EVAL-ADV7322EB [ADI]

Multiformat 11-Bit HDTV Video Encoder; 多格式11位高清电视视频编码器
EVAL-ADV7322EB
型号: EVAL-ADV7322EB
厂家: ADI    ADI
描述:

Multiformat 11-Bit HDTV Video Encoder
多格式11位高清电视视频编码器

电视 编码器
文件: 总88页 (文件大小:970K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiformat 11-Bit  
HDTV Video Encoder  
Preliminary Technical Data  
ADV7322  
FEATURES  
GENERAL FEATURES  
High definition input formats  
16-, 24-bit (4:2:2, 4:4:4) parallel YCrCb  
Fully compliant with  
SMPTE 274M (1080i, 1080p @ 74.25 MHz)  
SMPTE 296M (720p)  
SMPTE 240M (1035i)  
RGB in 3- × 8-bit 4:4:4 input format  
HDTV RGB supported  
RGB, RGBHV  
Other high definition formats using async  
timing mode  
Enhanced definition input formats  
8-, 16-, 24-bit (4:2:2, 4:4:4) parallel YCrCb  
SMPTE 293M (525p)  
Simultaneous SD/HD, PS/SD inputs and outputs  
Oversampling up to 216 MHz  
Programmable DAC gain control  
Sync outputs in all modes  
On-board voltage reference  
Six 11-bit precision video DACs  
2-wire serial I2C® interface, open-drain configuration  
Dual I/O supply 2.5 V/3.3 V operation  
Analog and digital supply 2.5 V  
On-board PLL  
64-lead LQFP package  
Lead (Pb)-free product  
APPLICATIONS  
BTA T-1004 EDTV2 (525p)  
EVD players (enhanced versatile disk)  
SD/PS DVD recorders/players  
SD/progressive scan/HDTV display devices  
SD/HDTV set top boxes  
ITU-R BT.1358 (625p/525p)  
ITU-R BT.1362 (625p/525p)  
RGB in 3- × 8-bit 4:4:4 input format  
Standard definition input formats  
CCIR-656 4:2:2 8-bit or 16-bit parallel input  
High definition output formats  
YPrPb HDTV (EIA 770.3)  
STANDARD DEFINITION  
CONTROL BLOCK  
ADV7322  
COLOR CONTROL  
BRIGHTNESS  
DNR  
GAMMA  
11-BIT  
DAC  
PROGRAMMABLE  
FILTERS  
11-BIT  
DAC  
O
V
E
R
S
A
M
P
L
SD TEST PATTERN  
RGB, RGBHV  
CGMS-A (720p/1080i)  
D
E
M
U
X
11-BIT  
DAC  
Y7–Y0  
C7–C0  
S7–S0  
PROGRAMMABLE  
RGB MATRIX  
Enhanced definition output formats  
Macrovision Rev 1.2 (525p/625p)  
CGMS-A (525p/625p)  
11-BIT  
DAC  
I
N
G
HIGH DEFINITION  
CONTROL BLOCK  
11-BIT  
DAC  
YPrPb progressive scan (EIA-770.1, EIA-770.2)  
RGB, RGBHV  
Standard definition output formats  
Composite NTSC M/N  
Composite PAL M/N/B/D/G/H/I, PAL-60  
SMPTE 170M NTSC-compatible composite video  
ITU-R BT.470 PAL-compatible composite video  
S-video (Y/C)  
HD TEST PATTERN  
11-BIT  
DAC  
COLOR CONTROL  
ADAPTIVE FILTER CTRL  
SHARPNESS FILTER  
HSYNC  
VSYNC  
BLANK  
TIMING  
GENERATOR  
2
I C  
INTERFACE  
CLKIN_A  
CLKIN_B  
PLL  
Figure 1. Simplified Functional Block Diagram  
GENERAL DESCRIPTION  
EuroScart RGB  
Component YPrPb (Betacam, MII, SMPTE/EBU N10)  
Macrovision Rev 7.1.L1  
CGMS/WSS  
Closed captioning  
The ADV®7322 is a high speed, digital-to-analog encoder on a  
single monolithic chip. It includes six high speed video DACs  
with TTL compatible inputs. It has separate 8-, 16-, 24-bit input  
ports that accept data in high definition and/or standard  
definition video format. For all standards, external horizontal,  
vertical, and blanking signals or EAV/SAV timing codes control  
the insertion of appropriate synchronization signals into the  
digital data stream and therefore the output signal.  
Rev. PrA  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
ADV7322  
Preliminary Technical Data  
TABLE OF CONTENTS  
Specifications..................................................................................... 6  
HD Sharpness Filter and Adaptive Filter Controls................ 56  
Dynamic Specifications ................................................................... 7  
Timing Specifications....................................................................... 8  
Timing Diagrams.............................................................................. 9  
Absolute Maximum Ratings.......................................................... 17  
Thermal Characteristics ............................................................ 17  
Pin Configuration and Function Descriptions........................... 18  
Typical Performance Characteristics ........................................... 20  
MPU Port Description................................................................... 24  
Register Access................................................................................ 26  
Register Programming............................................................... 26  
Subaddress Register (SR7 to SR0) ............................................ 26  
Input Configuration ....................................................................... 39  
Standard Definition Only.......................................................... 39  
Progressive Scan Only or HDTV Only ................................... 39  
HD Sharpness Filter and Adaptive Filter Application  
Examples...................................................................................... 57  
SD Digital Noise Reduction...................................................... 58  
Coring Gain Border ................................................................... 59  
Coring Gain Data....................................................................... 59  
DNR Threshold .......................................................................... 59  
Border Area................................................................................. 59  
Block Size Control...................................................................... 59  
DNR Input Select Control......................................................... 59  
DNR Mode Control ................................................................... 60  
Block Offset Control.................................................................. 60  
SD Active Video Edge ................................................................ 60  
SAV/EAV Step Edge Control.................................................... 60  
Board Design and Layout.............................................................. 62  
DAC Termination and Layout Considerations ...................... 62  
Video Output Buffer and Optional Output Filter.................. 62  
PCB Board Layout...................................................................... 63  
Appendix 1—Copy Generation Management System .............. 65  
PS CGMS..................................................................................... 65  
HD CGMS................................................................................... 65  
SD CGMS .................................................................................... 65  
Function of CGMS Bits ............................................................. 65  
CGMS Functionality.................................................................. 65  
Appendix 2—SD Wide Screen Signaling..................................... 68  
Appendix 3—SD Closed Captioning........................................... 69  
Appendix 4—Test Patterns............................................................ 70  
Appendix 5—SD Timing Modes.................................................. 73  
Simultaneous Standard Definition and Progressive Scan or  
HDTV .......................................................................................... 39  
Progressive Scan at 27 MHz (Dual Edge) or 54 MHz ........... 40  
Features ............................................................................................ 42  
Output Configuration................................................................ 42  
HD Async Timing Mode ........................................................... 43  
HD Timing Reset........................................................................ 44  
SD Real-Time Control, Subcarrier Reset, and Timing Reset 44  
Reset Sequence............................................................................ 46  
SD VCR FF/RW Sync................................................................. 46  
Vertical Blanking Interval ......................................................... 47  
Subcarrier Frequency Registers................................................ 47  
Square Pixel Timing Mode........................................................ 48  
Filters............................................................................................ 49  
Color Controls and RGB Matrix .............................................. 50  
Programmable DAC Gain Control .......................................... 54  
Gamma Correction .................................................................... 54  
Mode 0 (CCIR-656)—Slave Option (Timing Register 0 TR0 =  
X X X X X 0 0 0) ......................................................................... 73  
Mode 0 (CCIR-656)—Master Option (Timing Register 0 TR0  
= X X X X X 0 0 1)...................................................................... 74  
Rev. PrA | Page 2 of 88  
Preliminary Technical Data  
ADV7322  
Mode 1—Slave Option (Timing Register 0 TR0 = X X X X X  
0 1 0) .............................................................................................76  
Appendix 6—HD Timing ..............................................................81  
Appendix 7—Video Output Levels...............................................82  
HD YPrPb Output Levels...........................................................82  
RGB Output Levels .....................................................................83  
YPrPb Levels—SMPTE/EBU N10............................................84  
Appendix 8—Video Standards......................................................86  
Outline Dimensions........................................................................88  
Ordering Guide ...........................................................................88  
Mode 1—Master Option (Timing Register 0 TR0 = X X X X  
X 0 1 1)..........................................................................................77  
Mode 2— Slave Option (Timing Register 0 TR0 = X X X X X  
1 0 0) .............................................................................................78  
Mode 2—Master Option (Timing Register 0 TR0 = X X X X  
X 1 0 1)..........................................................................................79  
Mode 3—Master/Slave Option (Timing Register 0 TR0 = X  
X X X X 1 1 0 or X X X X X 1 1 1) ...........................................80  
REVISION HISTORY  
9/04—PrA: Preliminary Version  
Rev. PrA | Page 3 of 88  
ADV7322  
Preliminary Technical Data  
Table 1. Standards Directly Supported1  
DETAILED FEATURES  
CLK  
Input  
(MHz)  
High definition programmable features (720p/1080i/1035i)  
2× oversampling (148.5 MHz)  
Internal test pattern generator  
Color hatch, black bar, flat field/frame  
Fully programmable YCrCb to RGB matrix  
Gamma correction  
Interlace/ Frame  
Resolution Prog. Rate (Hz)  
29.97  
Standard  
720 × 480  
720 × 576  
720 × 480  
I
I
I
27  
27  
24.54  
ITU-R BT.656  
ITU-R BT.656  
NTSC  
25  
29.97  
Square Pixel  
Programmable adaptive filter control  
Programmable sharpness filter control  
CGMS-A (720p/1080i)  
Enhanced definition programmable features (525p/625p)  
8× oversampling (216 MHz output)  
Internal test pattern generator  
Color hatch, black bar, flat frame  
Individual Y and PrPb output delay  
Gamma correction  
Programmable adaptive filter control  
Fully programmable YCrCb to RGB matrix  
Undershoot limiter  
Macrovision Rev 1.2 (525p/625p)  
CGMS-A (525p/625p)  
Standard definition programmable features  
16× oversampling (216 MHz)  
Internal test pattern generator  
Color bars, black bar  
Controlled edge rates for start and end of active video  
Individual Y and PrPb output delay  
Undershoot limiter  
720 × 576  
720 × 483  
I
25  
29.5  
27  
PAL Square  
Pixel  
SMPTE  
293M  
BTA T-1004  
ITU-R  
BT.1358  
ITU-R  
BT.1358  
ITU-R  
BT.1362  
ITU-R  
BT.1362  
SMPTE  
240M  
P
59.94  
720 × 483  
720 × 483  
P
P
59.94  
59.94  
27  
27  
720 × 576  
720 × 483  
720 × 576  
1920 × 1035  
P
P
P
I
50  
27  
27  
27  
59.94  
50  
30  
29.97  
60, 50, 30,  
25, 24,  
23.97,  
59.94,  
29.97  
30, 25  
29.97  
30, 25, 24  
23.98,  
29.97,  
74.25  
74.1758  
74.25,  
1280 × 720  
P
SMPTE  
296M  
74.1758  
1920 × 1080  
1920 × 1080  
I
74.25  
74.1758  
74.25  
SMPTE  
274M  
P
SMPTE  
274M  
Gamma correction  
Digital noise reduction (DNR)  
74.1758  
Multiple chroma and luma filters  
Luma-SSAF™ filter with programmable gain/attenuation  
PrPb SSAF™  
1 Other standards are supported in async timing mode.  
Separate pedestal control on component and  
composite/S-video output  
VCR FF/RW sync mode  
Macrovision Rev 7.1.L1  
CGMS/WSS  
Closed captioning  
Rev. PrA | Page 4 of 88  
 
Preliminary Technical Data  
ADV7322  
HD PIXEL  
INPUT  
SHARPNESS  
AND  
Y
CR  
CB  
Y COLOR  
CR COLOR  
CB COLOR  
DE-  
TEST  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
4:2:2  
TO  
4:4:4  
INTER-  
LEAVE  
ADAPTIVE  
FILTER  
PS 8×  
PATTERN  
HDTV 2×  
CLKIN_B  
CONTROL  
P_HSYNC  
P_VSYNC  
P_BLANK  
TIMING  
GENERATOR  
CLOCK  
CONTROL  
AND PLL  
U
V
UV SSAF  
S_HSYNC  
S_VSYNC  
S_BLANK  
RGB  
TIMING  
GENERATOR  
MATRIX  
SD 16×  
CLKIN_A  
CB  
CR  
Y
DE-  
INTER-  
LEAVE  
LUMA  
AND  
F
TEST  
PATTERN  
DNR  
GAMMA  
COLOR  
CONTROL  
SYNC  
INSERTION  
SC  
2× OVER-  
SAMPLING  
CGMS  
WSS  
MODU-  
LATION  
CHROMA  
FILTERS  
SD PIXEL  
INPUT  
Figure 2. Detailed Functional Block Diagram  
TERMINOLOGY  
SD: standard definition video, conforming to  
ITU-R BT.601/ITU-R BT.656.  
HDTV: high definition television video, conforming to SMPTE  
274M, or SMPTE 296M and SMPTE240M.  
HD: high definition video, i.e., 720p/1080i/1035i.  
EDTV: enhanced definition television (525p/625p)  
YCrCb SD, PS, or HD component: digital video.  
YPrPb SD, PS, or HD component: analog video.  
PS: progressive scan video, conforming to SMPTE 293M,  
ITU-R BT.1358, BTAT-1004EDTV2, or ITU-R BT.13621362.  
Rev. PrA | Page 5 of 88  
ADV7322  
Preliminary Technical Data  
SPECIFICATIONS  
VAA = 2.375 V − 2.625 V, VDD = 2.375 V − 2.625 V, VDD_IO = 2.375 V − 3.6 V, VREF = 1.235 V, RSET = 3040 Ω, RLOAD = 300 Ω. All specifications  
TMIN to TMAX (0°C to 70°C), unless otherwise noted.  
Table 2.  
Parameter  
STATIC PERFORMANCE1  
Min  
Typ  
Max  
Unit  
Test Conditions  
Resolution  
Integral Nonlinearity  
Differential Nonlinearity2, +ve  
Differential Nonlinearity2, −ve  
DIGITAL OUTPUTS  
Output Low Voltage, VOL  
Output High Voltage, VOH  
Three-State Leakage Current  
Three-State Output Capacitance  
DIGITAL AND CONTROL INPUTS  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Leakage Current  
Input Capacitance, CIN  
ANALOG OUTPUTS  
11  
Bits  
LSB  
LSB  
LSB  
1.5  
0.5  
1.0  
0.4 [0.4]3  
V
V
µA  
pF  
ISINK = 3.2 mA  
ISOURCE = 400 µA  
VIN = 0.4 V, 2.4 V  
2.4[2.0]3  
1.0  
2
2
V
V
µA  
pF  
0.8  
10  
2
VIN = 2.4 V  
Full-Scale Output Current  
Output Current Range  
DAC to DAC Matching  
Output Compliance Range, VOC  
Output Capacitance, COUT  
VOLTAGE REFERENCE  
Internal Reference Range, VREF  
External Reference Range, VREF  
VREF Current4  
4.1  
4.1  
4.33  
4.33  
1.0  
1.0  
7
4.6  
4.6  
mA  
mA  
%
V
pF  
0
1.4  
1.15  
1.15  
1.235  
1.235  
10  
1.3  
1.3  
V
V
µA  
POWER REQUIREMENTS  
Normal Power Mode  
5
IDD  
137  
78  
73  
140  
1.0  
37  
mA  
mA  
mA  
mA  
mA  
mA  
SD only [16×]  
PS only [8×]  
HDTV only [2×]  
SD[16×, 8 bit] + PS[8×, 16 bit]  
1906  
45  
IDD_IO  
7, 8  
IAA  
Sleep Mode  
IDD  
80  
µA  
IAA  
7
µA  
IDD_IO  
250  
0.01  
µA  
POWER SUPPLY REJECTION RATIO  
%/%  
1Oversampling disabled. Static DAC performance will be improved with increased oversampling ratios.  
2DNL measures the deviation of the actual DAC output voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal step value; for −ve DNL, the  
actual step value lies below the ideal step value.  
3Value in brackets for VDD_IO = 2.375 V − 2.75 V.  
4External current required to overdrive internal VREF  
.
5IDD, the circuit current, is the continuous current required to drive the digital core.  
6Guaranteed maximum by characterization.  
7All DACs on.  
8IAA is the total current required to supply all DACs including the VREF circuitry and the PLL circuitry.  
Rev. PrA | Page 6 of 88  
 
 
 
 
 
 
 
 
 
 
Preliminary Technical Data  
DYNAMIC SPECIFICATIONS  
ADV7322  
VAA = 2.375 V − 2.625 V, VDD = 2.375 V − 2.625 V, VDD_IO = 2.375 V − 3.6 V, VREF = 1.235 V, RSET = 3040 Ω, RLOAD = 300 Ω. All specifications  
TMIN to TMAX (0°C to 70°C), unless otherwise noted.  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
PROGRESSIVE SCAN MODE  
Luma Bandwidth  
Chroma Bandwidth  
SNR  
12.5  
5.8  
65.6  
72  
MHz  
MHz  
dB  
Luma ramp unweighted  
Flat field full bandwidth  
dB  
HDTV MODE  
Luma Bandwidth  
30  
13.75  
MHz  
MHz  
Chroma Bandwidth  
STANDARD DEFINITION MODE  
Hue Accuracy  
0.4  
Degrees  
Color Saturation Accuracy  
Chroma Nonlinear Gain  
Chroma Nonlinear Phase  
Chroma/Luma Intermodulation  
Chroma/Luma Gain Inequality  
Chroma/Luma Delay Inequality  
Luminance Nonlinearity  
Chroma AM Noise  
0.4  
1.2  
−0.2  
0
97  
−1.1  
0.5  
84  
%
%
Referenced to 40 IRE  
Degrees  
%
%
ns  
%
dB  
Chroma PM Noise  
Differential Gain  
Differential Phase  
SNR  
75.2  
0.15  
0.2  
59.1  
77.1  
dB  
%
Degrees  
dB  
dB  
NTSC  
NTSC  
Luma ramp  
Flat field full bandwidth  
Rev. PrA | Page 7 of 88  
ADV7322  
Preliminary Technical Data  
TIMING SPECIFICATIONS  
VAA = 2.375 V − 2.625 V, VDD = 2.375 V − 2.625 V, VDD_IO = 2.375 V − 3.6 V, VREF = 1.235 V, RSET = 3040 Ω, RLOAD = 300 Ω. All specifications  
TMIN to TMAX (0°C to 70°C), unless otherwise noted.  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
MPU PORT1  
SCLOCK Frequency  
0
400  
kHz  
µs  
µs  
SCLOCK High Pulse Width, t1  
SCLOCK Low Pulse Width, t2  
Hold Time (Start Condition), t3  
0.6  
1.3  
0.6  
µs  
First clock generated after this period relevant  
for repeated start condition  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
RESET Low Time  
0.6  
100  
µs  
ns  
ns  
ns  
µs  
ns  
300  
300  
0.6  
100  
ANALOG OUTPUTS  
Analog Output Delay2  
Output Skew  
7
1
ns  
ns  
CLOCK CONTROL AND PIXEL PORT3  
fCLK  
fCLK  
29.5  
MHz  
MHz  
SD PAL square pixel mode  
PS/HD async mode  
81  
Clock High Time, t9  
Clock Low Time, t10  
40  
40  
2.0  
2.0  
% of one clk cycle  
% of one clk cycle  
ns  
ns  
1
Data Setup Time, t11  
1
Data Hold Time, t12  
SD Output Access Time, t13  
SD Output Hold Time, t14  
HD Output Access Time, t13  
HD Output Hold Time, t14  
PIPELINE DELAY4  
15  
14  
ns  
ns  
ns  
ns  
5.0  
5.0  
63  
76  
35  
41  
36  
clk cycles  
clk cycles  
clk cycles  
clk cycles  
clk cycles  
SD [2×, 16×]  
SD component mode [16×]  
PS [1×]  
PS [8×]  
HD [2×, 1×]  
1 Guaranteed by characterization.  
2Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of DAC output full-scale transition.  
3Data: C[9:0]; Y[9:0], S[9:0]  
P_HSYNC P_VSYNC P_BLANK S_HSYNC S_VSYNC S_BLANK  
Control:  
,
,
,
,
,
4SD, PS = 27 MHz, HD = 74.25 MHz.  
Rev. PrA | Page 8 of 88  
 
 
 
 
 
