manual programming .  
NFTOG[4:0] NTSC Field Toggle, Address 0xE7[4:0]  
The default value of NFTOG is 00011, indicating the  
NTSC Field toggle position.  
Setting NVENDSIGN to 1 advances the end of Vsync. Not  
recommended for user programming.  
For all NTSC/PAL FIELD timing controls, both the F bit  
in the AV code and the FIELD signal on the FIELD  
pin are modified.  
NVEND NTSC[4:0] Vsync End, Address 0xE6[4:0]  
The default value of NVEND is 00100, indicating the NTSC  
Vsync end position.  
Rev. B | Page 44 of 104  
ADV7189B  
Table 57. Recommended User Settings for PAL (See Figure 27)  
Register  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0xE±  
0xE9  
0xEA  
Register Name  
Write  
0x1A  
0x±1  
0x±4  
0x00  
0x00  
0x7D  
0x29  
0x41  
0x±4  
0x06  
Vsync Field Control 1  
Vsync Field Control 2  
Vsync Field Control 3  
Hsync Position. Control 1  
Hsync Position. Control 2  
Hsync Position. Control 3  
Polarity  
PAL_V_Bit_Beg  
PAL_V_Bit_End  
PAL_F_Bit_Tog  
FIELD 1  
622  
623  
624  
625  
1
2
3
4
5
6
7
8
9
10  
22  
23  
24  
OUTPUT  
VIDEO  
H
V
PVBEG[4:0] = 0x5  
PVEND[4:0] = 0x4  
F
PFTOG[4:0] = 0x3  
FIELD 2  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
335  
336  
337  
OUTPUT  
VIDEO  
H
V
PVBEG[4:0] = 5  
PVEND[4:0] = 0x4  
F
PFTOG[4:0] = 0x3  
Figure 26. PAL Default (BT.656). The polarity of H, V, and F is embedded in the data.  
Rev. B | Page 45 of 104  
ADV7189B  
FIELD 1  
622  
623  
624  
1
2
3
4
5
6
7
8
9
10  
11  
23  
24  
625  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
PVBEG[4:0] = 0x1  
PVEND[4:0] = 0x4  
FIELD  
OUTPUT  
PFTOG[4:0] = 0x6  
FIELD 2  
310  
311  
312  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
336  
337  
313  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
PVBEG[4:0] = 0x1  
PVEND[4:0] = 0x4  
FIELD  
OUTPUT  
PFTOG[4:0] = 0x6  
Figure 27. PAL Typical Vsync/Field Positions Using Register Writes in Table 57  
PVBEGDELO PAL Vsync Begin Delay on Odd Field,  
Address 0xE8[7]  
1
PVBEGSIGN  
0
When PVBEGDELO is 0 (default), there is no delay.  
ADVANCE BEGIN OF  
VSYNC BY PVBEG[4:0]  
DELAY BEGIN OF  
VSYNC BY PVBEG[4:0]  
Setting PVBEGDELO to 1 delays Vsync going high on an odd  
field by a line relative to PVBEG.  
NOT VALID FOR USER  
PROGRAMMING  
PVBEGDELE PAL Vsync Begin Delay on Even Field,  
Address 0xE8[6]  
ODD FIELD?  
YES  
NO  
When PVBEGDELE is 0, there is no delay.  
Setting PVBEGDELE to 1 (default) delays Vsync going high on  
an even field by a line relative to PVBEG.  
PVBEGDELO  
1
PVBEGDELE  
1
0
0
PVBEGSIGN PAL Vsync Begin Sign, Address 0xE8[5]  
Setting PVBEGSIGN to 0 delays the beginning of Vsync. Set for  
user manual programming.  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
Setting PVBEGSIGN to 1 (default) advances the beginning of  
Vsync. Not recommended for user programming.  
VSBHO  
1
VSBHE  
1
PVBEG[4:0] PAL Vsync Begin, Address 0xE8[4:0]  
0
0
The default value of PVBEG is 00101, indicating the PAL Vsync  
begin position.  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
For all NTSC/PAL Vsync timing controls, both the V bit in the  
AV code and the Vsync on the VS pin are modified.  
VSYNC BEGIN  
Figure 28. PAL Vsync Begin  
Rev. B | Page 46 of 104  
ADV7189B  
For all NTSC/PAL Vsync timing controls, both the V bit in the  
AV code and the Vsync on the VS pin are modified.  
1
PVENDSIGN  
0
PFTOGDELO PAL Field Toggle Delay on Odd Field,  
Address 0xEA[7]  
ADVANCE END OF  
VSYNC BY PVEND[4:0]  
DELAY END OF VSYNC  
BY PVEND[4:0]  
When PFTOGDELO is 0 (default), there is no delay.  
NOT VALID FOR USER  
PROGRAMMING  
Setting PFTOGDELO to 1 delays the F toggle/transition on an  
odd field by a line relative to PFTOG.  
ODD FIELD?  
YES  
NO  
PFTOGDELE PAL Field Toggle Delay on Even Field,  
Address 0xEA[6]  
PVENDDELO  
1
PVENDDELE  
1
When PFTOGDELE is 0, there is no delay.  
0
0
Setting PFTOGDELE to 1 (default) delays the F toggle/  
transition on an even field by a line relative to PFTOG.  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
PFTOGSIGN PAL Field Toggle Sign, Address 0xEA[5]  
Setting PFTOGSIGN to 0 delays the field transition. Set for user  
manual programming.  
VSEHO  
1
VSEHE  
1
Setting PFTOGSIGN to 1 (default) advances the field transition.  
Not recommended for user programming.  
0
0
PFTOG PAL Field Toggle, Address 0xEA[4:0]  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
The default value of PFTOG is 00011, indicating the PAL field  
toggle position.  
VSYNC END  
For all NTSC/PAL field timing controls, the F bit in the AV  
code and the Field signal on the FIELD/DE pin are modified.  
Figure 29. PAL Vsync End  
PVENDDELO PAL Vsync End Delay on Odd Field,  
Address 0xE9[7]  
1
PFTOGSIGN  
0
When PVENDDELO is 0 (default), there is no delay.  
ADVANCE TOGGLE OF  
FIELD BY PTOG[4:0]  
DELAY TOGGLE OF  
FIELD BY PFTOG[4:0]  
Setting PVENDDELO to 1 delays Vsync going low on an odd  
field by a line relative to PVEND.  
NOT VALID FOR USER  
PROGRAMMING  
PVENDDELE PAL Vsync End Delay on Even Field,  
Address 0xE9[6]  
ODD FIELD?  
YES  
NO  
When PVENDDELE is 0 (default), there is no delay.  
PFTOGDELO  
1
PFTOGDELE  
1
Setting PVENDDELE to 1 delays Vsync going low on an even  
field by a line relative to PVEND.  
0
0
PVENDSIGN PAL Vsync End Sign, Address 0xE9[5]  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
Setting PVENDSIGN to 0 (default) delays the end of Vsync.  
Set for user manual programming.  
Setting PVENDSIGN to 1 advances the end of Vsync.  
Not recommended for user programming.  
FIELD  
TOGGLE  
PVEND[4:0] PAL Vsync End, Address 0xE9[4:0]  
Figure 30. PAL F Toggle  
The default value of PVEND is 10100, indicating the PAL Vsync  
end position.  
Rev. B | Page 47 of 104  
ADV7189B  
The Gemstar-compatible data is not available in the I2C  
registers, and is inserted into the data stream only during  
horizontal blanking.  
SYNC PROCESSING  
The ADV7189B has two additional sync processing blocks that  
postprocess the raw synchronization information extracted from  
the digitized input video. If desired, the blocks can be disabled via  
the following two I2C bits.  
WSSD Wide Screen Signaling Detected, Address 0x90[0]  
Logic 1 for this bit indicates the data in the WSS1 and WSS2  
registers is valid.  
ENHSPLL Enable Hsync Processor, Address 0x01[6]  
The Hsync processor is designed to filter incoming Hsyncs that  
have been corrupted by noise, providing improved performance  
for video signals with stable time bases but poor SNR.  
The WSSD bit goes high if the rising edge of the start bit is  
detected within a time window, and if the polarity of the parity  
bit matches the transmitted data.  
Setting ENHSPLL to 0 disables the Hsync processor.  
When WSSD is 0, no WSS is detected and confidence in the  
decoded data is low.  
Setting ENHSPLL to 1 (default) enables the Hsync processor.  
When WSSD is 1, WSS is detected and confidence in the  
decoded data is high.  
ENVSPROC Enable Vsync Processor, Address 0x01[3]  
This block provides extra filtering of the detected Vsyncs to give  
improved vertical lock.  
CCAPD Closed Caption Detected, Address 0x90[1]  
Logic 1 for this bit indicates the data in the CCAP1 and CCAP2  
registers is valid.  
Setting ENVSPROC to 0 disables the Vsync processor.  
Setting ENVSPROC to 1 (default) enables the Vsync processor.  
VBI DATA DECODE  
The CCAPD bit goes high if the rising edge of the start bit is  
detected within a time window, and if the polarity of the parity  
bit matches the transmitted data.  
The following low data rate VBI signals can be decoded by the  
ADV7189B:  
When CCAPD is 0, no CCAP signals are detected and  
confidence in the decoded data is low.  
Wide screen signaling (WSS)  
Copy generation management systems (CGMS)  
Closed captioning (CC)  
When CCAPD is 1, the CCAP sequence is detected and  
confidence in the decoded data is high.  
EDTV  
EDTVD EDTV Sequence Detected, Address 0x90[2]  
Gemstar 1× and 2× compatible data recovery  
Logic 1 for this bit indicates the data in the EDTV1, 2, 3  
registers is valid.  
The presence of any of the above signals is detected and, if  
applicable, a parity check is performed. The result of this  
testing is contained in a confidence bit in the VBI Info[7:0]  
register. Users are encouraged to first examine the VBI Info  
register before reading the corresponding data registers. All  
VBI data decode bits are read-only.  
The EDTVD bit goes high if the rising edge of the start bit is  
detected within a time window, and if the polarity of the parity  
bit matches the transmitted data.  
When EDTVD is 0, no EDTV sequence is detected. Confidence  
in decoded data is low.  
All VBI data registers are double-buffered with the field sig-  
nals. This means that data is extracted from the video lines  
and appears in the appropriate I2C registers with the next  
field transition. They are then static until the next field.  
When EDTVD is 1, an EDTV sequence is detected. Confidence  
in decoded data is high.  
CGMSD CGMS-A Sequence Detected, Address 0x90[3]  
The user should start an I2C read sequence with VS by first  
examining the VBI Info register. Then, depending on what data  
was detected, the appropriate data registers should be read.  
Logic 1 for this bit indicates the data in the CGMS1, 2, 3  
registers is valid. The CGMSD bit goes high if a valid CRC  
checksum has been calculated from a received CGMS packet.  
The data registers are filled with decoded VBI data even if their  
corresponding detection bits are low; it is likely that bits within  
the decoded data stream are wrong.  
When CGMSD is 0, no CGMS transmission is detected and  
confidence in the decoded data is low.  
The closed captioning data (CCAP) is available in the I2C  
registers, and is also inserted into the output video data  
stream during horizontal blanking.  
When CGMSD is 1, the CGMS sequence is decoded and  
confidence in the decoded data is high.  
Rev. B | Page 4± of 104  
 