Preliminary Technical Data  
TIMING DIAGRAMS  
ADV7322  
CLKIN_A  
t9  
t12  
t
10  
P_HSYNC,  
CONTROL  
P_VSYNC,  
INPUTS  
P_BLANK  
Y7–Y0  
C7–C0  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Cb0  
Cr0  
Cr4  
Cb4  
Cb2  
Cr2  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
Figure 3. HD Only 4:2:2 Input Mode [Input Mode 010]; PS Only 4:2:2 Input Mode [Input Mode 001]  
CLKIN_A  
t9  
t10  
t12  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Y7–Y0  
C7–C0  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Cb1  
t11  
Cb2  
Cr2  
Cb3  
Cb4  
Cb5  
Cb0  
Cr1  
Cr3  
Cr4  
Cr5  
S7–S0  
Cr0  
CONTROL  
OUTPUTS  
t14  
t13  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
Figure 4. HD Only 4:4:4 Input Mode [Input Mode 010]; PS Only 4:4:4 Input Mode [Input Mode 001]  
Rev. PrA | Page 9 of 88  
ADV7322  
Preliminary Technical Data  
CLKIN_A  
t9  
t12  
t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Y7–Y0  
C7–C0  
G0  
B0  
G1  
B1  
G2  
G3  
B3  
G4  
B4  
G5  
B5  
B2  
R2  
t11  
S7–S0  
R0  
R1  
R3  
R4  
R5  
CONTROL  
OUTPUTS  
t14  
t13  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
Figure 5. HD RGB 4:4:4 Input Mode [Input Mode 010]  
CLKIN_B*  
t
9
t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Crxxx  
Yxxx  
Cr0  
Y1  
Y7–Y0  
Cb0  
Y0  
t12  
t12  
t11  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
*CLKIN_B MUST BE USED IN THIS PS MODE.  
HSYNC VSYNC  
Input Mode [Input Mode 100]  
Figure 6. PS 4:2:2 8-Bit Interleaved at 27 MHz  
/
Rev. PrA | Page 10 of 88  
Preliminary Technical Data  
ADV7322  
CLKIN_A  
t10  
t9  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Crxxx  
Cb0  
Y0  
Cr0  
Y1  
Yxxx  
Y7–Y0  
t12  
t13  
t14  
t11  
CONTROL  
OUTPUTS  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
HSYNC VSYNC  
/
Figure 7. PS 4:2:2 8-Bit Interleaved at 54 MHz  
Input Mode [Input Mode 111]  
CLKIN_B*  
t9  
t10  
Y7–Y0  
FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
t12  
t12  
t11  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
*CLKIN_B USED IN THIS PS ONLY MODE.  
Figure 8. PS Only 4:2:2 8-Bit Interleaved at 27 MHz EAV/SAV Input Mode [Input Mode 100]  
Rev. PrA | Page 11 of 88  
ADV7322  
Preliminary Technical Data  
CLKIN_A  
Y7–Y0  
t10  
t9  
FF  
00  
00  
XY  
Cb0  
Y0  
Y1  
Cr0  
t12  
t13  
t14  
t11  
CONTROL  
OUTPUTS  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
NOTE: Y0, Cb0 SEQUENCE AS PER SUBADDRESS 0x01 BIT-1  
Figure 9. PS Only 4:2:2 8-Bit Interleaved at 54 MHz EAV/SAV Input Mode [Input Mode 111]  
CLKIN_B  
t12  
t10  
t9  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
HD INPUT  
Y7–Y0  
C7–C0  
Y0  
Y1  
Y3  
Y4  
Y5  
Y2  
Cr0  
Cr4  
Cb0  
Cb2  
Cr2  
Cb4  
t11  
CLKIN_A  
t12  
t9  
t10  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
SD INPUT  
S7–S0  
Cr0  
Y1  
Cb0  
Y0  
Cb1  
Y2  
t11  
Figure 10. HD 4:2:2 and SD (8-Bit) Simultaneous Input Mode [Input Mode 101: SD Oversampled] [Input Mode 110: HD Oversampled]  
Rev. PrA | Page 12 of 88  
Preliminary Technical Data  
ADV7322  
CLKIN_B  
t12  
t10  
t9  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
PS INPUT  
Y7–Y0  
C7–C0  
Y0  
Y1  
Y3  
Y4  
Y5  
Y2  
Cr0  
Cr4  
Cb0  
Cb2  
Cr2  
Cb4  
t11  
CLKIN_A  
t12  
t9  
t10  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
SD INPUT  
S7–S0  
Cr0  
Y1  
Cb0  
Y0  
Cb1  
Y2  
t11  
Figure 11. PS (4:2:2) and SD (8-Bit) Simultaneous Input Mode [Input Mode 011]  
CLKIN_B  
t9  
t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
PS INPUT  
Crxxx  
Yxxx  
Cr0  
Y1  
Y7–Y0  
Cb0  
Y0  
t12  
t12  
t11  
t11  
CLKIN_A  
t12  
t9  
t10  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
SD INPUT  
S7–S0  
Cr0  
Y1  
Cb0  
Y0  
Cb1  
Y2  
t11  
Figure 12. PS (8-Bit) and SD (8-Bit) Simultaneous Input Mode [Input Mode 100]  
Rev. PrA | Page 13 of 88  
ADV7322  
Preliminary Technical Data  
CLKIN_A  
t9  
t12  
t10  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
IN SLAVE MODE  
S7–S0/Y7–Y0*  
Cb0  
Cr0  
Cb4  
Cr4  
Cb2  
Cr2  
t11  
t13  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE MODE  
t14  
*SELECTED BY ADDRESS 0x01 BIT 7  
Figure 13. 8-Bit SD Only Pixel Input Mode [Input Mode 000]  
CLKIN_A  
t9  
t12  
t10  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
IN SLAVE MODE  
S7–S0/Y7–Y0*  
C7–C0*  
Y0  
Y1  
Y2  
Y3  
Cb0  
Cr0  
Cb2  
Cr2  
t11  
t13  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE MODE  
t14  
*SELECTED BY ADDRESS 0x01 BIT 7: See Table 21.  
Figure 14. 16-Bit SD Only Pixel Input Mode [Input Mode 000]  
Rev. PrA | Page 14 of 88  
Preliminary Technical Data  
ADV7322  
P_HSYNC  
P_VSYNC  
a
P_BLANK  
Y2  
Y3  
Y7–Y0  
C7–C0  
Y0  
Y1  
Cb0 Cr0 Cr1 Cb1  
b
a AND b AS PER RELEVANT STANDARD  
Figure 15. HD 4:2:2 Input Timing Diagram  
P_HSYNC  
P_VSYNC  
a
P_BLANK  
Cr  
Y
Y7–Y0  
Cb  
Y
b
a = 32 CLKCYCLES FOR 525p  
a = 24 CLKCYCLES FOR 625p  
AS RECOMMENDED BY STANDARD  
b(MIN) = 244 CLKCYCLES FOR 525p  
b(MIN) = 264 CLKCYCLES FOR 625p  
Figure 16. PS 4:2:2 8-Bit Interleaved Input Timing Diagram  
Rev. PrA | Page 15 of 88  
ADV7322  
Preliminary Technical Data  
S_HSYNC  
S_VSYNC  
PAL = 24 CLK CYCLES  
NTSC = 32 CLK CYCLES  
S_BLANK  
Cr  
Y
S7–S0/Y7–Y0*  
Cb  
Y
PAL = 24 CLK CYCLES  
NTSC = 32 CLK CYCLES  
*SELECTED BY ADDRESS 0x01 BIT 7  
Figure 17. SD Timing Input for Timing Mode 1  
t3  
t5  
t3  
SDA  
t1  
t6  
SCLK  
t4  
t2  
t7  
t8  
Figure 18. MPU Port Timing Diagram  
Rev. PrA | Page 16 of 88  
Preliminary Technical Data  
ADV7322  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter1  
Value  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
VAA to AGND  
VDD to DGND  
−0.3 V to +3.0 V  
−0.3 V to +3.0 V  
−0.3 V to 4.6 V  
−0.3 V to VDD_IO +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
VDD_IO to GND_IO  
Digital Input Voltage to DGND  
VAA to VDD  
AGND to DGND  
DGND to GND_IO  
AGND to GND_IO  
Ambient Operating Temperature (TA) 0°C to 70°C  
Storage Temperature (TS)  
Infrared Reflow Soldering (20 s)  
–65°C to +150°C  
260°C  
THERMAL CHARACTERISTICS  
θJC = 11°C/W  
θJA = 47°C/W  
The ADV7322 is a Pb-free environmentally friendly product. It  
is manufactured using the most up-to-date materials and  
processes. The coating on the leads of each device is 100% pure  
Sn electroplate. The device is suitable for Pb-free applications  
and is able to withstand surface-mount soldering at up to 255°C  
( 5°C).  
In addition, it is backward-compatible with conventional SnPb  
soldering processes. This means that the electroplated Sn  
coating can be soldered with Sn/Pb solder pastes at  
conventional reflow temperatures of 220°C to 235°C.  
1 Analog output short circuit to any power supply or common can be of  
an indefinite duration.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
this product features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
Rev. PrA | Page 17 of 88  
 
ADV7322  
Preliminary Technical Data  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
S_BLANK  
V
DD_IO  
PIN 1  
2
3
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
TEST0  
TEST1  
Y0  
R
SET1  
V
REF  
4
COMP1  
DAC A  
DAC B  
DAC C  
5
Y1  
6
Y2  
ADV7322  
TOP VIEW  
(Not to Scale)  
7
Y3  
8
Y4  
V
AA  
9
Y5  
AGND  
DAC D  
DAC E  
DAC F  
COMP2  
10  
11  
12  
13  
14  
15  
16  
V
DD  
DGND  
Y6  
Y7  
TEST2  
TEST3  
C0  
R
SET2  
EXT_LF  
RESET  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 19. Pin Configuration  
Rev. PrA | Page 18 of 88  
Preliminary Technical Data  
ADV7322  
Table 6. Pin Function Descriptions  
Mnemonic  
Input/Output Function  
DGND  
AGND  
CLKIN_A  
CLKIN_B  
G
G
I
Digital Ground.  
Analog Ground.  
Pixel Clock Input for HD (74.25 MHz Only, PS Only (27 MHz), SD Only (27 MHz).  
Pixel Clock Input. Requires a 27 MHz reference clock for progressive scan mode or a 74.25 MHz (74.1758  
MHz) reference clock in HDTV mode. This clock is only used in dual modes.  
I
COMP1,  
COMP2  
O
Compensation Pin for DACs. Connect 0.1 µF capacitor from COMP pin to VAA.  
DAC A  
DAC B  
DAC C  
DAC D  
O
O
O
O
CVBS/Green/Y/Y Analog Output.  
Chroma/Blue/U/Pb Analog Output.  
Luma/Red/V/Pr Analog Output.  
In SD Only Mode: CVBS/Green/Y Analog Output; in HD Only Mode and Simultaneous HD/SD Mode:  
Y/Green [HD] Analog Output.  
DAC E  
DAC F  
O
O
In SD Only Mode: Luma/Blue/U Analog Output; in HD Only Mode and Simultaneous HD/SD Mode: Pr/Red  
Analog Output.  
In SD Only Mode: Chroma/Red/V Analog Output; in HD Only Mode and Simultaneous HD/SD Mode:  
Pb/Blue [HD] Analog Output.  
P_HSYNC  
P_VSYNC  
P_BLANK  
S_BLANK  
S_HSYNC  
S_VSYNC  
Y7 to Y0  
I
Video Horizontal Sync Control Signal for HD in Simultaneous SD/HD Mode and HD Only Mode.  
Video Vertical Sync Control Signal for HD in Simultaneous SD/HD Mode and HD Only Mode.  
Video Blanking Control Signal for HD in Simultaneous SD/HD Mode and HD Only Mode.  
Video Blanking Control Signal for SD Only.  
I
I
I/O  
I/O  
I/O  
I
Video Horizontal Sync Control Signal for SD Only.  
Video Vertical Sync Control Signal for SD Only.  
SD or Progressive Scan/HDTV Input Port for Y Data. Input port for interleaved progressive scan data. The  
LSB is set up on Pin Y0.  
C7 to C0  
I
Progressive Scan/HDTV Input Port 4:4:4 Input Mode. This port is used for the Cb [Blue/U] data. The LSB is  
set up on Pin C0.  
S7 to S0  
RESET  
I
I
SD or Progressive Scan/HDTV Input Port for Cr [Red/V] data in 4:4:4 input mode. LSB is set up on Pin S0.  
RESET  
This input resets the on-chip timing generator and sets the ADV7322 into default register setting.  
an active low signal.  
is  
RSET1, RSET2  
I
A 3040 Ω resistor must be connected from this pin to AGND and is used to control the amplitudes of the  
DAC outputs.  
SCLK  
SDA  
ALSB  
I
I2C Port Serial Interface Clock Input.  
I2C Port Serial Data Input/Output.  
I/O  
I
TTL Address Input. This signal sets up the LSB of the I2C address. When this pin is tied low, the I2C filter is  
activated, which reduces noise on the I2C interface.  
VDD_IO  
VDD  
P
P
Power Supply for Digital Inputs and Outputs.  
Digital Power Supply.  
VAA  
P
Analog Power Supply.  
VREF  
I/O  
Optional External Voltage Reference Input for DACs or Voltage Reference Output (1.235 V).  
External Loop Filter for the Internal PLL.  
Multifunctional Input. Real time control (RTC) input, timing reset input, subcarrier reset input.  
This input pin must be tied high (VDD_IO) for the ADV7322 to interface over the I2C port.  
Digital Input/Output Ground.  
EXT_LF  
RTC_SCR_TR  
I2C  
I
I
I
GND_IO  
TEST0 to  
TEST5  
I
Not used. Tie to DGND  
Rev. PrA | Page 19 of 88  
ADV7322  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS  
Y PASS BAND IN PS OVERSAMPLING MODE  
PROG SCAN Pr/Pb RESPONSE. LINEAR INTERP FROM 4:2:2 TO 4:4:4  
0
1.0  
0.5  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 20. PS—UV 8× Oversampling Filter (Linear)  
Figure 23. PS—Y 8× Oversampling Filter (Pass Band)  
PROG SCAN Pr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4  
Pr/Pb RESPONSE IN HDTV OVERSAMPLING MODE  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
20  
40  
60  
80  
100  
120  
140  
FREQUENCY (MHz)  
Figure 24. HDTV—UV (2× Oversampling Filter)  
Figure 21. PS—UV 8× Oversampling Filter (SSAF)  
Y RESPONSE IN PS OVERSAMPLING MODE  
Y RESPONSE IN HDTV OVERSAMPLING MODE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
20  
40  
60  
80  
100  
120  
140  
FREQUENCY (MHz)  
Figure 22. PS—Y (8× Oversampling Filter)  
Figure 25. HDTV—Y (2× Oversampling Filter)  
Rev. PrA | Page 20 of 88  
Preliminary Technical Data  
ADV7322  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
0
0
2
4
6
8
10  
10  
10  
12  
12  
12  
0
0
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 26. Luma NTSC Low-Pass Filter  
Figure 29. Luma PAL Notch Filter  
Y RESPONSE IN SD OVERSAMPLING MODE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
2
4
6
8
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 27. Luma PAL Low-Pass Filter  
Figure 30. Y—16× Oversampling Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 28. Luma NTSC Notch Filter  
Figure 31. Luma SSAF Filter up to 12 MHz  
Rev. PrA | Page 21 of 88  
ADV7322  
Preliminary Technical Data  
4
2
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–2  
–4  
–6  
–8  
–10  
–12  
0
2
3
4
5
6
7
0
0
0
2
4
6
8
10  
10  
10  
12  
12  
12  
1
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 32. Luma SSAF Filter—Programmable Responses  
Figure 35. Luma CIF Low-Pass Filter  
5
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
4
3
2
1
0
–1  
2
4
6
8
5
6
7
0
1
2
3
4
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 33. Luma SSAF Filter—Programmable Gain  
Figure 36. Luma QCIF Low-Pass Filter  
1
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–1  
–2  
–3  
–4  
–5  
0
1
2
3
4
5
6
7
2
4
6
8
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 34. Luma SSAF Filter—Programmable Attenuation  
Figure 37. Chroma 3.0 MHz Low-Pass Filter  
Rev. PrA | Page 22 of 88  
 
 
 
 
Preliminary Technical Data  
ADV7322  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10  
12  
12  
12  
0
0
0
2
4
6
8
0
0
0
2
4
6
8
10  
12  
12  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 38. Chroma 2.0 MHz Low-Pass Filter  
Figure 41. Chroma 0.65 MHz Low-Pass Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 39. Chroma 1.3 MHz Low-Pass Filter  
Figure 42. Chroma CIF Low-Pass Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
10  
2
4
6
8
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 40. Chroma 1.0 MHz Low-Pass Filter  
Figure 43. Chroma QCIF Low-Pass Filter  
Rev. PrA | Page 23 of 88  
ADV7322  
Preliminary Technical Data  
MPU PORT DESCRIPTION  
The ADV7322 supports a 2-wire serial (I2C-compatible)  
microprocessor bus driving multiple peripherals. This port  
operates in an open-drain configuration. Two inputs, serial data  
(SDA) and serial clock (SCL), carry information between any  
device connected to the bus and the ADV7322. Each slave  
device is recognized by a unique address. The ADV7322 has  
four possible slave addresses for both read and write operations.  
These are unique addresses for each device and are illustrated in  
Figure 44. The LSB sets either a read or write operation. Logic 1  
corresponds to a read operation, while Logic 0 corresponds to a  
write operation. A1 is set by setting the ALSB pin of the  
ADV7322 to Logic 0 or Logic 1. When ALSB is set to 1, there is  
greater input bandwidth on the I2C lines, which allows high  
speed data transfers on this bus. When ALSB is set to 0, there is  
reduced input bandwidth on the I2C lines, which means that  
pulses of less than 50 ns will not pass into the I2C internal  
controller. This mode is recommended for noisy systems.  
The ADV7322 acts as a standard slave device on the bus. The  
data on the SDA pin is eight bits long, supporting the 7-bit  
addresses plus the R/ bit. It interprets the first byte as the  
W
device address and the second byte as the starting subaddress.  
There is a subaddress auto-increment facility. This allows data  
to be written to or read from registers in ascending subaddress  
sequence starting at any valid subaddress. A data transfer is  
always terminated by a stop condition. The user can also access  
any unique subaddress register on a one-by-one basis without  
having to update all the registers.  
Stop and start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of  
sequence with normal read and write operations, then they  
cause an immediate jump to the idle condition. During a given  
SCL high period, the user should only issue one start condition,  
one stop condition, or a single stop condition followed by a  
single start condition. If an invalid subaddress is issued by the  
user, the ADV7322 will not issue an acknowledge and will  
return to the idle condition. If in auto-increment mode the user  
exceeds the highest subaddress, the following action is taken:  
1
1
0
1
0
1
A1  
X
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
1. In read mode, the highest subaddress register contents are  
output until the master device issues a no-acknowledge.  
This indicates the end of a read. A no-acknowledge  
condition is when the SDA line is not pulled low on the  
ninth pulse.  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
Figure 44. ADV7322 Slave Address = 0xD4  
2. In write mode, the data for the invalid byte is not loaded  
into any subaddress register, a no-acknowledge is issued by  
the ADV7322, and the part returns to the idle condition.  
To control the various devices on the bus, the following protocol  
must be followed. First the master initiates a data transfer by  
establishing a start condition, defined by a high-to-low  
transition on SDA while SCL remains high. This indicates that  
an address/data stream will follow. All peripherals respond to  
the start condition and shift the next eight bits (7-bit address +  
Before writing to the subcarrier frequency registers, it is a  
requirement that the ADV7322 is reset at least once after  
power-up.  
The four subcarrier frequency registers must be updated,  
starting with subcarrier frequency register 0 through subcarrier  
frequency register 3. The subcarrier frequency will not update  
until the last subcarrier frequency register byte has been  
received by the ADV7322.  
R/ bit). The bits are transferred from MSB down to LSB. The  
W
peripheral that recognizes the transmitted address responds by  
pulling the data line low during the ninth clock pulse. This is  
known as an acknowledge bit. All other devices withdraw from  
the bus at this point and maintain an idle condition. The idle  
condition is where the device monitors the SDA and SCL lines  
waiting for the start condition and the correct transmitted  
Figure 45 illustrates an example of data transfer for a write  
sequence and the start and stop conditions. Figure 46 shows bus  
write and read sequences.  
address. The R/ bit determines the direction of the data.  
W
Logic 0 on the LSB of the first byte means that the master will  
write information to the peripheral. Logic 1 on the LSB of the  
first byte means that the master will read information from the  
peripheral.  
Rev. PrA | Page 24 of 88  
 
 
Preliminary Technical Data  
ADV7322  
SDATA  
SCLOCK  
S
P
9
1–7  
9
9
1–7  
8
8
1–7  
8
START ADRR R/W ACK SUBADDRESS ACK  
DATA  
ACK  
STOP  
Figure 45. Bus Data Transfer  
WRITE  
S
S
SLAVE ADDR A(S)  
LSB = 0  
SUBADDR  
SUBADDR  
A(S)  
A(S)  
DATA  
A(S)  
DATA  
A(M)  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S)  
S
SLAVE ADDR A(S)  
DATA  
DATA  
A(M) P  
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A (S) = NO-ACKNOWLEDGE BY SLAVE  
A (M) = NO-ACKNOWLEDGE BY MASTER  
Figure 46. Read and Write Sequence  
Rev. PrA | Page 25 of 88  
ADV7322  
Preliminary Technical Data  
REGISTER ACCESS  
The MPU can write to or read from all of the registers of the  
ADV7322 except the subaddress registers, which are write only  
registers. The subaddress register determines which register the  
next read or write operation will access. All communications  
with the part through the bus start with an access to the  
subaddress register. A read/write operation is then performed  
from/to the target address, which increments to the next  
address until a stop command is performed on the bus.  
REGISTER PROGRAMMING  
The following tables describe the functionality of each register.  
All registers can be read from as well as written to, unless  
otherwise stated.  
SUBADDRESS REGISTER (SR7 TO SR0)  
The communication register is an 8-bit write-only register. After  
the part is accessed over the bus and a read/write operation is  
selected, the subaddress is set up. The subaddress register  
determines to/from which register the operation takes place.  
Table 7. Registers 0x00 to 0x01  
Reg. Reset  
Values  
SR7–  
SR0  
0x00  
Register  
Power  
Mode  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
Register Setting  
Sleep mode off.  
Sleep mode on.  
(Shaded)  
0xFC  
Sleep Mode. With this  
control enabled, the  
current consumption is  
reduced to µA level. All  
DACs and the internal PLL  
cct are disabled. I2C  
registers can be read from  
and written to in sleep  
mode.  
Register  
PLL and Oversampling  
Control. This control  
allows the internal PLL cct  
to be powered down and  
the oversampling to be  
switched off.  
0
1
PLL on.  
PLL off.  
DAC F: Power On/Off.  
0
1
DAC F off.  
DAC F on.  
DAC E off.  
DAC E on.  
DAC D off.  
DAC D on.  
DAC D off.  
DAC C on.  
DAC B off.  
DAC B on.  
DAC A off.  
DAC A on.  
Reserved  
DAC E: Power On/Off.  
DAC D: Power On/Off.  
DAC C: Power On/Off.  
DAC B: Power On/Off.  
DAC A: Power On/Off.  
0
1
0
1
0
1
0
1
0
1
0x01  
Mode  
Select  
Reserved  
0
Clock Edge.  
0
1
Cb clocked on rising  
edge.  
Y clocked on rising edge  
Only for PS  
interleaved  
input at 27 MHz.  
Register  
Reserved.  
0
Clock Align.  
0
1
Must be set if the phase  
delay between the two  
input clocks is  
Only if two  
input clocks are  
used.  
<9.25 ns or >27.75 ns.  
Input Mode.  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
SD input only.  
PS input only.  
0x38  
HDTV input only.  
SD and PS [16-bit].  
SD and PS [8-bit].  
SD and HDTV [SD  
oversampled].  
1
1
1
1
0
1
SD and HDTV [HDTV  
oversampled].  
PS only [at 54 MHz].  
Y/C/S Bus Swap.  
0
1
Allows data to be  
See Table 21.  
applied to data ports in  
various configurations  
(SD feature only).  
Rev. PrA | Page 26 of 88  
Preliminary Technical Data  
ADV7322  
Table 8. Registers 0x02 to 0x0F  
SR7–  
SR0  
0x02  
Register  
Mode Register 0  
Bit Description  
Reserved  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
Bit 0  
0
Register Setting  
Zero must be written to  
these bits.  
Reset Values  
0x20  
Test Pattern Black  
Bar  
0
1
Disabled.  
Enabled.  
0x11, Bit 2 must  
also be enabled.  
Manual RGB  
Matrix Adjust  
0
1
Disable manual RGB matrix  
adjust.  
Enable manual RGB matrix  
adjust.  
Sync on RGB1  
0
1
No sync.  
Sync on all RGB outputs.  
RGB component outputs.  
YPrPb component outputs.  
No Sync output.  
Output SD syncs on  
RGB/YPrPb  
Output  
SD Sync  
0
1
0
1
,
,
S_HSYNC S_VSYNC  
pins.  
S_BLANK  
No sync output.  
Output HD,ED, syncs on  
HD Sync  
0
1
,
.
S_HSYNC S_VSYNC  
0x03  
0x04  
RGB Matrix 0  
RGB Matrix 1  
x
x
x
x
LSB for GY.  
LSB for RV.  
0x03  
0xF0  
x
x
LSB for BU.  
x
x
LSB for GV.  
x
x
x
x
x
x
0
x
x
x
x
x
x
0
LSB for GU.  
Bits 9–2 for GY.  
Bits 9–2 for GU.  
Bits 9–2 for GV.  
Bits 9–2 for BU.  
Bits 9–2 for RV.  
0%  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
RGB Matrix 2  
RGB Matrix 3  
RGB Matrix 4  
RGB Matrix 5  
RGB Matrix 6  
DAC A, B, C Output  
Level2  
x
x
x
x
x
0
x
x
x
x
x
0
x
x
x
x
x
0
x
x
x
x
x
0
x
x
x
x
x
0
x
x
x
x
x
0
0x4E  
0x0E  
0x24  
0x92  
0x7C  
0x00  
Positive Gain to  
DAC Output  
Voltage  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
+0.018%  
0.036%  
+7.382%  
+7.5%  
−7.5%  
0
0
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
Negative Gain to  
DAC Output  
Voltage  
0
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
−7.382%  
−7.364%  
−0.018%  
0%  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0x0B  
DAC D, E, F Output  
Level  
Positive Gain to  
DAC Output  
Voltage  
0x00  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
+0.018%  
0.036%  
+7.382%  
+7.5%  
−7.5%  
0
0
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
Negative Gain to  
DAC Output  
Voltage  
0
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
−7.382%  
−7.364%  
1
1
1
1
1
1
1
−0.018%  
0x0C  
0x0D  
0x0E  
0x0F  
Reserved  
Reserved  
Reserved  
Reserved  
0x00  
0x00  
0x00  
0x00  
1For more detail, refer to Appendix 7.  
2For more detail on the programmable output levels, refer to the Programmable DAC Gain Control section.  
Rev. PrA | Page 27 of 88  
 
 
ADV7322  
Preliminary Technical Data  
Table 9. Registers 0x10 to 0x11  
SR7–  
Reset  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
EIA770.2 output  
EIA770.1 output  
Note  
Values  
0x10  
HD Mode  
Register 1  
HD Output  
Standard  
0
0
1
0
1
0
0x00  
Output levels for  
full input range  
1
1
Reserved  
Input Sync  
Format  
0
1
,
,
HSYNC VSYNC  
BLANK  
EAV/SAV codes  
HD/ED Input  
Mode  
0
0
0
0
0
SMPTE 293M, ITU-  
BT 1358  
525p @  
59.94 Hz  
0
0
0
0
0
0
0
1
1
0
Async mode  
BTA-1004, ITU-  
BT 1362  
525p @  
59.94 Hz  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
ITU-BT 1358  
625p @  
50 Hz  
ITU-BT 1362  
625p @  
50 Hz  
SMPTE 296M-1, 2  
SMPTE 296M-3  
SMPTE 296M-4, 5  
SMPTE 296M-6  
SMPTE 296M-7, 8  
SMPTE 240M  
720p @  
60/59.94 Hz  
720p @  
50 Hz  
720p @  
30/29.97 Hz  
720p @  
25 Hz  
720p @  
24/23.98 Hz  
1035i @  
60/59.94 Hz  
0
0
0
1
1
1
0
1
1
1
0
0
1
0
1
Reserved  
Reserved  
SMPTE 274M-4,5  
1080i @  
30/29.97 Hz  
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
SMPTE 274M-6  
SMPTE 274M-7, 8  
SMPTE 274M-9  
1080i @  
25 Hz  
1080p @  
30/29.97 Hz  
1080p @  
25 Hz  
SMPTE 274M-  
10, 11  
1080p @  
24/23.98 Hz  
10010–11111  
Reserved  
0x11  
HD Mode  
Register 2  
HD Pixel Data  
Valid  
0
1
Pixel data valid off  
Pixel data valid on  
Reserved  
0x00  
0
HD Test Pattern  
Enable  
0
1
HD test pattern off  
HD test pattern on  
Hatch  
HD Test Pattern  
Hatch/Field  
0
1
Field/frame  
Disabled  
HD VBI Open  
0
1
Enabled  
HD Undershoot  
Limiter  
0
0
1
1
0
1
0
1
Disabled  
Only  
available in  
EDTV  
−11 IRE  
−6 IRE  
(525p/625p)  
−1.5 IRE  
HD Sharpness  
Filter  
0
1
Disabled  
Enabled  
Rev. PrA | Page 28 of 88  
Preliminary Technical Data  
ADV7322  
Table 10. Register 0x12  
SR7–  
Reset  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
0 clk cycles  
1 clk cycles  
2 clk cycles  
3 clk cycles  
4 clk cycles  
0 clk cycles  
1 clk cycle  
2 clk cycles  
3 clk cycles  
4 clk cycles  
Disabled  
Values  
0x12  
HD Mode HD Y Delay with Respect  
Register  
3
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0x00  
to Falling Edge of  
HSYNC  
HD Color Delay with  
Respect to Falling Edge of  
HSYNC  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
HD CGMS  
0
1
Enabled  
HD CGMS CRC  
0
1
Disabled  
Enabled  
Table 11. Registers 0x13 to 0x14  
SR7–  
Reset  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
Values  
0x13  
HD Mode  
Register 4  
HD Cr/Cb Sequence  
0
Cb after falling edge of  
.
0x4C  
HSYNC  
1
Cr after falling edge of  
.
HSYNC  
Reserved  
0
0 must be written to this bit.  
Reserved  
0
0 must be written here  
Disabled.  
Sinc Filter on DAC D, E, F  
0
1
Enabled.  
Reserved  
0
0 must be written to this bit.  
Disabled.  
HD Chroma SSAF  
0
1
Enabled.  
HD Chroma Input  
HD Double Buffering  
HD Timing Reset  
0
1
4:4:4  
4:2:2  
0
1
Disabled.  
Enabled.  
0x14  
HD Mode  
Register 5  
x
A low-high-low transition  
resets the internal HD timing  
counters.  
0x00  
HD Hsync Generation1  
0
1
Signal duration on S_Hsync  
same as ADV731x.  
Signal duration on S_Hsync =  
sync duration on embedded Y.  
HD Vsync Generation1  
HD Blank Polarity  
0
1
Field signal out on S_Vsync pin.  
Vsync Signal. Duration = Vsync  
on embedded Y.  
0
1
active high.  
active low.  
BLANK  
BLANK  
HD Macrovision for 525p  
and 625p  
0
1
Macrovision disabled.  
Macrovision enabled.  
Reserved  
0
0 must be written to these bits.  
HD  
/Field Input  
VSYNC  
0
1
0 = field input.  
1 =  
input.  
VSYNC  
Horizontal/Vertical  
counters2  
0
1
Update Horizontal/Vertical  
counters.  
Horizontal/Vertical counters  
free running.  
1 Used in conjunction with HD_SYNC in Register 0x02, Bit 7 set to 1.  
2 When set to 0, the Horizontal/Vertical counters automatically wrap around at the end of the Line/field/frame of the standard selected. When set to 1, the  
Horizontal/Vertical counters are free running and wrap around when external sync signals indicate so.  
Rev. PrA | Page 29 of 88  
 
 
 
ADV7322  
Preliminary Technical Data  
Table 12. Register 0x15  
SR7–  
Reset  
SR0  
Register  
Bit Description  
Reserved  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
0 must be written to this bit  
Disabled  
Values  
0x15  
HD Mode  
Register 6  
0
0x00  
HD RGB Input  
0
1
Enabled  
HD Sync on PrPb  
0
1
Disabled  
Enabled  
HD Color DAC Swap  
0
1
DAC E = Pb; DAC F = Pr  
DAC E = Pr; DAC F = Pb  
Gamma Curve A  
Gamma Curve B  
Disabled  
HD Gamma Curve A/B  
HD Gamma Curve Enable  
HD Adaptive Filter Mode  
HD Adaptive Filter Enable  
0
1
0
1
Enabled  
0
1
Mode A  
Mode B  
0
1
Disabled  
Enabled  
Rev. PrA | Page 30 of 88  
Preliminary Technical Data  
ADV7322  
Table 13. Registers 0x16 to 0x37  
SR7–  
Register  
Setting  
Reset  
Values  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x16  
0x17  
HD Y Level1  
HD Cr Level1  
HD Cb Level1  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Y level value  
Cr level value  
0xA0  
0x80  
0x18  
x
x
x
x
x
x
x
x
Cb level value  
0x80  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
Reserved  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
HD Sharpness  
Filter Gain  
HD Sharpness Filter Gain Value A  
0
0
0
0
Gain A = 0  
0
0
0
1
Gain A = +1  
0
1
1
1
Gain A = +7  
1
0
0
0
Gain A = −8  
1
1
1
1
Gain A = −1  
HD Sharpness Filter Gain Value B  
0
0
0
0
Gain B = 0  
0
0
0
1
Gain B = +1  
0
1
1
1
Gain B = +7  
1
0
0
0
Gain B = −8  
1
1
1
1
Gain B = −1  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
HD CGMS Data 0  
HD CGMS Data 1  
HD CGMS Data 2  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD CGMS Data Bits  
0
0
0
0
C19  
C11  
C3  
x
C18  
C10  
C2  
x
C17  
C9  
C1  
x
C16  
C8  
C0  
x
CGMS 19–16  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
HD CGMS Data Bits  
C15  
C7  
x
C14  
C6  
x
C13  
C5  
x
C12  
C4  
x
CGMS 15–8  
HD CGMS Data Bits  
CGMS 7–0  
A0  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
x
x
x
x
x
x
x
x
A1  
x
x
x
x
x
x
x
x
A2  
x
x
x
x
x
x
x
x
A3  
x
x
x
x
x
x
x
x
A4  
x
x
x
x
x
x
x
x
A5  
x
x
x
x
x
x
x
x
A6  
x
x
x
x
x
x
x
x
A7  
x
x
x
x
x
x
x
x
A8  
x
x
x
x
x
x
x
x
A9  
x
x
x
x
x
x
x
x
B0  
x
x
x
x
x
x
x
x
B1  
x
x
x
x
x
x
x
x
B2  
x
x
x
x
x
x
x
x
B3  
x
x
x
x
x
x
x
x
B4  
x
x
x
x
x
x
x
x
B5  
x
x
x
x
x
x
x
x
B6  
x
x
x
x
x
x
x
x
B7  
x
x
x
x
x
x
x
x
B8  
x
x
x
x
x
x
x
x
B9  
1For use with internal test pattern only.  
Rev. PrA | Page 31 of 88  
 
 
ADV7322  
Preliminary Technical Data  
Table 14. Registers 0x38 to 0x3D  
SR7–  
Register  
Setting  
Reset  
Values  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
0x38  
HD Adaptive Filter  
Gain 1  
HD Adaptive  
Filter Gain 1  
Value A  
Gain A = 0  
Gain A = +1  
0x00  
0x00  
0x00  
0
0
0
1
0
1
1
1
Gain A = +7  
Gain A = −8  
1
0
0
0
1
1
1
1
Gain A = −1  
Gain B = 0  
Gain B = +1  
HD Adaptive  
Filter Gain 1  
Value B  
0
0
0
0
0
0
0
1
0
1
1
1
Gain B = +7  
Gain B = −8  
1
0
0
0
1
1
1
1
Gain B = −1  
Gain A = 0  
Gain A = +1  
0x39  
HD Adaptive Filter  
Gain 2  
HD Adaptive  
Filter Gain 2  
Value A  
0
0
0
0
0
0
0
1
0
1
1
1
Gain A = +7  
Gain A = −8  
1
0
0
0
1
1
1
1
Gain A = −1  
Gain B = 0  
Gain B = +1  
HD Adaptive  
Filter Gain 2  
Value B  
0
0
0
0
0
0
0
1
0
1
1
1
Gain B = +7  
Gain B = −8  
1
0
0
0
1
1
1
1
Gain B = −1  
Gain A = 0  
Gain A = +1  
0x3A  
HD Adaptive Filter  
Gain 3  
HD Adaptive  
Filter Gain 3  
Value A  
0
0
0
0
0
0
0
1
0
1
1
1
Gain A = +7  
Gain A = −8  
1
0
0
0
1
1
1
1
Gain A = −1  
Gain B = 0  
Gain B = +1  
HD Adaptive  
Filter Gain 3  
Value B  
0
0
0
0
0
0
0
1
0
1
1
1
Gain B = +7  
Gain B = −8  
1
0
0
0
1
1
1
1
Gain B = −1  
Threshold A  
0x3B  
0x3C  
0x3D  
HD Adaptive Filter  
Threshold A  
HD Adaptive  
Filter Threshold  
A Value  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x00  
0x00  
0x00  
HD Adaptive Filter  
Threshold B  
HD Adaptive  
Filter Threshold  
B Value  
x
x
x
x
x
x
x
x
Threshold B  
Threshold C  
HD Adaptive Filter  
Threshold C  
HD Adaptive  
Filter Threshold  
C Value  
Rev. PrA | Page 32 of 88  
Preliminary Technical Data  
ADV7322  
Table 15. Registers 0x3E to 0x43  
SR7–  
Reset  
Values  
0x00  
0x00  
0x00  
SR0  
Register  
Bit Description  
Reserved  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
0x3E  
0x3F  
0x40  
Reserved  
SD Mode Register 0  
SD Standard  
0
0
1
1
0
1
0
1
NTSC  
PAL B, D, G, H, I  
PAL M  
PAL N  
SD Luma Filter  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
LPF NTSC  
LPF PAL  
Notch NTSC  
Notch PAL  
SSAF luma  
Luma CIF  
Luma QCIF  
Reserved  
1.3 MHz  
0.65 MHz  
1.0 MHz  
2.0 MHz  
SD Chroma Filter  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Chroma CIF  
Chroma QCIF  
3.0 MHz  
0x41  
0x42  
Reserved  
SD PrPb SSAF  
0x00  
0x08  
SD Mode Register 1  
0
1
Disabled  
Enabled  
SD DAC Output 1  
SD DAC Output 2  
SD Pedestal  
0
1
Refer to output  
configuration section  
Refer to output  
configuration section  
Disabled  
0
1
0
1
Enabled  
SD Square Pixel  
SD VCR FF/RW Sync  
SD Pixel Data Valid  
0
1
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
0
1
0
1
SD SAV/EAV Step  
Edge Control  
0
1
Disabled  
Enabled  
0x43  
SD Mode Register 2  
SD Pedestal YPrPb  
Output  
SD Output Levels Y  
0
1
No pedestal on YUV  
7.5 IRE pedestal on YUV  
Y = 700 mV/300 mV  
Y = 714 mV/286 mV  
700 mV p-p[PAL];  
1000 mV p-p[NTSC]  
700 mV p-p  
0x00  
0
1
SD Output Levels PrPb  
0
0
0
1
1
1
0
1
1000 mV p-p  
648 mV p-p  
SD VBI Open  
0
1
Disabled  
Enabled  
SD CC Field Control  
0
0
1
1
0
1
0
1
CC disabled  
CC on odd field only  
CC on even field only  
CC on both fields  
Reserved  
Reserved  
0
Rev. PrA | Page 33 of 88  
ADV7322  
Preliminary Technical Data  
Table 16. Registers 0x44 to 0x49  
SR7–  
Reset  
SR0  
0x44  
Register  
SD Mode  
Register 3  
Bit Description  
SD VSYNC-3H  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
Register Setting  
Disabled  
Values  
0x00  
= 2.5 lines [PAL],  
VSYNC  
= 3 lines [NTSC]  
VSYNC  
SD RTC/TR/SCR  
0
0
1
1
0
1
0
1
Genlock disabled  
Subcarrier Reset  
Timing Reset  
RTC enabled  
SD Active Video Length  
SD Chroma  
0
1
720 pixels  
710 [NTSC]/702[PAL]  
Chroma enabled  
Chroma disabled  
Enabled  
0
1
SD Burst  
0
1
Disabled  
SD Color Bars  
SD DAC Swap  
0
1
Disabled  
Enabled  
DAC A = luma, DAC B = chroma  
DAC A = chroma, DAC B = luma  
0
1
0x45  
0x46  
Reserved  
SD Mode  
Register 4  
0x00  
0x01  
NTSC Color Subcarrier  
Adjust (Falling Edge of  
HS to Start of Color  
Burst)1  
0
0
1
0
1
0
5.17 µs  
5.31 µs (default)  
5.59 µs (must be set for  
Macrovision compliance)  
Reserved  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
0 must be written to this bit  
0 must be written to this bit  
0 must be written to this bit  
1
1
0
1
0x47  
0x48  
0x49  
SD Mode  
Register 5  
SD PrPb Scale  
SD Y Scale  
0x00  
0x00  
0x00  
0
1
SD Hue Adjust  
SD Brightness  
SD Luma SSAF Gain  
0
1
0
1
0
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SD Double Buffering  
0
0
0
SD Mode  
Register 6  
0
0
0 must be written to this bit  
Disabled  
Enabled  
8-bit input  
16-bit input  
0 must be written to this bit  
Disabled  
Enabled  
Disabled  
Enabled  
Gamma Curve A  
Gamma Curve B  
Disabled  
−11 IRE  
−6 IRE  
0
1
SD Input Format  
0
1
Reserved  
SD Digital Noise  
Reduction  
0
0
1
SD Gamma Control  
0
1
SD Gamma Curve  
0
1
SD Mode  
Register 7  
SD Undershoot Limiter  
0
0
1
1
0
1
0
1
−1.5 IRE  
Reserved  
SD Black Burst Output on  
DAC Luma  
0
0 must be written to this bit  
Disabled  
Enabled  
0
1
SD Chroma Delay  
0
0
1
1
0
1
0
1
Disabled  
4 clk cycles  
8 clk cycles  
Reserved  
Reserved  
Reserved  
0
0 must be written to this bit  
0 must be written to this bit  
0
1 NTSC color bar adjust should be set to 10 b for macrovision compliance.  
Rev. PrA | Page 34 of 88  
 
Preliminary Technical Data  
ADV7322  
Table 17. Registers 0x4A to 0x58  
SR7–  
Reset  
Value  
0x08  
SR0  
0x4A  
Register  
SD Timing  
Register 0  
Bit Description  
SD Slave/Master  
Mode  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
Register Setting  
Slave mode.  
Master mode.  
Mode 0.  
Mode 1.  
Mode 2.  
SD Timing Mode  
0
0
1
1
0
1
0
1
Mode 3.  
SD BLANK Input  
SD Luma Delay  
0
1
Enabled.  
Disabled.  
0
0
1
1
0
1
0
1
No delay.  
2 clk cycles.  
4 clk cycles.  
6 clk cycles.  
−40 IRE.  
SD Min. Luma  
Value  
SD Timing Reset  
0
1
0
−7.5 IRE.  
x
0
0
0
0
0
0
A low-high-low transition will  
reset the internal SD timing  
counters.  
0x4B  
SD Timing  
Register 1  
SD  
SD  
Width  
0
0
1
1
0
1
0
1
Ta = 1 clk cycle.  
Ta = 4 clk cycles.  
Ta = 16 clk cycles.  
Ta = 128 clk cycles.  
Tb = 0 clk cycle.  
0x00  
HSYNC  
to  
Delay  
0
0
1
1
0
1
0
1
HSYNC  
Tb = 4 clk cycles.  
Tb = 8 clk cycles.  
VSYNC  
Tb = 18 clk cycles.  
SD  
to  
HSYNC VSYNC  
x
x
0
1
Tc = Tb.  
Tc = Tb + 32 µs.  
Rising Edge Delay  
[Mode 1 Only]  
Width  
0
0
1
1
0
1
0
1
1 clk cycle.  
4 clk cycles.  
16 clk cycles.  
128 clk cycles.  
0 clk cycles.  
1 clk cycle.  
2 clk cycles.  
3 clk cycles.  
Subcarrier Frequency Bits 7–0.  
VSYNC  
[Mode 2 Only]  
to Pixel  
Data Adjust  
0
0
1
1
x
0
1
0
1
x
HSYNC  
0x4C  
x
x
x
x
x
x
0x1E1  
SD FSC Register 01  
SD FSC Register 1  
SD FSC Register 2  
SD FSC Register 3  
SD FSC Phase  
SD Closed  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Subcarrier Frequency Bits 15–8.  
Subcarrier Frequency Bits 23–16.  
Subcarrier Frequency Bits 31–24.  
Subcarrier Phase Bits 9–2.  
0x7C  
0xF0  
0x21  
0x00  
0x00  
Extended Data on  
Even Fields  
Extended Data Bits 7–0.  
Captioning  
0x52  
0x53  
0x54  
0x55  
SD Closed  
Captioning  
SD Closed  
Captioning  
SD Closed  
Captioning  
SD Pedestal  
Register 0  
Extended Data on  
Even Fields  
Data on Odd Fields  
x
x
x
x
x
x
x
x
Extended Data Bits 15–8.  
Data Bits 7–0.  
0x00  
0x00  
0x00  
0x00  
x
x
x
x
x
x
x
x
Data on Odd Fields  
x
x
x
x
x
x
x
x
Data Bits 15–8.  
Pedestal on Odd  
Fields  
17  
16  
15  
14  
13  
12  
11  
10  
Setting any of these bits to 1 will  
disable pedestal on the line num-  
ber indicated by the bit settings.  
0x56  
0x57  
0x58  
SD Pedestal  
Register 1  
SD Pedestal  
Register 2  
SD Pedestal  
Register 3  
Pedestal on Odd  
Fields  
Pedestal on Even  
Fields  
Pedestal on Even  
Fields  
25  
17  
25  
24  
16  
24  
23  
15  
23  
22  
14  
22  
21  
13  
21  
20  
12  
20  
19  
11  
19  
18  
10  
18  
0x00  
0x00  
0x00  
1 For precise NTSC FSC, this value should be programmed to 0x1F.  
LINE 1  
LINE 313  
LINE 314  
HSYNC  
tA  
tC  
tB  
VSYNC  
Figure 47. Timing Register 1 in PAL Mode  
Rev. PrA | Page 35 of 88  
 