ADV7189B  
Figure 31 shows the bit correspondence between the analog  
CRC_ENABLE CRC CGMS-A Sequence, Address 0xB2[2]  
video waveform and the WSS1/WSS2 registers. WSS2[7:6]  
are undetermined and should be masked out by software.  
For certain video sources, the CRC data bits can have an invalid  
format. In such circumstances, the CRC checksum validation  
procedure can be disabled. The CGMSD bit goes high if the  
rising edge of the start bit is detected within a time window.  
EDTV Data Registers  
EDTV1[7:0], Address 0x93[7:0],  
EDTV2[7:0], Address 0x94[7:0],  
EDTV3[7:0], Address 0x95[7:0]  
When CRC_ENABLE is 0, no CRC check is performed.  
The CGMSD bit goes high if the rising edge of the start bit  
is detected within a time window.  
Figure 32 shows the bit correspondence between the analog  
video waveform and the EDTV1/EDTV2/EDTV3 registers.  
When CRC_ENABLE is 1 (default), CRC checksum is used to  
validate the CGMS sequence. The CGMSD bit goes high for a  
valid checksum. ADI recommended setting.  
EDTV3[7:6] are undetermined and should be masked out by  
software. EDTV3[5] is reserved for future use and, for now,  
contains a 0. The three LSBs of the EDTV waveform are  
currently not supported.  
Wide Screen Signaling Data  
WSS1[7:0], Address 0x91[7:0], WSS2[7:0], Address  
0x92[7:0]  
WSS1[7:0]  
WSS2[5:0]  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
RUN-IN  
SEQUENCE  
START  
CODE  
ACTIVE  
VIDEO  
11.0μs  
38.4μs  
42.5μs  
Figure 31. WSS Data Extraction  
Table 58. WSS Access Information  
Signal Name  
Register Location  
Address  
Register Default Value  
Readback Only  
Readback Only  
WSS1[7:0]  
WSS2[5:0]  
WSS 1[7:0]  
WSS 2[5:0]  
145d  
146d  
0x91  
0x92  
EDTV1[7:0]  
EDTV2[7:0]  
EDTV3[5:0]  
0
1
2
NOT SUPPORTED  
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
Figure 32. EDTV Data Extraction  
Table 59. EDTV Access Information  
Signal Name  
EDTV1[7:0]  
EDTV2[7:0]  
EDTV3[7:0]  
Register Location  
Address  
Register Default Value  
Readback Only  
Readback Only  
EDTV 1[7:0]  
EDTV 2[7:0]  
EDTV 3[7:0]  
147d  
14±d  
149d  
0x93  
0x94  
0x95  
Readback Only  
Rev. B | Page 49 of 104  
ADV7189B  
Closed Caption Data Registers  
CGMS Data Registers  
CCAP1[7:0], Address 0x99[7:0],  
CCAP2[7:0], Address 0x9A[7:0]  
CGMS1[7:0], Address 0x96[7:0],  
CGMS2[7:0], Address 0x97[7:0],  
CGMS3[7:0], Address 0x98[7:0]  
Figure 34 shows the bit correspondence between the analog  
video waveform and the CCAP1/CCAP2 registers. CCAP1[7]  
contains the parity bit from the first word. CCAP2[7] contains  
the parity bit from the second word. Refer to the GDECAD  
Gemstar Decode Ancillary Data Format, Address 0x4C[0]  
section.  
Figure 33 shows the bit correspondence between the analog  
video waveform and the CGMS1/CGMS2/CGMS3 registers.  
CGMS3[7:4] are undetermined and should be masked out  
by software.  
+100 IRE  
REF  
CGMS1[7:0]  
CGMS2[7:0]  
CGMS3[3:0]  
+70 IRE  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
0 IRE  
49.1μs  
± 0.5μs  
–40 IRE  
11.2μs  
CRC SEQUENCE  
2.235μs  
± 20ns  
Figure 33. CGMS Data Extraction  
Table 60. CGMS Access Information  
Signal Name  
CGMS1[7:0]  
CGMS2[7:0]  
CGMS3[3:0]  
Register Location  
Address  
Register Default Value  
Readback Only  
Readback Only  
CGMS 1[7:0]  
CGMS 2[7:0]  
CGMS 3[3:0]  
150d  
151d  
152d  
0x96  
0x97  
0x9±  
Readback Only  
10.5  
±
0.25μs  
12.91μs  
7 CYCLES  
OF 0.5035MHz  
(CLOCK RUN-IN)  
CCAP1[7:0]  
3 4 5 6  
CCAP2[7:0]  
0
1
2
7
0 1  
2
3
4 5  
6
7
S
T
A
R
T
P
A
R
I
T
Y
P
A
R
I
T
Y
50 IRE  
40 IRE  
BYTE 0  
BYTE 1  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003μs  
27.382μs  
33.764μs  
Figure 34. Closed-Caption Data Extraction  
Table 61. CCAP Access Information  
Signal Name  
CCAP1[7:0]  
CCAP2[7:0]  
Register Location  
Address  
Register Default Value  
Readback Only  
Readback Only  
CCAP 1[7:0]  
CCAP 2[7:0]  
153d  
154d  
0x99  
0x9A  
Rev. B | Page 50 of 104  
ADV7189B  
There is no letterbox detected bit. The user is asked to read the  
LB_LCT[7:0] and LB_LCB[7:0] register values and to conclude  
whether or not the letterbox-type video is present in software.  
Letterbox Detection  
Incoming video signals may conform to different aspect ratios  
(16:9 wide screen of 4:3 standard). For certain transmissions in  
the wide screen format, a digital sequence (WSS) is transmitted  
with the video signal. If a WSS sequence is provided, the aspect  
ratio of the video can be derived from the digitally decoded bits  
WSS contains.  
LB_LCT[7:0] Letterbox Line Count Top, Address  
0x9B[7:0]; LB_LCM[7:0] Letterbox Line Count Mid,  
Address 0x9C[7:0]; LB_LCB[7:0] Letterbox Line Count  
Bottom, Address 0x9D[7:0]  
Table 62. LB_LCx Access Information  
In the absence of a WSS sequence, letterbox detection can  
be used to find wide screen signals. The detection algorithm  
examines the active video content of lines at the start and end  
of a field. If black lines are detected, this may indicate the  
currently shown picture is in wide screen format.  
Signal Name  
LB_LCT[7:0]  
LB_LCM[7:0]  
LB_LCB[7:0]  
Address  
Register Default Value  
0x9B  
0x9C  
0x9D  
Readback only  
Readback only  
Readback only  
LB_TH[4:0] Letterbox Threshold Control, Address  
0xDC[4:0]  
Table 63. LB_TH Function  
The active video content (luminance magnitude) over a line of  
video is summed together. At the end of a line, this accumulated  
value is compared with a threshold, and a decision is made as to  
whether or not a particular line is black. The threshold value  
needed may depend on the type of input signal; some control  
is provided via LB_TH[4:0].  
LB_TH[4:0]  
Description  
01100  
Default threshold for detection of black lines.  
(default)  
01101 to  
10000  
Increase threshold (need larger active video  
content before identifying nonblack lines).  
Detection at the Start of a Field  
00000 to  
01011  
Decrease threshold (even small noise levels can  
cause the detection of nonblack lines).  
The ADV7189B expects a section of at least six consecutive  
black lines of video at the top of a field. Once those lines are  
detected, Register LB_LCT[7:0] reports back the number of  
black lines that were actually found. By default, the ADV7189B  
starts looking for those black lines in sync with the beginning of  
active video, for example, straight after the last VBI video line.  
LB_SL[3:0] allows the user to set the start of letterbox detection  
from the beginning of a frame on a line-by-line basis. The  
detection window closes in the middle of the field.  
LB_SL[3:0] Letterbox Start Line, Address 0xDD[7:4]  
The LB_SL[3:0] bits are set at 0100b by default. This means the  
letterbox detection window starts after the EDTV VBI data line.  
For an NTSC signal this window is from Line 23 to Line 286.  
Changing the bits to 0101, the detection window starts on  
Line 24 and ends on Line 287.  
Detection at the End of a Field  
LB_EL[3:0] Letterbox End Line, Address 0xDD[3:0]  
The ADV7189B expects at least six continuous lines of black  
video at the bottom of a field before reporting back the number  
of lines actually found via the LB_LCB[7:0] value. The activity  
window for letterbox detection (end of field) starts in the middle  
of an active field. Its end is programmable via LB_EL[3:0].  
The LB_EL[3:0] bits are set at 1101b by default. This means the  
letterbox detection window ends with the last active video line.  
For an NTSC signal, this window is from Line 262 to Line 525.  
Changing the bits to 1100, the detection window starts on  
Line 261 and ends on Line 254.  
Detection at the Midrange  
Gemstar Data Recovery  
Some transmissions of wide screen video include subtitles  
within the lower black box. If the ADV7189B finds at least two  
black lines followed by more nonblack video, for example, the  
subtitle, and is then followed by the remainder of the bottom  
black block, it reports back a midcount via LB_LCM[7:0]. If no  
subtitles are found, LB_LCM[7:0] reports the same number as  
LB_LCB[7:0].  
The Gemstar-compatible data recovery block (GSCD) supports  
1× and 2× data transmissions. In addition, it can serve as a  
closed-caption decoder. Gemstar-compatible data transmissions  
can occur only in NTSC. Closed-caption data can be decoded  
in both PAL and NTSC.  
There is a 2-field delay in the reporting of any line count  
parameters.  
Rev. B | Page 51 of 104  
ADV7189B  
Each data packet starts immediately after the EAV code of the  
preceding line.  
The block is configured via I2C in the following ways:  
GDECEL[15:0] allow data recovery on selected video lines  
on even fields to be enabled and disabled.  
Figure 35 and Table 64 show the overall structure of the data  
packet.  
GDECOL[15:0] enable the data recovery on selected lines  
for odd fields.  
Entries within the packet are as follows:  
GDECAD configures the way in which data is embedded  
in the video data stream.  
Fixed preamble sequence of 0x00, 0xFF, 0xFF.  
Data identification word (DID). The value for the DID  
marking a Gemstar or CCAP data packet is 0x140 (10-bit  
value).  
The recovered data is not available through I2C, but is being  
inserted into the horizontal blanking period of an  
ITU-R. BT656-compatible data stream. The data format  
is intended to comply with the recommendation by the  
International Telecommunications Union, ITU-R BT.1364.  
See Figure 35. For more information, see the ITU website  
at www.itu.ch.  
Secondary data identification word (SDID), which contains  
information about the video line from which data was  
retrieved, whether the Gemstar transmission was of 1× or  
2× format, and whether it was retrieved from an even or  
odd field.  
The format of the data packet depends on the following criteria:  
Data count byte, giving the number of user data-words that  
follow.  
Transmission is 1× or 2×.  
User data section.  
Data is output in 8-bit or 4-bit format (see the description  
of the GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] bit).  
Optional padding to ensure that the length of the user  
data-word section of a packet is a multiple of four bytes  
(requirement as set in ITU-R BT.1364).  
Data is closed caption (CCAP) or Gemstar compatible.  
Checksum byte.  
Data packets are output if the corresponding enable bit is set  
(see the GDECEL and GDECOL descriptions), and if the  
decoder detects the presence of data. This means for video  
lines where no data has been decoded, no data packet is  
output even if the corresponding line enable bit is set.  
Table 64 lists the values within a generic data packet that is  
output by the ADV7189B in 10-bit format.  
DATA IDENTIFICATION  
SECONDARY DATA IDENTIFICATION  
DATA  
COUNT  
OPTIONAL PADDING CHECK  
00  
FF  
FF  
DID  
SDID  
USER DATA  
BYTES  
SUM  
PREAMBLE FOR ANCILLARY DATA  
USER DATA (4 OR 8 WORDS)  
Figure 35. Gemstar and CCAP Embedded Data Packet (Generic)  
Table 64. Generic Data Output Packet  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
0
D[0]  
0
Description  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[±]  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[±]  
EF  
0
2X  
0
Line[3:0]  
DC[1]  
0
0
SDID  
5
0
0
DC[0]  
0
0
Data count (DC)  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
6
0
0
Word1[7:4]  
Word1[3:0]  
Word2[7:4]  
Word2[3:0]  
Word3[7:4]  
Word3[3:0]  
Word4[7:4]  
Word4[3:0]  
0
0
7
0
0
0
0
±
0
0
0
0
9
0
0
0
0
10  
11  
12  
13  
14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
0
0
Rev. B | Page 52 of 104  
ADV7189B  
Table 65. Data Byte Allocation  
Raw Information Bytes  
Retrieved from the Video Line  
User Data-Words  
(Including Padding)  
2×  
1
1
0
0
GDECAD  
Padding Bytes  
DC[1:0]  
10  
01  
01  
01  
4
4
2
2
0
1
0
1
±
4
4
4
0
0
0
2
Gemstar Bit Names  
CS[8:2]. The checksum is provided to determine the  
integrity of the ancillary data packet. It is calculated by  
summing up D[8:2] of DID, SDID, the Data Count byte,  
and all UDWs, and ignoring any overflow during the  
summation. Since all data bytes that are used to calculate  
the checksum have their 2 LSBs set to 0, the CS[1:0] bits  
are also always 0.  
DID. The data identification value is 0x140 (10-bit value).  
Care has been taken that in 8-bit systems, the 2 LSBs do  
not carry vital information.  
EP and !EP. The EP bit is set to ensure even parity on the  
data-word D[8:0]. Even parity means there is always an  
even number of 1s within the D[8:0] bit arrangement.  
This includes the EP bit. !EP describes the logic inverse of  
EP and is output on D[9]. The !EP is output to ensure that  
the reserved codes of 00 and FF cannot happen.  
!CS[8] describes the logic inversion of CS[8]. The value  
!CS[8] is included in the checksum entry of the data packet  
to ensure that the reserved values of 0x00 and 0xFF do not  
occur.  
EF. Even field identifier. EF = 1 indicates that the data was  
recovered from a video line on an even field.  
Table 66 to Table 69 outline the possible data packages.  
Gemstar 2× Format, Half-Byte Output  
2×. This bit indicates whether the data sliced was in  
Gemstar 1× or 2× format. A high indicates 2× format.  
Half-byte output mode is selected by setting CDECAD = 0;  
full-byte output mode is selected by setting CDECAD = 1.  
See the GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] section.  
Line[3:0]. This entry provides a unique code for each of the  
possible 16 source lines of video from which Gemstar data  
may have been retrieved. See Table 74 and Table 75.  
Gemstar 1× Format  
DC[1:0]. Data count value. The number of user data-words  
in the packet divided by 4. The number of user data-words  
(UDW) in any packet must be an integral number of 4.  
Padding is required at the end if necessary (requirement  
as set in ITU-R BT.1364). See Table 65.  
Half-byte output mode is selected by setting CDECAD = 0,  
full-byte output mode is selected by setting CDECAD = 1.  
See the GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] section.  
The 2× bit determines whether the raw information  
retrieved from the video line was 2 or 4 bytes. The state  
of the GDECAD bit affects whether the bytes are trans-  
mitted straight (that is, two bytes transmitted as two bytes)  
or whether they are split into nibbles (that is, two bytes  
transmitted as four half bytes). Padding bytes are then  
added where necessary.  
Rev. B | Page 53 of 104  
ADV7189B  
Table 66. Gemstar 2× Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[±]  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[±]  
EF  
0
Line[3:0]  
0
0
SDID  
1
5
0
0
0
0
0
Data count  
1
0
6
0
0
Gemstar word1[7:4]  
Gemstar word1[3:0]  
Gemstar word2[7:4]  
Gemstar word2[3:0]  
Gemstar word3[7:4]  
Gemstar word3[3:0]  
Gemstar word4[7:4]  
Gemstar word4[3:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
±
0
0
0
0
9
0
0
0
0
10  
11  
12  
13  
14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 67. Gemstar 2× Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
0
D[0]  
Description  
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
0
Line[3:0]  
0
0
0
4
!EP  
!EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
0
0
Data count  
1
6
Gemstar Word1[7:0]  
Gemstar Word2[7:0]  
Gemstar Word3[7:0]  
Gemstar Word4[7:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
±
0
0
9
0
0
10  
!CS[±]  
CS[±]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 68. Gemstar 1× Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
3
0
1
0
1
0
Line[3:0]  
0
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[±]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[±]  
EF  
0
0
SDID  
0
5
0
0
0
0
0
0
Data count  
1
6
0
0
Gemstar Word1[7:4]  
Gemstar Word1[3:0]  
Gemstar Word2[7:4]  
Gemstar Word2[3:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
7
0
0
0
0
±
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Checksum  
Rev. B | Page 54 of 104  
ADV7189B  
Table 69. Gemstar 1× Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
!EP  
!EP  
EP  
EP  
EF  
0
Line[3:0]  
0
0
SDID  
5
0
0
0
0
Data count  
0
1
6
Gemstar Word1[7:0]  
Gemstar Word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 0x200  
UDW padding 0x200  
Checksum  
7
0
0
±
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
!CS[±]  
CS[±]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 70. NTSC CCAP Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
1
1
0
0
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[±]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[±]  
EF  
0
0
SDID  
0
5
0
0
0
0
Data count  
6
0
0
CCAP Word1[7:4]  
CCAP Word1[3:0]  
CCAP Word2[7:4]  
CCAP Word2[3:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
±
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 71. NTSC CCAP Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
1
1
0
0
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
!EP  
!EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
Data count  
6
CCAP Word1[7:0]  
CCAP Word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 0x200  
UDW padding 0x200  
Checksum  
7
0
0
±
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
!CS[±]  
CS[±]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Rev. B | Page 55 of 104  
ADV7189B  
PAL CCAP Data  
NTSC CCAP Data  
Half-byte output mode is selected by setting CDECAD = 0;  
full-byte output mode is selected by setting CDECAD = 1.  
See the GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] section. Table 72 and Table 73 list the bytes  
of the data packet.  
Half-byte output mode is selected by setting CDECAD = 0; the  
full-byte mode is enabled by CDECAD = 1. See the GDECAD  
Gemstar Decode Ancillary Data Format,  
Address 0x4C[0] section. The data packet formats are shown in  
Table 70 and Table 71.  
PAL closed-caption data is sliced from Lines 22 and 335. The  
corresponding enable bits have to be set.  
NTSC closed-caption data is sliced on line 21d on even and odd  
fields. The corresponding enable bit has to be set high. See the  
section and the GDECOL[15:0] Gemstar Decoding Odd Lines,  
Address 0x4A[7:0]; Address 0x4B[7:0]section.  
See the GDECEL[15:0] Gemstar Decoding Even Lines,  
Address 0x48[7:0]; Address 0x49[7:0] section and the  
GDECOL[15:0] Gemstar Decoding Odd Lines,  
Address 0x4A[7:0]; Address 0x4B[7:0]section.  
Table 72. PAL CCAP Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
0
0
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[±]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[±]  
EF  
0
0
SDID  
0
5
0
0
0
0
Data count  
6
0
0
CCAP Word1[7:4]  
CCAP Word1[3:0]  
CCAP Word2[7:4]  
CCAP Word2[3:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
±
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 73. PAL CCAP Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
0
D[0]  
Description  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
!EP  
!EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
Data count  
6
CCAP Word1[7:0]  
CCAP Word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 0x200  
UDW padding 0x200  
Checksum  
7
0
0
±
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
!CS[±]  
CS[±]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Rev. B | Page 56 of 104  
ADV7189B  
Table 74. NTSC Line Enable Bits and Corresponding Line  
Numbering  
GDECEL[15:0] Gemstar Decoding Even Lines,  
Address 0x48[7:0]; Address 0x49[7:0]  
Line Number  
The 16 bits of the GDECEL[15:0] are interpreted as a collection  
of 16 individual line decode enable signals. Each bit refers to a  
line of video in an even field. Setting a bit to 1 enables the decoder  
block to retrieve Gemstar or closed caption-compatible data on  
that particular line. Setting a bit to 0 prevents the decoder from  
trying to retrieve data. See Table 74 and Table 75.  
Line[3:0] (ITU-R BT.470)  
Enable Bit  
GDECOL[0]  
GDECOL[1]  
GDECOL[2]  
GDECOL[3]  
GDECOL[4]  
GDECOL[5]  
GDECOL[6]  
GDECOL[7]  
GDECOL[±]  
GDECOL[9]  
GDECOL[10]  
GDECOL[11]  
Comment  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
0
1
2
3
4
5
6
7
±
9
10  
11  
10  
11  
12  
13  
14  
15  
16  
17  
1±  
19  
20  
21  
To retrieve closed-caption data services on NTSC (Line 284),  
GDECEL[11] must be set.  
To retrieve closed caption data services on PAL (Line 335),  
GDECEL[14] must be set.  
The default value of GDECEL[15:0] is 0x0000. This setting  
instructs the decoder not to attempt to decode Gemstar or  
CCAP data from any line in the even field.  
Gemstar or  
closed caption  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
±
9
10  
11  
22  
23  
24  
25  
GDECOL[12]  
GDECOL[13]  
GDECOL[14]  
GDECOL[15]  
GDECEL[0]  
GDECEL[1]  
GDECEL[2]  
GDECEL[3]  
GDECEL[4]  
GDECEL[5]  
GDECEL[6]  
GDECEL[7]  
GDECEL[±]  
GDECEL[9]  
GDECEL[10]  
GDECEL[11]  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
GDECOL[15:0] Gemstar Decoding Odd Lines,  
Address 0x4A[7:0]; Address 0x4B[7:0]  
The 16 bits of the GDECOL[15:0] form a collection of 16  
individual line decode enable signals. See Table 74 and  
Table 75.To retrieve closed caption data services on NTSC (Line  
21), GDECOL[11] must be set.  
273 (10)  
274 (11)  
275 (12)  
276 (13)  
277 (14)  
27± (15)  
279 (16)  
2±0 (17)  
2±1 (1±)  
2±2 (19)  
2±3 (20)  
2±4 (21)  
To retrieve closed-caption data services on PAL (Line 22),  
GDECOL[14] must be set.  
The default value of GDEC0L[15:0] is 0x0000. This setting  
instructs the decoder not to attempt to decode Gemstar or  
CCAP data from any line in the odd field.  
GDECAD Gemstar Decode Ancillary Data Format,  
Address 0x4C[0]  
Gemstar or  
closed caption  
The decoded data from Gemstar-compatible transmissions  
or closed-caption transmission is inserted into the horizontal  
blanking period of the respective line of video. A potential  
problem can arise if the retrieved data bytes have the value  
0x00 or 0xFF. In an ITU-R BT.656-compatible data stream,  
these values are reserved and used only to form a  
fixed preamble.  
12  
13  
14  
15  
2±5 (22)  
2±6 (23)  
2±7 (24)  
2±± (25)  
GDECEL[12]  
GDECEL[13]  
GDECEL[14]  
GDECEL[15]  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
The GDECAD bit allows the data to be inserted into the  
horizontal blanking period in two ways:  
Insert all data straight into the data stream, even the reserved  
values of 0x00 and 0xFF, if they occur. This can violate the  
output data format specification ITU-R BT.1364.  
Split all data into nibbles and insert the half-bytes over  
double the number of cycles in a 4-bit format.  
When GDECAD is 0 (default), the data is split into half-bytes  
and inserted.  
When GDECAD is 1, the data is output straight in 8-bit format.  
Rev. B | Page 57 of 104  
ADV7189B  
6
4
Table 75. PAL Line Enable Bits and  
Corresponding Line Numbering  
Line Number  
2
Line[3:0] (ITU-R BT.470)  
Enable Bit  
Comment  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Closed caption  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Closed caption  
Not valid  
0
12  
13  
14  
15  
0
1
2
3
4
5
6
7
±
±
9
10  
11  
12  
13  
14  
15  
16  
17  
1±  
19  
20  
21  
22  
23  
321 (±)  
322 (9)  
323 (10)  
324 (11)  
325 (12)  
326 (13)  
327 (14)  
32± (15)  
329 (16)  
330 (17)  
331 (1±)  
332 (19)  
333 (20)  
334 (21)  
335 (22)  
336 (23)  
GDECOL[0]  
GDECOL[1]  
GDECOL[2]  
GDECOL[3]  
GDECOL[4]  
GDECOL[5]  
GDECOL[6]  
GDECOL[7]  
GDECOL[±]  
GDECOL[9]  
GDECOL[10]  
GDECOL[11]  
GDECOL[12]  
GDECOL[13]  
GDECOL[14]  
GDECOL[15]  
GDECEL[0]  
GDECEL[1]  
GDECEL[2]  
GDECEL[3]  
GDECEL[4]  
GDECEL[5]  
GDECEL[6]  
GDECEL[7]  
GDECEL[±]  
GDECEL[9]  
GDECEL[10]  
GDECEL[11]  
GDECEL[12]  
GDECEL[13]  
GDECEL[14]  
GDECEL[15]  
–2  
–4  
–6  
–8  
–10  
–12  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (MHz)  
Figure 36. NTSC IF Compensation Filter Responses  
6
4
9
2
10  
11  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
±
9
10  
11  
0
–2  
–4  
–6  
–8  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
FREQUENCY (MHz)  
Figure 37. PAL IF Compensation Filter Responses  
See Table 86 for programming details.  
I2C Interrupt System  
The ADV7189B has a comprehensive interrupt register set. This  
map is located in the Register Access. See Table 85 for details of  
the interrupt register map. How to access this map is described  
in Figure 38.  
IF Compensation Filter  
2
COMMON I C SPACE  
ADDRESS 0x00 => 0x3F  
IFFILTSEL[2:0] IF Filter Select Address 0xF8[2:0]  
The IFFILTSEL[2:0] register allows the user to compensate for  
SAW filter characteristics on a composite input as would be  
observed on tuner outputs. Figure 36 and Figure 37 show IF  
filter compensation for NTSC and PAL.  
ADDRESS 0x0E BIT 6,5 = 00b  
ADDRESS 0x0E BIT 6,5 = 01b  
2
2
I C SPACE  
I C SPACE  
REGISTER ACCESS PAGE 1  
ADDRESS 0x40 => 0xFF  
REGISTER ACCESS PAGE 2  
ADDRESS 0x40 => 0x4C  
The options for this feature are as follows:  
NORMAL REGISTER SPACE  
INTERRUPT REGISTER SPACE  
Bypass Mode (default)  
Figure 38. Register Access, Page 1 and Page 2  
NTSC—consists of three filter characteristics  
PAL—consists of three filter characteristics  
Rev. B | Page 5± of 104  
ADV7189B  
INTRQ_OP_SEL[1:0], Interrupt Duration Select  
Address 0x40 (Interrupt Space)[1:0]  
Interrupt Request Output Operation  
INTRQ  
When an interrupt event occurs, the interrupt pin  
goes low with a programmable duration given by  
INTRQ_DUR_SEL[1:0].  
Table 77. INTRQ_OP_SEL  
INTRQ_OP_SEL[1:0] Description  
INTRQ_DURSEL[1:0], Interrupt Duration Select  
Address 0x40 (Interrupt Space)[7:6]  
00 (default)  
Open drain  
01  
10  
11  
Drive low when active  
Drive high when active  
Reserved  
Table 76. INTRQ_DUR_SEL  
INTRQ_DURSEL[1:0] Description  
00 (default)  
3 Xtal periods  
Multiple Interrupt Events  
01  
10  
11  
15 Xtal periods  
63 Xtal periods  
Active until cleared  
If Interrupt Event 1 occurs and then Interrupt Event 2 occurs  
before the system controller has cleared or masked Interrupt  
Event 1, the ADV7189B does not generate a second interrupt  
signal. The system controller should check all unmasked  
interrupt status bits since more than one can be active.  
When the active-until-Cleared interrupt duration is selected  
and the event that caused the interrupt is no longer in force,  
the interrupt persists until it is masked or cleared.  
Macrovision Interrupt Selection Bits  
The user can select between pseudo sync pulse and color stripe  
detection as follows:  
For example, if the ADV7189B loses lock, an interrupt is  
INTRQ  
returns to the locked state,  
generated and the  
pin goes low. If the ADV7189B  
INTRQ  
MV_INTRQ_SEL[1:0], Macrovision Interrupt Selection Bits  
Address 0x40 (Interrupt Space)[5:4]  
continues to drive low  
until the SD_LOCK bit is either masked or cleared.  
Interrupt Drive Level  
Table 78. MV_INTRQ_SEL  
MV_INTRQ_SEL[1:0] Description  
The ADV7189B resets with open drain enabled and all  
interrupts masked off. Therefore,  
impedance state after reset. 01 or 10 has to be written to  
INTRQ_OP_SEL[1:0] for a logic level to be driven out  
INTRQ  
is in a high  
00  
Reserved  
01 (default)  
Pseudo sync only  
10  
11  
Color stripe only  
Either pseudo sync or color stripe  
INTRQ  
from the  
pin.  
It is also possible to write to a register in the ADV7189B that  
Additional information relating to the interrupt system is  
detailed in Table 84.  
INTRQ  
manually asserts the  
pin. This bit is MPU_STIM_INTRQ.  
Rev. B | Page 59 of 104  
ADV7189B  
PIXEL PORT CONFIGURATION  
SWPC Swap Pixel Cr/Cb, Address 0x27[7]  
The ADV7189B has a very flexible pixel port that can be config-  
ured in a variety of formats to accommodate downstream ICs.  
Table 79 and Table 80 summarize the various functions that the  
ADV7189B pins can have in different modes of operation.  
This bit allows Cr and Cb samples to be swapped.  
When SWPC is 0 (default), no swapping is allowed.  
When SWPC is 1, the Cr and Cb values can be swapped.  
The ordering of components, for example, Cr vs. Cb,  
CHA/B/C, can be changed. Refer to the SWPC Swap Pixel  
Cr/Cb, Address 0x27[7] section. Table 79 indicates the default  
positions for the Cr/Cb components.  
LLC1 Output Selection, LLC_PAD_SEL[2:0],  
Address 0x8F[6:4]  
The following I2C write allows the user to select between the  
LLC1 (nominally at 27 MHz) and LLC2 (nominally at 13.5 MHz).  
OF_SEL[3:0] Output Format Selection, Address 0x03[5:2]  
The modes in which the ADV7189B pixel port can be configured  
are under the control of OF_SEL[3:0]. See Table 80 for details.  
The LLC2 signal is useful for LLC2-compatible wide bus  
(16-/20-bit) output modes. See OF_SEL[3:0] for additional  
information. The LLC2 signal and data on the data bus are  
synchronized. By default, the rising edge of LLC1/LLC2 is  
aligned with the Y data; the falling edge occurs when the data  
bus holds C data. The polarity of the clock, and therefore the  
Y/C assignments to the clock edges, can be altered by using  
the Polarity LLC pin.  
The default LLC frequency output on the LLC1 pin is approxi-  
mately 27 MHz. For modes that operate with a nominal data  
rate of 13.5 MHz (0001, 0010), the clock frequency on the  
LLC1 pin stays at the higher rate of 27 MHz. For information  
on outputting the nominal 13.5 MHz clock on the LLC1 pin,  
see the LLC1 Output Selection, LLC_PAD_SEL[2:0],  
Address 0x8F[6:4] section.  
When LLC_PAD_SEL[2:0] is 000 (default), the output is  
nominally 27 MHz LLC on the LLC1 pin.  
When LLC_PAD_SEL[2:0] is 101, the output is nominally  
13.5 MHz LLC on the LLC1 pin.  
Table 79. P19 to P0 Output/Input Pin Mapping  
Data Port Pins P[19:0]  
19 18 17 16 15 14 13 12 11 10  
YCrCb[7:0] OUT  
YCrCb[9:0] OUT  
Y[7:0] OUT  
Y[9:0] OUT  
9
8
7
6
5
4
3
2
1
0
Processor, Format, and Mode  
Video Out, ±-Bit, 4:2:2  
Video Out, 10-Bit, 4:2:2  
Video Out, 16-Bit, 4:2:2  
Video Out, 20-Bit, 4:2:2  
CrCb[7:0] OUT  
CrCb[9:0] OUT  
Table 80. Standard Definition Pixel Port Modes  
Pixel Port Pins P[19:0]  
Function  
P[19:10]  
P[11:10]  
YCrCb[1:0]  
P9[9:0]  
OF_SEL[3:0]  
0000  
Format  
P[19:12]  
YCrCb[9:2]  
Y[9:2]  
P[9:2]  
P[1:0]  
10-Bit at LLC1 4:2:2  
20-Bit at LLC2 4:2:2  
16-Bit at LLC2 4:2:2  
±-Bit at LLC1 4:2:2  
Reserved  
Three-State  
CrCb[9:2]  
CrCb[7:0]  
Three-state  
Three-State  
CrCb[1:0]  
0001  
Y[1:0]  
0010  
Y[7:0]  
Three-state  
Three-state  
Three-state  
Three-state  
0011 (default)  
0110-1111  
YCrCb[7:0]  
Reserved. Do not use.  
Rev. B | Page 60 of 104  
 
ADV7189B  
MPU PORT DESCRIPTION  
The R/W bit determines the direction of the data. Logic 0 on  
the LSB of the first byte means the master writes information  
to the peripheral. Logic 1 on the LSB of the first byte means the  
master reads information from the peripheral.  
The ADV7189B supports a 2-wire (I2C-compatible) serial inter-  
face. Two inputs, serial data (SDA) and serial clock (SCLK),  
carry information between the ADV7189B and the system I2C  
master controller. Each slave device is recognized by a unique  
address. The ADV7189Bs I2C port allows the user to set up and  
configure the decoder and to read back captured VBI data. The  
ADV7189B has four possible slave addresses for both read and  
write operations, depending on the logic level on the ALSB pin.  
These four unique addresses are shown in Table 81. The  
ADV7189Bs ALSB pin controls Bit 1 of the slave address. By  
altering the ALSB, it is possible to control two ADV7189Bs in  
an application without having a conflict with the same slave  
address. The LSB (Bit 0) sets either a read or write operation.  
Logic 1 corresponds to a read operation; Logic 0 corresponds to  
a write operation.  
The ADV7189B acts as a standard slave device on the bus.  
The data on the SDA pin is eight bits long, supporting the  
7-bit addresses plus the R/W bit. The ADV7189B has 249  
subaddresses to enable access to the internal registers. It  
therefore interprets the first byte as the device address and  
the second byte as the starting subaddress. The subaddresses  
auto-increment, allowing data to be written to or read from  
the starting subaddress. A data transfer is always terminated  
by a stop condition. The user can also access any unique  
subaddress register on a one-by-one basis without having  
to update all the registers.  
Table 81. I2C Address for ADV7189B  
Stop and start conditions can be detected at any stage during the  
data transfer. If these conditions are asserted out of sequence with  
normal read and write operations, they cause an immediate  
jump to the idle condition. During a given SCLK high period,  
the user should only issue one start condition, one stop condition,  
or a single stop condition followed by a single start condition. If  
an invalid subaddress is issued by the user, the ADV7189B does  
not issue an acknowledge and returns to the idle condition.  
ALSB  
R/W  
Slave Address  
0x40  
0x41  
0x42  
0x43  
0
0
1
1
0
1
0
1
To control the device on the bus, a specific protocol must be  
followed. First, the master initiates a data transfer by establish-  
ing a start condition, which is defined by a high-to-low transition  
on SDA while SCLK remains high. This indicates that an  
address/data stream follows. All peripherals respond to the start  
condition and shift the next eight bits (7-bit address + R/W bit).  
The bits are transferred from MSB down to LSB. The peripheral  
that recognizes the transmitted address responds by pulling the  
data line low during the ninth clock pulse; this is known as an  
acknowledge bit. All other devices withdraw from the bus at  
this point and maintain an idle condition. The idle condition is  
where the device monitors the SDA and SCLK lines, waiting for  
the start condition and the correct transmitted address.  
If in auto-increment mode the user exceeds the highest  
subaddress, the following action is taken:  
1. In read mode, the highest subaddress register contents  
continue to be output until the master device issues a  
no-acknowledge. This indicates the end of a read. A no-  
acknowledge condition is when the SDA line is not pulled  
low on the ninth pulse.  
2. In write mode, the data for the invalid byte is not loaded  
into any subaddress register, a no acknowledge is issued by  
the ADV7189B, and the part returns to the idle condition.  
SDATA  
SCLOCK  
S
P
1–7  
8
9
1–7  
8
9
1–7  
DATA  
8
9
START ADDR R/W ACK SUBADDRESS ACK  
ACK  
STOP  
Figure 39. Bus Data Transfer  
WRITE  
S
S
SLAVE ADDR A(S) SUB ADDR  
LSB = 0  
A(S)  
DATA  
A(S)  
DATA  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S) SUB ADDR  
A(S)  
S
SLAVE ADDR A(S)  
DATA  
A(M)  
DATA  
A(M) P  
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A(S) = NO-ACKNOWLEDGE BY SLAVE  
A(M) = NO-ACKNOWLEDGE BY MASTER  
Figure 40. Read and Write Sequence  
Rev. B | Page 61 of 104  
 
ADV7189B  
REGISTER ACCESSES  
I2C SEQUENCER  
An I2C sequencer is used when a parameter exceeds eight bits,  
and is therefore distributed over two or more I2C registers, for  
example, HSB[11:0].  
The MPU can write to or read from most of the ADV7189Bs  
registers, excepting the registers that are read-only or write-  
only. The subaddress register determines which register the next  
read or write operation accesses. All communications with the  
part through the bus start with an access to the subaddress  
register. Then, a read/write operation is performed from/to the  
target address, which then increments to the next address until  
a stop command on the bus is performed.  
When such a parameter is changed using two or more I2C write  
operations, the parameter can hold an invalid value for the time  
between the first I2C being completed and the last I2C being  
completed. In other words, the top bits of the parameter can  
already hold the new value while the remaining bits of the  
parameter still hold the previous value.  
REGISTER PROGRAMMING  
This section describes the configuration of each register. The  
communications register is an 8-bit, write-only register. After  
the part has been accessed over the bus and a read/write opera-  
tion is selected, the subaddress is set up. The subaddress register  
determines to/from which register the operation takes place.  
Table 82 lists the various operations under the control of the  
Subaddress register for the control port.  
To avoid this problem, the I2C sequencer holds the already  
updated bits of the parameter in local memory; all bits of the  
parameter are updated together once the last register write  
operation has completed.  
The correct operation of the I2C sequencer relies on the  
following:  
All I2C registers for the parameter in question must be  
written to in order of ascending addresses. For example, for  
HSB[10:0], write to Address 0x34 first followed by 0x35.  
Register Select (SR7–SR0)  
These bits are set up to point to the required starting address.  
No other I2C taking place between the two (or more) I2C  
writes for the sequence. For example, for HSB[10:0], write  
to Address 0x34 first immediately followed by 0x35.  
Rev. B | Page 62 of 104  
 
ADV7189B  
I2C REGISTER MAPS  
Table 82. Common and Normal (Page 1) Register Map Details  
Subaddress  
Hex  
Register Name  
Input Control  
Reset Value  
0000 0000  
1100 1000  
0000 0100  
0000 1100  
01xx 0101  
0000 0000  
0000 0010  
0111 1111  
1000 0000  
1000 0000  
0000 0000  
0000 0000  
0011 0110  
0111 1100  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0001 0010  
0100 xxxx  
xxxx xxxx  
0000 0001  
1001 0011  
1111 0001  
xxxx xxxx  
0000 0xxx  
xxxx xxxx  
0101 1000  
xxxx xxxx  
1110 0001  
1010 1110  
1111 0100  
0000 0000  
1111 xxxx  
xxxx xxxx  
0001 0010  
0100 0001  
1000 0100  
0000 0000  
0000 0010  
0000 0000  
0000 0001  
1000 0000  
1100 0000  
0001 0000  
xxxx xxxx  
0100 0011  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
r
Dec  
0
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x0±  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x1±  
0x19  
Video Selection  
Reserved  
1
2
Output Control  
Extended Output Control  
Reserved  
3
4
5
Reserved  
6
Autodetect Enable  
Contrast  
7
±
Reserved  
9
Brightness  
10  
11  
12  
13  
14  
15  
16  
17  
1±  
19  
20  
21  
22  
23  
24  
25  
26 to 2±  
29  
30 to 3±  
39  
40 to 42  
43  
44  
45  
46  
47  
4±  
49  
50  
51  
52  
53  
54  
55  
56  
57  
5±  
59 to 60  
61  
Hue  
Default Value Y  
Default Value C  
ADI Control  
Power Management  
Status 1  
Ident  
r
Status 2  
r
Status 3  
r
Analog Clamp Control  
Digital Clamp Control 1  
Reserved  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Shaping Filter Control  
Shaping Filter Control 2  
Comb Filter Control  
Reserved  
0x1A to 0x1C  
0x1D  
ADI Control 2  
Reserved  
0x1E to 0x26  
0x27  
Pixel Delay Control  
Reserved  
0x2± to 0x2A  
0x2B  
Misc Gain Control  
AGC Mode Control  
Chroma Gain Control 1  
Chroma Gain Control 2  
Luma Gain Control 1  
Luma Gain Control 2  
Vsync Field Control 1  
Vsync Field Control 2  
Vsync Field Control 3  
Hsync Position Control 1  
Hsync Position Control 2  
Hsync Position Control 3  
Polarity  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
NTSC Comb Control  
PAL Comb Control  
ADC Control  
0x3±  
0x39  
0x3A  
Reserved  
0x3B to 0x3C  
0x3D  
Manual Window Control  
Rev. B | Page 63 of 104  
 