 
ADV7322  
Preliminary Technical Data  
Table 18. Registers 0x59 to 0x64  
SR7–  
Reset  
SR0  
0x59  
Register  
SD CGMS/WSS 0  
Bit Description  
SD CGMS Data  
SD CGMS CRC  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
19  
Bit 2  
18  
Bit 1  
17  
Bit 0  
16  
Register Setting  
CGMS Data Bits C19–C16  
Disabled  
Values  
0x00  
0
1
Enabled  
SD CGMS on Odd  
Fields  
0
1
Disabled  
Enabled  
SD CGMS on Even  
Fields  
0
1
Disabled  
Enabled  
SD WSS  
0
1
Disabled  
Enabled  
0x5A  
SD CGMS/WSS 1  
SD CGMS/WSS Data  
13  
5
12  
4
11  
3
10  
2
9
8
CGMS Data Bits C13–C8, or  
WSS Data Bits C13–C8  
CGMS Data Bits C15–C14  
CGMS/WSS Data Bits C7–C0  
SD Y Scale Bits 1–0  
0x00  
15  
7
14  
6
0x00  
0x00  
0x5B  
0x5C  
SD CGMS/WSS 2  
SD LSB Register  
SD CGMS/WSS Data  
SD LSB for Y Scale  
Value  
1
x
0
x
SD LSB for Cb Scale  
Value  
SD LSB for Cr Scale  
Value  
x
x
SD Cb Scale Bits 1–0  
SD Cr Scale Bits 1–0  
x
x
SD LSB for FSC Phase  
SD Y Scale Value  
x
x
x
x
Subcarrier Phase Bits 1–0  
SD Y Scale Bits 7–2  
0x5D  
0x5E  
0x5F  
SD Y Scale  
Register  
SD Cb Scale  
Register  
SD Cr Scale  
Register  
SD Hue Register  
SD Brightness/  
WSS  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x00  
0x00  
0x00  
SD Cb Scale Value  
SD Cr Scale Value  
x
x
x
x
x
SD Cb Scale Bits 7–2  
SD Cr Scale Bits 7–2  
0x60  
0x61  
SD Hue Adjust Value  
SD Brightness Value  
SD Blank WSS Data  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
SD Hue Adjust Bits 7–0  
SD Brightness Bits 6–0  
Disabled  
Enabled  
−4 dB  
0 dB  
0x00  
0x00  
Line 23  
0
1
0
0
0
0x62  
0x63  
SD Luma SSAF  
SD DNR 0  
SD Luma SSAF  
Gain/Attenuation  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
0
1
1
1
1
0
0
1
0
0
0
1
1
0
0
1
1
0
0
0
0
0
1
0
1
0
1
0
1
0
0x00  
+4 dB  
No gain  
Coring Gain Border  
Coring Gain Data  
DNR Threshold  
0x00  
+1/16 [–1/8]  
+2/16 [–2/8]  
+3/16 [–3/8]  
+4/16 [–4/8]  
+5/16 [–5/8]  
+6/16 [–6/8]  
+7/16 [–7/8]  
+8/16 [–1]  
No gain  
+1/16 [–1/8]  
+2/16 [–2/8]  
+3/16 [–3/8]  
+4/16 [–4/8]  
+5/16 [–5/8]  
+6/16 [–6/8]  
+7/16 [–7/8]  
+8/16 [–1]  
0
In DNR  
mode,  
the  
values in  
brackets  
apply.  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
1
1
0x64  
SD DNR 1  
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0x00  
1
62  
63  
Border Area  
0
1
2 pixels  
4 pixels  
Block Size Control  
0
1
8 pixels  
16 pixels  
Rev. PrA | Page 36 of 88  
Preliminary Technical Data  
ADV7322  
Table 19. Registers 0x65 to 0x7C  
SR7–  
Reset  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
Filter A  
Values  
0x65  
SD DNR 2  
DNR Input Select  
0
0
0
1
0
1
1
0
1
0
1
0
0x00  
Filter B  
Filter C  
Filter D  
DNR Mode  
0
1
0
1
0
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
DNR mode  
DNR sharpness mode  
DNR Block Offset  
0
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0 pixel offset  
1 pixel offset  
14 pixel offset  
15 pixel offset  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Brightness Value  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B0  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
SD Brightness  
Detect  
Read only  
0x7B  
Field Count  
Register  
Field Count  
Reserved  
x
x
x
Read only  
Reserved  
Reserved  
Reserved  
Read only  
Reserved  
0x8x  
0
Reserved  
0
Reserved  
0
Revision Code  
Reserved  
1
0
0x7C  
0x00  
Rev. PrA | Page 37 of 88  
ADV7322  
Preliminary Technical Data  
Table 20. Registers 0x7D to 0x91  
SR7-  
SR0  
Bit  
Register  
Reset  
Values  
Register  
Description  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Setting  
0x7D Reserved  
0x7E  
0x7F  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
Reserved  
Reserved  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bit  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x8A Macrovision  
0x8B  
0x8C  
Macrovision  
Macrovision  
0x8D Macrovision  
0x8E  
0x8F  
0x90  
0x91  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
0 must be written  
to these bits  
Rev. PrA | Page 38 of 88  
Preliminary Technical Data  
INPUT CONFIGURATION  
ADV7322  
input on Pins Y7 to Y0 and the CrCb data is input on Pins C7 to  
C0. In 4:4:4 input mode, Y data is input on Pins Y7 to Y0,  
Cb data is input on Pins C7 to C0, and Cr data is input on Pins  
S7 to S0. If the YCrCb data does not conform to SMPTE 293M  
(525p), ITU-R BT.1358M (625p), SMPTE 274M[1080i], SMPTE  
296M[720p], SMPTE 240M(1035i) or BTA-T1004/1362, the  
async timing mode must be used. RGB data can only be input in  
4:4:4 format in PS input mode or in HDTV input mode when  
HD RGB input is enabled. G data is input on Pins Y7 to Y0, R  
data is input on Pins S7 to S0, and B data is input on Pins C7 to  
C0. The clock signal must be input on Pin CLKIN_A.  
Note that the ADV7322 defaults to simultaneous standard  
definition and progressive scan upon power-up (Address[0x01]:  
Input Mode = 011).  
STANDARD DEFINITION ONLY  
Address[0x01]: Input Mode = 000  
The 8-bit multiplexed input data is input on Pins S7 to S0 (or  
Pins Y7 to Y0, depending on Register Address 0x01, Bit 7), with  
S0 being the LSB in 8-bit input mode (see Table 21). Input  
standards supported are ITU-R BT.601/656. In 16-bit input  
mode, the Y pixel data is input on Pins S7 to S0 and CrCb data  
is input on Pins Y7 to Y0 (see Table 21).  
MPEG2  
ADV7322  
DECODER  
16-Bit Mode Operation  
27MHz  
When Register 0x01 Bit 7 = 0, CrCb data is input on the Y bus  
and Y data is input on the S bus. When Register 0x01 Bit 7 = 1,  
CrCb data is input on the C bus and Y data is input on Y bus.  
YCrCb  
CLKIN_A  
8
8
8
Cb  
Cr  
Y
C[7:0]  
S[7:0]  
Y[7:0]  
The 27 MHz clock input must be input on Pin CLKIN_A. Input  
INTERLACED TO  
PROGRESSIVE  
S_VSYNC S_HSYNC  
sync signals are input on the  
S_BLANK  
,
, and  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
3
pins.  
Table 21. SD 8-Bit and 16-Bit Configuration  
Configuration  
Figure 49. Progressive Scan Input Mode  
Parameter  
8-Bit Mode  
16-Bit Mode  
SIMULTANEOUS STANDARD DEFINITION AND  
PROGRESSIVE SCAN OR HDTV  
Register 0x01, Bit 7 = 0  
Y Bus  
S Bus  
C Bus  
CrCb  
Y
656/601, YCrCb  
656/601, YCrCb  
Address[0x01]: Input Mode 011 (SD 8-Bit, PS 16-Bit) or 101  
(SD and HD, SD Oversampled), 110 (SD and HD, HD  
Oversampled), Respectively  
Register 0x01, Bit 7 = 1  
Y Bus  
S Bus  
C Bus  
Y
YCrCb, PS, HDTV, or any other HD data must be input in 4:2:2  
format. In 4:2:2 input mode, the HD Y data is input on Pins Y7  
to Y0 and the HD CrCb data is input on Pins C7 to C0. If PS  
4:2:2 data is interleaved onto a single 10-bit bus, Pins Y7 to Y0  
are used for the input port. The input data is to be input at 27  
MHz, with the data being clocked on the rising and falling edge  
of the input clock. The input mode register at Address 0x01 is  
set accordingly. If the YCrCb data does not conform to SMPTE  
293M (525p), ITU-R BT.1358M (625p), SMPTE 274M[1080i],  
SMPTE 296M[720p], SMPTE 240M(1035i) or BTA-T1004, the  
async timing mode must be used.  
CrCb  
ADV7322  
S_VSYNC,  
S_HSYNC,  
S_BLANK  
3
MPEG2  
DECODER  
27MHz  
8
CLKIN_A  
The 8- bit standard definition data must be compliant with  
ITU-R BT.601/656 in 4:2:2 format. Standard definition data is  
input on Pins S7 to S0, with S0 being the LSB. The clock input  
for SD must be input on CLKIN_A and the clock input for  
HD/PS must be input on CLKIN_B. Synchronization signals  
YCrCb  
S[7:0] OR Y[7:0]*  
*SELECTED BY ADDRESS 0x01 BIT 7  
Figure 48. SD Only Input Mode  
S_VSYNC S_HSYNC  
are optional. SD syncs are input on Pins  
S_BLANK P_VSYNC P_HSYNC  
, and  
,
,
PROGRESSIVE SCAN ONLY OR HDTV ONLY  
and  
P_BLANK  
. HD syncs on Pins  
,
Address[0x01]: Input Mode = 001 or 010, Respectively  
.
YCrCb progressive scan, HDTV, or any other HD YCrCb data  
can be input in 4:2:2 or 4:4:4. In 4:2:2 input mode, the Y data is  
Rev. PrA | Page 39 of 88  
 
ADV7322  
Preliminary Technical Data  
ADV7322  
PROGRESSIVE SCAN AT 27 MHZ (DUAL EDGE)  
OR 54 MHZ  
S_VSYNC,  
S_HSYNC,  
S_BLANK  
3
Address[0x01]: Input Mode 100 or 111, Respectively  
MPEG2  
DECODER  
27MHz  
YCrCb progressive scan data can be input at 27 MHz or  
54 MHz. The input data is interleaved onto a single 8-bit bus  
and is input on Pins Y7 to Y0. When a 27 MHz clock is supplied,  
the data is clocked in on the rising and falling edge of the input  
clock and CLOCK EDGE [Address 0x01, Bit 1] must be set  
accordingly.  
CLKIN_A  
S[7:0]  
YCrCb  
8
CrCb  
Y
8
8
C[7:0]  
Y[7:0]  
INTERLACED TO  
PROGRESSIVE  
Table 22 provides an overview of all possible input configurations.  
Figure 53, Figure 54, and Figure 55 show the possible conditions:  
(a) Cb data on the rising edge; and (b) Y data on the rising edge.  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
3
27MHz  
CLKIN_B  
CLKIN_B  
Figure 50. Simultaneous PS and SD Input  
Y7–Y0  
FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
ADV7322  
CLOCK EDGE ADDRESS 0x00 BIT 1 SHOULD BE SET TO 0 IN THIS CASE.  
S_VSYNC,  
S_HSYNC,  
3
Figure 53. Input Sequence in PS Bit Interleaved Mode (EAV/SAV)  
S_BLANK  
SDTV  
DECODER  
27MHz  
CLKIN_A  
CLKIN_B  
YCrCb 8  
S[7:0]  
Y7–Y0  
FF  
00  
00  
XY  
Y0  
Cb0  
Y1  
Cr0  
HDTV  
DECODER  
CrCb 8  
C[7:0]  
Y[7:0]  
1080i  
OR  
CLOCK EDGE ADDRESS 0x00 BIT 1 SHOULD BE SET TO 1 IN THIS CASE.  
Y
8
720p  
OR  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
Figure 54. Input Sequence in PS Bit Interleaved Mode (EAV/SAV)  
3
1035i  
74.25MHz  
CLKIN_B  
CLKIN_B  
Figure 51. Simultaneous HD and SD Input  
PIXEL INPUT  
FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
DATA  
If in simultaneous SD/HD input mode and the two clock phases  
differ by less than 9.25 ns or more than 27.75 ns, the CLOCK  
ALIGN bit [Address 0x01, Bit 3] must be set accordingly. If the  
application uses the same clock source for both SD and PS, the  
CLOCK ALIGN bit must be set since the phase difference  
between both inputs is less than 9.25 ns.  
WITH A 54MHz CLOCK, THE DATA IS LATCHED ON EVERY RISING EDGE.  
Figure 55. Input Sequence in PS Bit Interleaved Mode (EAV/SAV)  
MPEG2  
DECODER  
ADV7322  
CLKIN_A  
CLKIN_B  
27MHz OR 54MHz  
YCrCb  
CLKIN_A  
t
t
< 9.25ns OR  
> 27.75ns  
DELAY  
DELAY  
INTERLACED  
Figure 52. Clock Phase with Two Input Clocks  
YCrCb  
8
TO  
Y[7:0]  
PROGRESSIVE  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
3
Figure 56. 10-Bit PS at 27 MHz or 54 MHz  
Rev. PrA | Page 40 of 88  
 
 
 
Preliminary Technical Data  
ADV7322  
Table 22. Input Configurations  
Input Format  
Total Bits  
Input Video Input Pins  
Subaddress Register Setting  
ITU-R BT.656  
8
4:2:2  
YCrCb  
S7–S0 [MSB = S7]  
0x01  
0x48  
0x01  
0x48  
0x01  
0x48  
0x01  
0x48  
0x01  
0x13  
0x01  
0x13  
0x01  
0x13  
0x01  
0x13  
0x00  
0x00  
0x80  
0x00  
0x00  
0x08  
0x80  
0x00  
0x10  
0x40  
0x70  
0x40  
0x10  
0x40  
0x10  
0x00  
(4 options available)  
See Table 21  
YCrCb  
Y7–Y0 [MSB = Y7]  
16  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:4:4  
Y
CrCb  
Y
CrCb  
YCrCb  
S7–S0 [MSB = S7]  
Y7–Y20[MSB = Y7]  
Y7–Y0 [MSB = Y7]  
C7–C0 [MSB = Y7]  
Y7–Y0 [MSB = Y7]  
PS Only  
8 [27 MHz clock]  
8 [54 MHz clock]  
YCrCb  
Y7–Y0 [MSB = Y7]  
16  
24  
Y
CrCb  
Y
Cb  
Cr  
Y
CrCb  
Y
Cb  
Cr  
G
B
Y7–Y0 [MSB = Y7]  
C7–C0 [MSB = C7]  
Y7–Y0 [MSB = Y7]  
C7–C0 [MSB = C7]  
S7–S0 [MSB = S7]  
Y7–Y0 [MSB = Y7]  
C7–C0 [MSB = C7]  
Y7–Y0 [MSB = Y7]  
C7–C0 [MSB = C7]  
S7–S0 [MSB = S7]  
Y7–Y0 [MSB = Y7]  
C7–C0 [MSB = C7]  
S7–S0 [MSB = S7]  
S7–S0 [MSB = S7]  
Y7–Y0 [MSB = Y7]  
HDTV Only  
16  
24  
4:2:2  
4:4:4  
0x01  
0x13  
0x01  
0x13  
0x20  
0x40  
0x20  
0x00  
HD RGB  
24  
4:4:4  
0x01  
0x13  
0x15  
0x01  
0x13  
0x48  
0x01  
0x13  
0x48  
0x10 or 0x20  
0x00  
0x02  
0x40  
0x40  
0x00  
0x30, 0x50, or 0x60  
0x40  
0x00  
R
ITU-R BT.656 and PS  
ITU-R BT.656 and PS or HDTV  
8 (SD)  
8 (PS)  
4:2:2  
4:2:2  
YCrCb  
YCrCb  
8
16  
4:2:2  
4:2:2  
YCrCb  
Y
CrCb  
S7–S0 [MSB = S7]  
Y7–Y0 [MSB = Y7]  
C7–C0 [MSB = C7]  
Rev. PrA | Page 41 of 88  
ADV7322  
Preliminary Technical Data  
FEATURES  
OUTPUT CONFIGURATION  
Table 23, Table 24, and Table 25 demonstrate what output signals are assigned to the DACs when the control bits are set accordingly.  
Table 23. Output Configuration in SD Only Mode  
RGB/YUV Output  
SD DAC Output 1  
SD DAC Output 2  
0x02, Bit 5  
0x42, Bit 2  
0x42, Bit 1  
DAC A  
CVBS  
G
DAC B  
Luma  
B
Luma  
B
Luma  
U
Luma  
U
DAC C  
DAC D  
G
CVBS  
CVBS  
G
DAC E  
B
Luma  
B
Luma  
U
Luma  
U
DAC F  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Chroma  
R
Chroma  
R
Chroma  
V
Chroma  
V
R
Chroma  
R
Chroma  
V
Chroma  
V
Chroma  
G
CVBS  
CVBS  
Y
Y
CVBS  
CVBS  
Y
Y
CVBS  
Luma  
Luma/Chroma Swap 0x44, Bit 7  
0
1
Table as above  
Table above with all luma/chroma instances swapped  
Table 24. Output Configuration in HD/PS Only Mode  
HD/PS  
HD/PS RGB Input RGB/YPrPb Output HD/PS Color  
Input Format 0x15, Bit 1  
0x02, Bit 5  
Swap 0x15, Bit 3 DAC A DAC B DAC C DAC D DAC E DAC F  
YCrCb 4:2:2  
YCrCb 4:2:2  
YCrCb 4:2:2  
YCrCb 4:2:2  
YCrCb 4:4:4  
YCrCb 4:4:4  
YCrCb 4:4:4  
YCrCb 4:4:4  
RGB 4:4:4  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
G
G
Y
B
R
Pb  
Pr  
B
R
B
Pr  
Pb  
R
Y
G
G
Y
R
B
Pb  
Pr  
B
R
B
Pr  
Pb  
R
B
R
Y
G
G
G
G
RGB 4:4:4  
RGB 4:4:4  
RGB 4:4:4  
R
B
Table 25. Output Configuration in Simultaneous SD and HD/PS Only Mode  
RGB/YPrPb Output  
0x02, Bit 5  
HD/PS Color Swap  
0x15, Bit 3  
Input Formats  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E DAC F  
ITU-R.BT656 and HD  
YCrCb in 4:2:2  
ITU-R.BT656 and HD  
YCrCb in 4:2:2  
ITU-R.BT656 and HD  
YCrCb in 4:2:2  
ITU-R.BT656 and HD  
YCrCb in 4:2:2  
0
0
1
1
0
1
0
1
CVBS  
Luma  
Luma  
Luma  
Luma  
Chroma  
Chroma  
Chroma  
Chroma  
G
B
R
CVBS  
CVBS  
CVBS  
G
Y
Y
R
B
Pb  
Pr  
Pr  
Pb  
Rev. PrA | Page 42 of 88  
 
 
 