ADV7189B  
Subaddress  
Hex  
Register Name  
Reserved  
Reset Value  
xxxx xxxx  
0100 0001  
xxxx xxxx  
00000000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxx0  
1110 1111  
0000 1000  
xxxx xxxx  
0000 1000  
0010 0100  
xxxx xxxx  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0001 1100  
xxxx xxxx  
xxxx xxxx  
0xxx xxxx  
xxxx xxxx  
1010 1100  
0100 1100  
0000 0000  
0000 0000  
0001 0100  
1000 0000  
1000 0000  
1000 0000  
1000 0000  
0010 0101  
0000 0100  
0110 0011  
0110 0101  
0001 0100  
0110 0011  
xxxx xxxx  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
w
Dec  
62 to 64  
65  
0x3E to 0x40  
Resample Control  
Reserved  
0x41  
66 to 71  
72  
0x42 to 0x47  
0x4±  
Gemstar Ctrl 1  
Gemstar Ctrl 2  
Gemstar Ctrl 3  
Gemstar Ctrl 4  
GemStar Ctrl 5  
CTI DNR Ctrl 1  
CTI DNR Ctrl 2  
Reserved  
73  
0x49  
74  
0x4A  
75  
0x4B  
76  
0x4C  
77  
0x4D  
7±  
0x4E  
79  
0x4F  
CTI DNR Ctrl 4  
Lock Count  
Reserved  
±0  
0x50  
±1  
0x51  
±2 to 142  
143  
0x52 to 0x±E  
0x±F  
Free Run Line Length 1  
Reserved  
w
144  
0x90  
VBI Info  
r
144  
0x90  
WSS 1  
r
145  
0x91  
WSS 2  
r
146  
0x92  
EDTV 1  
r
147  
0x93  
EDTV 2  
r
14±  
0x94  
EDTV 3  
r
149  
0x95  
CGMS 1  
r
150  
0x96  
CGMS 2  
r
151  
0x97  
CGMS 3  
r
152  
0x9±  
CCAP 1  
r
153  
0x99  
CCAP 2  
r
154  
0x9A  
Letterbox 1  
Letterbox 2  
Letterbox 3  
Reserved  
r
155  
0x9B  
r
156  
0x9C  
r
157  
0x9D  
rw  
w
15± to 177  
17±  
0x9E to 0xB1  
0xB2  
CRC Enable  
Reserved  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
179 to 194  
195  
0xB2 to 0xC2  
0xC3  
ADC Switch 1  
ADC Switch 2  
Reserved  
196  
0xC4  
197 to 219  
220  
0xC5 to 0xDB  
0xDC  
0xDD  
0xDE  
Letterbox Control 1  
Letterbox Control 2  
Reserved  
221  
222  
Reserved  
223  
0xDF  
Reserved  
224  
0xE0  
SD Offset Cb  
SD Offset Cr  
SD Saturation Cb  
SD Saturation Cr  
NTSC V Bit Begin  
NTSC V Bit End  
NTSC F Bit Toggle  
PAL V Bit Begin  
PAL V Bit End  
PAL F Bit Toggle  
Reserved  
225  
0xE1  
226  
0xE2  
227  
0xE3  
22±  
0xE4  
229  
0xE5  
230  
0xE6  
231  
0xE7  
232  
0xE±  
233  
0xE9  
234  
0xEA  
235 to 243  
0xEB to 0xF3  
Rev. B | Page 64 of 104  
ADV7189B  
Subaddress  
Hex  
Register Name  
Drive Strength  
Reserved  
Reset Value  
xx01 0101  
xxxx xxxx  
rw  
rw  
rw  
rw  
rw  
Dec  
244  
0xF4  
245 to 247  
24±  
0xF5 to 0xF7  
IF Comp Control  
VS Mode Control  
0000 0000  
0000 0000  
0xF±  
0xF9  
249  
Table 83. Common and Normal (Page 1) Register Map Bit Names  
Register Name  
Input Control  
Video Selection  
Reserved  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VID_SEL.3  
VID_SEL.2  
ENHSPLL  
VID_SEL.1  
BETACAM  
VID_SEL.0  
INSEL.3  
INSEL.2  
INSEL.1  
INSEL.0  
ENVSPROC  
Output Control  
VBI_EN  
TOD  
OF_SEL.3  
OF_SEL.2  
OF_SEL.1  
TIM_OE  
OF_SEL.0  
BL_C_VBI  
SD_DUP_AV  
RANGE  
Extended  
BT656-4  
EN_SFL_PI  
Output Control  
Reserved  
Reserved  
Autodetect  
Enable  
AD_SEC525_EN  
CON.7  
AD_SECAM_EN  
CON.6  
AD_N443_EN  
CON.5  
AD_P60_EN  
CON.4  
AD_PALN_EN  
CON.3  
AD_PALM_EN  
CON.2  
AD_NTSC_EN  
CON.1  
AD_PAL_EN  
CON.0  
Contrast  
Reserved  
Brightness  
Hue  
BRI.7  
BRI.6  
BRI.5  
BRI.4  
BRI.3  
BRI.2  
BRI.1  
BRI.0  
HUE.7  
DEF_Y.5  
HUE.6  
DEF_Y.4  
HUE.5  
DEF_Y.3  
HUE.4  
DEF_Y.2  
HUE.3  
DEF_Y.1  
HUE.2  
DEF_Y.0  
HUE.1  
HUE.0  
Default Value Y  
DEF_VAL_AUTO  
_EN  
DEF_VAL_EN  
Default Value C  
ADI Control  
DEF_C.7  
RES  
DEF_C.6  
DEF_C.5  
PWRDN  
DEF_C.4  
DEF_C.3  
DEF_C.2  
PDBP  
DEF_C.1  
DEF_C.0  
SUB_USR_EN.0  
Power  
Management  
Status 1  
Ident  
COL_KILL  
IDENT.7  
AD_RESULT.2  
IDENT.6  
AD_RESULT.1  
IDENT.5  
AD_RESULT.0  
IDENT.4  
FOLLOW_PW  
IDENT.3  
FSC_LOCK  
IDENT.2  
LOST_LOCK  
IDENT.1  
IN_LOCK  
IDENT.0  
Status 2  
Status 3  
FSC NSTD  
LL NSTD  
MV AGC DET  
MV PS DET  
SD_OP_50HZ  
MVCS T3  
GEMD  
MVCS DET  
INST_HLOCK  
PAL SW LOCK  
INTERLACE  
DCT.1  
STD FLD LEN  
FREE_RUN_ACT  
CCLEN  
Analog Clamp  
Control  
Digital Clamp  
Control 1  
DCT.0  
Reserved  
Shaping Filter  
Control  
CSFM.2  
CSFM.1  
CSFM.0  
YSFM.4  
YSFM.3  
YSFM.2  
YSFM.1  
YSFM.0  
Shaping Filter  
Control 2  
WYSFMOVR  
WYSFM.4  
WYSFM.3  
NSFSEL.1  
WYSFM.2  
NSFSEL.0  
WYSFM.1  
PSFSEL.1  
WYSFM.0  
PSFSEL.0  
Comb Filter  
Control  
Reserved  
VS_JIT_COMP_EN  
CTA.2  
ADI Control 2  
Reserved  
TRI_LLC  
SWPC  
EN2±XTAL  
Pixel Delay  
Control  
AUTO_PDC_EN  
CTA.1  
CTA.0  
LTA.1  
LTA.0  
Reserved  
Misc Gain  
Control  
CKE  
PW_UPD  
CAGC.0  
CMG.±  
CMG.0  
LMG.±  
AGC Mode  
Control  
LAGC.2  
CAGT.0  
CMG.6  
LGAT.0  
LMG.6  
LAGC.1  
CMG.5  
LMG.5  
LAGC.0  
CMG.4  
CAGC.1  
CMG.9  
CMG.1  
LMG.9  
LMG.1  
Chroma Gain  
Control 1  
CAGT.1  
CMG.7  
LAGT.1  
LMG.7  
CMG.11  
CMG.3  
LMG.11  
LMG.3  
CMG.10  
CMG.2  
LMG.10  
LMG.2  
Chroma Gain  
Control 2  
Luma Gain  
Control 1  
Luma Gain  
Control 2  
LMG.4  
LMG.0  
Vsync Field  
Control 1  
NEWAVMODE  
HVSTIM  
Rev. B | Page 65 of 104  
ADV7189B  
Register Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Vsync Field  
Control 2  
VSBHO  
VSEHO  
VSBHE  
Vsync Field  
Control 3  
VSEHE  
HSB.10  
HSB.6  
HSE.6  
Hsync Position  
Control 1  
HSB.9  
HSB.5  
HSE.5  
HSB.±  
HSB.4  
HSE.4  
HSE.10  
HSB.2  
HSE.2  
HSE.9  
HSB.1  
HSE.1  
HSE.±  
HSB.0  
HSE.0  
Hsync Position  
Control 2  
HSB.7  
HSE.7  
HSB.3  
HSE.3  
Hsync Position  
Control 3  
Polarity  
PHS  
PVS  
PF  
PCLK  
NTSC Comb  
Control  
CTAPSN.1  
CTAPSN.0  
CTAPSP.0  
CCMN.2  
CCMN.1  
CCMP.1  
CCMN.0  
YCMN.2  
YCMN.1  
YCMN.0  
PAL Comb  
Control  
CTAPSP.1  
CCMP.2  
CCMP.0  
YCMP.2  
YCMP.1  
YCMP.0  
ADC Control  
Reserved  
PWRDN_AD C_0  
PWRDN_AD C_1  
PWRDN_ADC_2  
Manual  
Window  
Control  
CKILLTHR.2  
SFL_INV  
CKILLTHR.1  
CKILLTHR.0  
Reserved  
Resample  
Control  
Reserved  
Gemstar Ctrl 1  
Gemstar Ctrl 2  
Gemstar Ctrl 3  
Gemstar Ctrl 4  
Gemstar Ctrl 5  
CTI DNR Ctrl 1  
CTI DNR Ctrl 2  
Reserved  
GDECEL.15  
GDECEL.7  
GDECOL.15  
GDECOL.7  
GDECEL.14  
GDECEL.6  
GDECOL.14  
GDECOL.6  
GDECEL.13  
GDECEL.5  
GDECOL.13  
GDECOL.5  
GDECEL.12  
GDECEL.4  
GDECOL.12  
GDECOL.4  
GDECEL.11  
GDECEL.3  
GDECOL.11  
GDECOL.3  
GDECEL.10  
GDECEL.2  
GDECOL.10  
GDECOL.2  
GDECEL.9  
GDECEL.1  
GDECOL.9  
GDECOL.1  
GDECEL.±  
GDECEL.0  
GDECOL.±  
GDECOL.0  
GDECAD  
CTI_EN  
DNR_EN  
CTI_AB.1  
CTI_AB.0  
CTI_AB_EN  
CTI_C_TH.1  
CTI_C_TH.7  
CTI_C_TH.6  
CTI_C_TH.5  
CTI_C_TH.4  
CTI_C_TH.3  
CTI_C_TH.2  
CTI_C_TH.0  
CTI DNR Ctrl 4  
Lock Count  
DNR_TH.7  
FSCLE  
DNR_TH.6  
SRLS  
DNR_TH.5  
COL.2  
DNR_TH.4  
COL.1  
DNR_TH.3  
COL.0  
DNR_TH.2  
CIL.2  
DNR_TH.1  
CIL.1  
DNR_TH.0  
CIL.0  
Reserved  
Free Run Line  
Length 1  
LLC_PAD_SEL.2  
LLC_PAD_SEL.1  
LLC_PAD_SEL.0  
Reserved  
VBI Info  
CGMSD  
EDTVD  
CCAPD  
WSSD  
WSS 1  
WSS1.7  
WSS1.6  
WSS1.5  
WSS1.4  
WSS1.3  
WSS1.2  
WSS1.1  
WSS1.0  
WSS 2  
WSS2.7  
WSS2.6  
WSS2.5  
WSS2.4  
WSS2.3  
WSS2.2  
WSS2.1  
WSS2.0  
EDTV 1  
EDTV1.7  
EDTV2.7  
EDTV3.7  
CGMS1.7  
CGMS2.7  
CGMS3.7  
CCAP1.7  
CCAP2.7  
LB_LCT.7  
LB_LCM.7  
LB_LCB.7  
EDTV1.6  
EDTV2.6  
EDTV3.6  
CGMS1.6  
CGMS2.6  
CGMS3.6  
CCAP1.6  
CCAP2.6  
LB_LCT.6  
LB_LCM.6  
LB_LCB.6  
EDTV1.5  
EDTV2.5  
EDTV3.5  
CGMS1.5  
CGMS2.5  
CGMS3.5  
CCAP1.5  
CCAP2.5  
LB_LCT.5  
LB_LCM.5  
LB_LCB.5  
EDTV1.4  
EDTV2.4  
EDTV3.4  
CGMS1.4  
CGMS2.4  
CGMS3.4  
CCAP1.4  
CCAP2.4  
LB_LCT.4  
LB_LCM.4  
LB_LCB.4  
EDTV1.3  
EDTV2.3  
EDTV3.3  
CGMS1.3  
CGMS2.3  
CGMS3.3  
CCAP1.3  
CCAP2.3  
LB_LCT.3  
LB_LCM.3  
LB_LCB.3  
EDTV1.2  
EDTV2.2  
EDTV3.2  
CGMS1.2  
CGMS2.2  
CGMS3.2  
CCAP1.2  
CCAP2.2  
LB_LCT.2  
LB_LCM.2  
LB_LCB.2  
EDTV1.1  
EDTV2.1  
EDTV3.1  
CGMS1.1  
CGMS2.1  
CGMS3.1  
CCAP1.1  
CCAP2.1  
LB_LCT.1  
LB_LCM.1  
LB_LCB.1  
EDTV1.0  
EDTV2.0  
EDTV3.0  
CGMS1.0  
CGMS2.0  
CGMS3.0  
CCAP1.0  
CCAP2.0  
LB_LCT.0  
LB_LCM.0  
LB_LCB.0  
EDTV 2  
EDTV 3  
CGMS 1  
CGMS 2  
CGMS 3  
CCAP 1  
CCAP 2  
Letterbox 1  
Letterbox 2  
Letterbox 3  
Reserved  
CRC Enable  
Reserved  
ADC Switch 1  
ADC Switch 2  
Reserved  
CRC_ENABLE  
ADC1_SW.3  
ADC1_SW.2  
LB_SL.2  
ADC1_SW.1  
LB_SL.1  
ADC1_SW.0  
ADC0_SW.3  
ADC2_SW.3  
ADC0_SW.2  
ADC2_SW.2  
ADC0_SW.1  
ADC2_SW.1  
ADC0_SW.0  
ADC2_SW.0  
ADC_SW_M AN  
Letterbox  
Control 1  
LB_TH.4  
LB_SL.0  
LB_TH.3  
LB_EL.3  
LB_TH.2  
LB_EL.2  
LB_TH.1  
LB_EL.1  
LB_TH.0  
LB_EL.0  
Letterbox  
Control 2  
LB_SL.3  
Reserved  
Reserved  
Reserved  
Rev. B | Page 66 of 104  
ADV7189B  
Register Name  
SD Offset Cb  
SD Offset Cr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SD_OFF_CB.7  
SD_OFF_CR.7  
SD_SAT_CB.7  
SD_OFF_CB.6  
SD_OFF_CR.6  
SD_SAT_CB.6  
SD_OFF_CB.5  
SD_OFF_CR.5  
SD_SAT_CB.5  
SD_OFF_CB.4  
SD_OFF_CR.4  
SD_SAT_CB.4  
SD_OFF_CB.3  
SD_OFF_CR.3  
SD_SAT_CB.3  
SD_OFF_CB.2  
SD_OFF_CR.2  
SD_SAT_CB.2  
SD_OFF_CB.1  
SD_OFF_CR .1  
SD_SAT_CB.1  
SD_OFF_CB.0  
SD_OFF_CR.0  
SD_SAT_CB.0  
SD Saturation  
Cb  
SD Saturation  
Cr  
SD_SAT_CR.7  
NVBEGDEL O  
SD_SAT_CR.6  
NVBEGDEL E  
SD_SAT_CR.5  
NVBEGSIGN  
SD_SAT_CR.4  
NVBEG.4  
SD_SAT_CR.3  
NVBEG.3  
SD_SAT_CR.2  
NVBEG.2  
SD_SAT_CR.1  
NVBEG.1  
SD_SAT_CR.0  
NVBEG.0  
NTSC V Bit  
Begin  
NTSC V Bit End  
NVENDDEL O  
NFTOGDEL O  
NVENDDEL E  
NFTOGDEL E  
NVENDSIGN  
NFTOGSIGN  
NVEND.4  
NFTOG.4  
NVEND.3  
NFTOG.3  
NVEND.2  
NFTOG.2  
NVEND.1  
NFTOG.1  
NVEND.0  
NFTOG.0  
NTSC F Bit  
Toggle  
PAL V Bit Begin  
PAL V Bit End  
PAL F Bit Toggle  
Reserved  
PVBEGDEL O  
PVENDDEL O  
PFTOGDEL O  
PVBEGDEL E  
PVENDDEL E  
PFTOGDEL E  
PVBEGSIGN  
PVENDSIGN  
PFTOGSIGN  
PVBEG.4  
PVEND.4  
PFTOG.4  
PVBEG.3  
PVEND.3  
PFTOG.3  
PVBEG.2  
PVEND.2  
PFTOG.2  
PVBEG.1  
PVEND.1  
PFTOG.1  
PVBEG.0  
PVEND.0  
PFTOG.0  
Drive Strength  
Reserved  
DR_STR.1  
DR_STR.0  
DR_STR_C.1  
DR_STR_C.0  
IFFILTSEL.2  
DR_STR_S.1  
IFFILTSEL.1  
DR_STR_S.0  
IFFILTSEL.0  
IF Comp Control  
VS Mode  
Control  
VS_COAST_  
MODE.1  
VS_COAST_  
MODE.0  
EXTEND_VS_  
MIN_FREQ  
EXTEND_VS_  
MAX_FREQ  
I2C REGISTER MAP DETAILS  
The following registers are located in the Common I2C Register Maps and Register Access sections, Page 2.  
Table 84. Interrupt (Page 2) Register Map Details1  
F
Subaddress  
Reset  
Value  
Register Name  
rw  
7
6
5
4
3
2
1
0
Dec  
Hex  
Interrupt Config 0  
0001  
x000  
rw  
64  
0x40  
INTRQ_DU  
R_SEL.1  
INTRQ_  
DUR_SEL.0  
MV_INTRQ  
_SEL.1  
MV_INTRQ  
_SEL.0  
MPU_STIM  
_INTRQ  
INTRQ_OP  
_SEL.1  
INTRQ_OP  
_SEL.0  
Reserved  
65  
66  
0x41  
0x42  
Interrupt Status 1  
r
MV_PS_  
CS_Q  
SD_FR_  
CHNG_Q  
SD_  
UNLOCK_Q  
SD_LOCK_  
Q
SD_UNLOCK  
_CLR  
Interrupt Clear 1  
Interrupt Mask b1  
x000  
0000  
w
rw  
67  
6±  
0x43  
0x44  
MV_PS_  
CS_CLR  
SD_FR_CH  
NG_CLR  
SD_LOCK_  
CLR  
SD_UNLOCK  
_MSKB  
x000  
0000  
MV_PS_  
CS_MSKB  
SD_FR_CH  
NG_MSKB  
SD_LOCK_  
MSKB  
Reserved  
69  
70  
0x45  
0x46  
Interrupt Status 2  
r
MPU_STIM  
_INTRQ_Q  
WSS_CHN  
GD_Q  
CGMS_  
CHNGD_Q  
GEMD_Q  
CCAPD_Q  
Interrupt Clear 2  
Interrupt Mask b2  
0xxx  
0000  
w
71  
72  
0x47  
0x4±  
MPU_STIM  
_INTRQ_  
CLR  
WSS_  
CHNGD_  
CLR  
CGMS_  
CHNGD_  
CLR  
GEMD_CLR  
CCAPD_  
CLR  
0xxx  
0000  
rw  
MPU_  
STIM_INTR  
Q_MSKB  
WSS_  
CHNGD_  
MSKB  
CGMS_  
CHNGD_  
MSKB  
GEMD_  
MSKB  
CCAPD_  
MSKB  
SD_H_LOCK  
Raw Status 3  
r
73  
74  
75  
0x49  
0x4A  
0x4B  
SCM_LOCK  
SD_V_LOCK  
SD_OP_  
50HZ  
PAL_SW_LK  
_CHNG_Q  
SD_H_LOCK  
_CHNG_Q  
SD_V_LOCK  
_CHNG_Q  
Interrupt Status 3  
Interrupt Clear 3  
r
SCM_LOCK  
_CHNG_Q  
SD_AD_  
CHNG_Q  
SD_OP_  
CHNG_Q  
xx00  
0000  
w
PAL_SW_L  
K_CHNG_  
CLR  
SCM_LOCK  
_CHNG_  
CLR  
SD_AD_CH  
NG_CLR  
SD_H_  
LOCK_  
CHNG_CLR  
SD_V_LOCK SD_OP_  
_CHNG_  
CLR  
CHNG_CLR  
SD_H_  
LOCK_  
CHNG_MSKB  
SD_V_  
LOCK_  
CHNG_MSKB  
SD_OP_  
CHNG_MSKB  
Interrupt Mask b3  
xx00  
0000  
rw  
76  
0x4C  
PAL_SW_  
LK_CHNG_  
MSKB  
SCM_LOCK  
_CHNG_  
MSKB  
SD_AD_  
CHNG_  
MSKB  
1 To access the interrupt register map, the register access page[1:0] bits in register address 0x0E must be programmed to 01b.  
Rev. B | Page 67 of 104  
 
ADV7189B  
I2C INTERRUPT REGISTER MAP  
The following registers are located in Register Access Page 2.  
Table 85. Interrupt (Page 2) Register Map Details  
Bit  
3
Subaddress Register  
Bit Description  
7
6
5
4
2
1
0
0
1
1
0
0
1
0
1
Comments  
Notes  
0x40  
Interrupt  
Config 1  
INTRQ_OP_SEL[1:0].  
Interrupt Drive Level Select  
Open drain  
Drive low when active  
Drive high when active  
Reserved  
Register  
Access  
Page 2  
MPU_STIM_INTRQ[1:0].  
Manual Interrupt Set Mode  
0
1
Manual interrupt mode disabled  
Manual interrupt mode enabled  
Not used  
Reserved  
x
MV_INTRQ_SEL[1:0].  
Macrovision Interrupt Select  
0
0
1
1
0
1
0
1
Reserved  
Pseudo sync only  
Color stripe only  
Pseudo sync or color stripe  
3 Xtal periods  
INTRQ_DUR_SEL[1:0].  
Interrupt Duration Select  
0
0
1
1
x
0
1
0
1
x
15 Xtal periods  
63 Xtal periods  
Active until cleared  
0x41  
0x42  
Reserved  
x
x
x
x
x
x
0
1
Interrupt  
Status 1  
SD_LOCK_Q  
No change  
These bits  
can be  
SD input has caused the  
decoder to go from an unlocked  
state to a locked state  
cleared or  
masked in  
Register  
0x43 and  
Register  
0x44,  
Read-Only  
SD_UNLOCK_Q  
0
1
No change  
SD input has caused the  
decoder to go from a locked  
state to an unlocked state  
Register  
Access  
Page 2  
respectively.  
Reserved  
x
Reserved  
x
Reserved  
x
SD_FR_CHNG_Q  
0
1
No change  
Denotes a change in the free-  
run status  
MV_PS_CS_Q  
0
1
No change  
Pseudo sync / color striping  
detected. See Reg 0x40  
MV_INTRQ_SEL[1:0] for  
selection  
Reserved  
x
0x43  
Interrupt  
Clear 1  
SD_LOCK_CLR  
0
1
Do not clear  
Clears SD_LOCK_Q bit  
Do not clear  
SD_UNLOCK_CLR  
0
1
Write-Only  
Clears SD_UNLOCK_Q bit  
Not used  
Reserved  
0
Register  
Access  
Page 2  
Reserved  
0
Not used  
Reserved  
0
Not used  
SD_FR_CHNG_CLR  
0
1
Do not clear  
Clears SD_FR_CHNG_Q bit  
Do not clear  
MV_PS_CS_CLR  
Reserved  
0
1
Clears MV_PS_CS_Q bit  
Not used  
x
Rev. B | Page 6± of 104  
 