Preliminary Technical Data  
ADV7322  
In async mode, the PLL must be turned off [Subaddress 0x00,  
Bit 1 = 1]. Register 0x10 should be programmed to 0x01.  
HD ASYNC TIMING MODE  
[Subaddress 0x10, Bits 3 and 2]  
Figure 57 and Figure 58 show examples of how to program the  
ADV7322 to accept a high definition standard other than  
SMPTE 293M, SMPTE 274M, SMPTE 296M, or ITU-R  
BT.1358.  
For any input data that does not conform to the standards  
selectable in input mode, Subaddress 0x10, asynchronous  
timing mode can be used to interface to the ADV7322. Timing  
HSYNC VSYNC  
BLANK  
control signals for  
,
, and  
must be  
programmed by the user. Macrovision and programmable  
oversampling rates are not available in async timing mode.  
Table 26 must be followed when programming the control signals  
in async timing mode. For standards that do not require a trisync  
P_BLANK  
level,  
must be tied low at all times.  
Table 26. Async Timing Mode Truth Table  
P_HSYNC P_VSYNC P_BLANK1 Reference  
Reference in Figure 57 and Figure 58  
1 —> 0  
0
0 —> 1  
1
1
0
0 or 1  
0 or 1  
0
0 —> 1  
1 —> 0  
50% point of falling edge of trilevel horizontal sync signal  
25% point of rising edge of trilevel horizontal sync signal  
50% point of falling edge of trilevel horizontal sync signal  
50% start of active video  
a
b
c
d
e
0 —> 1  
0 or 1  
0 or 1  
0 or 1  
50% end of active video  
1 When async timing mode is enabled,  
, Pin 25, becomes an active high input.  
is set to active low at Address 0x10, Bit 6.  
P_BLANK  
P_BLANK  
CLK  
P_HSYNC  
PROGRAMMABLE  
INPUT TIMING  
P_VSYNC  
P_BLANK  
SET ADDRESS 0x14,  
BIT 3 = 1  
HORIZONTAL SYNC  
ACTIVE VIDEO  
ANALOG  
OUTPUT  
81  
66  
66  
243  
1920  
a
b
c
d
e
Figure 57. Async Timing Mode—Programming Input Control Signals for SMPTE 295M Compatibility  
CLK  
P_HSYNC  
0
1
P_VSYNC  
P_BLANK  
SET ADDRESS 0x14  
BIT 3 = 1  
HORIZONTAL SYNC  
ACTIVE VIDEO  
ANALOG OUTPUT  
a
b
c
d
e
Figure 58. Async Timing Mode—Programming Input Control Signals for Bilevel Sync Signal  
Rev. PrA | Page 43 of 88  
 
 
 
 
ADV7322  
Preliminary Technical Data  
b. In subcarrier phase reset, a low-to-high transition on  
the RTC_SCR_TR pin (Pin 31) will reset the  
subcarrier phase to zero on the field following the  
subcarrier phase reset when the SD RTC/TR/SCR  
control bits at Address 0x44 are set to 01.  
HD TIMING RESET  
A timing reset is achieved by toggling the HD timing reset control  
bit [Subaddress 0x14, Bit 0] from 0 to 1. In this state the horizontal  
and vertical counters will remain reset.When this bit is set back to  
0, the internal counters will commence counting again.  
This reset signal must be held high for a minimum of  
one clock cycle.  
The minimum time the pin has to be held high is one clock  
cycle; otherwise, this reset signal might not be recognized. This  
timing reset applies to the HD timing counters only.  
Since the field counter is not reset, it is recommended  
that the reset signal is applied in Field 7 [PAL] or Field  
3 [NTSC]. The reset of the phase will then occur on  
the next field, i.e., Field 1, being lined up correctly with  
the internal counters. The field count register at  
Address 0x7B can be used to identify the number of  
the active field.  
SD REAL-TIME CONTROL, SUBCARRIER RESET,  
AND TIMING RESET  
[Subaddress 0x44, Bits 2 and 1]  
Together with the RTC_SCR_TR pin and SD Mode Register 3  
[Address 0x44, Bits 1 and 2], the ADV7322 can be used in (a)  
timing reset mode, (b) subcarrier phase reset mode, or (c) RTC  
mode.  
c. In RTC mode, the ADV7322 can be used to lock to an  
external video source. The real-time control mode  
allows the ADV7322 to automatically alter the  
subcarrier frequency to compensate for line length  
variations. When the part is connected to a device that  
outputs a digital data stream in the RTC format, such  
as an ADV7183A video decoder (see Figure 61), the  
part will automatically change to the compensated  
subcarrier frequency on a line by line basis. This  
digital data stream is 67 bits wide and the subcarrier is  
contained in Bits 0 to 21. Each bit is two clock cycles  
long. Write 0x00 into all four subcarrier frequency  
registers when this mode is used.  
a. A timing reset is achieved in a low-to-high transition  
on the RTC_SCR_TR pin (Pin 31). In this state, the  
horizontal and vertical counters will remain reset.  
Upon releasing this pin (set to low), the internal  
counters will commence counting again, the field  
count will start on Field 1, and the subcarrier phase  
will be reset.  
The minimum time the pin must be held high is one  
clock cycle; otherwise, this reset signal might not be  
recognized. This timing reset applies to the SD timing  
counters only.  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 4 OR 8  
SC  
307  
310  
313  
320  
NO TIMING RESET APPLIED  
DISPLAY  
START OF FIELD 1  
F
PHASE = FIELD 1  
SC  
307  
1
2
3
4
5
6
7
21  
TIMING RESET PULSE  
TIMING RESET APPLIED  
Figure 59. Timing Reset Timing Diagram  
Rev. PrA | Page 44 of 88  
Preliminary Technical Data  
ADV7322  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 4 OR 8  
SC  
307  
NO F RESET APPLIED  
310  
313  
320  
SC  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 1  
SC  
307  
310  
313  
320  
F
RESET PULSE  
SC  
F
RESET APPLIED  
SC  
Figure 60. Subcarrier Reset Timing Diagram  
ADV7322  
CLKIN_A  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
LCC1  
RTC_SCR_TR  
GLL  
COMPOSITE  
ADV7183A  
VIDEO  
1
VIDEO  
P17–P10  
5
Y7–Y0/S7–S0  
DECODER  
4 BITS  
RESERVED  
14 BITS  
H/L TRANSITION  
COUNT START  
LOW  
SEQUENCE RESET  
SUBCARRIER  
PHASE  
3
4
BIT  
BIT  
RESERVED  
2
128  
F
PLL INCREMENT  
SC  
13  
0
21  
19  
0
RTC  
6768  
TIME SLOT 01  
14  
VALID INVALID  
SAMPLE SAMPLE  
8/LINE  
LOCKED  
CLOCK  
5 BITS  
RESERVED  
NOTES  
1
i.e., VCR OR CABLE  
2
F
PLL INCREMENT IS 22 BITS LONG. VALUE LOADED INTO ADV7322 F DDS REGISTER IS F PLL INCREMENTS BITS 21:0  
SC  
SC SC  
PLUS BITS 0:9 OF SUBCARRIER FREQUENCY REGISTERS. ALL ZEROS SHOULD BE WRITTEN TO THE SUBCARRIER FREQUENCY REGISTERS  
OF THE ADV7322.  
SEQUENCE BIT
3
PAL: 0 = LINE NORMAL, 1 = LINE INVERTED
NTSC: 0 = NO CHANGE  
RESET ADV7322 DDS  
4
5
SELECTED BY REGISTER ADDRESS 0x01 BIT 7  
Figure 61. RTC Timing and Connections  
Rev. PrA | Page 45 of 88  
ADV7322  
Preliminary Technical Data  
signal usually occurs after the total number of lines/fields is  
reached. Conventionally this means that the output video will  
have corrupted field signals, one generated by the incoming  
video and one generated when the internal lines/field counters  
reach the end of a field.  
RESET SEQUENCE  
RESET  
A reset is activated with a high-to-low transition on the  
pin [Pin 33] according to the timing specifications. The  
ADV7322 will revert to the default output configuration. Figure 62  
RESET  
illustrates the  
timing sequence.  
When the VCR FF/RW sync control is enabled [Subaddress  
0x42, Bit 5], the lines/fields counters are updated according to  
SD VCR FF/RW SYNC  
VSYNC  
the incoming  
VSYNC  
signal, and the analog output matches the  
signal.  
[Subaddress 0x42, Bit 5]  
incoming  
In DVD record applications where the encoder is used with a  
decoder, the VCR FF/RW sync control bit can be used for  
nonstandard input video, i.e., in fast forward or rewind modes.  
This control is available in all slave timing modes except Slave  
Mode 0.  
In fast forward mode, the sync information at the start of a new  
field in the incoming video usually occurs before the correct  
number of lines/fields is reached; in rewind mode, this sync  
RESET  
DACs  
XXXXXX  
A, B, C  
OFF  
VALID VIDEO  
DIGITAL TIMING SIGNALS SUPPRESSED  
TIMING ACTIVE  
DIGITAL TIMING  
XXXXXX  
PIXEL DATA  
VALID  
RESET  
Figure 62.  
Timing Sequence  
Rev. PrA | Page 46 of 88  
 
Preliminary Technical Data  
ADV7322  
VERTICAL BLANKING INTERVAL  
SUBCARRIER FREQUENCY REGISTERS  
The ADV7322 accepts input data that contains VBI data  
[CGMS, WSS, VITS, and so on] in SD and HD modes.  
[Subaddresses 0x4C to 0x4F]  
Four 8-bit registers are used to set up the subcarrier frequency.  
The value of these registers is calculated using the equation  
For SMPTE 293M [525p] standards, VBI data can be inserted  
on Lines 13 to 42 of each frame, or on Lines 6 to 43 for the  
ITU-R BT.1358 [625p] standard.  
Subcarrier Frequency Register =  
Number of subcarrier periods in one video line  
×232  
For SD NTSC this data can be present on Lines 10 to 20, and in  
PAL on Lines 7 to 22.  
Number of 27 MHz clk cycles in one video line  
where the sum is rounded to the nearest integer.  
For example, in NTSC mode  
If VBI is disabled [Address 0x11, Bit 4 for HD; Address 0x43,  
Bit 4 for SD], VBI data is not present at the output and the  
entire VBI is blanked. These control bits are valid in all master  
and slave modes.  
227.5  
1716  
Subcarrier Re gister Value =  
×232 = 569408543  
In Slave Mode 0, if VBI is enabled, the blanking bit in the  
EAV/SAV code is overwritten. It is possible to use VBI in this  
timing mode as well.  
where:  
Subcarrier Register Value = 0x21F07C1F  
SD FSC Register 0: 0x1F  
SD FSC Register 1: 0x7C  
SD FSC Register 2: 0xF0  
SD FSC Register 3: 0x21  
BLANK  
In Slave Mode 1 or 2, the  
control bit must be set to  
enabled [Address 0x4A, Bit 3] to allow VBI data to pass through  
the ADV7322. Otherwise, the ADV7322 automatically blanks  
the VBI to standard.  
See the MPU Port Description section for more details on how  
to access the subcarrier frequency registers.  
If CGMS is enabled and VBI is disabled, the CGMS data will  
nevertheless be available at the output.  
Programming the FSC  
See Appendix 1—Copy Generation Management System.  
The Subcarrier Register Value is shared across 4 FSC registers as  
shown above. To load the value into the encoder, users must  
write to the FSC registers in sequence, starting with FSC0. The  
value is not loaded until the FSC4 write is complete.  
Note that the ADV7322 power-up value for FSC0 = 0x1E. For  
precise NTSC FSC, write 0x1F to this register.  
Rev. PrA | Page 47 of 88  
ADV7322  
Preliminary Technical Data  
SQUARE PIXEL TIMING MODE  
[Address 0x42, Bit 4]  
In square pixel mode, the following timing diagrams apply.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
8
0
0
0
F
F
F
F
A
B
A
B
A
B
8
0
0
0
C
b
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
272 CLOCK  
1280 CLOCK  
1536 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
344 CLOCK  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 63. EAV/SAV Embedded Timing  
HSYNC  
FIELD  
PAL = 44 CLOCK CYCLES  
NTSC = 44 CLOCK CYCLES  
BLANK  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 136 CLOCK CYCLES  
NTSC = 208 CLOCK CYCLES  
Figure 64. Active Pixel Timing  
Rev. PrA | Page 48 of 88  
Preliminary Technical Data  
ADV7322  
This filter has a cutoff frequency of about 2.7 MHz and –40 dB  
at 3.8 MHz, as shown in Figure 65. This filter can be controlled  
with Address 0x42, Bit 0.  
FILTERS  
Table 27 shows an overview of the programmable filters  
available on the ADV7322.  
EXTENDED UV FILTER MODE  
Table 27. Selectable Filters  
Filter  
0
Subaddress  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x42  
0x13  
0x13  
0x13  
SD Luma LPF NTSC  
SD Luma LPF PAL  
SD Luma Notch NTSC  
SD Luma Notch PAL  
SD Luma SSAF  
–10  
–20  
–30  
–40  
–50  
–60  
SD Luma CIF  
SD Luma QCIF  
SD Chroma 0.65 MHz  
SD Chroma 1.0 MHz  
SD Chroma 1.3 MHz  
SD Chroma 2.0 MHz  
SD Chroma 3.0 MHz  
SD Chroma CIF  
SD Chroma QCIF  
SD UV SSAF  
HD Chroma Input  
HD Sinc Filter  
0
1
2
3
4
5
6
FREQUENCY (MHz)  
Figure 65. UV SSAF Filter  
If this filter is disabled, the selectable chroma filters shown in  
Table 28 can be used for the CVBS or luma/chroma signal.  
Table 28. Internal Filter Specifications  
Pass-Band  
3 dB Bandwidth2  
(MHz)  
HD Chroma SSAF  
Filter  
Ripple1 (dB)  
Luma LPF NTSC  
Luma LPF PAL  
Luma Notch NTSC  
Luma Notch PAL  
Luma SSAF  
0.16  
0.1  
0.09  
0.1  
0.04  
0.127  
Monotonic  
Monotonic  
Monotonic  
0.09  
4.24  
4.81  
2.3/4.9/6.6  
3.1/5.6/6.4  
6.45  
3.02  
1.5  
0.65  
1
1.395  
2.2  
3.2  
0.65  
0.5  
SD Internal Filter Response  
[Subaddress 0x40 [7:2]; Subaddress 0x42, Bit 0]  
The Y filter supports several different frequency responses  
including two low-pass responses, two notch responses, an  
extended (SSAF) response with or without gain boost  
attenuation, a CIF response, and a QCIF response. The UV filter  
supports several different frequency responses including six  
low-pass responses, a CIF response, and a QCIF response, as  
shown in Figure 35 and Figure 36.  
Luma CIF  
Luma QCIF  
Chroma 0.65 MHz  
Chroma 1.0 MHz  
Chroma 1.3 MHz  
Chroma 2.0 MHz  
Chroma 3.0 MHz  
Chroma CIF  
0.048  
Monotonic  
Monotonic  
Monotonic  
If SD SSAF gain is enabled, there is the option of 12 responses  
in the range −4 dB to +4 dB [Subaddress 0x47, Bit 4]. The  
desired response can be chosen by the user by programming the  
correct value via the I2C [Subaddress 0x62]. The variation of  
frequency responses are shown in Figure 32 and Figure 33.  
Chroma QCIF  
1 Pass-band ripple is the maximum fluctuation from the 0 dB response in the  
pass band, measured in dB. The pass band is defined to have 0 Hz to fc (Hz)  
frequency limits for a low-pass filter, and 0 Hz to f1 (Hz) and f2 (Hz) to infinity  
for a notch filter, where fc, f1, and f2 are the −3 dB points.  
In addition to the chroma filters listed in Table 27, the  
ADV7322 contains an SSAF filter specifically designed for and  
applicable to the color difference component outputs, U and V.  
2 3 dB bandwidth refers to the −3 dB cutoff frequency.  
Rev. PrA | Page 49 of 88  
 
 
 
 
 
ADV7322  
Preliminary Technical Data  
PS/HD Sinc Filter  
Table 29. Sample Color Values for EIA 770.2  
Output Standard Selection  
[Subaddress 0x13, Bit 3]  
Sample Color  
Y Value  
235 (EB)  
16 (10)  
81 (51)  
145 (91)  
41 (29)  
210 (D2)  
170 (AA)  
106 (6A)  
Cr Value  
128 (80)  
128 (80)  
240 (F0)  
34 (22)  
110 (6E)  
146 (92)  
16 (10)  
Cb Value  
128 (80)  
128 (80)  
90 (5A)  
54 (36)  
240 (F0)  
16 (10)  
0.5  
White  
Black  
Red  
Green  
Blue  
Yellow  
Cyan  
0.4  
0.3  
0.2  
0.1  
0
166 (A6)  
202 (CA)  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
Magenta  
222 (DE)  
RGB Matrix  
[Subaddresses 0x03 to 0x09]  
0
5
10  
15  
20  
25  
30  
The internal RGB matrix automatically takes care of all YCrCb  
to RGB scaling according to the input standard programmed in  
the device as selected by input mode Register 0x01 [6:4]. Table 30  
shows the options available in this Matrix.  
FREQUENCY (MHz)  
Figure 66. HD Sinc Filter Enabled  
0.5  
0.4  
Note that it is not possible to do a color space conversion from  
RGB-in to YPrPb-out. Also, it is not possible to input SD RGB.  
0.3  
Table 30. Matrix Conversion Options  
HDTV/SD/PS  
0.2  
0.1  
Reg 0x15, Bit 1  
(RGB IN/YCrCb IN,  
PS/HD Only)  
0
Reg 0x02,Bit 5  
Input Output (YUV/RGB OUT)  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
YCrCb YPrPb  
YCrCb RGB  
1
0
0
0
0
1
RGB  
RGB  
0
5
10  
15  
20  
25  
30  
Manual RGB Matrix Adjust Feature  
FREQUENCY (MHz)  
Normally, there is no need to enable this feature in Register  
0x02, Bit 3, because the RGB Matrix automatically takes care of  
color space conversion depending on the input mode chosen  
(SD/PS,HD) and the polarity of RGB/YPrPb output in Register  
0x02, Bit 5 (see Table 30). For this reason, manual RGB matrix  
adjust feature is turned off by default.  
Figure 67. HD Sinc Filter Disabled  
COLOR CONTROLS AND RGB MATRIX  
HD Y Level, HD Cr Level, HD Cb Level  
[Subaddresses 0x16 to 0x18]  
Three 8-bit registers at Addresses 0x16, 0x17, and 0x18 are used  
to program the output color of the internal HD test pattern  
generator, be it the lines of the cross hatch pattern or the  
uniform field test pattern. They are not functional as color  
controls on external pixel data input. For this purpose the RGB  
matrix is used.  
The Manual RGB matrix adjust feature is used in progressive  
scan and high definition modes only and is used for custom  
coefficient manipulation.  
When the manual RGB matrix adjust feature is enabled, the  
default values in Registers 0x05 to 0x09 are correct for HDTV  
color space only. The color components are converted according  
to the 1080i and 720p standards [SMPTE 274M, SMPTE  
296M]:  
The standard used for the values for Y and the color difference  
signals to obtain white, black, and the saturated primary and  
complementary colors conforms to the ITU-R BT.601-4 standard.  
R = Y + 1.575Pr  
Table 29 shows sample color values to be programmed into the  
color registers when Output Standard Selection is set to EIA 770.2.  
G = Y − 0.468Pr − 0.187Pb  
B = Y + 1.855Pb  
Rev. PrA | Page 50 of 88  
 
 
Preliminary Technical Data  
ADV7322  
This is reflected in the preprogrammed values for GY = 0x138B,  
GU = 0x93, GV = 0x3B, BU = 0x248, and RV = 0x1F0.  
Upon power-up, the RGB matrix is programmed with the  
default values in Table 31.  
Table 31. RGB Matrix Default Values  
Again if RGB matrix is enabled and another input standard is  
used (SD or PS), the scale values for GY, GU, GV, BU, and RV  
must be adjusted according to this input standard color space.  
The user should consider the fact that the color component  
conversion might use different scale values. For example,  
SMPTE 293M uses the following conversion:  
Address  
Default  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x03  
0xF0  
0x4E  
0x0E  
0x24  
0x92  
0x7C  
R = Y + 1.402Pr  
G = Y – 0.714Pr – 0.344Pb  
B = Y + 1.773Pb  
When the manual RGB matrix adjust feature is not enabled, the  
ADV7322 automatically scales YCrCb inputs to all standards  
supported by this part as selected by input mode Register 0x01  
[6:4].  
The manual RGB matrix adjust feature can be used to control  
the HD output levels in cases where the video output does not  
conform to the standard due to altering the DAC output stages  
such as termination resistors. The programmable RGB matrix is  
used for external HD/PS data and is not functional when  
internal test patterns are enabled.  
SD Luma and Color Control  
[Subaddresses 0x5C, 0x5D, 0x 5E, 0x 5F]  
SD Y Scale, SD Cr Scale, and SD Cb Scale are three 10-bit-wide  
control registers that scale the Y, Cb, and Cr output levels.  
Adjusting Registers 0x05 to 0x09 requires the manual RGB  
matrix adjust to be enabled [Register 0x02, Bit 3 =1].  
Each of these registers represents the value required to scale the  
Cb or Cr level from 0.0 to 2.0 and the Y level from 0.0 to 1.5 of  
its initial level. The value of these 10 bits is calculated using the  
following equation:  
Programming the RGB Matrix  
If custom manipulation of coefficients is required, The RGB  
matrix is enabled in Address 0x02, Bit 3. The output should be  
set to RGB [Address 0x02, Bit 5], sync on PrPb should be  
disabled (default) [Address 0x15, Bit 2], and sync on RGB is  
optional [Address 0x02, Bit 4].  
Y, Cr, or Cb Scalar Value = Scale Factor × 512  
For example,  
Scale Factor = 1.18  
GY at Addresses 0x03 and 0x05 control the green signal output  
levels. BU at Addresses 0x04 and 0x08 control the blue signal  
output levels, and RV at Addresses 0x04 and 0x09 control the  
red signal output levels. To control YPrPb output levels, YUV  
output should be enabled [Address 0x02, Bit 5]. In this case GY  
[Address 0x05; Address 0x03, Bits 0 and 1] is used for the Y  
output, RV [Address 0x09; Address 0x04, Bits 0 and 1] is used  
for the Pr output, and BU [Address 0x08; Address 0x04, Bits 2  
and 3] is used for the Pb output.  
Y, Cb, or Cr Scale Value = 1.18 × 512 = 665.6  
Y, Cb, or Cr Scale Value = 665 (rounded to the nearest  
integer)  
Y, Cb, or Cr Scale Value = 1010 0110 01b  
Address 0x5C, SD LSB Register = 0x15  
Address 0x5D, SD Y Scale Register = 0xA6  
Address 0x5E, SD Cb Scale Register = 0xA6  
Address 0x5F, SD Cr Scale Register = 0xA6  
If RGB output is selected, the RGB matrix scaler uses the  
following equations:  
Note that this feature affects all interlaced output signals, i.e.,  
CVBS, Y-C, YPrPb, and RGB.  
G = GY × Y + GU × Pb + GV × Pr  
B = GY × Y + BU × Pb  
SD Hue Adjust Value  
[Subaddress 0x60]  
R = GY × Y + RV × Pr  
The hue adjust value is used to adjust the hue on the composite  
and chroma outputs.  
If YPrPb output is selected, the following equations are used:  
Y = GY × Y  
These eight bits represent the value required to vary the hue of  
the video data, i.e., the variance in phase of the subcarrier  
during active video with respect to the phase of the subcarrier  
during the color burst. The ADV7322 provides a range of 22.5°  
U = BU × Pb  
V = RV × Pr  
Rev. PrA | Page 51 of 88  
 
ADV7322  
Preliminary Technical Data  
increments of 0.17578125°. For normal operation (zero  
adjustment), this register is set to 0x80. Values 0xFF and 0x00  
represent the upper and lower limits (respectively) of  
adjustment attainable.  
For example,  
1. To add +20 IRE brightness level to an NTSC signal with  
pedestal , write 0x28 to Address 0x61, SD brightness.  
0x[SD Brightness Value] =  
Hue Adjust (°) = 0.17578125° (HCRd − 128) for positive hue  
adjust value.  
0x[IRE Value × 2.015631] =  
For example, to adjust the hue by +4°, write 0x97 to the Hue  
Adjust Value register:  
0x[20 × 2.015631] = 0x[40.31262] = 0x28  
2. To add –7 IRE brightness level to a PAL signal, write 0x72 to  
Address 0x61, SD brightness.  
4
+ 128 = 105d = 0x97 .  
0.17578125  
[IRE Value| × 2.075631  
where the sum is rounded to the nearest integer.  
[7 × 2.015631] = [14.109417] = 0001110b  
To adjust the hue by −4°, write 0x69 to the Hue Adjust Value  
register:  
[0001110] into twos complement = [1110010]b = 0x72  
Table 32. Brightness Control Values1  
4  
+ 128 = 105d = 0x69  
Setup Level In  
NTSC with  
Pedestal  
Setup Level In  
NTSC No  
Pedestal  
Setup  
Level In  
PAL  
0.17578125  
SD  
Brightness  
where the sum is rounded to the nearest integer.  
SD Brightness Control  
22.5 IRE  
15 IRE  
7.5 IRE  
0 IRE  
15 IRE  
7.5 IRE  
0 IRE  
15 IRE  
7.5 IRE  
0 IRE  
0x1E  
0x0F  
0x00  
0x71  
[Subaddress 0x61]  
–7.5 IRE  
–7.5 IRE  
The brightness is controlled by adding a programmable setup  
level onto the scaled Y data. This brightness level may be added  
onto the scaled Y data. For NTSC with pedestal, the setup can  
vary from 0 IRE to 22.5 IRE. For NTSC without pedestal and  
PAL, the setup can vary from −7.5 IRE to +15 IRE.  
1 Values in the range from 0x3F to 0x44 might result in an invalid output  
signal.  
The brightness control register is an 8-bit register. Seven bits of  
this 8-bit register are used to control the brightness level. This  
brightness level can be a positive or negative value.  
Rev. PrA | Page 52 of 88  
 
Preliminary Technical Data  
ADV7322  
Double buffering can be activated on the following HD  
SD Brightness Detect  
registers: HD Gamma A and Gamma B curves and HD CGMS  
registers.  
[Subaddress 0x7A]  
The ADV7322 allows monitoring of the brightness level of the  
incoming video data. Brightness detect is a read-only register.  
Double buffering can be activated on the following SD registers:  
SD Gamma A and Gamma B curves, SD Y Scale, SD U Scale, SD  
V Scale, SD Brightness, SD Closed Captioning, and SD  
Macrovision Bits 5 to 0.  
Double Buffering  
[Subaddress 0x13, Bit 7; Subaddress 0x48, Bit 2]  
Double buffered registers are updated once per field on the  
falling edge of the VSYNC signal. Double buffering improves  
the overall performance since modifications to register settings  
will not be made during active video, but takes effect on the  
start of the active video.  
NTSC WITHOUT PEDESTAL  
100 IRE  
+7.5 IRE  
–7.5 IRE  
0 IRE  
POSITIVE SETUP  
VALUE ADDED  
NEGATIVE SETUP  
VALUE ADDED  
NO SETUP  
VALUE ADDED  
Figure 68. Examples of Brightness Control Values  
Rev. PrA | Page 53 of 88  
ADV7322  
Preliminary Technical Data  
Table 33. DAC Gain Control  
PROGRAMMABLE DAC GAIN CONTROL  
DAC  
Current  
(mA)  
DACs A, B, and C are controlled by REG 0A.  
Reg 0x0A or  
0x0B  
% Gain  
7.5000%  
7.3820%  
7.3640%  
...  
Note  
DACs D, E, and F are controlled by REG 0B.  
0100 0000 (0x40)  
0011 1111 (0x3F)  
0011 1110 (0x3E)  
...  
4.658  
4.653  
4.648  
...  
The I2C control registers will adjust the output signal gain up or  
down from its absolute level.  
CASE A  
...  
...  
...  
GAIN PROGRAMMED IN DAC OUTPUT LEVEL  
REGISTERS, SUBADDRESS 0x0A, 0x0B  
0000 0010 (0x02)  
0000 0001 (0x01)  
0000 0000 (0x00)  
4.43  
4.38  
4.33  
0.0360%  
0.0180%  
0.0000%  
700mV  
(I2C Reset Value,  
Nominal)  
1111 1111 (0xFF)  
1111 1110 (0xFE)  
...  
...  
4.25  
4.23  
...  
−0.0180%  
−0.0360%  
...  
...  
...  
1100 0010 (0xC2) 4.018  
1100 0001 (0xC1) 4.013  
1100 0000 (0xC0) 4.008  
−7.3640%  
−7.3820%  
−7.5000%  
300mV  
NEGATIVE GAIN PROGRAMMED IN  
CASE B  
DAC OUTPUT LEVEL REGISTERS,  
SUBADDRESS 0x0A, 0x0B  
700mV  
GAMMA CORRECTION  
[Subaddresses 0x24 to 0x37 for HD,  
Subaddresses 0x66 to 0x79 for SD]  
Gamma correction is available for SD and HD video. For each  
standard, there are twenty 8-bit-wide registers. They are used to  
program the gamma correction curves A and B. HD gamma  
curve A is programmed at Addresses 0x24 to 0x2D, and HD  
gamma curve B is programmed at 0x2E to 0x7. SD gamma  
curve A is programmed at Addresses 0x66 to 0x6F, and SD  
gamma curve B is programmed at Addresses 0x70 to 0x79.  
300mV  
Figure 69. Programmable DAC Gain—Positive and Negative Gain  
In case A, the video output signal is gained. The absolute level of  
the sync tip and blanking level both increase with respect to the  
reference video output signal. The overall gain of the signal is  
increased from the reference signal.  
Generally gamma correction is applied to compensate for the  
nonlinear relationship between signal input and brightness level  
output (as perceived on the CRT). It can also be applied  
wherever nonlinear processing is used.  
In case B, the video output signal is reduced. The absolute level  
of the sync tip and blanking level both decrease with respect to  
the reference video output signal. The overall gain of the signal  
is reduced from the reference signal.  
Gamma correction uses the function  
γ
SignalOUT  
=
(
SignalIN  
)
where γ = gamma power factor.  
The range of this feature is specified for 7.5% of the nominal  
output from the DACs. For example, if the output current of the  
DAC is 4.33 mA, the DAC tune feature can change this output  
current from 4.008 mA (−7.5%) to 4.658 mA (+7.5%).  
Gamma correction is performed on the luma data only. The  
user may choose either of two curves, curve A or curve B. At  
any one time, only one of these curves can be used.  
The reset value of the vid_out_ctrl registers is 0x00; therefore,  
nominal DAC current is output. The following table is an  
example of how the output current of the DACs varies for a  
nominal 4.33 mA output current.  
The response of the curve is programmed at 10 predefined  
locations. In changing the values at these locations, the gamma  
curve can be modified. Between these points, linear  
interpolation is used to generate intermediate values.  
Considering the curve to have a total length of 256 points, the  
10 locations are at 24, 32, 48, 64, 80, 96, 128, 160, 192, and 224.  
Locations 0, 16, 240, and 255 are fixed and cannot be changed.  
Rev. PrA | Page 54 of 88  
Preliminary Technical Data  
ADV7322  
GAMMA CORRECTION BLOCK OUTPUT TO A RAMP INPUT  
For the length of 16 to 240, the gamma correction curve has to  
be calculated as follows:  
300  
250  
y = xγ  
SIGNAL OUTPUT  
where:  
200  
150  
100  
50  
0.5  
y = gamma corrected output  
x = linear input signal  
γ = gamma power factor  
To program the gamma correction registers, calculate the seven  
values for y using the following formula:  
SIGNAL INPUT  
x(n16)  
yn =  
γ ×(240 16) + 16  
0
(240 16)  
0
50  
100  
150  
LOCATION  
200  
250  
where:  
Figure 70. Signal Input (Ramp) and Signal Output for Gamma 0.5  
x(n − 16) = Value for x along x axis at points  
n = 24, 32, 48, 64, 80, 96, 128, 160, 192, or 224  
yn = Value for y along the y axis, which must be written into the  
gamma correction register  
GAMMA CORRECTION BLOCK TO A RAMP INPUT FOR  
VARIOUS GAMMA VALUES  
300  
For example,  
250  
y24 = [(8/224)0.5 × 224] + 16 = 58  
y32 = [(16/224)0.5 × 224] + 16 = 76  
y48 = [(32/224)0.5 × 224] + 16 = 101  
y64 = [(48/224)0.5 × 224] + 16 =120  
y80 = [(64 / 224)0.5 × 224] + 16 =136  
y96 = [(80 / 224)0.5 × 224] + 16 = 150  
0.3  
200  
0.5  
150  
1.5  
100  
1.8  
50  
0
0
50  
100  
150  
LOCATION  
200  
250  
y
y
y
y
128 = [(112 / 224)0.5 × 224] + 16 = 174  
160 = [(144 / 224)0.5 × 224] + 16 = 195  
192 = [(176 / 224)0.5 × 224] + 16 = 214  
224 = [(208 / 224)0.5 × 224] + 16 = 232  
Figure 71. Signal Input (Ramp) and Selectable Output Curves  
where the sum of each equation is rounded to the nearest  
integer.  
The gamma curves in Figure 70 and Figure 71 are examples only;  
any user-defined curve is acceptable in the range of 16 to 240.  
Rev. PrA | Page 55 of 88  
 
 
ADV7322  
Preliminary Technical Data  
The derivative of the incoming signal is compared to the three  
programmable threshold values: HD adaptive filter threshold A,  
B, and C. The recommended threshold range is from 16 to 235,  
although any value in the range of 0 to 255 can be used.  
HD SHARPNESS FILTER AND ADAPTIVE FILTER  
CONTROLS  
[Subaddresses 0x20, 0x38 to 0x3D]  
There are three filter modes available on the ADV7322:  
sharpness filter mode and two adaptive filter modes.  
The edges can then be attenuated with the settings in HD  
adaptive filter gain 1, 2, and 3 registers and HD sharpness filter  
gain register.  
HD Sharpness Filter Mode  
To enhance or attenuate the Y signal in the frequency ranges  
shown in Figure 72, the following register settings must be used:  
HD sharpness filter must be enabled and HD adaptive filter  
enable must be set to disabled.  
According to the settings of the HD adaptive filter mode  
control, there are two adaptive filter modes available:  
1. Mode A is used when adaptive filter mode is set to 0.  
In this case, Filter B (LPF) will be used in the adaptive  
filter block. Also, only the programmed values for  
Gain B in the HD sharpness filter gain and HD  
adaptive filter gain 1, 2, and 3 are applied when  
needed. The Gain A values are fixed and cannot be  
changed.  
To select one of the 256 individual responses, the corresponding  
gain values, which range from –8 to +7, for each filter must be  
programmed into the HD sharpness filter gain register at  
Address 0x20.  
HD Adaptive Filter Mode  
The HD adaptive filter threshold A, B, and C registers, the HD  
adaptive filter gain 1, 2, and 3 registers, and the HD sharpness  
gain register are used in adaptive filter mode. To activate the  
adaptive filter control, the HD sharpness filter and the HD  
adaptive filter must be enabled.  
2. Mode B is used when adaptive filter mode is set to 1.  
In this mode, a cascade of Filter A and Filter B is used.  
Both settings for Gain A and Gain B in the HD  
sharpness filter gain and HD adaptive filter gain 1, 2,  
and 3 become active when needed.  
SHARPNESS AND ADAPTIVE FILTER CONTROL BLOCK  
1.5  
1.4  
1.3  
1.2  
1.5  
1.4  
1.3  
1.2  
1.6  
1.5  
1.4  
1.1  
1.0  
1.1  
1.0  
INPUT  
SIGNAL:  
STEP  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.9  
0.8  
0.7  
0.6  
0.5  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FILTER A RESPONSE (Gain Ka)  
FREQUENCY (MHz)  
FILTER B RESPONSE (Gain Kb)  
FREQUENCY (MHz)  
FREQUENCY RESPONSE IN SHARPNESS  
FILTER MODE WITH Ka = 3 AND Kb = 7  
Figure 72. Sharpness and Adaptive Filter Control Block  
Rev. PrA | Page 56 of 88  
 
Preliminary Technical Data  
ADV7322  
HD SHARPNESS FILTER AND ADAPTIVE FILTER  
APPLICATION EXAMPLES  
Table 34. Sharpness Control  
HD Sharpness Filter Application  
Address  
0x00  
0x01  
0x02  
0x10  
0x11  
0x20  
0x20  
0x20  
0x20  
0x20  
0x20  
Register Setting  
Reference1  
The HD sharpness filter can be used to enhance or attenuate the  
Y video output signal. The following register settings were used  
to achieve the results shown in Figure 73. Input data was  
generated by an external signal source.  
0xFC  
0x10  
0x20  
0x00  
0x81  
0x00  
0x08  
0x04  
a
b
c
d
e
f
0x40  
0x80  
0x22  
1 See Figure 73.  
d
e
a
b
R2  
R4  
1
R1  
c
f
1
R2  
CH1 500mV  
M 4.00µs  
9.99978ms  
CH1  
ALL FIELDS  
CH1 500mV  
REF A  
M 4.00µs  
1 9.99978ms  
CH1  
ALL FIELDS  
REF A  
500mV 4.00µs  
1
500mV 4.00µs  
Figure 73. HD Sharpness Filter Control with Different Gain Settings for HS Sharpness Filter Gain Values  
Rev. PrA | Page 57 of 88  
 
 
ADV7322  
Preliminary Technical Data  
When changing the adaptive filter mode to Mode B  
Adaptive Filter Control Application  
[Address 0x15, Bit 6], the output shown in Figure 76 can be  
obtained.  
Figure 74 and Figure 75 show typical signals to be processed by  
the adaptive filter control block.  
: 674mV  
@: 446mV  
: 332ns  
: 692mV  
@: 446mV  
: 332ns  
@: 12.8ms  
@: 12.8ms  
Figure 76. Output Signal from Adaptive Filter Control  
Figure 74. Input Signal to Adaptive Filter Control  
: 692mV  
@: 446mV  
: 332ns  
SD DIGITAL NOISE REDUCTION  
[Subaddresses 0x63, 0x64, 0x65]  
@: 12.8ms  
DNR is applied to the Y data only. A filter block selects the high  
frequency, low amplitude components of the incoming signal  
[DNR input select]. The absolute value of the filter output is  
compared to a programmable threshold value ['DNR threshold  
control]. There are two DNR modes available: DNR mode and  
DNR sharpness mode.  
In DNR mode, if the absolute value of the filter output is  
smaller than the threshold, it is assumed to be noise. A  
programmable amount [coring gain border, coring gain data] of  
this noise signal will be subtracted from the original signal. In  
DNR sharpness mode, if the absolute value of the filter output is  
less than the programmed threshold, it is assumed to be noise,  
as before. Otherwise, if the level exceeds the threshold, now  
being identified as a valid signal, a fraction of the signal [coring  
gain border, coring gain data] will be added to the original  
signal to boost high frequency components and sharpen the  
video image.  
Figure 75. Output Signal after Adaptive Filter Control  
The register settings in Table 35 were used to obtain the results  
shown in Figure 75, i.e., to remove the ringing on the Y signal.  
Input data was generated by an external signal source.  
Table 35. Register Settings for Figure 76  
Address  
0x00  
0x01  
0x02  
0x10  
0x11  
0x15  
0x20  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
Register Setting  
0xFC  
0x38  
0x20  
0x00  
0x81  
0x80  
0x00  
0xAC  
0x9A  
0x88  
0x28  
0x3F  
In MPEG systems, it is common to process the video  
information in blocks of 8 pixels × 8 pixels for MPEG2 systems,  
or 16 pixels × 16 pixels for MPEG1 systems [block size control].  
DNR can be applied to the resulting block transition areas that  
are known to contain noise. Generally, the block transition area  
contains two pixels. It is possible to define this area to contain  
four pixels [border area].  
It is also possible to compensate for variable block positioning  
or differences in YCrCb pixel timing with the use of the DNR  
block offset  
0x64  
The digital noise reduction registers are three 8-bit registers.  
They are used to control the DNR processing.  
Rev. PrA | Page 58 of 88  
 
 
 
 
Preliminary Technical Data  
ADV7322  
output, which lies above the threshold range. The result is added  
to the original signal.  
DNR MODE  
DNR CONTROL  
BLOCK SIZE CONTROL  
BORDER AREA  
BLOCK OFFSET  
APPLY DATA  
APPLY BORDER  
CORING GAIN CORING GAIN  
GAIN  
CORING GAIN DATA  
CORING GAIN BORDER  
O X X X X X X O O X X X X X X O  
NOISE  
SIGNAL PATH  
OFFSET CAUSED  
BY VARIATIONS IN  
INPUT TIMING  
INPUT FILTER  
BLOCK  
O X X X X X X O O X X X X X X O  
FILTER  
SUBTRACT SIGNAL  
IN THRESHOLD  
RANGE FROM  
DNR27 – DNR24 = 0x01 O X X X X X X O O X X X X X X O  
OUTPUT  
Y DATA  
< THRESHOLD?  
INPUT  
ORIGINAL SIGNAL  
Figure 78. DNR Offset Control  
FILTER OUTPUT  
> THRESHOLD  
+
DNR OUT  
DNR THRESHOLD  
MAIN SIGNAL PATH  
[Address 0x64, Bits 5 to 0]  
DNR  
DNR CONTROL  
SHARPNESS  
These six bits are used to define the threshold value in the range  
of 0 to 63. The range is an absolute value.  
MODE  
BLOCK SIZE CONTROL  
BORDER AREA  
BLOCK OFFSET  
GAIN  
BORDER AREA  
CORING GAIN DATA  
CORING GAIN BORDER  
[Address 0x64, Bit 6]  
NOISE  
SIGNAL PATH  
INPUT FILTER  
BLOCK  
When this bit is set to Logic 1, the block transition area can be  
defined to consist of four pixels. If this bit is set to Logic 0, the  
border transition area consists of two pixels, where one pixel  
refers to two clock cycles at 27 MHz.  
FILTER  
ADD SIGNAL  
ABOVE  
THRESHOLD  
RANGE FROM  
ORIGINAL SIGNAL  
OUTPUT  
Y DATA  
INPUT  
> THRESHOLD?  
+
FILTER OUTPUT  
< THRESHOLD  
720 × 485 PIXELS  
+
2-PIXEL  
BORDER  
(NTSC)  
DNR OUT  
DATA  
MAIN SIGNAL PATH  
Figure 77. DNR Block Diagram  
CORING GAIN BORDER  
[Address 0x63, Bits 3 to 0]  
These four bits are assigned to the gain factor applied to border  
areas. In DNR mode, the range of gain values is 0 to 1 in  
increments of 1/8. This factor is applied to the DNR filter  
output, which lies below the set threshold range. The result is  
then subtracted from the original signal.  
8 × 8 PIXEL BLOCK  
8 × 8 PIXEL BLOCK  
Figure 79. DNR Border Area  
BLOCK SIZE CONTROL  
[Address 0x64, Bit 7]  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
output, which lies above the threshold range. The result is added  
to the original signal.  
This bit is used to select the size of the data blocks to be  
processed. Setting the block size control function to Logic 1  
defines a 16 pixel × 16 pixel data block, and Logic 0 defines an  
8 pixel × 8 pixel data block, where one pixel refers to two clock  
cycles at 27 MHz.  
CORING GAIN DATA  
[Address 0x63, Bits 7 to 4]  
DNR INPUT SELECT CONTROL  
These four bits are assigned to the gain factor applied to the luma  
data inside the MPEG pixel block. In DNR mode, the range of  
gain values is 0 to 1 in increments of 1/8. This factor is applied  
to the DNR filter output, which lies below the set threshold  
range. The result is then subtracted from the original signal.  
[Address 0x65, Bits 2 to 0]  
Three bits are assigned to select the filter, which is applied to the  
incoming Y data. The signal that lies in the pass band of the  
selected filter is the signal that will be DNR processed. Figure 80  
shows the filter responses selectable with this control.  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
Rev. PrA | Page 59 of 88  
ADV7322  
Preliminary Technical Data  
original signal, since this data is assumed to be valid data and  
not noise. The overall effect is that the signal will be boosted  
(similar to using Extended SSAF filter).  
1.0  
FILTER D  
0.8  
BLOCK OFFSET CONTROL  
FILTER C  
0.6  
0.4  
0.2  
0
[Address 0x65, Bits 7 to 4]  
Four bits are assigned to this control, which allows a shift of the  
data block of 15 pixels maximum. Consider the coring gain  
positions fixed. The block offset shifts the data in steps of one  
pixel such that the border coring gain factors can be applied at the  
same position regardless of variations in input timing of the data.  
FILTER B  
FILTER A  
1
2
3
0
4
5
6
SD ACTIVE VIDEO EDGE  
FREQUENCY (Hz)  
[Subaddress 0x42, Bit 7]  
Figure 80. DNR Input Select  
DNR MODE CONTROL  
When the active video edge feature is enabled, the first three  
pixels and the last three pixels of the active video on the luma  
channel are scaled so that maximum transitions on these pixels  
are not possible. The scaling factors are ×1/8, ×1/2, and ×7/8.  
All other active video passes through unprocessed.  
[Address 0x65, Bit 4]  
This bit controls the DNR mode selected. Logic 0 selects DNR  
mode; Logic 1 selects DNR sharpness mode.  
DNR works on the principle of defining low amplitude, high  
frequency signals as probable noise and subtracting this noise  
from the original signal.  
SAV/EAV STEP EDGE CONTROL  
The ADV7322 has the capability of controlling fast rising and  
falling signals at the start and end of active video to minimize  
ringing.  
In DNR mode, it is possible to subtract a fraction of the signal  
that lies below the set threshold, assumed to be noise, from the  
original signal. The threshold is set in DNR Register 1.  
An algorithm monitors SAV and EAV and determines when the  
edges are rising or falling too fast. The result is reduced ringing  
at the start and end of active video for fast transitions.  
Subaddress 0x42, Bit 7 = 1, enables this feature.  
When DNR sharpness mode is enabled, it is possible to add a  
fraction of the signal that lies above the set threshold to the  
LUMA CHANNEL WITH  
ACTIVE VIDEO EDGE  
DISABLED  
LUMA CHANNEL WITH  
ACTIVE VIDEO EDGE  
ENABLED  
100 IRE  
0 IRE  
100 IRE  
87.5 IRE  
50 IRE  
12.5 IRE  
0 IRE  
Figure 81. Example of Active Video Edge Functionality  
Rev. PrA | Page 60 of 88  
Preliminary Technical Data  
ADV7322  
VOLTS  
IRE:FLT  
100  
0.5  
50  
0
0
F2  
L135  
–50  
2
0
4
6
8
10  
12  
Figure 82. Address 0x42, Bit 7 = 0  
VOLTS  
IRE:FLT  
100  
0.5  
50  
0
0
F2  
L135  
–50  
0
–2  
2
4
6
8
10  
12  
Figure 83. Address 0x42, Bit 7 = 1  
Rev. PrA | Page 61 of 88  
ADV7322  
Preliminary Technical Data  
BOARD DESIGN AND LAYOUT  
CIRCUIT FREQUENCY RESPONSE  
0
DAC TERMINATION AND LAYOUT  
CONSIDERATIONS  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
24n  
21n  
18n  
15n  
12n  
9n  
–30  
MAGNITUDE (dB)  
The ADV7322 contains an on-board voltage reference. The  
ADV7322 can be used with an external VREF (AD1580).  
–60  
–90  
The RSET resistors are connected between the RSET pins and  
AGND and are used to control the full-scale output current and,  
therefore, the DAC voltage output levels. For full-scale output,  
RSET must have a value of 3040 Ω. The RSET values should not  
be changed. RLOAD has a value of 300 Ω for full-scale output.  
–120  
–150  
–180  
–210  
–240  
PHASE (Deg)  
GROUP DELAY (sec)  
6n  
VIDEO OUTPUT BUFFER AND OPTIONAL  
OUTPUT FILTER  
3n  
0
1M  
10M  
100M  
1G  
Output buffering on all six DACs is necessary to drive output  
devices, such as SD or HD monitors. Analog Devices produces a  
range of suitable op amps for this application, for example the  
AD8061. More information on line driver buffering circuits is  
given in the relevant op amps’ data sheets.  
FREQUENCY (Hz)  
Figure 85. Filter Plot for Output Filter for SD, 16× Oversampling  
4.7µH  
DAC  
OUTPUT  
3
4
75Ω  
BNC  
OUTPUT  
6.8pF  
6.8pF  
600Ω  
1
An optional analog reconstruction low-pass filter (LPF) may be  
required as an anti-imaging filter if the ADV7322 is connected  
to a device that requires this filtering.  
600  
560  
560  
The filter specifications vary with the application.  
Figure 86. Example of Output Filter for PS, 8× Oversampling  
Table 36. External Filter Requirements  
Cutoff  
Frequency  
Application Oversampling (MHz)  
Attenuation  
–50 dB @  
(MHz)  
DAC  
OUTPUT  
3
470nH 220nH  
SD  
SD  
PS  
PS  
HDTV  
HDTV  
2×  
16×  
1×  
8×  
1×  
2×  
>6.5  
>6.5  
>12.5  
>12.5  
>30  
20.5  
209.5  
14.5  
203.5  
44.25  
118.5  
75Ω  
BNC  
OUTPUT  
1
3
4
300Ω  
75Ω  
1
33pF  
82pF  
4
500Ω  
500Ω  
>30  
Figure 87. Example of Output Filter for HDTV, 2× Oversampling  
10µH  
DAC  
OUTPUT  
3
4
75Ω  
BNC  
OUTPUT  
Table 37. Possible Output Rates from the ADV7322  
600Ω  
22pF  
600Ω  
1
Input Mode Address  
0x01, Bits 6 to 4  
PLL Address  
0x00, Bit 1  
Output Rate  
(MHz)  
560Ω  
SD Only  
Off  
On  
Off  
On  
27 (2×)  
216 (16×)  
27 (1×)  
560Ω  
PS Only  
Figure 84. Example of Output Filter for SD, 16× Oversampling  
216 (8×)  
HDTV Only  
Off On  
74.25 (1×)  
148.5 (2×)  
Rev. PrA | Page 62 of 88  
Preliminary Technical Data  
ADV7322  
CIRCUIT FREQUENCY RESPONSE  
0
There should be a separate analog ground plane and a separate  
digital ground plane.  
480  
400  
320  
240  
160  
80  
18n  
16n  
–10  
MAGNITUDE (dB)  
Power planes should encompass a digital power plane and an  
analog power plane. The analog power plane should contain the  
DACs and all associated circuitry, VREF circuitry. The digital  
power plane should contain all logic circuitry.  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
14n  
12n  
10n  
8n  
GROUP DELAY (Sec)  
PHASE (Deg)  
The analog and digital power planes should be individually  
connected to the common power plane at a single point  
through a suitable filtering device, such as a ferrite bead.  
0
6n  
–80  
–160  
–240  
4n  
DAC output traces on a PCB should be treated as transmission  
lines. It is recommended that the DACs be placed as close as  
possible to the output connector, with the analog output traces  
being as short as possible (less than 3 inches). The DAC  
termination resistors should be placed as close as possible to the  
DAC outputs and should overlay the PCB’s ground plane. As  
well as minimizing reflections, short analog output traces will  
reduce noise pickup due to neighboring digital circuitry.  
2n  
0
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 88. Filter Plot for Output Filter for PS, 8× Oversampling  
CIRCUIT FREQUENCY RESPONSE  
480  
0
–10  
–20  
–30  
–40  
–50  
–60  
18n  
15n  
12n  
9n  
360  
MAGNITUDE (dB)  
To avoid crosstalk between the DAC outputs, it is recommended  
that as much space as possible be left between the tracks of the  
individual DAC output pins. The addition of ground tracks  
between outputs is also recommended.  
240  
GROUP DELAY (sec)  
120  
Supply Decoupling  
0
Noise on the analog power plane can be further reduced by the  
use of decoupling capacitors.  
6n  
PHASE (Deg)  
–120  
3n  
Optimum performance is achieved by the use of 10 nF and  
0.1 µF ceramic capacitors. Each group of VAA, VDD, or VDD_IO  
pins should be individually decoupled to ground. This should  
be done by placing the capacitors as close as possible to the  
device with the capacitor leads as short as possible, thus  
minimizing lead inductance.  
–240  
0
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 89. Filter Plot for Output Filter for HDTV, 2× Oversampling  
PCB BOARD LAYOUT  
A 1 µF tantalum capacitor is recommended across the VAA  
supply in addition to 10 nF ceramic. See the circuit layout in  
Figure 90.  
The ADV7322 is optimally designed for lowest noise  
performance, both radiated and conducted noise. To  
complement the excellent noise performance of the ADV7322,  
it is imperative that great care be given to the PC board layout.  
Digital Signal Interconnect  
The digital signal lines should be isolated as much as possible  
from the analog outputs and other analog circuitry. Digital  
signal lines should not overlay the analog power plane.  
The layout should be optimized for lowest noise on the  
ADV7322 power and ground lines. This can be achieved by  
shielding the digital inputs and providing good decoupling. The  
lead length between groups of VAA and AGND, VDD and DGND,  
and VDD_IO and GND_IO pins should be kept as short as  
possible to minimized inductive ringing.  
Due to the high clock rates used, avoid long clock lines to the  
ADV7322 to minimize noise pickup.  
Any active pull-up termination resistors for the digital inputs  
should be connected to the digital power plane and not the  
analog power plane.  
It is recommended that a 4-layer printed circuit board is used,  
with power and ground planes separating the layer of the signal  
carrying traces of the components and solder side layer.  
Component placement should be carefully considered in order  
to separate noisy circuits, such as crystal clocks, high speed logic  
circuitry, and analog circuitry.  
Analog Signal Interconnect  
Locate the ADV7322 as close as possible to the output  
connectors to minimize noise pickup and reflections due to  
impedance mismatch.  
Rev. PrA | Page 63 of 88  
ADV7322  
Preliminary Technical Data  
For optimum performance, the analog outputs should each be  
source and load terminated, as shown in Figure 90. The  
termination resistors should be as close as possible to the  
ADV7322 to minimize reflections.  
For optimum performance, it is recommended that all  
decoupling and external components relating to the ADV7322  
be located on the same side of the PCB and as close as possible  
to the ADV7322. Any unused inputs should be tied to ground.  
POWER SUPPLY DECOUPLING  
FOR EACH POWER SUPPLY GROUP  
V
V
V
AA  
DD  
+
V
V
10nF  
10nF  
1µF  
AA AA  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
V
DD_IO  
10, 56  
V
V
AA  
DD_IO  
5kΩ  
45  
36  
41  
1
10nF  
1.1kΩ  
COMP1, 2  
V
V
DD  
AA  
DD_IO  
2
19  
I C  
46  
44  
V
REF  
ADV7322  
RECOMMENDED EXTERNAL  
AD1580 FOR OPTIMUM  
PERFORMANCE  
100nF  
S0–S7  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
300Ω  
50  
49  
S_HSYNC  
S_VSYNC  
43  
42  
39  
38  
37  
48 S_BLANK  
300Ω  
300Ω  
300Ω  
300Ω  
300Ω  
C0–C7  
UNUSED  
INPUTS  
SHOULD BE  
GROUNDED  
Y0–Y7  
63  
23  
CLKIN_B  
P_HSYNC  
V
24 P_VSYNC  
25 P_BLANK  
AA  
4.7kΩ  
V
V
DD_IO  
DD_IO  
33  
32  
RESET  
5kΩ  
5kΩ  
100Ω  
+
2
22  
21  
I C BUS  
SCLK  
SDA  
4.7µF  
CLKIN_A  
100Ω  
V
AA  
820pF  
34  
EXT_LF  
V
DD_IO  
20  
35  
ALSB  
5kΩ  
R
680Ω  
SET2  
3.9nF  
SELECTION HERE  
DETERMINES  
DEVICE ADDRESS  
3040Ω  
3040Ω  
47  
R
SET1  
GND_ IO  
64  
AGND DGND  
40  
11, 57  
Figure 90. ADV7322 Circuit Layout  
Rev. PrA | Page 64 of 88  
 
Preliminary Technical Data  
ADV7322  
APPENDIX 1—COPY GENERATION MANAGEMENT SYSTEM  
PS CGMS  
FUNCTION OF CGMS BITS  
Data Registers 2 to 0  
For Word 0 to 6 bits, Word 1 to 4 bits, and Word 2 to 6 bits CRC  
6 bits,  
[Subaddresses 0x21, 0x22, 0x23]  
CRC Polynomial = x6 + x + 1  
525p  
Using the vertical blanking interval 525p system, 525p CGMS  
conforms to the CGMS-A EIA-J CPR1204-1 (March 1998)  
transfer method of video identification information and to the  
IEC61880 (1998) 525p/60 video systems analog interface for the  
video and accompanying data.  
where default is preset to 111111.  
720p System  
CGMS data is applied to Line 24 of the luminance vertical  
blanking interval.  
1080i System  
When PS CGMS is enabled [Subaddress 0x12, Bit 6 = 1], CGMS  
data is inserted on Line 41. The 525p CGMS data registers are at  
Addresses 0x21, 0x22, and 0x23.  
CGMS data is applied to Line 19 and Line 582 of the luminance  
vertical blanking interval.  
CGMS FUNCTIONALITY  
625p  
If SD CGMS CRC [Address 0x59, Bit 4] or PS/HD CGMS CRC  
[Subaddress 0x12, Bit 7] is set to Logic 1, the last six bits, C19 to  
C14, which comprise the 6-bit CRC check sequence, are  
calculated automatically on the ADV7322 based on the lower  
14 bits (C0 to C13) of the data in the data registers and output  
with the remaining 14 bits to form the complete 20 bits of the  
CGMS data. The calculation of the CRC sequence is based on  
the polynomial ×6 + x + 1 with a preset value of 111111. If SD  
CGMS CRC [Address 0x59, Bit 4] and PS/HD CGMS CRC  
[Address 0x12, Bit 7] are set to Logic 0, all 20 bits (C0 to C19)  
are output directly from the CGMS registers (no CRC is  
calculated, must be calculated by the user).  
The 625p CGMS conforms to the IEC62375 (2004) 625p/50  
video system’s analog interface for the video and accompanying  
data using the vertical blanking interval.  
When PS CGMS is enabled [Subaddress 0x12, Bit 6 = 1], CGMS  
data is inserted on Line 43. The 625p CGMS data registers are at  
Addresses 0x22, and 0x23.  
HD CGMS  
[Address 0x12, Bit 6]  
The ADV7322 supports Copy Generation Management System  
(CGMS) in HDTV mode (720p and 1080i) in accordance with  
EIAJ CPR-1204-2.  
The HD CGMS data registers are found at Addresses 0x021,  
0x22, and 0x23.  
SD CGMS  
Data Registers 2 to 0  
[Subaddresses 0x59, 0x5A, 0x5B]  
The ADV7322 supports Copy Generation Management System  
(CGMS), conforming to the standard. CGMS data is  
transmitted on Line 20 of the odd fields and Line 283 of even  
fields. Bits C/W05 and C/W06 control whether CGMS data is  
output on odd and even fields. CGMS data can be transmitted  
only when the ADV7322 is configured in NTSC mode. The  
CGMS data is 20 bits long, and the function of each of these bits  
is as shown in the following table. The CGMS data is preceded  
by a reference pulse of the same amplitude and duration as a  
CGMS bit; see Figure 93.  
Rev. PrA | Page 65 of 88  
ADV7322  
Preliminary Technical Data  
CRC SEQUENCE  
+700mV  
REF  
BIT1 BIT2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BIT20  
70% ± 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
–300mV  
21.2µs ± 0.22µs  
22T  
5.8µs ± 0.15µs  
6T  
T = 1/(fH × 33) = 963ns  
fH = HORIZONTAL SCAN FREQUENCY  
T ± 30ns  
Figure 91. Progressive Scan 525p CGMS Waveform (Line 41)  
R = RUN-IN  
S = START CODE  
PEAK WHITE  
C0  
LSB  
C13  
MSB  
R
S
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12  
500mV ± 25mV  
SYNC LEVEL  
13.7µs  
5.5µs ± 0.125µs  
Figure 92. Progressive Scan 625p CGMS-A Waveform (Line 43)  
+100 IRE  
CRC SEQUENCE  
REF  
+70 IRE  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0 IRE  
–40 IRE  
49.1µs ± 0.5µs  
11.2µs  
2.235µs ± 20ns  
Figure 93. Standard Definition CGMS Waveform  
Rev. PrA | Page 66 of 88  
Preliminary Technical Data  
ADV7322  
CRC SEQUENCE  
+700mV  
REF  
BIT1 BIT2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT20  
70% ± 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
T ± 30ns  
–300mV  
17.2µs ± 160ns  
4T  
22T  
3.128µs ± 90ns  
T = 1/(fH × 1650/58) = 781.93ns  
fH = HORIZONTAL SCAN FREQUENCY  
1H  
Figure 94. HDTV 720p CGMS Waveform  
CRC SEQUENCE  
+700mV  
REF  
BIT1 BIT2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT20  
70% ± 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
T ± 30ns  
–300mV  
22.84µs ± 210ns  
4T  
22T  
4.15µs ± 60ns  
T = 1/(f × 2200/77) = 1.038µs  
H
f
= HORIZONTAL SCAN FREQUENCY  
H
1H  
Figure 95. HDTV 1080i CGMS Waveform  
Rev. PrA | Page 67 of 88  
 
ADV7322  
Preliminary Technical Data  
APPENDIX 2—SD WIDE SCREEN SIGNALING  
data is preceded by a run-in sequence and a start code; see  
Figure 95. If SD WSS [Address 0x59, Bit 7] is set to Logic 1, it  
enables the WSS data to be transmitted on Line 23. The latter  
[Subaddresses 0x59, 0x5A, 0x5B]  
The ADV7322 supports wide screen signaling (WSS)  
conforming to the standard. WSS data is transmitted on Line 23.  
WSS data can be transmitted only when the device is  
configured in PAL mode. The WSS data is 14 bits long, and the  
function of each of these bits is shown in Table 38. The WSS  
HSYNC  
portion of Line 23 (42.5 s from the falling edge of  
) is  
available for the insertion of video. It is possible to blank the  
WSS portion of Line 23 with Subaddress 0x61, Bit 7.  
Table 38. Function of WSS Bits  
Bit  
Description  
Bit 0 to Bit 2  
Aspect Ratio/Format/Position  
Bit 3  
B0  
0
1
0
1
0
1
0
Odd Parity Check of Bit 0 to Bit 2  
B1  
0
0
1
1
0
0
1
1
B2  
0
0
0
0
1
1
1
1
B3  
1
0
0
1
0
1
1
0
Aspect Ratio  
4:3  
14:9  
14:9  
16:9  
16:9  
>16:9  
14:9  
Format  
Position  
N/A  
Center  
Top  
Center  
Top  
Center  
Center  
N/A  
Full Format  
Letterbox  
Letterbox  
Letterbox  
Letterbox  
Letterbox  
Full Format  
N/A  
1
16:9  
1
1
1
0
16:9  
B4  
0
1
Camera Mode  
Film Mode  
B5  
0
Standard Coding  
1
Motion Adaptive Color Plus  
B6  
0
No Helper  
1
Modulated Helper  
Reserved  
B7  
B9  
0
B10  
0
No Open Subtitles  
1
0
1
0
1
1
Subtitles in Active Image Area  
Subtitles out of Active Image Area  
Reserved  
B11  
0
1
No Surround Sound Information  
Surround Sound Mode  
Reserved  
B12  
B13  
Reserved  
500mV  
RUN-IN  
SEQUENCE  
ACTIVE  
VIDEO  
START  
CODE  
W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13  
11.0µs  
38.4µs  
42.5µs  
Figure 96. WSS Waveform Diagram  
Rev. PrA | Page 68 of 88  
 
Preliminary Technical Data  
ADV7322  
APPENDIX 3—SD CLOSED CAPTIONING  
[Subaddresses 0x51 to 0x54]  
FCC Code of Federal Regulations (CFR) 47 section 15.119 and  
EIA608 describe the closed captioning information for Lines 21  
and 284.  
The ADV7322 supports closed captioning conforming to the  
standard television synchronizing waveform for color  
transmission. Closed captioning is transmitted during the  
blanked active line time of Line 21 of the odd fields and Line  
284 of the even fields.  
The ADV7322 uses a single buffering method. This means that  
the closed captioning buffer is only 1 byte deep; therefore, there  
will be no frame delay in outputting the closed captioning data,  
unlike other 2-byte-deep buffering systems. The data must be  
loaded one line before it is output on Line 21 and Line 284. A  
Closed captioning consists of a 7-cycle sinusoidal burst that is  
frequency and phase locked to the caption data. After the clock  
run-in signal, the blanking level is held for two data bits and is  
followed by Logic 1 start bit. Sixteen bits of data follow the start  
bit. These consist of two 8-bit bytes, seven data bits, and one  
odd parity bit. The data for these bytes is stored in the SD closed  
captioning registers [Addresses 0x53 to 0x54].  
VSYNC  
typical implementation of this method is to use  
to  
interrupt a microprocessor, which in turn will load the new data  
(two bytes) in every field. If no new data is required for  
transmission, 0s must be inserted in both data registers; this is  
called nulling. It is also important to load control codes, all of  
which are double bytes, on Line 21, or a TV will not recognize  
them. If there is a message like “Hello World” that has an odd  
number of characters, it is important to pad it out to even to get  
“end of caption” 2-byte control code to land in the same field.  
The ADV7322 also supports the extended closed captioning  
operation, which is active during even fields and encoded on  
Scan Line 284. The data for this operation is stored in the SD  
closed captioning registers [Addresses 0x51 to 0x52].  
All clock run-in signals and timing to support closed captioning  
on Lines 21 and 284 are generated automatically by the  
ADV7322. All pixels inputs are ignored during Lines 21 and 284  
if closed captioning is enabled.  
10.5  
±
0.25µ  
s
12.91µs  
7 CYCLES OF  
0.5035MHz  
CLOCK RUN-IN  
TWO 7-BIT + PARITY  
ASCII CHARACTERS  
(DATA)  
P
A
R
I
T
Y
P
A
R
I
T
Y
S
T
A
R
T
D0–D6  
D0–D6  
50 IRE  
40 IRE  
BYTE 0  
BYTE 1  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003µs  
27.382  
µ
s
33.764µs  
Figure 97. Closed Captioning Waveform, NTSC  
Rev. PrA | Page 69 of 88  
ADV7322  
Preliminary Technical Data  
APPENDIX 4—TEST PATTERNS  
The ADV7322 can generate SD and HD test patterns.  
T
T
2
2
CH2 200mV  
M 10.0  
µ
s
A CH2 1.20V  
CH2 100mV  
M 10.0µs  
CH2  
EVEN  
T
30.6000µs  
T
1.82600ms  
Figure 98. NTSC Color Bars  
Figure 101. PAL Black Bar [–21 mV, 0 mV, 3.5 mV, 7 mV, 10.5 mV, 14 mV,  
18 mV, 23 mV]  
T
T
2
2
CH2 200mV  
M 10.0µs  
A CH2 1.21V  
CH2 200mV  
M 4.0µs  
CH2  
EVEN  
T
30.6000µs  
T
1.82944ms  
Figure 102. 525p Hatch Pattern  
Figure 99. PAL Color Bars  
T
T
2
2
CH2 200mV  
M 4.0µs  
CH2  
EVEN  
CH2 100mV  
M 10.0µs  
CH2  
EVEN  
T
1.84208ms  
T
1.82380ms  
Figure 103. 625p Hatch Pattern  
Figure 100. NTSC Black Bar [–21 mV, 0 mV, 3.5 mV, 7 mV, 10.5 mV, 14 mV,  
18 mV, 23 mV]  
Rev. PrA | Page 70 of 88  
Preliminary Technical Data  
ADV7322  
T
T
2
2
CH2 200mV  
M 4.0µs  
CH2  
EVEN  
CH2 100mV  
M 4.0µs  
CH2  
EVEN  
T
1.82872ms  
T
1.82936ms  
Figure 106. 525p Black Bar [−35 mV, 0 mV, 7 mV, 14 mV, 21 mV,  
28 mV, 35 mV]  
Figure 104. 525p Field Pattern  
T
T
2
2
CH2 100mV  
M 4.0µs  
CH2  
EVEN  
CH2 200mV  
M 4.0µs  
CH2  
EVEN  
T
1.84176ms  
T
1.84176ms  
Figure 105. 625p Field Pattern  
Figure 107. 625p Black Bar [−35 mV, 0 mV, 7 mV, 14 mV,  
21 mV, 28 mV, 5 mV]  
Rev. PrA | Page 71 of 88  
ADV7322  
Preliminary Technical Data  
The register settings in Table 39 are used to generate an SD  
NTSC CVBS output on DAC A, S-video on DACs B and C, and  
YPrPb on DACs D, E, and F. Upon power-up, the subcarrier  
registers are programmed with the appropriate values for NTSC.  
All other registers are set as normal/default.  
The register settings in Table 41 are used to generate a 525p  
hatch pattern on DAC D, E, and F. All other registers are set as  
normal/default.  
Table 41. 525p Test Pattern Register Writes.  
Subaddress  
Register Setting  
Table 39. NTSC Test Pattern Register Writes  
Ox00  
0xFC  
Subaddress  
Register Setting  
0x01  
0x10  
0x00  
0xFC  
0x10  
0x00  
0x40  
0x10  
0x11  
0x05  
0x42  
0x40  
0x16  
0xA0  
0x44  
0x4A  
0x40 (internal test pattern on)  
0x08  
0x17  
0x18  
0x80  
0x80  
For PAL CVBS output on DAC A, the same settings are used,  
except that Subaddress 0x40 is programmed to 0x11 and the Fsc  
registers are programmed as shown in Table 40.  
For 625p hatch pattern on DAC D, the same register settings are  
used except that Subaddress 0x10 = 0x18.  
Table 40. PAL Fsc Register Writes  
Subaddress  
Description  
Register Setting  
0x4C  
0x4D  
0x4E  
0x4F  
Fsc0  
Fsc1  
Fsc2  
Fsc3  
0xCB  
0x8A  
0x09  
0x2A  
Note that when programming the Fsc registers, the user must  
write the values in the sequence Fsc0, Fsc1, Fsc2, Fsc3. The full  
Fsc value to be written is only accepted after the Fsc3 write is  
complete.  
Rev. PrA | Page 72 of 88  
 
 
 
Preliminary Technical Data  
ADV7322  
APPENDIX 5—SD TIMING MODES  
[Subaddress 0x4A]  
MODE 0 (CCIR-656)—SLAVE OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 0 0 0)  
The ADV7322 is controlled by the SAV (start active video) and  
EAV (end active video) time codes in the pixel data. All timing  
information is transmitted using a 4-byte synchronization  
pattern. A synchronization pattern is sent immediately before  
S_VSYNC  
(if not used) pins should be tied high  
and after each line during active picture and retrace.  
S_HSYNC S_BLANK  
,
, and  
during this mode. Blank output is available.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
8
0
0
0
F
F
F
F
A
B
A
B
A
B
8
0
0
0
C
b
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
1440 CLOCK  
1440 CLOCK  
268 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
280 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 108. SD Slave Mode 0  
Rev. PrA | Page 73 of 88  
ADV7322  
Preliminary Technical Data  
MODE 0 (CCIR-656)—MASTER OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 0 0 1)  
The ADV7322 generates H, V, and F signals required for the  
SAV (start active video) and EAV (end active video) time codes  
S_HSYNC  
, and the F bit is output on  
in the CCIR656 standard. The H bit is output on  
S_BLANK  
, the  
V bit is output on  
S_VSYNC  
.
DISPLAY  
DISPLAY  
VERTICAL BLANK  
4
522  
523  
524  
525  
1
2
3
5
6
7
8
10  
11  
20  
21  
22  
9
H
V
ODD FIELD  
EVEN FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 109. SD Master Mode 0, NTSC  
Rev. PrA | Page 74 of 88  
Preliminary Technical Data  
ADV7322  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
4
22  
23  
1
2
3
5
6
7
21  
H
V
ODD FIELD  
EVEN FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
318  
334  
335  
336  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 110. SD Master Mode 0, PAL  
ANALOG  
VIDEO  
H
F
V
Figure 111. SD Master Mode 0, Data Transitions  
Rev. PrA | Page 75 of 88  
ADV7322  
Preliminary Technical Data  
MODE 1—SLAVE OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 0 1 0)  
In this mode, the ADV7322 accepts horizontal sync and  
HSYNC  
odd/even field signals. When  
field input indicates a new frame, i.e., vertical retrace. The  
BLANK BLANK  
is low, a transition of the  
signal is optional. When the  
input is disabled,  
ADV7322 automatically blanks all normally blank lines as per  
HSYNC  
, and FIELD on  
S_HSYNC BLANK  
,
CCIR-624.  
S_BLANK  
is input on  
on  
S_VSYNC  
.
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
3
4
5
7
9
10  
11  
1
2
6
8
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 112. SD Slave Mode 1 (NTSC)  
Rev. PrA | Page 76 of 88  
Preliminary Technical Data  
ADV7322  
MODE 1—MASTER OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 0 1 1)  
In this mode, the ADV7322 can generate horizontal sync and  
HSYNC  
odd/even field signals. When  
field input indicates a new frame, i.e., vertical retrace. The blank  
BLANK  
is low, a transition of the  
signal is optional. When the  
input is disabled,  
ADV7322 automatically blanks all normally blank lines as per  
CCIR-624. Pixel data is latched on the rising clock edge  
HSYNC  
following the timing signal transitions.  
is output on the  
S_HSYNC BLANK  
S_BLANK  
S_VSYNC  
, and FIELD on .  
,
on  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
3
4
5
7
622  
623  
624  
625  
1
2
6
21  
22  
23  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 113. SD Slave Mode 1 (PAL)  
HSYNC  
FIELD  
PAL = 12  
×
CLOCK/2  
NTSC = 16  
× CLOCK/2  
BLANK  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 132  
×
CLOCK/2  
NTSC = 122  
× CLOCK/2  
Figure 114. SD Timing Mode 1—Odd/Even Field Transitions Master/Slave  
Rev. PrA | Page 77 of 88  
ADV7322  
Preliminary Technical Data  
MODE 2— SLAVE OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 1 0 0)  
In this mode, the ADV7322 accepts horizontal and vertical sync  
HSYNC  
VSYNC  
signals. A coincident low transition of both  
and  
low  
VSYNC  
inputs indicates the start of an odd field. A  
HSYNC  
transition when  
is high indicates the start of an even  
field. The BLANK signal is optional. When the BLANK input is  
disabled, ADV7322 automatically blanks all normally blank  
HSYNC  
S_HSYNC  
lines as per CCIR-624.  
is input on  
S_VSYNC  
, BLANK  
S_BLANK  
VSYNC  
on  
, and  
on  
.
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
3
2
4
5
7
8
20  
21  
22  
6
10  
11  
9
HSYNC  
BLANK  
VSYNC  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 115. SD Slave Mode 2 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
4
622  
623  
624  
625  
1
2
3
5
6
7
21  
22  
23  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 116. SD Slave Mode 2 (PAL)  
Rev. PrA | Page 78 of 88  
Preliminary Technical Data  
ADV7322  
MODE 2—MASTER OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 1 0 1)  
In this mode, the ADV7322 can generate horizontal and vertical  
HSYNC  
sync signals. A coincident low transition of both  
VSYNC  
and  
inputs indicates the start of an odd field.  
VSYNC HSYNC  
A
low transition when  
is high indicates the  
signal is optional. When the  
input is disabled, the ADV7322 automatically blanks all  
BLANK  
start of an even field. The  
BLANK  
HSYNC  
S_BLANK  
, and  
normally blank lines as per CCIR-624.  
is output on  
VSYNC S_VSYNC  
.
S_HSYNC BLANK  
,
on  
on  
HSYNC  
VSYNC  
PAL = 12  
×
CLOCK/2  
CLOCK/2  
NTSC = 16  
×
BLANK  
PIXEL  
DATA  
Cb  
Cr  
Y
Y
PAL = 132  
×
CLOCK/2  
CLOCK/2  
NTSC = 122  
×
Figure 117. SD Timing Mode 2 Even-to-Odd Field Transition Master/Slave  
HSYNC  
VSYNC  
PAL = 864 × CLOCK/2  
NTSC = 858 × CLOCK/2  
PAL = 12 × CLOCK/2  
NTSC = 16 × CLOCK/2  
BLANK  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
Cb  
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 118. SD Timing Mode 2 Odd-to-Even Field Transition  
Rev. PrA | Page 79 of 88  
ADV7322  
Preliminary Technical Data  
MODE 3—MASTER/SLAVE OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 1 1 0 OR  
X X X X X 1 1 1)  
In this mode, the ADV7322 accepts or generates horizontal sync  
HSYNC  
and odd/even field signals. When  
of the field input indicates a new frame, i.e., vertical retrace. The  
BLANK BLANK  
is high, a transition  
signal is optional. When the  
ADV7322 automatically blanks all normally blank lines as per  
HSYNC  
input is disabled,  
CCIR-624.  
is output in master mode and input in slave  
S_VSYNC BLANK  
S_BLANK  
VSYNC  
mode on  
S_VSYNC  
,
on  
, and  
on  
.
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
4
20  
21  
22  
10  
11  
2
3
5
6
7
8
9
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 119. SD Timing Mode 3 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
5
6
7
21  
22  
23  
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
Figure 120. SD Timing Mode 3 (PAL)  
Rev. PrA | Page 80 of 88  
Preliminary Technical Data  
APPENDIX 6—HD TIMING  
ADV7322  
DISPLAY  
FIELD 1  
VERTICAL BLANKING INTERVAL  
1124 1125  
1
2
3
4
5
6
7
8
20  
21  
22  
560  
P_VSYNC  
P_HSYNC  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
P_VSYNC  
P_HSYNC  
HSYNC  
VSYNC  
Input Timing  
Figure 121. 1080i  
and  
Rev. PrA | Page 81 of 88  
ADV7322  
Preliminary Technical Data  
APPENDIX 7—VIDEO OUTPUT LEVELS  
HD YPrPb OUTPUT LEVELS  
EIA-770.2, STANDARD FOR Y  
EIA-770.3, STANDARD FOR Y  
OUTPUT VOLTAGE  
INPUT CODE  
INPUT CODE  
940  
OUTPUT VOLTAGE  
940  
700mV  
700mV  
64  
64  
300mV  
300mV  
EIA-770.3, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
EIA-770.2, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
960  
512  
64  
960  
600mV  
700mV  
512  
64  
700mV  
Figure 122. EIA 770.2 Standard Output Signals (525p/625p)  
Figure 124. EIA 770.3 Standard Output Signals (1080i/720p)  
EIA-770.1, STANDARD FOR Y  
Y–OUTPUT LEVELS FOR  
FULL INPUT SELECTION  
INPUT CODE  
1023  
OUTPUT VOLTAGE  
INPUT CODE  
OUTPUT VOLTAGE  
782mV  
940  
700mV  
714mV  
64  
64  
300mV  
286mV  
Pr/Pb–OUTPUT LEVELS FOR  
FULL INPUT SELECTION  
OUTPUT VOLTAGE  
INPUT CODE  
1023  
EIA-770.1, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
960  
700mV  
700mV  
512  
64  
64  
300mV  
Figure 123. EIA 770.1 Standard Output Signals (525p/625p)  
Figure 125. Output Levels for Full Input Selection  
Rev. PrA | Page 82 of 88  
Preliminary Technical Data  
ADV7322  
RGB OUTPUT LEVELS  
Pattern: 100%/75% Color Bars  
700mV  
525mV  
700mV  
525mV  
300mV  
300mV  
700mV  
525mV  
700mV  
525mV  
300mV  
300mV  
700mV  
525mV  
700mV  
525mV  
300mV  
300mV  
Figure 126. PS RGB Output Levels  
Figure 128. SD RGB Output Levels—RGB Sync Disabled  
700mV  
700mV  
700mV  
525mV  
700mV  
700mV  
700mV  
525mV  
300mV  
0mV  
300mV  
0mV  
525mV  
525mV  
300mV  
0mV  
300mV  
0mV  
525mV  
525mV  
300mV  
0mV  
300mV  
0mV  
Figure 127. PS RGB Output Levels—RGB Sync Enabled  
Figure 129. SD RGB Output Levels—RGB Sync Enabled  
Rev. PrA | Page 83 of 88  
ADV7322  
Preliminary Technical Data  
YPrPb LEVELS—SMPTE/EBU N10  
Pattern: 100% Color Bars  
700mV  
700mV  
Figure 130. Pb Levels—NTSC  
Figure 133. Pr Levels—PAL  
700mV  
700mV  
300mV  
Figure 131. Pb Levels—PAL  
Figure 134. Y Levels—NTSC  
700mV  
700mV  
300mV  
Figure 135. Y Levels—PAL  
Figure 132. Pr Levels—NTSC  
Rev. PrA | Page 84 of 88  
Preliminary Technical Data  
ADV7322  
VOLTS  
0.6  
VOLTS IRE:FLT  
100  
0.4  
0.2  
0
0.5  
50  
0
0
–0.2  
0
F1  
–50  
10  
L608  
L76  
0
20  
30  
MICROSECONDS  
PRECISION MODE OFF  
40  
50  
60  
10  
20  
30  
40  
50  
60  
NOISE REDUCTION: 0.00dB  
APL = 39.1%  
625 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
MICROSECONDS  
PRECISION MODE OFF  
APL = 44.5%  
525 LINE NTSC  
SYNCHRONOUS SYNC = A  
FRAMES SELECTED 1, 2  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1, 2, 3, 4  
SLOW CLAMP TO 0.00V AT 6.72µs  
Figure 136. NTSC Color Bars 75%  
Figure 139. PAL Color Bars 75%  
VOLTS IRE:FLT  
VOLTS  
0.5  
0.4  
50  
0.2  
0
0
0
–0.2  
–0.4  
–50  
–0.5  
F1  
L76  
L575  
20  
0
10  
20  
30  
40  
50  
60  
10  
30  
40  
50  
60  
NOISE REDUCTION: 15.05dB MICROSECONDS  
MICROSECONDS NO BUNCH SIGNAL  
PRECISION MODE OFF  
APL NEEDS SYNC-SOURCE.  
525 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
PRECISION MODE OFF  
APL NEEDS SYNC-SOURCE.  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
SYNCHRONOUS SYNC = B  
FRAMES SELECTED 1, 2  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1  
Figure 140. PAL Chroma  
Figure 137. NTSC Chroma  
VOLTS  
0.5  
VOLTS IRE:FLT  
0.6  
0.4  
50  
0
0.2  
0
0
0
–0.2  
F2  
L238  
L575  
20  
0
10  
30  
40  
50  
60  
70  
10  
20  
30  
40  
50  
60  
MICROSECONDS NO BUNCH SIGNAL  
PRECISION MODE OFF  
NOISE REDUCTION: 15.05dB MICROSECONDS  
APL NEEDS SYNC-SOURCE.  
625 LINE PAL NO FILTERING  
APL = 44.3%  
PRECISION MODE OFF  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1  
525 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
SYNCHRONOUS SYNC = SOURCE  
FRAMES SELECTED 1, 2  
SLOW CLAMP TO 0.00 AT 6.72µs  
Figure 138. NTSC Luma  
Figure 141. PAL Luma  
Rev. PrA | Page 85 of 88  
ADV7322  
Preliminary Technical Data  
APPENDIX 8—VIDEO STANDARDS  
0
DATUM  
H
SMPTE 274M  
ANALOG WAVEFORM  
DIGITAL HORIZONTAL BLANKING  
272T  
*1  
4T  
4T  
1920T  
DIGITAL  
ACTIVE LINE  
ANCILLARY DATA  
(OPTIONAL) OR BLANKING CODE  
EAV CODE  
SAV CODE  
F
F
F
F
0
0
0
0
F
F
0
0
0
0
C
C
r
C
INPUT PIXELS  
Y
V
V
Y
b
r
H*  
H*  
4 CLOCK  
4 CLOCK  
192  
0
2199  
SAMPLE NUMBER  
2112  
2116 2156  
44  
188  
2111  
FVH* = FVH AND PARITY BITS  
SAV/EAV: LINE 1–562: F = 0  
SAV/EAV: LINE 563–1125: F = 1  
SAV/EAV: LINE 1–20; 561–583; 1124–1125: V = 1  
SAV/EAV: LINE 21–560; 584–1123: V = 0  
FOR A FRAME RATE OF 30Hz: 40 SAMPLES  
FOR A FRAME RATE OF 25Hz: 480 SAMPLES  
Figure 142. EAV/SAV Input Data Timing Diagram—SMPTE 274M  
SMPTE 293M  
ANALOG WAVEFORM  
ANCILLARY DATA  
(OPTIONAL)  
DIGITAL  
SAV CODE  
F
EAV CODE  
F
ACTIVE LINE  
F
F
0
0
0
0
F
F
0
0
0
0
C
b
C
r
C
r
INPUT PIXELS  
V
Y
V
Y
Y
H*  
H*  
4 CLOCK  
4 CLOCK  
853 857  
SAMPLE NUMBER  
719  
723 736  
DATUM  
799  
0
719  
0
H
DIGITAL HORIZONTAL BLANKING  
FVH* = FVH AND PARITY BITS  
SAV: LINE 43–525 = 200H  
SAV: LINE 1–42 = 2AC  
EAV: LINE 43–525 = 274H  
EAV: LINE 1–42 = 2D8  
Figure 143. EAV/SAV Input Data Timing Diagram—SMPTE 293M  
Rev. PrA | Page 86 of 88  
Preliminary Technical Data  
ADV7322  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
522 523 524 525  
1
2
5
6
7
8
9
12  
13  
14  
15  
16  
42  
43  
44  
Figure 144. SMPTE 293M (525p)  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
12  
13  
1
2
5
6
7
8
9
43  
44  
45  
622 623  
624 625  
4
10  
11  
Figure 145. ITU-R BT.1358 (625p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
1
2
3
4
5
6
7
747  
748  
749  
750  
26  
27  
744  
745  
8
25  
Figure 146. SMPTE 296M (720p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 1  
560  
1124  
1125  
1
2
3
4
5
6
7
8
20  
21  
22  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
Figure 147. SMPTE 274M (1080i)  
Rev. PrA | Page 87 of 88  
ADV7322  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
0.75  
0.60  
0.45  
12.00  
BSC SQ  
1.60  
MAX  
64  
49  
48  
1
SEATING  
PLANE  
PIN 1  
10.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
10°  
6°  
2°  
1.45  
1.40  
1.35  
0.20  
0.09  
VIEW A  
7°  
3.5°  
16  
33  
32  
0.15  
0.05  
0°  
17  
SEATING  
PLANE  
0.08 MAX  
COPLANARITY  
0.27  
0.22  
0.17  
0.50  
BSC  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026BCD  
Figure 148. 64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Package Description  
Package Option  
ADV7322KSTZ1  
64-Lead Low Profile Quad Flat Package [LQFP]  
Evaluation Board  
ST-64-2  
EVAL-ADV7322EB  
1 Z = Pb-free part.  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR05135–0–9/04(PrA)  
Rev. PrA | Page 88 of 88  
 

相关型号:

EVAL-ADV7340EBZ

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

EVAL-ADV7341EBZ

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

EVAL-ADV7390EBZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

EVAL-ADV7391EBZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

EVAL-ADV7392EBZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

EVAL-ADV7393EBZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

EVAL-ADV739XFEZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

EVAL-ADV7400AEBM

10-Bit Intergrated Multiformat SDTV/HDTV Video Decoder and RGB Graphics Digitizer
ADI

EVAL-ADV7441AFEZ_1

10-Bit Integrated, Multiformat SDTV/HDTV Video Decoder, RGB Graphics Digitizer, and 2:1 Multiplexed HDMI/DVI Interface
ADI

EVAL-ADV7441AFEZ_2

10-Bit Integrated, Multiformat SDTV/HDTV Video Decoder, RGB Graphics Digitizer, and 2:1 Multiplexed HDMI/DVI Interface
ADI

EVAL-ADV7511W-AKZ

165 MHz, High Performance HDMI Transmitter 3D video support
ADI

EVAL-ADV7513-AKZ

165 MHz, High Performance
ADI