ADV7189B  
Bit  
3
Subaddress Register  
Bit Description  
7
6
5
4
2
1
0
0
1
Comments  
Notes  
0x44  
Interrupt  
Mask 1  
SD_LOCK_MSKB  
Masks SD_LOCK_Q bit  
Unmasks SD_LOCK_Q bit  
Masks SD_UNLOCK_Q bit  
Unmasks SD_UNLOCK_Q bit  
Not used  
SD_UNLOCK_MSKB  
0
1
Read/Write  
Register  
Reserved  
0
Reserved  
0
Not used  
Register  
Access  
Page 2  
Reserved  
0
x
Not used  
SD_FR_CHNG_MSKB  
0
1
Masks SD_FR_CHNG_Q bit  
Unmasks SD_FR_CHNG_Q bit  
Masks MV_PS_CS_Q bit  
Unmasks MV_PS_CS_Q bit  
Not used  
MV_PS_CS_MSKB  
Reserved  
0
1
x
x
0x45  
0x46  
Reserved  
x
x
x
x
x
x
Interrupt  
Status 2  
CCAPD_Q  
0
Closed captioning not detected  
in the input video signal  
These bits  
can be  
cleared or  
masked by  
Register  
0x47 and  
Register  
1
Closed captioning data  
detected in the video input  
signal  
Read-Only  
Register  
GEMD_Q  
0
1
Gemstar data not detected in  
the input video signal  
Register  
Access  
Page 2  
0x4±,  
respectively.  
Gemstar data detected in the  
input video signal  
CGMS_CHNGD_Q  
0
1
No change detected in CGMS  
data in the input video signal  
A change is detected in the  
CGMS data in the input video  
signal  
WSS_CHNGD_Q  
0
1
No change detected in WSS  
data in the input video signal  
A change is detected in the WSS  
data in the input video signal  
Reserved  
x
Not used  
Reserved  
x
Not used  
Reserved  
x
Not used  
MPU_STIM_INTRQ_Q  
0
1
Manual interrupt not set  
Manual interrupt set  
Do not clear  
0x47  
Interrupt  
Clear 2  
CCAPD_CLR  
0
1
Clears CCAPD_Q bit  
Do not clear  
GEMD_CLR  
0
1
Write-Only  
Clears GEMD_Q bit  
Do not clear  
CGMS_CHNGD_CLR  
WSS_CHNGD_CLR  
0
1
Register  
Access  
Page 2  
Clears CGMS_CHNGD_Q bit  
Do not clear  
0
1
Clears WSS_CHNGD_Q bit  
Not used  
Reserved  
x
Reserved  
x
Not used  
Reserved  
x
Not used  
MPU_STIM_INTRQ_CLR  
0
1
Do not clear  
Clears MPU_STIM_INTRQ_Q bit  
Rev. B | Page 69 of 104  
ADV7189B  
Bit  
3
Subaddress Register  
Bit Description  
7
6
5
4
2
1
0
0
1
Comments  
Notes  
0x4±  
Interrupt  
Mask 2  
CCAPD_MSKB  
Masks CCAPD_Q bit  
Unmasks CCAPD_Q bit  
Masks GEMD_Q bit  
Unmasks GEMD_Q bit  
Masks CGMS_CHNGD_Q bit  
Unmasks CGMS_CHNGD_Q bit  
Masks WSS_CHNGD_Q bit  
Unmasks WSS_CHNGD_Q bit  
Not used  
GEMD_MSKB  
0
1
Read/  
Write  
CGMS_CHNGD_MSKB  
WSS_CHNGD_MSKB  
0
1
Register  
Access  
Page 2  
0
1
Reserved  
0
Reserved  
0
Not used  
Reserved  
0
Not used  
MPU_STIM_INTRQ_MSKB  
0
1
Masks MPU_STIM_INTRQ_Q bit  
Unmasks MPU_STIM_INTRQ_Q  
bit  
0x49  
Raw Status  
3
SD_OP_50Hz  
SD 60/50Hz frame rate at  
output  
0
1
SD 60 Hz signal output  
SD 50 Hz signal output  
These bits  
cannot be  
cleared or  
masked.  
Register  
0x4A is used  
for this  
Read Only  
Register  
SD_V_LOCK  
0
1
SD vertical sync lock not  
established  
SD vertical sync lock  
established  
Register  
Access  
Page 2  
purpose.  
SD_H_LOCK  
0
1
SD horizontal sync lock not  
established  
SD horizontal sync lock  
established  
Reserved  
x
Not used  
SCM_LOCK  
SECAM Lock  
Reserved  
0
1
SECAM lock not established  
SECAM lock established  
Not used  
x
Reserved  
x
Not used  
Reserved  
x
Not used  
0x4A  
Interrupt  
Status 3  
SD_OP_CHNG_Q  
SD 60/50 Hz frame rate at  
input  
0
1
No change in SD signal standard These bits  
detected at the input  
can be  
cleared and  
masked by  
Register  
0x4B and  
Register  
A change in SD signal standard  
is detected at the input  
Read Only  
Register  
SD_V_LOCK_CHNG_Q  
0
1
No change in SD vertical sync  
lock status  
SD vertical sync lock status has  
changed.  
Register  
Access  
Page 2  
0x4C,  
respectively.  
SD_H_LOCK_CHNG_Q  
0
1
No change in SD horizontal sync  
lock status  
SD horizontal sync lock status  
has changed  
SD_AD_CHNG_Q  
SD autodetect changed  
x
No change in AD_RESULT[2:0]  
bits in Status Register 1  
AD_RESULT[2:0] bits in Status  
Register 1 have changed  
SCM_LOCK_CHNG_Q  
SECAM Lock  
0
1
No change in SECAM lock status  
SECAM lock status has changed  
PAL_SW_LK_CHNG_Q  
x
No change in PAL swinging  
burst lock status  
PAL swinging burst lock status  
has changed  
Reserved  
Reserved  
x
Not used  
Not used  
x
Rev. B | Page 70 of 104  
ADV7189B  
Bit  
3
Subaddress Register  
Bit Description  
7
6
5
4
2
1
0
0
1
Comments  
Notes  
0x4B  
Interrupt  
Clear 3  
SD_OP_CHNG_CLR  
Do not clear  
Clears SD_OP_CHNG_Q bit  
Do not clear  
SD_V_LOCK_CHNG_CLR  
SD_H_LOCK_CHNG_CLR  
SD_AD_CHNG_CLR  
0
1
Write Only  
Register  
Clears SD_V_LOCK_CHNG_Q bit  
Do not clear  
0
1
Clears SD_H_LOCK_CHNG_Q bit  
Do not clear  
Register  
Access  
Page 2  
0
1
Clears SD_AD_CHNG_Q bit  
Do not clear  
SCM_LOCK_CHNG_CLR  
PAL_SW_LK_CHNG_CLR  
0
1
Clears SCM_LOCK_CHNG_Q bit  
Do not clear  
0
1
Clears PAL_SW_LK_CHNG_Q bit  
Not used  
Reserved  
x
Reserved  
x
Not used  
0x4C  
Interrupt  
Mask 2  
SD_OP_CHNG_MSKB  
0
1
Masks SD_OP_CHNG_Q bit  
Unmasks SD_OP_CHNG_Q bit  
Masks SD_V_LOCK_CHNG_Q bit  
SD_V_LOCK_CHNG_ MSKB  
SD_H_LOCK_CHNG_ MSKB  
0
1
Read /  
Write  
Register  
Unmasks SD_V_LOCK_CHNG_Q  
bit  
0
1
Masks SD_H_LOCK_CHNG_Q bit  
Unmasks SD_H_LOCK_CHNG_Q  
bit  
Register  
Access  
Page 2  
SD_AD_CHNG_ MSKB  
0
1
Masks SD_AD_CHNG_Q bit  
Unmasks SD_AD_CHNG_Q bit  
Masks SCM_LOCK_CHNG_Q bit  
SCM_LOCK_CHNG_ MSKB  
0
1
Unmasks SCM_LOCK_CHNG_Q  
bit  
PAL_SW_LK_CHNG_ MSKB  
0
1
Masks PAL_SW_LK_CHNG_Q bit  
Unmasks PAL_SW_LK_CHNG_Q  
bit  
Reserved  
Reserved  
x
Not used  
Not used  
x
Rev. B | Page 71 of 104  
ADV7189B  
The following registers are located in the Common I2C Map and Register Access Page 1.  
Table 86. Common and Normal (Page 1) Register Map Details  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
0
0
0
0
0
0
0
0
1
1
2
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
Comments  
Notes  
0x00  
Input  
Control  
INSEL[3:0]. The INSEL bits allow the  
user to select an input channel as  
well as the input format.  
CVBS in on AIN1  
CVBS in on AIN2  
CVBS in on AIN3  
CVBS in on AIN4  
CVBS in on AIN5  
CVBS in on AIN6  
Y on AIN1, C on AIN4  
Y on AIN2, C on AIN5  
Y on AIN3, C on AIN6  
Composite  
S-Video  
YPbPr  
Y on AIN1, Pb on AIN4, Pr  
on AIN5  
1
0
1
0
Y on AIN2, Pb on AIN3, Pr  
on AIN6  
1
1
1
1
1
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
CVBS in on AIN7  
CVBS in on AIN±  
CVBS in on AIN9  
CVBS in on AIN10  
CVBS in on AIN11  
Composite  
VID_SEL[3:0]. The VID_SEL bits  
allow the user to select the input  
video standard.  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
Auto-detect PAL (BGHID),  
NTSC J (without pedestal),  
SECAM  
Auto-detect PAL (BGHID),  
NTSC M (with pedestal),  
SECAM  
Auto-detect PAL (N), NTSC  
J, SECAM (PAL with  
pedestal)  
Auto-detect PAL (N), NTSC  
M, SECAM (PAL and NTSC  
with pedestal)  
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
1
0
1
0
1
NTSC(J)  
NTSC(M)  
PAL 60  
NTSC 4.43  
PAL BGHID  
PAL N (BGHID without  
pedestal)  
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
PAL M (without pedestal)  
PAL M  
PAL combination N  
PAL combination N  
SECAM (with pedestal)  
SECAM (with pedestal)  
Rev. B | Page 72 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
Reserved  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x01  
Video  
0
0
0
Set to default  
Selection  
ENVSPROC  
0
1
Disable Vsync processor  
Enable Vsync processor  
Set to default  
Reserved  
BETACAM  
0
0
1
Standard video input  
Betacam input enable  
Disable Hsync processor  
Enable Hsync processor  
Set to default  
ENHSPLL  
0
1
Reserved  
1
0x03  
Output  
Control  
SD_DUP_AV. Duplicates the AV  
codes from the luma into the  
chroma path.  
0
1
AV codes to suit ±-bit  
interleaved data output  
AV codes duplicated (for  
16-bit interfaces)  
Reserved  
0
Set as default  
OF_SEL[3:0]. Allows the user to  
choose from a set of output  
formats.  
0
0
0
0
10-bit @ LLC1 4:2:2  
ITU-R BT.656  
0
0
0
0
0
0
0
1
1
1
0
1
20-bit @ LLC1 4:2:2  
16-bit @ LLC1 4:2:2  
±-bit @ LLC1 4:2:2  
ITU-R BT.656  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Output pins enabled  
TOD. Three-State Output Drivers.  
This bit allows the user to three-  
state the output drivers: P[19:0], HS,  
VS, FIELD, and SFL.  
0
1
See also TIM_OE and  
TRI_LLC  
Drivers three-stated  
VBI_EN. Allows VBI data (Lines 1 to  
21) to be passed through with only  
a minimum amount of filtering  
performed.  
0
1
All lines filtered and scaled  
Only active video region  
filtered  
0x04  
Extended  
Output  
Control  
RANGE. Allows the user to select  
the range of output values. Can be  
BT656-compliant, or can fill the  
whole accessible number range.  
0
1
16 < Y < 235, 16 < C < 240  
1 < Y < 254, 1 < C < 254  
ITU-R BT.656  
Extended range  
EN_SFL_PIN  
0
1
SFL output is disabled  
SFL output enables  
encoder and decoder  
to be connected  
directly.  
SFL information output on  
the SFL pin  
BL_C_VBI. Blank Chroma during  
VBI. If set, enables data in the VBI  
region to be passed through the  
decoder undistorted.  
0
1
Decode and output color  
Blank Cr and Cb  
During VBI  
TIM_OE. Timing signals output  
enable.  
0
1
HS, VS, F three-stated  
HS, VS, F forced active  
Controlled by TOD  
Reserved  
Reserved  
x
x
1
BT656-4. Allows the user to select  
an output mode compatible with  
ITU-R BT656-3/4.  
0
1
BT656-3-compatible  
BT656-4-compatible  
Rev. B | Page 73 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
0
1
Comments  
Disable  
Notes  
Autodetect  
Enable  
0x07  
AD_PAL_EN. PAL B/G/I/H  
autodetect enable.  
Enable  
AD_NTSC_EN. NTSC autodetect  
enable.  
0
1
Disable  
Enable  
Disable  
AD_PALM_EN. PAL M autodetect  
enable.  
0
1
Enable  
Disable  
AD_PALN_EN. PAL N autodetect  
enable.  
0
1
Enable  
Disable  
AD_P60_EN. PAL 60 autodetect  
enable.  
0
1
Enable  
Disable  
AD_N443_EN. NTSC443 autodetect  
enable.  
0
1
Enable  
Disable  
AD_SECAM_EN. SECAM autodetect  
enable.  
0
1
Enable  
Disable  
AD_SEC525_EN. SECAM 525  
autodetect enable.  
0
1
1
Enable  
0x0±  
Contrast  
Register  
CON[7:0]. Contrast adjust. This is  
the user control for contrast  
adjustment.  
0
0
0
0
0
0
0
Luma gain = 1  
0x00 Gain = 0  
0x±0 Gain = 1;  
0xFF Gain = 2  
0x09  
0x0A  
Reserved  
Reserved  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Brightness  
Register  
BRI[7:0]. This register controls the  
brightness of the video signal.  
0x00 = 0IRE  
0x7F = +100IRE  
0x±0 = –100IRE  
0x0B  
0x0C  
Hue  
Register  
HUE[7:0]. This register contains the  
value for the color hue adjustment.  
0
0
0
0
0
0
0
0
0
1
Hue range =  
–90° to +90°  
Default  
Value Y  
DEF_VAL_EN. Default value enable.  
DEF_VAL_AUTO_EN. Default value.  
Free-run mode dependent  
on DEF_VAL_AUTO_EN  
Force Free-run mode on  
and output blue screen  
0
1
Disable Free-run mode  
When lock is lost,  
Free-run mode can  
be enabled to output  
stable timing, clock,  
and a set color.  
Enable Automatic Free-  
run mode (blue screen)  
DEF_Y[5:0]. Default value Y. This  
register holds the Y default value.  
0
0
0
1
1
1
1
1
0
1
1
1
Y[7:0] = {DEF_Y[5:0],0, 0}  
Default Y value  
output in Free-run  
mode.  
0x0D  
0x0E  
Default  
Value C  
DEF_C[7:0]. Default value C. The Cr  
and Cb default values are defined  
in this register.  
0
0
0
0
Cr[7:0] = DEF_C[7:4],0, 0, 0, Default Cb/Cr value  
0}  
Cb[7:0] = DEF_C[3:0], 0, 0,  
0, 0}  
output in Free-run  
mode. Default values  
give blue screen  
output.  
ADI Control Reserved  
SUB_USR_EN. Enables the user to  
0
0
0
Set as default  
0
1
Access User Reg Map  
Access Interrupt Reg Map  
Set as default  
See Figure 3±  
access the Interrupt map.  
Reserved  
0
0
Rev. B | Page 74 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x0F  
Power  
Management  
Reserved  
0
0
Set to default  
PDBP. Power-down bit priority  
selects between PWRDN bit or PIN.  
0
1
Chip power down  
controlled by pin  
Bit has priority (pin  
disregarded)  
Reserved  
0
0
Set to default  
PWRDN. Power down places the  
decoder in a full power-down  
mode.  
0
1
System functional  
Powered down  
See PDBP, 0x0F Bit 2.  
Reserved  
0
Set to default  
RES. Chip reset loads all I2C bits  
with default values.  
0
1
Normal operation  
Start reset sequence  
Executing reset takes  
approx. 2 ms. This bit  
is self-clearing.  
0x10  
Status  
Register 1.  
IN_LOCK  
x
In lock (right now) = 1  
Lost lock (since last read) = 1  
FSC lock (right now) = 1  
Provides information  
about the internal  
status of the  
LOST_LOCK  
FSC_LOCK  
FOLLOW_PW  
x
Read-Only.  
x
decoder.  
x
Peak white AGC mode  
active = 1  
AD_RESULT[2:0]. Autodetection  
result reports the standard of the  
Input video.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
NTSM-MJ  
Detected standard.  
NTSC-443  
PAL-M  
PAL-60  
PAL-BGHID  
SECAM  
PAL combination N  
SECAM 525  
Color kill is active = 1  
COL_KILL.  
x
x
Color kill.  
0x11  
0x12  
IDENT  
IDENT[7:0] Provides identification  
on the revision of the part.  
x
x
x
x
x
x
x
x
x
x
x
ADV71±9B = 0x13  
Read-Only  
Status  
MVCS DET  
MVCS T3  
MV color striping detected 1 = Detected  
Register 2.  
Read-Only.  
MV color striping type  
0 = Type 2,  
1 = Type 3  
MV PS DET  
MV AGC DET  
LL NSTD  
MV pseudo sync detected  
MV AGC pulses detected  
Nonstandard line length  
1 = Detected  
1 = Detected  
1 = Detected  
1 = Detected  
x
FSC NSTD  
x
Fsc frequency  
nonstandard  
Reserved  
x
x
0x13  
Status  
Register 3.  
Read-Only.  
INST_HLOCK  
x
1 = horizontal lock  
achieved  
Unfiltered  
GEMD  
x
1 = Gemstar data detected  
SD 60 Hz detected  
SD_OP_50HZ  
Reserved  
x
SD Field rate detect  
Blue screen output  
x
SD 50 Hz detected  
FREE_RUN_ACT  
STD FLD_LEN  
x
1 = Free-run mode active  
1 = Field length standard  
x
Correct Field length  
found  
INTERLACED  
PAL_SW_LOCK  
Reserved  
x
1 = Interlaced video  
detected  
Field sequence found  
x
1 = Swinging burst  
detected  
Reliable swinging  
burst sequence  
0x14  
Analog  
Clamp  
Control  
0
0
1
0
Set to default  
CCLEN. Current clamp enable  
allows the user to switch off the  
current sources in the analog front.  
0
1
Current sources switched  
off  
Current sources enabled  
Set to default  
Reserved  
0
0
0
Rev. B | Page 75 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x15  
Digital  
Clamp  
Control 1  
Reserved  
0
x
x
x
x
Set to default  
DCT[1:0]. Digital clamp timing  
determines the time constant of  
the digital fine clamp circuitry.  
0
0
1
1
0
1
0
1
Slow (TC = 1 sec)  
Medium (TC = 0.5 sec)  
Fast (TC = 0.1 sec)  
TC dependent on video  
Set to default  
Reserved  
0
0x17  
Shaping  
Filter  
Control  
YSFM[4:0]. Selects Y-Shaping Filter  
mode when in CVBS only mode.  
0
0
0
0
0
0
0
0
0
1
Auto wide notch for poor  
quality sources or wide-  
band filter with Comb for  
good quality input  
Auto narrow notch for  
poor quality sources or  
wideband filter with comb  
for good quality input  
SVHS 1  
SVHS 2  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
SVHS 7  
SVHS ±  
SVHS 9  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 1± (CCIR601)  
PAL NN1  
PAL NN2  
PAL NN3  
PAL WN 1  
PAL WN 2  
NTSC NN1  
NTSC NN2  
NTSC NN3  
NTSC WN1  
NTSC WN2  
NTSC WN3  
Reserved  
Auto selection 15 MHz  
Auto selection 2.17 MHz  
Decoder selects  
optimum Y-shaping  
filter depending on  
CVBS quality.  
Allows the user to select a wide  
range of low-pass and notch filters.  
If either auto mode is selected, the  
decoder selects the optimum Y  
filter depending on the CVBS video  
source quality (good vs. bad).  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
If one of these modes  
is selected, the  
decoder does not  
change filter modes.  
Depending on video  
quality, a fixed filter  
response (the one  
selected) is used for  
good and bad quality  
video.  
CSFM[2:0].  
0
0
0
0
0
1
Automatically selects  
a C filter for the  
specified bandwidth.  
C-Shaping Filter mode allows the  
selection from a range of low-pass  
chrominance filters, SH1to SH5, and  
wideband mode.  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
SH1  
SH2  
SH3  
SH4  
SH5  
Wideband mode  
Rev. B | Page 76 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
0
0
0
0
0
0
2
0
0
0
0
1
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
Comments  
Reserved. Do not use.  
Reserved. Do not use.  
SVHS 1  
Notes  
0x1±  
Shaping  
Filter  
Control 2  
WYSFM[4:0]. Wideband Y-Shaping  
Filter mode allows the user to  
select which Y-shaping filter is used  
for the Y component of Y/C, YPbPr,  
B/W input signals; it is also used  
when a good quality input CVBS  
signal is detected. For all other  
inputs, the Y-shaping filter chosen  
is controlled by YSFM[4:0].  
0
0
0
0
0
0
SVHS 2  
SVHS 3  
SVHS 4  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
~
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
~
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
~
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
~
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
~
1
SVHS 5  
SVHS 6  
SVHS 7  
SVHS ±  
SVHS 9  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 1± (CCIR 601)  
Reserved. Do not use.  
Reserved. Do not use.  
Reserved. Do not use.  
Reserved  
0
0
Set to default  
WYSFMOVR. Enables the use of  
automatic WYSFN filter.  
0
1
Auto selection of  
best filter  
Manual select filter  
using WYSFM[4:0]  
0x19  
Comb Filter PSFSEL[1:0]. Controls the signal  
0
0
1
1
0
1
0
1
Narrow  
Control  
bandwidth that is fed to the comb  
filters (PAL).  
Medium  
Wide  
Widest  
NSFSEL[1:0]. Controls the signal  
bandwidth that is fed to the comb  
filters (NTSC).  
0
0
1
1
0
1
0
1
Narrow  
Medium  
Medium  
Wide  
Reserved  
1
1
1
1
0
Set as default  
Set to default  
Enabled  
0x1D  
ADI Control Reserved  
2
0
x
x
x
VS_JIT_COMP_EN  
0
1
Disabled  
EN2±XTAL  
TRI_LLC  
0
1
Use 27 MHz crystal  
Use 2± MHz crystal  
LLC pin active  
0
1
LLC pin three-stated  
Rev. B | Page 77 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x27  
Pixel Delay  
Control  
LTA[1:0]. Luma timing adjust allows  
the user to specify a timing  
difference between chroma and  
luma samples.  
0
0
No delay  
CVBS mode  
LTA[1:0] = 00b;  
S-Video mode  
LTA[1:0] = 01b;PrPb  
mode LTA[1:0] = 01b  
1
1
0
0
Luma 1 clk (37ns) delayed  
Luma 2 clk (74ns) early  
1
1
Luma 1 clk (37ns) early  
Reserved  
0
Set to 0  
CTA[2:0]. Chroma timing adjust  
allows a specified timing difference  
between the luma and chroma  
samples  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Not valid setting  
CVBS mode  
CTA[2:0] = 011b  
Chroma +2 pixels (early)  
Chroma +1 pixel (early)  
No delay  
S-Video mode  
CTA[2:0] = 101b  
Chroma −1 pixel (late)  
Chroma −2 pixels (late)  
Chroma −3 pixels (late)  
Not valid setting  
YPrPb mode  
CTA[2:0] = 110b  
AUTO_PDC_EN. Automatically  
programs the LTA/CTA values so  
that luma and chroma are aligned  
at the output for all modes of  
operation.  
0
1
Use values in LTA[1:0] and  
CTA[2:0] for delaying  
luma/chroma  
LTA and CTA values  
determined automatically  
SWPC. Allows the Cr and Cb  
samples to be swapped.  
0
1
No swapping  
Swap the Cr and Cb O/P  
samples  
0x2B  
Misc Gain  
Control  
PW_UPD. Peak white update  
determines the rate of gain.  
0
1
Update once per video  
line  
Peak white must  
be enabled.  
See LAGC[2:0]  
Update once per field  
Reserved  
1
0
0
0
0
Set to default  
CKE. Color kill enable allows the  
color kill function to be switched  
on and off.  
0
1
Color kill disabled  
Color kill enabled  
For SECAM color kill,  
threshold is set at  
±%.  
See CKILLTHR[2:0]  
Reserved  
1
Set to default  
0x2C  
AGC Mode  
Control  
CAGC[1:0]. Chroma automatic gain  
control selects the basic mode of  
operation for the AGC in the  
chroma path.  
0
0
1
1
0
1
0
1
Manual fixed gain  
Use luma gain for chroma  
Automatic gain  
Freeze chroma gain  
Set to 1  
Use CMG[11:0]  
Based on color burst  
Reserved  
1
1
LAGC[2:0]. Luma automatic gain  
control selects the mode of  
operation for the gain control in  
the luma path.  
0
0
0
0
0
1
Manual fixed gain  
Use LMG[11:0]  
AGC Peak white algorithm  
off  
Blank level to sync tip  
0
1
0
AGC Peak white algorithm  
on.  
Blank level to sync tip  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
Reserved  
Reserved  
Reserved  
Reserved  
Freeze gain  
Set to 1  
Reserved  
1
Rev. B | Page 7± of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x2D  
Chroma  
Gain  
Control 1  
CMG[11:±]. Chroma manual gain  
can be used to program a desired  
manual chroma gain. Reading back  
from this register in AGC mode  
gives the current gain.  
0
1
0
0
CAGC[1:0] settings  
decide in which  
mode CMG[11:0]  
operates  
Reserved  
1
0
1
0
Set to 1  
CAGT[1:0]. Chroma automatic gain  
timing allows adjustment of the  
chroma AGC tracking speed.  
0
0
1
1
0
0
1
0
1
0
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Fast (TC = 0.2 sec)  
Adaptive  
Has an effect only if  
CAGC[1:0] is set to  
auto gain (10)  
0x2E  
0x2F  
Chroma  
Gain  
Control 2  
CMG[7:0]. Chroma manual gain  
lower ± bits. See CMG[11:±] for  
description.  
0
x
0
x
0
x
0
x
CMG[11:0] = 750d; gain is  
1 in NTSC  
CMG[11:0] = 741d; gain is  
1 in PAL  
Min value is 0 dec  
(G = –60 dB)  
Max value is 3750  
(Gain = 5)  
Luma Gain  
Control 1  
LMG[11:±]. Luma manual gain can  
be used program a desired manual  
chroma gain, or to read back the  
actual gain value used.  
LAGC[1:0] settings decide  
in which mode LMG[11:0]  
operates  
Reserved  
1
x
1
x
Set to 1  
LAGT[1:0]. Luma automatic gain  
timing allows adjustment of the  
luma AGC tracking speed.  
0
0
1
1
x
0
1
0
1
x
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Fast (TC = 0.2 sec)  
Adaptive  
Only has an effect if  
LAGC[1:0] is set to  
auto gain (001, 010,  
011, or 100)  
0x30  
0x31  
Luma Gain  
Control 2  
LMG[7:0]. Luma manual gain can be  
used to program a desired manual  
chroma gain or read back the  
actual used gain value.  
x
x
x
x
LMG[11:0] = 1234dec; gain Min value  
is 1 in NTSC LMG[11:0] =  
1266d; gain is 1 in PAL  
NTSC 1024 (G = 0.±5)  
PAL (G = 0.±1)  
Max value  
NTSC 246± (G = 2),  
PAL = 2532 (G = 2)  
VS and  
FIELD  
Control 1  
Reserved  
0
1
0
Set to default  
HVSTIM. Selects where within a line  
of video the VS signal is asserted.  
0
1
Start of line relative to HSE HSE = Hsync end  
Start of line relative to HSB HSB = Hsync begin  
NEWAVMODE. Sets the EAV/SAV  
mode.  
0
1
EAV/SAV codes generated  
to suit ADI encoders  
Manual VS/Field position  
controlled by registers  
0x32, 0x33, and 0xE5–  
0xEA  
Reserved  
Reserved  
VSBHE  
0
0
0
0
0
Set to default  
0x32  
Vsync Field  
Control 2  
0
0
0
0
1
Set to default  
NEWAVMODE bit  
must be set high.  
VS goes high in the  
middle of the line (even  
field)  
1
VS changes state at the  
start of the line (even  
field)  
VSBHO  
0
1
VS goes high in the  
middle of the line (odd  
field)  
VS changes state at the  
start of the line (odd field)  
0x33  
Vsync Field  
Control 3  
Reserved  
VSEHE  
0
0
0
1
0
0
Set to default  
0
1
VS goes low in the middle  
of the line (even field)  
NEWAVMODE bit  
must be set high.  
VS changes state at the  
start of the line (even  
field)  
VSEHO  
0
1
VS goes low in the middle  
of the line (odd field)  
VS changes state at the  
start of the line (odd field)  
Rev. B | Page 79 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x34  
HS Position  
Control 1  
HSE[10:±]. HS end allows the  
positioning of the HS output within  
the video line.  
0
0
0
HS output ends HSE[10:0]  
pixels after the falling  
edge of Hsync  
Using HSB and HSE  
the user can program  
the position and  
length of the output  
Hsync  
Reserved  
0
Set to 0  
HSB[10:±]. HS begin allows the  
positioning of the HS output within  
the video line.  
0
0
0
HS output starts HSB[10:0]  
pixels after the falling  
edge of Hsync  
Reserved  
0
0
Set to 0  
0x35  
HS Position  
Control 2  
HSB[7:0] See above, using  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
HSB[10:0] and HSE[10:0], the user  
can program the position and  
length of HS output signal.  
0x36  
0x37  
HS Position  
Control 3  
HSE[7:0] See above.  
0
Polarity  
PCLK. Sets the polarity of LLC1.  
0
1
Invert polarity  
Normal polarity as per  
timing diagrams  
Reserved  
0
0
Set to 0  
PF. Sets the FIELD polarity.  
0
1
Active high  
Active low  
Set to 0  
Reserved  
0
PVS. Sets the VS polarity.  
0
1
Active high  
Active low  
Set to 0  
Reserved  
0
PHS. Sets HS polarity.  
0
1
Active high  
Active low  
Rev. B | Page ±0 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x3±  
0
0
0
Adaptive 3-line, 3-tap  
luma  
NTSC  
Comb  
Control  
YCMN[2:0]. luma  
comb mode, NTSC.  
1
1
1
1
0
0
1
1
0
1
0
1
Use low-pass notch  
Fixed luma comb (2-line)  
Fixed luma comb (3-Line)  
Fixed luma comb (2-line)  
Top lines of memory  
All lines of memory  
Bottom lines of  
memory  
0
0
0
3-line adaptive for  
CTAPSN = 01  
CCMN[2:0]. chroma  
comb mode, NTSC.  
4-line adaptive for  
CTAPSN = 10  
5-line adaptive for  
CTAPSN = 11  
1
1
0
0
0
1
Disable chroma comb  
Fixed 2-line for  
CTAPSN = 01  
Top lines of memory  
All lines of memory  
Fixed 3-line for  
CTAPSN = 10  
Fixed 4-line for  
CTAPSN = 11  
1
1
1
1
0
1
Fixed 3-line for  
CTAPSN = 01  
Fixed 4-line for  
CTAPSN = 10  
Fixed 5-line for  
CTAPSN = 11  
Fixed 2-line for  
CTAPSN = 01  
Bottom lines of  
memory  
Fixed 3-line for  
CTAPSN = 10  
Fixed 4-line for  
CTAPSN = 11  
0
0
1
1
0
1
0
1
Adapts 3 lines – 2 lines  
Not used  
CTAPSN[1:0]. chroma  
comb taps, NTSC.  
Adapts 5 lines – 3 lines  
Adapts 5 lines – 4 lines  
Rev. B | Page ±1 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x39  
PAL Comb  
Control  
YCMP[2:0]. luma comb mode, PAL.  
0
0
0
Adaptive 5-line, 3-tap  
luma comb  
1
1
1
1
0
1
1
1
0
0
0
1
Use low-pass notch  
Fixed luma comb  
Top lines of memory  
All lines of memory  
Fixed luma comb (5-line)  
Fixed luma comb (3-line)  
Bottom lines of  
memory  
CCMP[2:0]. chroma comb mode,  
PAL.  
0
0
0
3-line adaptive for  
CTAPSN = 01  
4-line adaptive for  
CTAPSN = 10  
5-line adaptive for  
CTAPSN = 11  
1
1
0
0
0
1
Disable chroma comb  
Fixed 2-line for  
CTAPSN = 01  
Top lines of memory  
All lines of memory  
Fixed 3-line for  
CTAPSN = 10  
Fixed 4-line for  
CTAPSN = 11  
1
1
1
1
0
1
Fixed 3-line for  
CTAPSN = 01  
Fixed 4-line for  
CTAPSN = 10  
Fixed 5-line for  
CTAPSN = 11  
Fixed 2-line for  
CTAPSN = 01  
Bottom lines of  
memory  
Fixed 3-line for  
CTAPSN = 10  
Fixed 4-line for  
CTAPSN = 11  
CTAPSP[1:0]. chroma comb taps,  
PAL.  
0
0
0
1
Not used  
Adapts 5 lines – 3 lines  
(2 taps)  
1
1
0
1
Adapts 5 lines – 3 lines  
(3 taps)  
Adapts 5 lines – 4 lines  
(4 taps)  
0x3A  
Reserved  
0
Set as default  
ADC2 normal operation  
Power down ADC2  
ADC1 normal operation  
Power down ADC1  
ADC0 normal operation  
Power down ADC0  
Set as default  
Set to default  
Kill at 0.5%  
PWRDN_ADC_2. Enables power-  
down of ADC2.  
0
1
PWRDN_ADC_1. Enables power-  
down of ADC1.  
0
1
PWRDN_ADC_0. Enables power-  
down of ADC0.  
0
1
Reserved  
0
0
0
1
0x3D  
Manual  
Window  
Control  
Reserved  
0
0
1
1
CKILLTHR[2:0]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
CKE = 1 enables the  
color kill function  
and must be enabled  
for CKILLTHR[2:0] to  
take effect.  
Kill at 1.5%  
Kill at 2.5%  
Kill at 4%  
Kill at ±.5%  
Kill at 16%  
Kill at 32%  
Reserved  
Reserved  
0
Set to default  
Rev. B | Page ±2 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x41  
Resample  
Control  
Reserved  
0
1
0
0
0
0
Set to default  
SFL_INV. Controls the behavior of  
the PAL switch bit.  
0
SFL compatible with  
ADV7190/ADV7191/  
ADV7194 encoders  
1
SFL compatible with  
ADV717x/ADV7173x  
encoders  
Reserved.  
0
0
Set to default  
0x4±  
0x49  
Gemstar  
Control 1  
GDECEL[15:±]. See the Comments  
column.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GDECEL[15:0]. 16  
LSB = Line 10  
MSB = Line 25  
individual enable bits that  
select the lines of video  
(even field lines 10 to 25)  
that the decoder checks  
for Gemstar-compatible  
data.  
Default = Do not  
check for Gemstar-  
compatible data on  
any lines (10 to 25) in  
even fields  
Gemstar  
Control 2  
GDECEL[7:0]. See the Comments  
column  
0
0x4A  
0x4B  
Gemstar  
Control 3  
GDECOL[15:±]. See the Comments  
column.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GDECOL[15:0]. 16  
LSB = Line 10  
MSB = Line 25  
individual enable bits that  
select the lines of video  
(odd field lines 10 to 25)  
that the decoder checks  
for Gemstar-compatible  
data.  
Default = Do not  
check for Gemstar-  
compatible data on  
any lines (10 to 25) in  
odd fields  
Gemstar  
Control 4  
GDECOL[7:0]. See above.  
0x4C  
Gemstar  
Control 5  
GDECAD. Controls the manner in  
which decoded Gemstar data is  
inserted into the horizontal  
blanking period.  
0
1
Split data into half byte  
To avoid 00/FF code.  
Output in straight ±-bit  
format  
Reserved.  
x
x
x
x
x
x
x
Undefined  
0x4D  
CTI DNR  
Control 1  
CTI_EN. CTI enable.  
0
1
Disable CTI  
Enable CTI  
CTI_AB_EN. Enables the mixing of  
the transient improved chroma  
with the original signal.  
0
1
Disable CTI alpha blender  
Enable CTI alpha blender  
CTI_AB[1:0]. Controls the behavior  
of the alpha-blend circuitry.  
0
0
1
0
1
Sharpest mixing  
Sharp mixing  
0
1
1
Smooth  
Smoothest  
Reserved.  
0
Set to default  
DNR_EN. Enable or bypass the DNR  
block.  
0
1
Bypass the DNR block  
Enable the DNR block  
Set to default  
Reserved.  
1
0
1
0
0x4E  
0x50  
CTI DNR  
Control 2  
CTI_CTH[7:0]. Specifies how big the  
amplitude step must be to be  
steepened by the CTI block.  
0
0
0
0
1
1
0
0
0
0
0
0
Set to 0x04 for A/V input;  
set to 0x0A for tuner input  
CTI DNR  
Control 4  
DNR_TH[7:0]. Specifies the  
maximum edge that is  
interpreted as noise and is  
therefore blanked.  
0
0
Rev. B | Page ±3 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
Comments  
Notes  
0x51  
Lock Count  
CIL[2:0]. Count-into-lock  
1 line of video  
determines the number of lines the  
system must remain in lock before  
showing a locked status.  
2 lines of video  
5 lines of video  
10 lines of video  
100 lines of video  
500 lines of video  
1000 lines of video  
100000 lines of video  
1 line of video  
COL[2:0]. Count-out-of-lock  
determines the number of lines the  
system must remain out-of-lock  
before showing a lost-locked  
status.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2 lines of video  
5 lines of video  
10 lines of video  
100 lines of video  
500 lines of video  
1000 lines of video  
100000 lines of video  
SRLS. Select raw lock signal. Selects  
the determination of the lock.  
Status.  
0
1
Over field with vertical  
info  
Line-to-line evaluation  
FSCLE. FSC lock enable.  
0
1
Lock status set only by  
horizontal lock  
Lock status set by  
horizontal lock and  
subcarrier lock.  
0x±F  
0x90  
Free Run  
Line  
Length 1  
Reserved.  
0
0
0
0
Set to default  
LLC_PAD_SEL[2:0]. Enables manual  
selection of clock for LLC1 pin.  
0
1
0
0
0
1
LLC1 (nominal 27 MHz)  
selected out on LLC1 pin  
LLC2 (nominally 13.5 MHz) For 16-bit 4:2:2 out,  
selected out on LLC1 pin  
OF_SEL[3:0] = 0010  
Reserved  
0
Set to default  
VBI Info  
(Read-Only)  
WSSD. Screen signaling detected.  
0
1
No WSS detected  
Read-only status bits  
WSS detected  
CCAPD. Closed-caption data.  
EDTVD. EDTV sequence.  
0
1
No CCAP signals detected  
CCAP sequence detected  
0
1
No EDTV sequence  
detected  
EDTV sequence detected  
CGMSD. CGMS sequence.  
0
1
No CGMS transition  
detected  
CGMS sequence decoded  
Reserved.  
x
x
x
x
x
x
x
x
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x9±  
WSS1  
(Read-Only)  
WSS1[7:0]  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Wide screen signaling data.  
WSS2[7:0]  
WSS2  
(Read-Only)  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
WSS2[7:6] are  
undetermined  
Wide screen signaling data.  
WSS2[7:0]  
WSS2  
(Read-Only)  
Wide screen signaling data.  
EDTV2[7:0]  
EDTV2  
(Read-Only)  
EDTV data register.  
EDTV3[7:0]  
EDTV3  
(Read-Only)  
EDTV3[7:6] are  
undetermined  
EDTV3[5] is reserved  
for future use  
EDTV data register.  
CGMS1[7:0]  
CGMS1  
(Read-Only)  
CGMS data register.  
CGMS2[7:0]  
CGMS2  
(Read-Only)  
CGMS data register.  
CGMS3[7:0]  
CGMS3  
(Read-Only)  
CGMS3[7:4] are  
undetermined  
CGMS data register.  
Rev. B | Page ±4 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x99  
CCAP1  
(Read Only)  
CCAP1[7:0]  
x
x
x
x
x
x
x
x
x
x
CCAP1[7] contains parity  
bit for Byte 0  
Closed caption data register.  
CCAP2[7:0]  
0x9A  
0x9B  
CCAP2  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
CCAP2[7] contains parity  
bit for Byte 0  
(Read Only)  
Letterbox 1  
(Read Only)  
Closed caption data register.  
LB_LCT[7:0]  
Reports the number of  
black lines detected at the  
top of active video  
This feature  
examines the active  
video at the start and  
at the end of each  
field. It enables  
format detection  
even if the video is  
not accompanied by  
a CGMS or WSS  
sequence.  
Letterbox data register.  
Letterbox 2  
(Read Only)  
Reports the number of  
black lines detected in the  
bottom half of active  
video if subtitles are  
detected  
0x9C  
LB_LCM[7:0]  
Letterbox data register.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Letterbox 3  
(Read Only)  
Reports the number of  
black lines detected at the  
bottom of active video  
0x9D  
0xB2  
LB_LCB[7:0]  
Letterbox data register.  
x
0
x
0
CRC Enable  
Write  
Register  
Reserved  
Set as default  
CRC_ENABLE. Enable CRC  
checksum decoded from CGMS  
packet to validate CGMSD.  
0
1
Turn off CRC check  
CGMSD goes high with  
valid checksum  
Reserved  
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Set as default  
No connection  
AIN1  
0xC3  
ADC  
SWITCH 1  
ADC0_SW[3:0]. Manual muxing  
control for ADC0.  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
SETADC_sw_man_  
en = 1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
No connection  
No connection  
AIN7  
AIN±  
AIN9  
AIN10  
AIN11  
AIN12  
No connection  
No connection  
No connection  
No connection  
AIN3  
ADC1_SW[3:0]. Manual muxing  
control for ADC1.  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
SETADC_sw_man_  
en = 1  
AIN4  
AIN5  
AIN6  
No connection  
No connection  
No connection  
No connection  
AIN9  
AIN10  
AIN11  
AIN12  
No connection  
Rev. B | Page ±5 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Comments  
No connection  
No connection  
AIN2  
Notes  
0xC4  
ADC  
SWITCH 2  
ADC2_SW[3:0]. Manual muxing  
control for ADC2.  
0
SETADC_sw_man_  
en = 1  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
No connection  
No connection  
AIN5  
AIN6  
No connection  
No connection  
No connection  
AIN±  
No connection  
No connection  
AIN11  
AIN12  
No connection  
Reserved  
x
x
x
0
0
ADC_SW_MAN_EN. Enable  
manual setting of the input  
signal muxing.  
0
1
Disable  
Enable  
0xDC  
Letterbox  
Control 1  
LB_TH[4:0]. Sets the threshold  
value that determines if a line is  
black.  
1
1
0
0
Default threshold for the  
detection of black lines.  
Reserved  
Reserved  
1
0
0
0
1
0
Set as default  
0xDE  
0xDD  
0
1
0
1
0
0
0
0
Letterbox  
Control 2  
LB_EL[3:0]. Programs the end line  
of the activity window for LB  
detection (end of field).  
LB detection ends with  
the last line of active  
video on a field.  
1100b: 262/525.  
LB_SL[3:0]. Program the start line  
of the activity window for LB  
detection (start of field).  
0
1
0
0
Letterbox detection  
aligned with the start of  
active video,  
0100b: 23/2±6 NTSC.  
0xDF  
0xE0  
0xE1  
Reserved  
Reserved  
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
SD Offset  
Cb  
SD_OFF_CB[7:0]. Adjusts the hue  
by selecting the offset for the Cb  
channel.  
0xE2  
0xE3  
0xE4  
SD Offset  
Cr  
SD_OFF_CR[7:0]. Adjusts the hue  
by selecting the offset for the Cr  
channel.  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SD  
Saturation  
Cb  
SD_SAT_CB[7:0]. Adjusts the  
saturation of the picture by  
affecting gain on the Cb channel.  
Chroma gain = 0 dB  
Chroma gain = 0 dB  
SD  
Saturation  
Cr  
SD_SAT_CR[7:0]. Adjusts the  
saturation of the picture by  
affecting gain on the Cr channel.  
Rev. B | Page ±6 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0xE5  
NTSC V Bit  
Begin  
NVBEG[4:0]. How many lines after  
lCOUNT rollover to set V high.  
0
0
0
0
0
1
0
1
NTSC default (BT.656)  
NVBEGSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user  
programming  
NVBEGDELE. Delay V bit going  
high by one line relative to  
NVBEG (even field).  
0
1
No delay  
Additional delay by  
1 line  
NVBEGDELO. Delay V bit going  
high by one line relative to  
NVBEG (odd field).  
0
1
No delay  
Additional delay by  
1 line  
0xE6  
0xE7  
0xE±  
NTSC V Bit  
End  
NVEND[4:0]. How many lines  
after lCOUNT rollover to set V low.  
0
0
0
1
0
1
0
1
0
0
1
1
NTSC default (BT.656)  
NVENDSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user  
programming  
NVENDDELE. Delay V bit going  
low by one line relative to NVEND  
(even field).  
0
1
No delay  
Additional delay by  
1 line  
NVENDDELO. Delay V bit going  
low by one line relative to NVEND  
(odd field).  
0
1
No delay  
Additional delay by  
1 line  
NTSC F Bit  
Toggle  
NFTOG[4:0]. How many lines after  
lCOUNT rollover to toggle F signal.  
NTSC default  
NFTOGSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user  
programming  
NFTOGDELE. Delay F transition  
by one line relative to NFTOG  
(even field).  
0
1
No delay  
Additional delay by  
1 line  
NFTOGDELO. Delay F transition  
by one line relative to NFTOG  
(odd field).  
0
1
No delay  
Additional delay by  
1 line  
PAL V Bit  
Begin  
PVBEG[4:0]. How many lines after  
lCOUNT rollover to set V high.  
PAL default (BT.656)  
PVBEGSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user  
programming  
PVBEGDELE. Delay V bit going  
high by one line relative to  
PVBEG (even field).  
0
1
No delay  
Additional delay by  
1 line  
PVBEGDELO. Delay V bit going  
high by one line relative to  
PVBEG (odd field).  
0
1
No delay  
Additional delay by  
1 line  
Rev. B | Page ±7 of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0xE9  
PAL V Bit  
End  
PVEND[4:0]. How many lines after  
lCOUNT rollover to set V low.  
1
0
1
0
0
PAL default (BT.656)  
PVENDSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user  
programming  
PVENDDELE. Delay V bit going  
low by one line relative to PVEND  
(even field).  
0
1
No delay  
Additional delay by  
1 line  
PVENDDELO. Delay V bit going  
low by one line relative to PVEND  
(odd field).  
0
1
No delay  
Additional delay by  
1 line  
0xEA  
PAL F Bit  
Toggle  
PFTOG[4:0]. How many lines after  
lCOUNT rollover to toggle F signal.  
0
0
0
1
1
PAL default (BT.656)  
PFTOGSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user  
programming  
PFTOGDELE. Delay F transition by  
one line relative to PFTOG (even  
field).  
0
1
No delay  
Additional delay by  
1 line  
PFTOGDELO. Delay F transition  
by one line relative to PFTOG  
(odd field).  
0
1
No delay  
Additional delay by  
1 line  
0xF4  
Drive  
Strength  
DR_STR_S[1:0]. Select the drive  
strength for the sync output  
signals.  
0
0
0
1
Low drive strength (1x)  
Medium-low drive  
strength (2x)  
1
1
0
1
Medium-high drive  
strength (3x)  
High drive strength (4x)  
Low drive strength (1x)  
DR_STR_C[1:0]. Select the drive  
strength for the clock output  
signal.  
0
0
0
1
Medium-low drive  
strength (2x)  
1
1
0
1
Medium-high drive  
strength (3x)  
High drive strength (4x)  
Low drive strength (1x)  
DR_STR[1:0]. Select the drive  
strength for the data output  
signals. Can be increased or  
decreased for EMC or crosstalk  
reasons.  
0
0
0
1
Medium-low drive  
strength (2x)  
1
1
0
1
Medium-high drive  
strength (3x)  
High drive strength (4x)  
No delay  
Reserved  
x
x
0xF±  
IF Comp  
Control  
IFFILTSEL[2:0] IF filter selection  
for PAL and NTSC  
0
0
0
0
0
1
Bypass mode  
0dB  
2 MHz  
−3 dB  
5 MHz  
−2 dB  
NTSC filters  
0
0
1
1
1
0
0
1
0
−6 dB  
+3.5 dB  
+5 dB  
−10 dB  
Reserved  
3 MHz  
−2 dB  
6 MHz  
+2 dB  
PAL filters  
1
1
1
0
1
1
1
0
1
−5 dB  
+3 dB  
−7 dB  
+5 dB  
Reserved  
0
0
0
0
0
Rev. B | Page ±± of 104  
ADV7189B  
Bits  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0xF9  
VS Mode  
Control  
EXTEND_VS_MAX_FREQ  
0
Limit maximum Vsync  
frequency to 66.25 Hz  
(475 lines/frame)  
1
Limit maximum Vsync  
frequency to 70.09 Hz  
(449 lines/frame)  
EXTEND_VS_MIN_FREQ  
0
1
Limit minimum Vsync  
frequency to 42.75 Hz  
(731 lines/frame)  
Limit minimum Vsync  
frequency to 39.51 Hz  
(791 lines/frame)  
VS_COAST_MODE[1:0]  
Reserved  
0
0
1
0
1
Auto Coast mode  
50 Hz Coast mode  
60 Hz Coast mode  
Reserved  
This value sets up  
the output coast  
frequency.  
0
1
1
0
0
0
0
Rev. B | Page ±9 of 104  
ADV7189B  
I2C PROGRAMMING EXAMPLES  
EXAMPLES USING 28 MHz CLOCK  
Mode 1 CVBS Input (Composite Video on AIN5)  
All standards are supported through autodetect, 10-bit, 4:2:2, ITU-R BT.656 output on P19 to P10.  
Table 87. Mode 1 CVBS Input  
Register Address Register Value Notes  
0x00  
0x03  
0x15  
0x17  
0x1D  
0x0F  
0x3A  
0x3D  
0x3F  
0x50  
0x0E  
0x04  
0x00  
0x00  
0x41  
0x40  
0x40  
0x16  
0xC3  
0xE4  
0x04  
0x±0  
CVBS input on AIN5.  
Enable 10-bit output on P19 to P10.  
Slow down digital clamps.  
Set CSFM to SH1.  
Enable 2± MHz crystal.  
TRAQ.  
Power down ADC 1 and ADC 2.  
MWE enable manual window.  
BGB to 36.  
Set DNR threshold to 4 for flat response.  
ADI recommended programming sequence. This sequence must be followed exactly when setting  
up the decoder.  
0x50  
0x52  
0x5±  
0x77  
0x7C  
0x7D  
0x90  
0x91  
0x92  
0x93  
0x94  
0xCF  
0xD0  
0xD5  
0xD6  
0xD7  
0xE4  
0xE5  
0xE9  
0xEA  
0x0E  
0x20  
0x1±  
0xED  
0xC5  
0x93  
0x00  
0xC9  
0x40  
0x3C  
0xCA  
0xD5  
0x50  
0x4E  
0xA0  
0xDD  
0xEA  
0x3E  
0x51  
0x3E  
0x0F  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. B | Page 90 of 104  
 
 
ADV7189B  
Mode 2 S-Video Input (Y on AIN1 and C on AIN4)  
All standards are supported through autodetect, 10-bit, ITU-R BT.656 output on P19 to P10.  
Table 88. Mode 2 S-Video Input  
Register Address  
0x00  
0x03  
0x15  
0x1D  
Register Value  
0x06  
0x00  
0x00  
0x40  
Notes  
Y1 = AIN1, C1 = AIN4.  
Enable 10-bit output on P19 to P10.  
Slow down digital clamps.  
Enable 2± MHz crystal.  
TRAQ.  
0x0F  
0x40  
0x3A  
0x3D  
0x3F  
0x12  
0xC3  
0xE4  
Power down ADC 2.  
MWE enable manual window.  
BGB to 36.  
0x50  
0x04  
Set DNR threshold to 4 for flat response.  
0x0E  
0x±0  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0xB3  
0x50  
0x52  
0x5±  
0x77  
0x7C  
0x7D  
0x90  
0x91  
0x92  
0x93  
0x94  
0xCF  
0xD0  
0xD6  
0xE5  
0xD5  
0xD7  
0xE4  
0xE9  
0xEA  
0x0E  
0xFE  
0x20  
0x1±  
0xED  
0xC5  
0x93  
0x00  
0xC9  
0x40  
0x3C  
0xCA  
0xD5  
0x50  
0x4E  
0xDD  
0x51  
0xA0  
0xEA  
0x3E  
0x3E  
0x0F  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. B | Page 91 of 104  
ADV7189B  
Mode 3 YPrPb Input 525i/625i (Y on AIN2, Pr on AIN3, and Pb on AIN6)  
All standards are supported through autodetect, 10-bit, ITU-R BT.656 output on P19 to P10.  
Table 89. Mode 3 YPrPb Input 525i/625i  
Register Address  
Register Value  
Notes  
0x00  
0x03  
0x1D  
0x0F  
0x50  
0x0E  
0x0A  
0x00  
0x40  
0x40  
0x04  
0x±0  
Y2 = AIN2, Pr2 = AIN3, Pb2 = AIN6.  
Enable 10-bit output on P19 toP10.  
Enable 2± MHz crystal.  
TRAQ.  
Set DNR threshold to 4 for flat response.  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x52  
0x5±  
0x77  
0x7C  
0x7D  
0x90  
0x91  
0x92  
0x93  
0x94  
0xCF  
0xD0  
0xD5  
0xD6  
0xE4  
0xE5  
0xE9  
0x0E  
0x1±  
0xED  
0xC5  
0x93  
0x00  
0xC9  
0x40  
0x3C  
0xCA  
0xD5  
0x50  
0x4E  
0xA0  
0xDD  
0x3E  
0x51  
0x3E  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. B | Page 92 of 104  
ADV7189B  
Mode 4 CVBS Tuner Input PAL Only on AIN4  
10-bit, ITU-R BT.656 output on P19 to P10.  
Table 90. Mode 4 CVBS Tuner Input PAL Only  
Register Address  
Register Value  
Notes  
0x00  
0x03  
0x07  
0x15  
0x±3  
0x00  
0x01  
0x00  
CVBS AIN4 Force PAL-only mode.  
Enable 10-bit output on P19 to P10.  
Enable PAL autodetection only.  
Slow down digital clamps.  
Set CSFM to SH1.  
0x17  
0x41  
0x19  
0x1D  
0x0F  
0xFA  
0x40  
0x40  
Stronger dot crawl reduction.  
Enable 2± MHz crystal.  
TRAQ.  
0x3A  
0x3D  
0x3F  
0x16  
0xC3  
0xE4  
Power down ADC 1 and ADC 2.  
MWE enable manual window.  
BGB to 36.  
0x50  
0x0A  
Set higher DNR threshold.  
0x0E  
0x±0  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x50  
0x52  
0x5±  
0x77  
0x7C  
0x7D  
0x90  
0x91  
0x92  
0x93  
0x94  
0xCF  
0xD0  
0xD5  
0xD6  
0xD7  
0xE4  
0xE5  
0xE9  
0xEA  
0x0E  
0x20  
0x1±  
0xED  
0xC5  
0x93  
0x00  
0xC9  
0x40  
0x3C  
0xCA  
0xD5  
0x50  
0x4E  
0xA0  
0xDD  
0xEA  
0x3E  
0x51  
0x3E  
0x0F  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. B | Page 93 of 104  
ADV7189B  
EXAMPLES USING 27 MHz CLOCK  
Mode 1 CVBS Input (Composite Video on AIN5)  
All standards are supported through autodetect, 10-bit, 4:2:2, ITU-R BT.656 output on P19 to P10.  
Table 91. Mode 1 CVBS Input  
Register Address  
Register Value  
Notes  
0x00  
0x03  
0x15  
0x17  
0x3A  
0x50  
0x0E  
0x04  
0x00  
0x00  
0x41  
0x16  
0x04  
0x±0  
CVBS input on AIN5.  
Enable 10-bit output on P19 to P10.  
Slow down digital clamps.  
Set CSFM to SH1.  
Power down ADC 1 and ADC 2.  
Set DNR threshold to 4 for flat response.  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x50  
0x52  
0x5±  
0x77  
0x7C  
0x7D  
0xD0  
0xD5  
0xD7  
0xE4  
0xE9  
0xEA  
0x0E  
0x20  
0x1±  
0xED  
0xC5  
0x93  
0x00  
0x4±  
0xA0  
0xEA  
0x3E  
0x3E  
0x0F  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. B | Page 94 of 104  
 
ADV7189B  
Mode 2 S-Video Input (Y on AIN1 and C on AIN4)  
All standards are supported through autodetect, 10-bit, ITU-R BT.656 output on P19 to P10.  
Table 92. Mode 2 S-Video Input  
Register Address  
Register Value  
0x06  
0x00  
0x00  
0x12  
Notes  
0x00  
0x03  
0x15  
0x3A  
0x50  
0x0E  
Y1 = AIN1, C1 = AIN4.  
Enable 10-bit output on P19 to P10.  
Slow down digital clamps.  
Power down ADC 2.  
Set DNR threshold to 4 for flat response.  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x04  
0x±0  
0x50  
0x52  
0x5±  
0x77  
0x7C  
0x7D  
0xD0  
0xD5  
0xD7  
0xE4  
0xE9  
0xEA  
0x0E  
0x20  
0x1±  
0xED  
0xC5  
0x93  
0x00  
0x4±  
0xA0  
0xEA  
0x3E  
0x3E  
0x0F  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Mode 3 YPrPb Input 525i/625i (Y on AIN2, Pr on AIN3, and Pb on AIN6)  
All standards are supported through autodetect, 10-bit, ITU-R BT.656 output on P19 to P10.  
Table 93. Mode 3 YPrPb Input 525i/625i  
Register Address  
Register Value  
Notes  
0x00  
0x03  
0x50  
0x0E  
0x0A  
0x00  
0x04  
0x±0  
Y2 = AIN2, Pr2 = AIN3, Pb2 = AIN6.  
Enable 10-bit output on P19 to P10.  
Set DNR threshold to 4 for flat response.  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x52  
0x5±  
0x77  
0x7C  
0x7D  
0xD0  
0xD5  
0xE4  
0xE9  
0x0E  
0x1±  
0xED  
0xC5  
0x93  
0x00  
0x4±  
0xA0  
0x3E  
0x3E  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. B | Page 95 of 104  
ADV7189B  
Mode 4 CVBS Tuner Input PAL Only on AIN4  
10-bit, ITU-R BT.656 output on P19 to P10.  
Table 94. Mode 4 CVBS Tuner Input PAL Only  
Register Address  
Register Value  
Notes  
0x00  
0x03  
0x07  
0x15  
0x±3  
0x00  
0x01  
0x00  
CVBS AIN4 Force PAL only mode.  
Enable 10-bit output on P19 to P10.  
Enable PAL autodetection only.  
Slow down digital clamps.  
Set CSFM to SH1.  
0x17  
0x41  
0x19  
0x3A  
0x50  
0xFA  
0x16  
0x0A  
Stronger dot crawl reduction.  
Power down ADC 1 and ADC 2.  
Set higher DNR threshold.  
0x0E  
0x±0  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x50  
0x52  
0x5±  
0x77  
0x7C  
0x7D  
0xD0  
0xD5  
0xD7  
0xE4  
0xE9  
0xEA  
0x0E  
0x20  
0x1±  
0xED  
0xC5  
0x93  
0x00  
0x4±  
0xA0  
0xEA  
0x3E  
0x3E  
0x0F  
0x00  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. B | Page 96 of 104  
ADV7189B  
PCB LAYOUT RECOMMENDATIONS  
The ADV7189B is a high precision, high speed, mixed-signal  
device. To achieve the maximum performance from the part, it  
is important to have a well laid out PCB board. The following is  
a guide for designing a board using the ADV7189B.  
It is recommended to use a single ground plane for the entire  
board. This ground plane should have a space between the  
analog and digital sections of the PCB (see Figure 42).  
ADV7189B  
ANALOG  
SECTION  
DIGITAL  
SECTION  
ANALOG INTERFACE INPUTS  
Take care when routing the inputs on the PCB. Track lengths  
should be kept to a minimum, and 75 Ω trace impedances  
should be used when possible. Trace impedances other than  
75 Ω increase the chance of reflections.  
Figure 42. PCB Ground Layout  
Experience has repeatedly shown that noise performance is  
the same or better with a single ground plane. Using multiple  
ground planes can be detrimental because each separate ground  
plane is smaller, and long ground loops can result.  
POWER SUPPLY DECOUPLING  
It is recommended to decouple each power supply pin with  
0.1 ꢀF and 10 nF capacitors. The fundamental idea is to have a  
decoupling capacitor within about 0.5 cm of each power pin.  
Also, avoid placing the capacitor on the opposite side of the PC  
board from the ADV7189B, as doing so interposes resistive vias  
in the path. The bypass capacitors should be located between  
the power plane and the power pin. Current should flow from  
the power plane to the capacitor to the power pin. Do not make  
the power connection between the capacitor and the power pin.  
Placing a via underneath the 100 nF capacitor pads, down to the  
power plane, is generally the best approach (see Figure 41).  
In some cases, using separate ground planes is unavoidable.  
For these cases, it is recommended to place a single ground  
plane under the ADV7189B. The location of the split should be  
under the ADV7189B. For this case, it is even more important  
to place components wisely because the current loops are much  
longer (current takes the path of least resistance). Here is an  
example of a current loop: power plane to ADV7189B to digital  
output trace to digital data receiver to digital ground plane to  
analog ground plane.  
PLL  
VDD  
GND  
VIA TO SUPPLY  
VIA TO GND  
Place the PLL loop filter components as close as possible to  
the ELPF pin. Do not place any digital or other high frequency  
traces near these components. Use the values suggested in the  
data sheet with tolerances of 10% or less.  
10nF  
100nF  
Figure 41. Recommend Power Supply Decoupling  
DIGITAL OUTPUTS (BOTH DATA AND CLOCKS)  
It is particularly important to maintain low noise and good  
stability of PVDD. Careful attention must be paid to regulation,  
filtering, and decoupling. It is highly desirable to provide sepa-  
rate regulated supplies for each of the analog circuitry groups  
(AVDD, DVDD, DVDDIO, and PVDD).  
Try to minimize the trace length that digital outputs have to  
drive. Longer traces have higher capacitance, which require  
more current, which causes more internal digital noise. Shorter  
traces reduce the possibility of reflections.  
Adding a 30 Ω to 50 Ω series resistor can suppress reflections,  
reduce EMI, and reduce the current spikes inside the ADV7189B.  
If series resistors are used, place them as close as possible to the  
ADV7189B pins. However, try not to add vias or extra length to  
the output trace to make the resistors closer.  
Some graphic controllers use substantially different levels of  
power when active (during active picture time) and when idle  
(during horizontal and vertical sync periods). This can result in  
a measurable change in the voltage supplied to the analog supply  
regulator, which can, in turn, produce changes in the regulated  
analog supply voltage. This is mitigated by regulating the analog  
supply, or at least PVDD, from a different, cleaner, power source,  
for example, from a 12 V supply.  
If possible, limit the capacitance that each of the digital outputs  
drives to less than 15 pF. This can easily be accomplished by  
keeping traces short and by connecting the outputs to only one  
device. Loading the outputs with excessive capacitance increases  
the current transients inside the ADV7189B, creating more  
digital noise on its power supplies.  
Rev. B | Page 97 of 104  
 
ADV7189B  
DIGITAL INPUTS  
CRYSTAL LOAD CAPACITOR VALUE SELECTION  
The digital inputs on the ADV7189B are designed to work with  
3.3 V signals, and are not tolerant of 5 V signals. Extra compo-  
nents are needed if 5 V logic signals are required to be applied  
to the decoder.  
Figure 44 shows an example reference clock circuit for the  
ADV7189B. Special care must be taken when using a crystal cir-  
cuit to generate the reference clock for the ADV7189B. Small  
variations in reference clock frequency can cause autodetection  
issues and impair the ADV7189B performance.  
ANTIALIASING FILTERS  
Note: Load capacitor values are dependent on crystal attributes.  
For inputs from some video sources that are not bandwidth  
limited, signals outside the video band can alias back into the  
video band during A/D conversion and appear as noise on the  
output video. The ADV7189B oversamples the analog inputs  
by a factor of 4. This 54 MHz sampling frequency reduces the  
requirement for an input filter; for optimal performance it is  
recommended that an antialiasing filter be employed. The  
recommended low cost circuit for implementing this buffer and  
filter circuit for all analog input signals is shown in Figure 45.  
The load capacitance given in a crystal data sheet specifies the  
parallel resonance frequency within the tolerance at 25°C. It is  
therefore important to design a circuit that matches the load  
capacitance in order to achieve the frequency stipulated by the  
manufacturer. For detailed crystal circuit design and optimiza-  
tion, an application note on crystal design considerations is  
available for further reference.  
XTAL 1  
XTAL  
R = 1M  
Ω
The buffer is a simple emitter-follower using a single npn  
transistor. The antialiasing filter is implemented using passive  
components. The passive filter is a third-order Butterworth  
filter with a −3 dB point of 9 MHz. The frequency response of  
the passive filter is shown in Figure 43. The flat pass band up to  
6 MHz is essential. The attenuation of the signal at the output of  
the filter due to the voltage divider of R24 and R63 is compen-  
sated for in the ADV7189B part using the automatic gain  
control. The ac-coupling capacitor at the input to the buffer  
creates a high-pass filter with the biasing resistors for the  
transistor. This filter has a cut-off of  
C1 = 47pF  
C2 = 47pF  
XTAL  
28.63636MHz  
Figure 44. Crystal Circuit  
Use the following guidelines to ensure correct operation:  
Use the correct frequency crystal, which is  
28.63636 MHz. Tolerance should be 50 ppm or better.  
Use a parallel-resonant crystal.  
Place a 1 MΩ shunt resistor across pins XTAL1 and  
XTAL2 as is shown in Figure 45.  
{2 × π × (R39||R89) × C93}–1 = 0.62 Hz  
It is essential the cutoff of this filter is less than 1 Hz to ensure  
correct operation of the internal clamps within the part. These  
clamps ensure that the video stays within the 5 V range of the  
op amp used.  
Know the CLOAD for the crystal part number selected.  
The value of Capacitors C1 and C2 must match CLOAD  
for the specific crystal part number in the users  
system.  
0
To find CLOAD use the following guideline:  
C1 = C2 = C  
C = 2(CLOAD − CS) − Cpg  
–20  
Where Cpg is the pin to ground capacitance.  
Approximately 4 pF to 10 pF.  
–40  
–60  
CS is the PCB stray capacitance.  
Approximately 2 pF to 3pF.  
–80  
For example:  
–100  
CLOAD = 30 pF  
C = 2(30 − 3) − 4  
= 50 pF  
Therefore two 47 pF capacitors can be chosen for  
C1 and C2.  
–120  
100k  
300k  
1M  
3M  
10M  
30M  
100M  
300M  
1G  
FREQUENCY (Hz)  
Figure 43. Third-Order Butterworth Filter Response  
Rev. B | Page 9± of 104  
 
 
 
 
ADV7189B  
TYPICAL CIRCUIT CONNECTION  
Examples of how to connect the ADV7189B video decoder are shown in Figure 45 and Figure 46. For a detailed schematic diagram for  
the ADV7189B, refer to the ADV7189B evaluation note.  
AVDD_5V  
R43  
0Ω  
BUFFER  
R39  
4.7kΩ  
C93  
100μF  
C
B
FILTER  
IN  
Q6  
R53  
56Ω  
L10  
12μH  
E
R38  
75Ω  
R89  
5.6kΩ  
OUT  
R24  
470Ω  
R63  
820Ω  
C95  
22pF  
C102  
10pF  
AGND  
Figure 45. ADI Recommended Anti-Aliasing Circuit for All Input Channels  
Rev. B | Page 99 of 104  
 
ADV7189B  
FERRITE BEAD  
DVDDIO  
(3.3V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33μF  
10μF  
0.1μF  
0.01μF  
DGND  
DGND  
DGND  
DGND  
FERRITE BEAD  
PVDD  
(1.8V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33μF  
10μF  
0.1μF  
0.01μF  
AGND  
AGND  
AGND  
AGND  
FERRITE BEAD  
AVDD  
(3.3V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33μF  
10μF  
0.1μF  
0.01μF  
AGND  
AGND  
AGND  
AGND  
FERRITE BEAD  
DVDD  
(1.8V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33μF  
10μF  
0.1μF  
0.01μF  
AGND DGND  
DGND  
DGND  
DGND  
DGND  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
S-VIDEO  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
ANTIALIAS  
FILTER CIRCUIT  
AIN1  
AIN7  
AIN2  
AIN8  
AIN3  
AIN9  
AIN4  
AIN10  
AIN5  
AIN11  
AIN6  
AIN12  
ANTIALIAS  
FILTER CIRCUIT  
Y
ANTIALIAS  
FILTER CIRCUIT  
Pr  
Pb  
MULTI-  
ADV7189B  
P9  
FORMAT  
PIXEL  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
ANTIALIAS  
FILTER CIRCUIT  
PORT  
P19–P10 10-BIT ITU-R BT.656 PIXEL DATA @ 27MHz  
P9–P0 Cb AND Cr 20-BIT ITU-R BT.656 PIXEL DATA @ 13.5MHz  
P19–P10 Y 20-BIT ITU-R BT.656 PIXEL DATA @ 13.5MHz  
ANTIALIAS  
FILTER CIRCUIT  
CBVS  
RECOMMENDED ANTIALIAS FILTER  
CIRCUIT IS SHOWN IN FIGURE 45 ON THE  
PREVIOUS PAGE. THIS CIRCUIT INCLUDES  
A 75Ω TERMINATION RESISTOR, INPUT  
BUFFER AND ANTIALIASING FILTER.  
AGND  
AGND  
CAPY1  
CAPY2  
+
0.1μF  
0.1μF  
10μF  
0.1μF  
0.1μF  
1nF  
1nF  
LLC1  
LLC2  
27MHz OUTPUT CLOCK  
13.5MHz OUTPUT CLOCK  
AGND  
CAPC1  
CAPC2  
+
10μF  
AGND  
OE  
OUTPUT ENABLE I/P  
CML  
+
10μF  
0.1μF  
10μF  
REFOUT  
+
0.1μF  
NOTE:  
1
INTERRUPT O/P  
SFL O/P  
INTRQ  
SFL  
CAPACITOR VALUES  
ARE DEPENDANT ON  
XTAL ATTRIBUTES.  
AGND  
1MΩ  
XTAL  
HS  
VS  
HS O/P  
28.63636MHz  
DVDDIO  
VS O/P  
XTAL1  
1
47pF  
FIELD  
FIELD O/P  
2
1
SELECT I C  
47pF  
ADDRESS  
DGND  
DGND  
DVSS  
ALSB  
DVDDIO DVDDIO  
ELPF  
1.69kΩ  
10nF  
2kΩ  
2kΩ  
100Ω  
100Ω  
SCLK  
SDA  
82nF  
MPU INTERFACE  
CONTROL LINES  
PVDD  
DVDDIO  
4.7kΩ  
RESET  
RESET  
AGND  
AGND  
DGND  
100nF  
DGND  
DGND  
Figure 46. Typical Connection Diagram  
Rev. B | Page 100 of 104  
ADV7189B  
OUTLINE DIMENSIONS  
16.20  
16.00 SQ  
15.80  
0.75  
0.60  
0.45  
1.60  
MAX  
80  
61  
60  
1
PIN 1  
14.20  
14.00 SQ  
13.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.10 MAX  
COPLANARITY  
20  
41  
0.15  
0.05  
40  
21  
SEATING  
PLANE  
VIEW A  
0.65  
0.38  
0.32  
0.22  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BEC  
Figure 47. 80-Lead Low Profile Quad Flat Package[LQFP]  
(ST-80-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
F
Temperature Range  
Package Description  
Package Option  
ADV71±9BKSTZ2  
F
0°C to +70°C  
–40°C to +±5°C  
±0-lead Low Profile Quad Flat Package (LQFP)  
±0-lead Low Profile Quad Flat Package (LQFP)  
Evaluation Board  
ST-±0-2  
ST-±0-2  
ADV71±9BBSTZ2  
EVAL-ADV71±9BEB  
1 The ADV71±9B is a Pb-free, environmentally friendly product. It is manufactured using the most up-to-date materials and processes. The coating on the leads of each  
device is 100% pure Sn electroplate. The device is suitable for Pb-free applications, and can withstand surface-mount soldering at up to 255°C (±5°C). In addition, it is  
backward-compatible with conventional SnPb soldering processes. This means the electroplated Sn coating can be soldered with Sn/Pb solder pastes at conventional  
reflow temperatures of 220°C to 235°C.  
2 Z = Pb-free part.  
Rev. B | Page 101 of 104  
 
ADV7189B  
NOTES  
Rev. B | Page 102 of 104  
ADV7189B  
NOTES  
Rev. B | Page 103 of 104  
ADV7189B  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04983–0–9/05(B)  
Rev. B | Page 104 of 104  

相关型号:

EVAL-ADV7189EBM

Multiformat SDTV Video Decoder
ADI

EVAL-ADV7280AEBZ

10-Bit, 4 x Oversampled SDTV Video Decoder with Deinterlacer
ADI

EVAL-ADV7280AMEBZ

10-Bit, 4 x Oversampled SDTV Video Decoder with Deinterlacer
ADI

EVAL-ADV7281MAEBZ

10-Bit, 4 Oversampled SDTV Video Decoder with Differential Inputs
ADI

EVAL-ADV7281MEBZ

10-Bit, 4 Oversampled SDTV Video Decoder with Differential Inputs
ADI

EVAL-ADV7282AEBZ

10-Bit, 4x Oversampled SDTV Video Decoder with Differential Inputs
ADI

EVAL-ADV7282AMEBZ

10-Bit, 4x Oversampled SDTV Video Decoder with Differential Inputs
ADI

EVAL-ADV7282MEBZ

10-Bit, 4 Oversampled SDTV Video Decoder with Differential Inputs and Deinterlacer
ADI

EVAL-ADV7320EB

Multiformat 216 MHz Video Encoder with Six NSV 12-Bit DACs
ADI

EVAL-ADV7321EB

Multiformat 216 MHz Video Encoder with Six NSV 12-Bit DACs
ADI

EVAL-ADV7322EB

Multiformat 11-Bit HDTV Video Encoder
ADI

EVAL-ADV7340EBZ

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI