EVAL-ADV7320EB [ADI]

Multiformat 216 MHz Video Encoder with Six NSV 12-Bit DACs; 多格式216 MHz的视频编码器与六NSV 12位DAC
EVAL-ADV7320EB
型号: EVAL-ADV7320EB
厂家: ADI    ADI
描述:

Multiformat 216 MHz Video Encoder with Six NSV 12-Bit DACs
多格式216 MHz的视频编码器与六NSV 12位DAC

编码器
文件: 总88页 (文件大小:1010K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiformat 216 MHz  
Video Encoder with Six NSV® 12-Bit DACs  
ADV7320/ADV7321  
Programmable DAC gain control  
Sync outputs in all modes  
FEATURES  
High definition input formats  
16-/20-, 24-/30-bit (4:2:2, 4:4:4) parallel YCrCb  
Fully compliant with:  
SMPTE 274M (1080i, 1080p @ 74.25 MHz)  
SMPTE 296M (720p)  
SMPTE 240M (1035i)  
RGB in 3- × 10-bit 4:4:4 input format  
HDTV RGB supported:  
On-board voltage reference  
Six 12-bit NSV (noise shaped video) precision video DACs  
2-wire serial I2C® interface, open-drain configuration  
Dual I/O supply 2.5 V/3.3 V operation  
Analog and digital supply 2.5 V  
On-board PLL  
64-lead LQFP package  
Lead (Pb) free product  
RGB, RGBHV  
APPLICATIONS  
Other high definition formats using async  
timing mode  
Enhanced definition input formats  
8-/10-, 16-/20-, 24-/30-bit (4:2:2, 4:4:4) parallel YCrCb  
SMPTE 293M (525p)  
BTA T-1004 EDTV2 (525p)  
EVD players (enhanced versatile disk)  
High end /SD/PS DVD recorders/players  
SD/progressive scan/HDTV display devices  
SD/HDTV set top boxes  
Professional video systems  
ITU-R BT.1358 (625p/525p)  
STANDARD DEFINITION  
CONTROL BLOCK  
ITU-R BT.1362 (625p/525p)  
ADV7320/  
ADV7321  
RGB in 3- × 10-bit 4:4:4 input format  
Standard definition input formats  
CCIR-656 4:2:2 8-/10-bit or 16-/20-bit parallel input  
High definition output formats  
YPrPb HDTV (EIA 770.3)  
COLOR CONTROL  
BRIGHTNESS  
DNR  
12-BIT  
DAC  
GAMMA  
PROGRAMMABLE  
FILTERS  
12-BIT  
DAC  
O
V
E
R
S
A
M
P
L
SD TEST PATTERN  
D
12-BIT  
DAC  
Y9–Y0  
RGB, RGBHV  
CGMS-A (720p/1080i)  
E
M
U
X
PROGRAMMABLE  
RGB MATRIX  
C9–C0  
S9–S0  
12-BIT  
DAC  
Enhanced definition output formats  
Macrovision Rev 1.2 (525p/625p) (ADV7320 only)  
CGMS-A (525p/625p)  
YPrPb progressive scan (EIA-770.1, EIA-770.2)  
RGB, RGBHV  
I
N
G
HIGH DEFINITION  
CONTROL BLOCK  
12-BIT  
DAC  
HD TEST PATTERN  
12-BIT  
DAC  
COLOR CONTROL  
ADAPTIVE FILTER CTRL  
SHARPNESS FILTER  
HSYNC  
VSYNC  
BLANK  
TIMING  
GENERATOR  
Standard definition output formats  
Composite NTSC M/N  
2
I C  
INTERFACE  
CLKIN_A  
CLKIN_B  
PLL  
Composite PAL M/N/B/D/G/H/I, PAL-60  
SMPTE 170M NTSC-compatible composite video  
ITU-R BT.470 PAL-compatible composite video  
S-video (Y/C)  
Figure 1. Simplified Functional Block Diagram  
GENERAL DESCRIPTION  
The ADV®7320/ADV7321 are high speed, digital-to-analog  
encoders on single monolithic chips. They include six high  
speed NSV video D/A converters with TTL compatible inputs.  
They have separate 8-/10-, 16-/20-, and 24-/30-bit input ports  
that accept data in high definition and/or standard definition  
video format. For all standards, external horizontal, vertical,  
and blanking signals or EAV/SAV timing codes control the  
insertion of appropriate synchronization signals into the digital  
data stream and, therefore, the output signal.  
EuroScart RGB  
Component YPrPb (Betacam, MII, SMPTE/EBU N10)  
Macrovision Rev 7.1.L1 (ADV7320 only)  
CGMS/WSS  
Closed captioning  
GENERAL FEATURES  
Simultaneous SD/HD, PS/SD inputs and outputs  
Oversampling up to 216 MHz  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
ADV7320/ADV7321  
TABLE OF CONTENTS  
Specifications..................................................................................... 6  
Programmable DAC Gain Control.......................................... 53  
Gamma Correction.................................................................... 53  
HD Sharpness Filter and Adaptive Filter Controls................ 55  
Dynamic Specifications ................................................................... 7  
Timing Specifications....................................................................... 8  
Timing Diagrams.............................................................................. 9  
Absolute Maximum Ratings.......................................................... 16  
Thermal Characteristics ............................................................ 16  
ESD Caution................................................................................ 16  
Pin Configuration and Function Descriptions........................... 17  
Typical Performance Characteristics ........................................... 19  
MPU Port Description................................................................... 23  
Register Access................................................................................ 25  
Register Programming............................................................... 25  
Subaddress Register (SR7 to SR0) ............................................ 25  
Input Configuration ....................................................................... 38  
Standard Definition Only.......................................................... 38  
Progressive Scan Only or HDTV Only ................................... 38  
HD Sharpness Filter and Adaptive Filter  
Application Examples ................................................................ 56  
SD Digital Noise Reduction...................................................... 57  
Coring Gain Border ................................................................... 58  
Coring Gain Data....................................................................... 58  
DNR Threshold .......................................................................... 58  
Border Area................................................................................. 58  
Block Size Control...................................................................... 58  
DNR Input Select Control......................................................... 58  
DNR Mode Control ................................................................... 59  
Block Offset Control.................................................................. 59  
SD Active Video Edge................................................................ 59  
SAV/EAV Step Edge Control.................................................... 59  
/
Output Control ............................................ 61  
HSYNC VSYNC  
Simultaneous Standard Definition and  
Progressive Scan or HDTV....................................................... 38  
Board Design and Layout.............................................................. 62  
DAC Termination and Layout Considerations ...................... 62  
Video Output Buffer and Optional Output Filter.................. 62  
PCB Board Layout...................................................................... 63  
Appendix 1—Copy Generation Management System .............. 65  
PS CGMS..................................................................................... 65  
HD CGMS................................................................................... 65  
SD CGMS .................................................................................... 65  
Function of CGMS Bits ............................................................. 65  
CGMS Functionality.................................................................. 65  
Appendix 2—SD Wide Screen Signaling .................................... 68  
Appendix 3—SD Closed Captioning........................................... 69  
Appendix 4—Test Patterns............................................................ 70  
Appendix 5—SD Timing Modes.................................................. 73  
Progressive Scan at 27 MHz (Dual Edge) or 54 MHz ........... 39  
Features ............................................................................................ 41  
Output Configuration................................................................ 41  
HD Async Timing Mode........................................................... 42  
HD Timing Reset........................................................................ 43  
SD Real-Time Control, Subcarrier Reset, and  
Timing Reset ............................................................................... 43  
Reset Sequence............................................................................ 45  
SD VCR FF/RW Sync................................................................. 45  
Vertical Blanking Interval ......................................................... 46  
Subcarrier Frequency Registers................................................ 46  
Square Pixel Timing Mode........................................................ 47  
Filters............................................................................................ 48  
Color Controls and RGB Matrix .............................................. 49  
Rev. 0 | Page 2 of 88  
ADV7320/ADV7321  
Mode 0 (CCIR-656)—Slave Option  
(Timing Register 0 TR0 = X X X X X 0 0 0) ............................73  
Appendix 6—HD Timing ..............................................................81  
Appendix 7—Video Output Levels...............................................82  
HD YPrPb Output Levels ..........................................................82  
RGB Output Levels .....................................................................83  
YPrPb Levels—SMPTE/EBU N10............................................84  
Appendix 8—Video Standards......................................................86  
Outline Dimensions........................................................................88  
Ordering Guide ...........................................................................88  
Mode 0 (CCIR-656)—Master Option  
(Timing Register 0 TR0 = X X X X X 0 0 1) ............................74  
Mode 1—Slave Option  
(Timing Register 0 TR0 = X X X X X 0 1 0) ............................76  
Mode 1—Master Option  
(Timing Register 0 TR0 = X X X X X 0 1 1) ............................77  
Mode 2— Slave Option  
(Timing Register 0 TR0 = X X X X X 1 0 0) ............................78  
Mode 2—Master Option  
(Timing Register 0 TR0 = X X X X X 1 0 1) ............................79  
Mode 3—Master/Slave Option  
(Timing Register 0 TR0 = X X X X X 1 1 0 or X X X X X 1 1 1)  
.......................................................................................................80  
REVISION HISTORY  
10/04—Revision 0: Initial Version  
Rev. 0 | Page 3 of 88  
ADV7320/ADV7321  
Table 1. Standards Directly Supported1  
DETAILED FEATURES  
Frame  
Clk  
High definition programmable features (720p/1080i/1035i)  
2× oversampling (148.5 MHz)  
Interlace/ Rate  
Input  
(MHz)  
Resolution  
Prog.  
(Hz)  
Standard  
Internal test pattern generator  
Color hatch, black bar, flat field/frame  
Fully programmable YCrCb to RGB matrix  
Gamma correction  
Programmable adaptive filter control  
Programmable sharpness filter control  
CGMS-A (720p/1080i)  
Enhanced definition programmable features (525p/625p)  
8× oversampling (216 MHz output)  
Internal test pattern generator  
Color hatch, black bar, flat frame  
Individual Y and PrPb output delay  
Gamma correction  
720 × 480  
I
29.97  
27  
ITU-R  
BT.656  
ITU-R  
BT.656  
NTSC  
Square  
Pixel  
PAL Square  
Pixel  
SMPTE  
293M  
BTA T-1004  
720 × 576  
720 × 480  
I
I
25  
27  
29.97  
24.54  
720 × 576  
720 × 483  
I
25  
29.5  
27  
P
59.94  
720 × 483  
720 × 483  
P
P
59.94  
59.94  
27  
27  
ITU-R  
BT.1358  
Programmable adaptive filter control  
Fully programmable YCrCb to RGB matrix  
Undershoot limiter  
Macrovision Rev 1.2 (525p/625p) (ADV7320 only)  
CGMS-A (525p/625p)  
Standard definition programmable features  
16× oversampling (216 MHz)  
Internal test pattern generator  
Color bars, black bar  
Controlled edge rates for start and end of active video  
Individual Y and PrPb output delay  
Undershoot limiter  
Gamma correction  
Digital noise reduction (DNR)  
720 × 576  
720 × 483  
720 × 576  
1920 × 1035  
P
P
P
I
50  
27  
27  
27  
ITU-R  
BT.1358  
ITU-R  
BT.1362  
ITU-R  
BT.1362  
SMPTE  
240M  
59.94  
50  
30  
29.97  
74.25  
74.1758  
74.25,  
1280 × 720  
P
60, 50,  
30, 25,  
24,  
23.97,  
59.94,  
29.97  
30, 25  
29.97  
30, 25, 24 74.25  
SMPTE  
296M  
74.1758  
1920 × 1080  
1920 × 1080  
I
74.25  
74.1758  
SMPTE  
274M  
Multiple chroma and luma filters  
Luma-SSAF™ filter with programmable gain/attenuation  
PrPb SSAF™  
Separate pedestal control on component and  
composite/S-video output  
P
SMPTE  
274M  
23.98,  
29.97,  
74.1758  
1 Other standards are supported in async timing mode.  
VCR FF/RW sync mode  
Macrovision Rev 7.1.L1 (ADV7320 only)  
CGMS/WSS  
Closed captioning  
Rev. 0 | Page 4 of 88  
ADV7320/ADV7321  
HD PIXEL  
INPUT  
SHARPNESS  
AND  
Y
CR  
CB  
Y COLOR  
CR COLOR  
CB COLOR  
DE-  
INTER-  
LEAVE  
TEST  
PATTERN  
DAC  
4:2:2  
TO  
4:4:4  
ADAPTIVE  
FILTER  
PS 8×  
HDTV 2×  
CLKIN_B  
CONTROL  
DAC  
P_HSYNC  
P_VSYNC  
P_BLANK  
TIMING  
CLOCK  
GENERATOR  
DAC  
DAC  
CONTROL  
AND PLL  
U
V
UV SSAF  
S_HSYNC  
S_VSYNC  
S_BLANK  
RGB  
TIMING  
GENERATOR  
MATRIX  
SD 16×  
DAC  
CLKIN_A  
CB  
CR  
Y
DE-  
INTER-  
LEAVE  
LUMA  
AND  
F
TEST  
PATTERN  
DNR  
COLOR  
SYNC  
INSERTION  
SC  
2× OVER-  
SAMPLING  
CGMS  
WSS  
MODU-  
LATION  
GAMMA  
CONTROL  
DAC  
CHROMA  
FILTERS  
SD PIXEL  
INPUT  
Figure 2. Detailed Functional Block Diagram  
TERMINOLOGY  
HDTV: high definition television video, conforming to SMPTE  
274M, or SMPTE 296M and SMPTE240M.  
SD: standard definition video, conforming to  
ITU-R BT.601/ITU-R BT.656.  
YCrCb SD, PS, or HD component: digital video.  
YPrPb SD, PS, or HD component: analog video.  
HD: high definition video, i.e., 720p/1080i/1035i.  
EDTV: enhanced definition television (525p/625p)  
PS: progressive scan video, conforming to SMPTE 293M,  
ITU-R BT.1358, BTAT-1004EDTV2, or ITU-R BT.13621362.  
Rev. 0 | Page 5 of 88  
ADV7320/ADV7321  
SPECIFICATIONS  
VAA = 2.375 V to 2.625 V, VDD = 2.375 V to 2.625 V, VDD_IO = 2.375 V to 3.6 V, VREF = 1.235 V, RSET = 3040 Ω, RLOAD = 300 Ω. All  
specifications TMIN to TMAX (0°C to 70°C), unless otherwise noted.  
Table 2.  
Parameter  
STATIC PERFORMANCE1  
Min  
Typ  
Max  
Unit  
Test Conditions  
Resolution  
Integral Nonlinearity  
Differential Nonlinearity,2 +ve  
Differential Nonlinearity,2 −ve  
DIGITAL OUTPUTS  
Output Low Voltage, VOL  
Output High Voltage, VOH  
Three-State Leakage Current  
Three-State Output Capacitance  
DIGITAL AND CONTROL INPUTS  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Leakage Current  
Input Capacitance, CIN  
ANALOG OUTPUTS  
12  
Bits  
LSB  
LSB  
LSB  
1.5  
0.25  
1.5  
0.4 [0.4]3  
V
V
µA  
pF  
ISINK = 3.2 mA  
ISOURCE = 400 µA  
VIN = 0.4 V, 2.4 V  
2.4 [2.0]3  
1.0  
2
2
V
V
µA  
pF  
0.8  
10  
2
VIN = 2.4 V  
Full-Scale Output Current  
Output Current Range  
DAC to DAC Matching  
Output Compliance Range, VOC  
Output Capacitance, COUT  
VOLTAGE REFERENCE  
Internal Reference Range, VREF  
External Reference Range, VREF  
VREF Current4  
4.1  
4.1  
4.33  
4.33  
1.0  
1.0  
7
4.6  
4.6  
mA  
mA  
%
V
pF  
0
1.4  
1.15  
1.15  
1.235  
1.235  
10  
1.3  
1.3  
V
V
µA  
POWER REQUIREMENTS  
Normal Power Mode  
5
IDD  
137  
78  
73  
140  
1.0  
37  
mA  
mA  
mA  
mA  
mA  
mA  
SD only (16×)  
PS only (8×)  
HDTV only (2×)  
SD (16×, 10 bit) + PS (8×, 20 bit)  
1906  
45  
IDD_IO  
7, 8  
IAA  
Sleep Mode  
IDD  
80  
µA  
IAA  
7
µA  
IDD_IO  
250  
0.01  
µA  
POWER SUPPLY REJECTION RATIO  
%/%  
1 Oversampling disabled. Static DAC performance will be improved with increased oversampling ratios.  
2 DNL measures the deviation of the actual DAC output voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal step value; for −ve DNL, the  
actual step value lies below the ideal step value.  
3 Value in brackets for VDD_IO = 2.375 V to 2.75 V.  
4 External current required to overdrive internal VREF  
.
5 IDD, the circuit current, is the continuous current required to drive the digital core.  
6 Guaranteed maximum by characterization.  
7 All DACs on.  
8 IAA is the total current required to supply all DACs including the VREF circuitry and the PLL circuitry.  
Rev. 0 | Page 6 of 88  
 
 
 
 
 
 
 
 
 
ADV7320/ADV7321  
DYNAMIC SPECIFICATIONS  
VAA = 2.375 V to 2.625 V, VDD = 2.375 V to 2.625 V, VDD_IO = 2.375 V to 3.6 V, VREF = 1.235 V, RSET = 3040 Ω, RLOAD = 300 Ω. All  
specifications TMIN to TMAX (0°C to 70°C), unless otherwise noted.  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
PROGRESSIVE SCAN MODE  
Luma Bandwidth  
Chroma Bandwidth  
SNR  
12.5  
5.8  
65.6  
72  
MHz  
MHz  
dB  
Luma ramp unweighted  
Flat field full bandwidth  
dB  
HDTV MODE  
Luma Bandwidth  
30  
13.75  
MHz  
MHz  
Chroma Bandwidth  
STANDARD DEFINITION MODE  
Hue Accuracy  
0.2  
Degrees  
Color Saturation Accuracy  
Chroma Nonlinear Gain  
Chroma Nonlinear Phase  
Chroma/Luma Intermodulation  
Chroma/Luma Gain Inequality  
Chroma/Luma Delay Inequality  
Luminance Nonlinearity  
Chroma AM Noise  
0.20  
0.84  
−0.2  
0
96.7  
−1.0  
0.2  
%
%
Referenced to 40 IRE  
Degrees  
%
%
ns  
%
dB  
84  
Chroma PM Noise  
Differential Gain  
Differential Phase  
SNR  
75.3  
0.25  
0.2  
63.5  
77.7  
dB  
%
Degrees  
dB  
dB  
NTSC  
NTSC  
Luma ramp  
Flat field full bandwidth  
Rev. 0 | Page 7 of 88  
ADV7320/ADV7321  
TIMING SPECIFICATIONS  
VAA = 2.375 V to 2.625 V, VDD = 2.375 V to 2.625 V, VDD_IO = 2.375 V to 3.6 V, VREF = 1.235 V, RSET = 3040 Ω, RLOAD = 300 Ω. All  
specifications TMIN to TMAX (0°C to 70°C), unless otherwise noted.  
Table 4.  
Parameter  
Min Typ Max Unit  
Test Conditions  
MPU PORT1  
SCLOCK Frequency  
0
400  
kHz  
µs  
µs  
SCLOCK High Pulse Width, t1  
SCLOCK Low Pulse Width, t2  
Hold Time (Start Condition), t3  
0.6  
1.3  
0.6  
µs  
First clock generated after this period relevant for  
repeated start condition  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
0.6  
100  
µs  
ns  
ns  
ns  
µs  
ns  
300  
300  
0.6  
100  
Low Time  
RESET  
ANALOG OUTPUTS  
Analog Output Delay2  
Output Skew  
7
1
ns  
ns  
CLOCK CONTROL AND PIXEL PORT3  
fCLK  
fCLK  
29.5 MHz  
MHz  
SD PAL square pixel mode  
PS/HD async mode  
81  
Clock High Time, t9  
Clock Low Time, t10  
40  
40  
2.0  
2.0  
% of one clk cycle  
% of one clk cycle  
ns  
ns  
1
Data Setup Time, t11  
1
Data Hold Time, t12  
SD Output Access Time, t13  
SD Output Hold Time, t14  
HD Output Access Time, t13  
HD Output Hold Time, t14  
PIPELINE DELAY4  
15  
14  
ns  
ns  
ns  
ns  
5.0  
5.0  
63  
76  
35  
41  
36  
clk cycles  
clk cycles  
clk cycles  
clk cycles  
clk cycles  
SD (2×, 16×)  
SD component mode (16×)  
PS (1×)  
PS (8×)  
HD (2×, 1×)  
1 Guaranteed by characterization.  
2 Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of DAC output full-scale transition.  
3 Data: C[9:0]; Y[9:0], S[9:0]  
P_HSYNC P_VSYNC P_BLANK S_HSYNC S_VSYNC S_BLANK  
Control:  
,
,
,
,
,
4 SD, PS = 27 MHz, HD = 74.25 MHz.  
Rev. 0 | Page 8 of 88  
 
 
 
 
ADV7320/ADV7321  
TIMING DIAGRAMS  
CLKIN_A  
t9  
t
10  
t12  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Y9–Y0  
C9–C0  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Cb0  
Cr0  
Cb4  
Cr4  
Cb2  
Cr2  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
Figure 3. HD Only 4:2:2 Input Mode (Input Mode 010); PS Only 4:2:2 Input Mode (Input Mode 001)  
CLKIN_A  
t9  
t10  
t12  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Y9–Y0  
C9–C0  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Cb1  
t11  
Cb2  
Cr2  
Cb3  
Cb4  
Cb5  
Cb0  
Cr1  
Cr3  
Cr4  
Cr5  
S9–S0  
Cr0  
CONTROL  
OUTPUTS  
t14  
t13  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
Figure 4. HD Only 4:4:4 Input Mode (Input Mode 010); PS Only 4:4:4 Input Mode (Input Mode 001)  
Rev. 0 | Page 9 of 88  
ADV7320/ADV7321  
CLKIN_A  
t9  
t10  
t12  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Y9–Y0  
C9–C0  
G0  
B0  
G1  
B1  
G2  
G3  
B3  
G4  
B4  
G5  
B5  
B2  
R2  
t11  
R1  
S9–S0  
R0  
R3  
R4  
R5  
CONTROL  
OUTPUTS  
t14  
t13  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
Figure 5. HD RGB 4:4:4 Input Mode (Input Mode 010)  
CLKIN_B*  
t
9
t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Crxxx  
Yxxx  
Cr0  
Y1  
t12  
Y9–Y0  
Cb0  
t12  
Y0  
t11  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
*CLKIN_B MUST BE USED IN THIS PS MODE.  
HSYNC VSYNC  
/
Figure 6. PS 4:2:2 10-Bit Interleaved at 27 MHz  
Input Mode (Input Mode 100)  
CLKIN_A  
t10  
t9  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
CONTROL  
INPUTS  
Crxxx  
Cb0  
Y1  
Y0  
Cr0  
Yxxx  
Y9–Y0  
t12  
t13  
t14  
t11  
CONTROL  
OUTPUTS  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
HSYNC VSYNC  
Input Mode (Input Mode 111)  
Figure 7. PS 4:2:2 10-Bit Interleaved at 54 MHz  
/
Rev. 0 | Page 10 of 88  
ADV7320/ADV7321  
CLKIN_B*  
Y9–Y0  
t9  
t10  
3FF  
t
00  
00  
XY  
t12  
Cb0  
Y0  
Cr0  
Y1  
12  
t11  
t11  
t13  
CONTROL  
OUTPUTS  
t14  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
*CLKIN_B USED IN THIS PS ONLY MODE.  
Figure 8. PS Only 4:2:2 10-Bit Interleaved at 27 MHz EAV/SAV Input Mode (Input Mode 100)  
CLKIN_A  
t10  
t9  
Y9–Y0  
3FF  
00  
00  
XY  
Cb0  
Y0  
Y1  
Cr0  
t12  
t13  
t14  
t11  
CONTROL  
OUTPUTS  
t9 = CLOCK HIGH TIME  
t10 = CLOCK LOW TIME  
t11 = DATA SETUP TIME  
t12 = DATA HOLD TIME  
NOTE: Y0, Cb0 SEQUENCE AS PER SUBADDRESS 0x01 BIT-1  
Figure 9. PS Only 4:2:2 10-Bit Interleaved at 54 MHz EAV/SAV Input Mode (Input Mode 111)  
CLKIN_B  
t12  
t10  
t9  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
HD INPUT  
Y9–Y0  
C9–C0  
Y0  
Y1  
Y3  
Y4  
Y5  
Y2  
Cr0  
Cr4  
Cb0  
Cb2  
Cr2  
Cb4  
t11  
CLKIN_A  
t12  
t9  
t10  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
SD INPUT  
S9–S0  
Cr0  
Y1  
Cb0  
Y0  
Cb1  
Y2  
t11  
Figure 10. HD 4:2:2 and SD (10-Bit) Simultaneous Input Mode (Input Mode 101: SD Oversampled) (Input Mode 110: HD Oversampled)  
Rev. 0 | Page 11 of 88  
ADV7320/ADV7321  
CLKIN_B  
t9  
t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
PS INPUT  
Crxxx  
Yxxx  
Cr0  
Y1  
t12  
Y9–Y0  
Cb0  
t12  
Y0  
t11  
t11  
CLKIN_A  
t12  
t9  
t10  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
SD INPUT  
S9–S0  
Cr0  
Y1  
Cb0  
Y0  
Cb1  
Y2  
t11  
Figure 11. PS (4:2:2) and SD (10-Bit) Simultaneous Input Mode (Input Mode 011)  
CLKIN_B  
t9  
t10  
P_HSYNC,  
P_VSYNC,  
P_BLANK  
CONTROL  
INPUTS  
PS INPUT  
Crxxx  
Yxxx  
Cr0  
Y1  
t12  
Y9–Y0  
Cb0  
t12  
Y0  
t11  
t11  
CLKIN_A  
t12  
t9  
t10  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
SD INPUT  
S9–S0  
Cr0  
Y1  
Cb0  
Y0  
Cb1  
Y2  
t11  
Figure 12. PS (10-Bit) and SD (10-Bit) Simultaneous Input Mode (Input Mode 100)  
Rev. 0 | Page 12 of 88  
ADV7320/ADV7321  
CLKIN_A  
t9  
t
10  
t12  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
IN SLAVE MODE  
S9–S0/Y9–Y0*  
Cb0  
Cr0  
t11  
Cb4  
t13  
Cr4  
Cb2  
Cr2  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE MODE  
t14  
*SELECTED BY ADDRESS 0x01 BIT 7  
Figure 13. 10-/8-Bit SD Only Pixel Input Mode (Input Mode 000)  
CLKIN_A  
t9  
t10  
t12  
S_HSYNC,  
S_VSYNC,  
S_BLANK  
CONTROL  
INPUTS  
IN SLAVE MODE  
S9–S0/Y9–Y0*  
C9–C0  
Y0  
Y1  
Y2  
Y3  
Cb0  
Cr0  
Cb2  
Cr2  
t11  
t13  
CONTROL  
OUTPUTS  
IN MASTER/SLAVE MODE  
t14  
*SELECTED BY ADDRESS 0x01 BIT 7  
Figure 14. 20-/16-Bit SD Only Pixel Input Mode (Input Mode 000)  
Rev. 0 | Page 13 of 88  
ADV7320/ADV7321  
Y OUTPUT  
c
P_HSYNC  
P_VSYNC  
a
P_BLANK  
Y9–Y0  
Y2  
Y3  
Y0  
Y1  
Cb0 Cr0 Cr1 Cb1  
C9–C0  
b
a AND b AS PER RELEVANT STANDARD  
c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE TIMING SPECIFICATION  
SECTION OF THE DATA SHEET.  
A FALLING EDGE OF HSYNC IN TO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT  
AFTER A TIME EQUAL TO THE PIPELINE DELAY.  
Figure 15. HD 4:2:2 Input Timing Diagram  
P_HSYNC  
P_VSYNC  
a
P_BLANK  
Cr  
Y
Y9–Y0  
Cb  
Y
b
a = 32 CLKCYCLES FOR 525p  
a = 24 CLKCYCLES FOR 625p  
AS RECOMMENDED BY STANDARD  
b(MIN) = 244 CLKCYCLES FOR 525p  
b(MIN) = 264 CLKCYCLES FOR 625p  
Figure 16. PS 4:2:2 10-Bit Interleaved Input Timing Diagram  
Rev. 0 | Page 14 of 88  
ADV7320/ADV7321  
S_HSYNC  
S_VSYNC  
PAL = 24 CLK CYCLES  
NTSC = 32 CLK CYCLES  
S_BLANK  
Cr  
Y
S9–S0/Y9–Y0*  
Cb  
Y
PAL = 264 CLOCK CYCLES  
NTSC = 244 CLOCK CYCLES  
*SELECTED BY ADDRESS 0x01 BIT 7  
Figure 17. SD Timing Input for Timing Mode 1  
t3  
t5  
t3  
SDA  
t1  
t6  
SCLK  
t4  
t2  
t7  
t8  
Figure 18. MPU Port Timing Diagram  
Rev. 0 | Page 15 of 88  
ADV7320/ADV7321  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter1  
Value  
VAA to AGND  
VDD to DGND  
−0.3 V to +3.0 V  
−0.3 V to +3.0 V  
−0.3 V to +4.6 V  
−0.3 V to VDD_IO +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
VDD_IO to GND_IO  
Digital Input Voltage to DGND  
VAA to VDD  
AGND to DGND  
DGND to GND_IO  
AGND to GND_IO  
THERMAL CHARACTERISTICS  
Ambient Operating Temperature (TA) 0°C to 70°C  
Storage Temperature (TS)  
Infrared Reflow Soldering (20 s)  
–65°C to +150°C  
260°C  
θJC = 11°C/W  
θJA = 47°C/W  
1 Analog output short circuit to any power supply or common can be of  
an indefinite duration.  
The ADV7320/ADV7321 is a Pb-free environmentally friendly  
product. It is manufactured using the most up-to-date materials  
and processes. The coating on the leads of each device is 100%  
pure Sn electroplate. The device is suitable for Pb-free  
applications and is able to withstand surface-mount soldering  
up to 255°C ( 5°C).  
In addition, it is backward-compatible with conventional SnPb  
soldering processes. This means that the electroplated Sn  
coating can be soldered with Sn/Pb solder pastes at  
conventional reflow temperatures of 220°C to 235°C.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
this product features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
Rev. 0 | Page 16 of 88  
 
ADV7320/ADV7321  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
V
S_BLANK  
DD_IO  
PIN 1  
2
3
Y0  
R
SET1  
REF  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
V
4
COMP1  
DAC A  
DAC B  
DAC C  
5
6
ADV7320/ADV7321  
TOP VIEW  
7
8
(Not to Scale)  
V
AA  
9
AGND  
DAC D  
DAC E  
DAC F  
COMP2  
10  
11  
12  
13  
14  
15  
16  
V
DD  
DGND  
Y8  
Y9  
C0  
R
SET2  
C1  
EXT_LF  
RESET  
C2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 19. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
11, 57  
40  
32  
63  
Mnemonic  
Input/Output Description  
DGND  
AGND  
CLKIN_A  
CLKIN_B  
G
G
I
Digital Ground.  
Analog Ground.  
Pixel Clock Input for HD (74.25 MHz Only, PS Only (27 MHz), SD Only (27 MHz).  
I
Pixel Clock Input. Requires a 27 MHz reference clock for progressive scan mode or a 74.25 MHz  
(74.1758 MHz) reference clock in HDTV mode. This clock is only used in dual modes.  
45, 36  
COMP1,  
COMP2  
O
Compensation Pin for DACs. Connect 0.1 µF capacitor from COMP pin to VAA.  
44  
43  
42  
39  
DAC A  
DAC B  
DAC C  
DAC D  
O
O
O
O
CVBS/Green/Y/Y Analog Output.  
Chroma/Blue/U/Pb Analog Output.  
Luma/Red/V/Pr Analog Output.  
In SD Only Mode: CVBS/Green/Y Analog Output; in HD Only Mode and Simultaneous HD/SD  
Mode: Y/Green [HD] Analog Output.  
38  
37  
DAC E  
DAC F  
O
O
In SD Only Mode: Luma/Blue/U Analog Output; in HD Only Mode and Simultaneous HD/SD  
Mode: Pr/Red Analog Output.  
In SD Only Mode: Chroma/Red/V Analog Output; in HD Only Mode and Simultaneous HD/SD  
Mode: Pb/Blue [HD] Analog Output.  
23  
24  
25  
48  
49  
50  
P_HSYNC  
P_VSYNC  
P_BLANK  
S_BLANK  
S_VSYNC  
S_HSYNC  
Y9 to Y0  
I
Video Horizontal Sync Control Signal for HD in Simultaneous SD/HD Mode and HD Only Mode.  
Video Vertical Sync Control Signal for HD in Simultaneous SD/HD Mode and HD Only Mode.  
Video Blanking Control Signal for HD in Simultaneous SD/HD Mode and HD Only Mode.  
Video Blanking Control Signal for SD Only.  
I
I
I/O  
I/O  
I/O  
I
Video Vertical Sync Control Signal for SD Only.  
Video Horizontal Sync Control Signal for SD Only.  
13,12,  
9–2  
SD or Progressive Scan/HDTV Input Port for Y Data. Input port for interleaved progressive scan  
data. The LSB is set up on Pin Y0. For 8-bit data input, LSB is set up on Y2.  
30–26,  
18–14  
C9 to C0  
I
Progressive Scan/HDTV Input Port 4:4:4 Input Mode. This port is used for the Cb[Blue/U] data.  
The LSB is set up on Pin C0. For 8-bit data input, LSB is set up on C2.  
Rev. 0 | Page 17 of 88  
ADV7320/ADV7321  
Pin No.  
Mnemonic  
Input/Output Description  
62–58,  
55–51  
33  
S9 to S0  
I
I
I
SD or Progressive Scan/HDTV Input Port for Cr[Red/V] Data in 4:4:4 Input Mode. LSB is set up  
on Pin S0. For 8-bit data input, LSB is set up on S2.  
This input resets the on-chip timing generator and sets the ADV7320/ADV7321 into default  
register setting. RESET is an active low signal.  
RESET  
47, 35  
RSET1, RSET2  
A 3040 Ω resistor must be connected from this pin to AGND and is used to control the  
amplitudes of the DAC outputs.  
22  
21  
20  
SCLK  
SDA  
ALSB  
I
I2C Port Serial Interface Clock Input.  
I2C Port Serial Data Input/Output.  
I/O  
I
TTL Address Input. This signal sets up the LSB of the I2C address. When this pin is tied low, the  
I2C filter is activated, which reduces noise on the I2C interface.  
1
VDD_IO  
VDD  
VAA  
P
P
P
Power Supply for Digital Inputs and Outputs.  
Digital Power Supply.  
Analog Power Supply.  
10, 56  
41  
46  
34  
31  
19  
VREF  
I/O  
Optional External Voltage Reference Input for DACs or Voltage Reference Output (1.235 V).  
External Loop Filter for the Internal PLL.  
Multifunctional Input. Real-time control (RTC) input, timing reset input, subcarrier reset input.  
This input pin must be tied high (VDD_IO) for the ADV7320/ADV7321 to interface over the I2C port.  
Digital Input/Output Ground.  
EXT_LF  
RTC_SCR_TR  
I2C  
I
I
I
64  
GND_IO  
Rev. 0 | Page 18 of 88  
ADV7320/ADV7321  
TYPICAL PERFORMANCE CHARACTERISTICS  
Y PASS BAND IN PS OVERSAMPLING MODE  
PROG SCAN Pr/Pb RESPONSE. LINEAR INTERP FROM 4:2:2 TO 4:4:4  
0
1.0  
0.5  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 20. PS—UV 8× Oversampling Filter (Linear)  
Figure 23. PS—Y 8× Oversampling Filter (Pass Band)  
PROG SCAN Pr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4  
Pr/Pb RESPONSE IN HDTV OVERSAMPLING MODE  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
20  
40  
60  
80  
100  
120  
140  
FREQUENCY (MHz)  
Figure 21. PS—UV 8× Oversampling Filter (SSAF)  
Figure 24. HDTV—UV 2× Oversampling Filter  
Y RESPONSE IN PS OVERSAMPLING MODE  
Y RESPONSE IN HDTV OVERSAMPLING MODE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
20  
40  
60  
80  
100  
120  
140  
FREQUENCY (MHz)  
Figure 22. PS—Y 8× Oversampling Filter  
Figure 25. HDTV—Y 2× Oversampling Filter  
Rev. 0 | Page 19 of 88  
ADV7320/ADV7321  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
0
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 26. Luma NTSC Low-Pass Filter  
Figure 29. Luma PAL Notch Filter  
Y RESPONSE IN SD OVERSAMPLING MODE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
2
4
6
8
10  
12  
20  
40  
60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 27. Luma PAL Low-Pass Filter  
Figure 30. Y—16× Oversampling Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 31. Luma SSAF Filter up to 12 MHz  
Figure 28. Luma NTSC Notch Filter  
Rev. 0 | Page 20 of 88  
ADV7320/ADV7321  
4
2
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–2  
–4  
–6  
–8  
–10  
–12  
0
1
2
3
4
6
7
0
2
4
6
8
10  
12  
5
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 32. Luma SSAF Filter—Programmable Responses  
Figure 35. Luma CIF Low-Pass Filter  
5
4
3
2
1
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–1  
0
2
4
6
8
10  
12  
5
6
7
0
1
2
3
4
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 33. Luma SSAF Filter—Programmable Gain  
Figure 36. Luma QCIF Low-Pass Filter  
1
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–1  
–2  
–3  
–4  
–5  
0
1
2
3
4
5
6
7
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 34. Luma SSAF Filter—Programmable Attenuation  
Figure 37. Chroma 3.0 MHz Low-Pass Filter  
Rev. 0 | Page 21 of 88  
 
 
 
 
ADV7320/ADV7321  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10  
12  
0
2
4
6
8
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 38. Chroma 2.0 MHz Low-Pass Filter  
Figure 41. Chroma 0.65 MHz Low-Pass Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 39. Chroma 1.3 MHz Low-Pass Filter  
Figure 42. Chroma CIF Low-Pass Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10  
12  
0
2
4
6
8
10  
12  
0
2
4
6
8
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 40. Chroma 1.0 MHz Low-Pass Filter  
Figure 43. Chroma QCIF Low-Pass Filter  
Rev. 0 | Page 22 of 88  
ADV7320/ADV7321  
MPU PORT DESCRIPTION  
correct transmitted address. The R/ bit determines the  
direction of the data.  
W
The ADV7320/ADV7321 support a 2-wire serial (I2C-  
compatible) microprocessor bus driving multiple peripherals.  
This port operates in an open-drain configuration. Two inputs,  
serial data (SDA) and serial clock (SCL), carry information  
between any device connected to the bus and the ADV7320/  
ADV7321. Each slave device is recognized by a unique address.  
The ADV7320/ADV7321 have four possible slave addresses for  
both read and write operations. These are unique addresses for  
each device and are illustrated in Figure 44. The LSB sets either  
a read or write operation. Logic 1 corresponds to a read  
operation, while Logic 0 corresponds to a write operation. A1 is  
enabled by setting the ALSB pin of the ADV7320/ADV7321 to  
Logic 0 or Logic 1. When ALSB is set to 1, there is greater input  
bandwidth on the I2C lines, which allows high speed data  
transfers on this bus. When ALSB is set to 0, there is reduced  
input bandwidth on the I2C lines, which means that pulses of  
less than 50 ns will not pass into the I2C internal controller. This  
mode is recommended for noisy systems.  
Logic 0 on the LSB of the first byte means that the master will  
write information to the peripheral. Logic 1 on the LSB of the  
first byte means that the master will read information from the  
peripheral.  
The ADV7320/ADV7321 act as standard slave devices on the  
bus. The data on the SDA pin is eight bits long, supporting the  
7-bit addresses plus the R/ bit. It interprets the first byte as  
W
the device address and the second byte as the starting  
subaddress. There is a subaddress auto-increment facility. This  
allows data to be written to or read from registers in ascending  
subaddress sequence starting at any valid subaddress. A data  
transfer is always terminated by a stop condition. The user can  
also access any unique subaddress register on a one-by-one  
basis without updating all the registers.  
Stop and start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of  
sequence with normal read and write operations, then they  
cause an immediate jump to the idle condition. During a given  
SCL high period, the user should only issue a start condition, a  
stop condition, or a stop condition followed by a start  
condition. If an invalid subaddress is issued by the user, the  
ADV7320/ADV7321 will not issue an acknowledge and will  
return to the idle condition. If the user utilizes the auto-  
increment method of addressing the encoder and exceeds the  
highest subaddress, the following actions are taken:  
1
1
0
1
0
1
A1  
X
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
Figure 44. ADV7320 Slave Address = 0xD4  
0
1
0
1
0
1
A1  
X
In read mode, the highest subaddress register contents are  
output until the master device issues a no acknowledge. This  
indicates the end of a read. A no acknowledge condition is  
when the SDA line is not pulled low on the ninth pulse.  
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
READ/WRITE  
CONTROL  
In write mode, the data for the invalid byte is not loaded into  
any subaddress register, a no acknowledge is issued by the  
ADV7320/ADV7321, and the part returns to the idle  
condition.  
0
1
WRITE  
READ  
Figure 45. ADV7321 Slave Address = 0x54  
To control the various devices on the bus, the following  
protocol must be followed. First, the master initiates a data  
transfer by establishing a start condition, defined by a high-to-  
low transition on SDA while SCL remains high. This indicates  
that an address/data stream will follow. All peripherals respond  
to the start condition and shift the next eight bits (7-bit address  
Before writing to the subcarrier frequency registers, it is required  
to reset ADV7320/ADV7321 at least once after power-up.  
The four subcarrier frequency registers must be updated,  
starting with Subcarrier Frequency Register 0 and ending with  
Subcarrier Frequency Register 3. The subcarrier frequency will  
only update after the last subcarrier frequency register byte has  
been received by the ADV7320/ADV7321.  
+ R/ bit). The bits are transferred from MSB down to LSB.  
W
The peripheral that recognizes the transmitted address  
responds by pulling the data line low during the ninth clock  
pulse. This is known as an acknowledge bit. All other devices  
withdraw from the bus at this point and maintain an idle  
condition. The idle condition is where the device monitors the  
SDA and SCL lines waiting for the start condition and the  
Figure 46 illustrates an example of data transfer for a write  
sequence and the start and stop conditions. Figure 47 shows bus  
write and read sequences.  
Rev. 0 | Page 23 of 88  
 
 
ADV7320/ADV7321  
SDATA  
SCLOCK  
S
P
9
1–7  
9
9
1–7  
8
8
1–7  
8
START ADRR R/W ACK SUBADDRESS ACK  
DATA  
ACK  
STOP  
Figure 46. Bus Data Transfer  
WRITE  
S
S
SLAVE ADDR A(S)  
LSB = 0  
SUBADDR  
SUBADDR  
A(S)  
A(S)  
DATA  
A(S)  
DATA  
A(M)  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S)  
S
SLAVE ADDR A(S)  
DATA  
DATA  
A(M) P  
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A (S) = NO-ACKNOWLEDGE BY SLAVE  
A (M) = NO-ACKNOWLEDGE BY MASTER  
Figure 47. Read and Write Sequence  
Rev. 0 | Page 24 of 88  
ADV7320/ADV7321  
REGISTER ACCESS  
The MPU can write to or read from all registers of the  
REGISTER PROGRAMMING  
ADV7320/ADV7321 except the subaddress registers, which are  
write only registers. The subaddress register determines which  
register the next read or write operation will access. All  
communication with the part through the bus starts with an  
access to the subaddress register. A read/write operation is then  
performed from/to the target address, which increments to the  
next address until a stop command is performed on the bus.  
The following tables describe the functionality of each register.  
All registers can be read from as well as written to, unless  
otherwise stated.  
SUBADDRESS REGISTER (SR7 TO SR0)  
The communication register is an 8-bit write only register. After  
the encoders bus is accessed and a read/write operation is  
selected, the subaddress is set up. The subaddress register  
determines to or from which register the operation takes place.  
Table 7. Registers 0x00 to 0x01  
Reg. Reset  
Values  
SR7–  
SR0  
0x00  
Register  
Power  
Mode  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
Register Setting  
Sleep mode off.  
Sleep mode on.  
(Shaded)  
0xFC  
Sleep Mode. With this  
control enabled, the  
current consumption is  
reduced to µA level. All  
DACs and the internal PLL  
cct are disabled. I2C  
registers can be read from  
and written to in sleep  
mode.  
Register  
PLL and Oversampling  
Control. This control  
allows the internal PLL cct  
to be powered down and  
the oversampling to be  
switched off.  
0
1
PLL on.  
PLL off.  
DAC F: Power On/Off.  
0
1
DAC F off.  
DAC F on.  
DAC E off.  
DAC E on.  
DAC D off.  
DAC D on.  
DAC C off.  
DAC C on.  
DAC B off.  
DAC B on.  
DAC A off.  
DAC A on.  
Reserved.  
DAC E: Power On/Off.  
DAC D: Power On/Off.  
DAC C: Power On/Off.  
DAC B: Power On/Off.  
DAC A: Power On/Off.  
0
1
0
1
0
1
0
1
0
1
0x01  
Mode  
Select  
Reserved.  
0
Clock Edge.  
0
1
Cb clocked upon rising  
edge.  
Y clocked upon rising  
edge.  
Only for PS  
interleaved  
input at 27 MHz.  
Register  
Reserved.  
0
Clock Align.  
0
1
Must be set if the phase  
delay between the two  
input clocks is <9.25 ns  
or >27.75 ns.  
Only if two  
input clocks are  
used.  
Input Mode.  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
SD input only.  
PS input only.  
0x38  
HDTV input only.  
SD and PS (20-bit).  
SD and PS (10-bit).  
SD and HDTV (SD  
oversampled).  
1
1
1
1
0
1
SD and HDTV (HDTV  
oversampled).  
PS only (at 54 MHz).  
Y/C/S Bus Swap.  
0
1
Allows data to be  
See Table 21.  
applied to data ports in  
various configurations  
(SD feature only).  
Rev. 0 | Page 25 of 88  
ADV7320/ADV7321  
Table 8. Registers 0x02 to 0x0F  
SR7–  
SR0  
0x02  
Register  
Mode Register 0  
Bit Description  
Reserved  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
Bit 0  
0
Register Setting  
Zero must be written to  
these bits.  
Reset Values  
0x20  
Test Pattern Black  
Bar  
0
1
Disabled.  
Enabled.  
0x11, Bit 2 must  
also be enabled.  
Manual RGB  
Matrix Adjust  
0
1
Disable manual RGB matrix  
adjust.  
Enable manual RGB matrix  
adjust.  
Sync on RGB1  
0
1
No sync.  
Sync on all RGB outputs.  
RGB component outputs.  
YPrPb component outputs.  
No sync output.  
Output SD syncs on  
RGB/YPrPb  
Output  
SD Sync  
0
1
0
1
,
,
S_HSYNC S_VSYNC  
pins.  
S_BLANK  
No sync output.  
Output HD, ED, syncs on  
HD Sync  
0
1
,
.
S_HSYNC S_VSYNC  
0x03  
0x04  
RGB Matrix 0  
RGB Matrix 1  
x
x
x
x
LSB for GY.  
LSB for RV.  
0x03  
0xF0  
x
x
LSB for BU.  
x
x
LSB for GV.  
x
x
x
x
x
x
0
x
x
x
x
x
x
0
LSB for GU.  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
RGB Matrix 2  
RGB Matrix 3  
RGB Matrix 4  
RGB Matrix 5  
RGB Matrix 6  
DAC A, B, C Output  
Level2  
x
x
x
x
x
0
x
x
x
x
x
0
x
x
x
x
x
0
x
x
x
x
x
0
x
x
x
x
x
0
x
x
x
x
x
0
Bits 9 to 2 for GY.  
Bits 9 to 2 for GU.  
Bits 9 to 2 for GV.  
Bits 9 to 2 for BU.  
Bits 9 to 2 for RV.  
0%  
0x4E  
0x0E  
0x24  
0x92  
0x7C  
0x00  
Positive Gain to  
DAC Output  
Voltage  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
+0.018%  
+0.036%  
+7.382%  
+7.5%  
−7.5%  
0
0
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
Negative Gain to  
DAC Output  
Voltage  
0
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
−7.382%  
−7.364%  
−0.018%  
0%  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0x0B  
DAC D, E, F Output  
Level  
Positive Gain to  
DAC Output  
Voltage  
0x00  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
+0.018%  
+0.036%  
+7.382%  
+7.5%  
−7.5%  
0
0
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
Negative Gain to  
DAC Output  
Voltage  
0
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
−7.382%  
−7.364%  
1
1
1
1
1
1
1
−0.018%  
0x0C  
0x0D  
0x0E  
0x0F  
Reserved  
Reserved  
Reserved  
Reserved  
0x00  
0x00  
0x00  
0x00  
1 For more detail, refer to Appendix 7.  
2 For more detail on the programmable output levels, refer to the Programmable DAC Gain Control section.  
Rev. 0 | Page 26 of 88  
 
ADV7320/ADV7321  
Table 9. Registers 0x10 to 0x11  
SR7–  
Reset  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
EIA770.2 output  
EIA770.1 output  
Note  
Values  
0x10  
HD Mode  
Register 1  
HD Output  
Standard  
0
0
1
0
1
0
0x00  
Output levels for  
full input range  
1
1
Reserved  
Input Sync  
Format  
0
1
,
,
HSYNC VSYNC  
BLANK  
EAV/SAV codes  
HD/ED Input  
Mode  
0
0
0
0
0
SMPTE 293M, ITU-  
BT 1358  
525p @  
59.94 Hz  
0
0
0
0
0
0
0
1
1
0
Async mode  
BTA-1004, ITU-  
BT 1362  
525p @  
59.94 Hz  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
ITU-BT 1358  
625p @  
50 Hz  
ITU-BT 1362  
625p @  
50 Hz  
SMPTE 296M-1, 2  
SMPTE 296M-3  
SMPTE 296M-4, 5  
SMPTE 296M-6  
SMPTE 296M-7, 8  
SMPTE 240M  
720p @  
60/59.94 Hz  
720p @  
50 Hz  
720p @  
30/29.97 Hz  
720p @  
25 Hz  
720p @  
24/23.98 Hz  
1035i @  
60/59.94 Hz  
0
0
0
1
1
1
0
1
1
1
0
0
1
0
1
Reserved  
Reserved  
SMPTE 274M-4, 5  
1080i @  
30/29.97 Hz  
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
SMPTE 274M-6  
SMPTE 274M-7, 8  
SMPTE 274M-9  
1080i @  
25 Hz  
1080p @  
30/29.97 Hz  
1080p @  
25 Hz  
SMPTE 274M-  
10, 11  
1080p @  
24/23.98 Hz  
10010–11111  
Reserved  
0x11  
HD Mode  
Register 2  
HD Pixel Data  
Valid  
0
1
Pixel data valid off  
Pixel data valid on  
Reserved  
0x00  
0
HD Test Pattern  
Enable  
0
1
HD test pattern off  
HD test pattern on  
Hatch  
HD Test Pattern  
Hatch/Field  
0
1
Field/frame  
Disabled  
HD VBI Open  
0
1
Enabled  
HD Undershoot  
Limiter  
0
0
1
1
0
1
0
1
Disabled  
Only  
available in  
EDTV  
−11 IRE  
−6 IRE  
(525p/625p)  
−1.5 IRE  
HD Sharpness  
Filter  
0
1
Disabled  
Enabled  
Rev. 0 | Page 27 of 88  
ADV7320/ADV7321  
Table 10. Register 0x12  
SR7–  
Reset  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
0 clk cycles  
1 clk cycles  
2 clk cycles  
3 clk cycles  
4 clk cycles  
0 clk cycles  
1 clk cycle  
2 clk cycles  
3 clk cycles  
4 clk cycles  
Disabled  
Values  
0x12  
HD Mode  
Register 3  
HD Y Delay with Respect  
to Falling Edge of  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0x00  
HSYNC  
HD Color Delay with  
Respect to Falling Edge of  
HSYNC  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
HD CGMS  
0
1
Enabled  
HD CGMS CRC  
0
1
Disabled  
Enabled  
Table 11. Registers 0x13 to 0x14  
SR7–  
Reset  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
Values  
0x13  
HD Mode  
Register 4  
HD Cr/Cb Sequence  
0
Cb after falling edge of  
.
0x4C  
HSYNC  
1
Cr after falling edge of  
.
HSYNC  
Reserved  
0
0 must be written to this bit.  
8-bit input.  
10-bit input.  
Disabled.  
HD Input Format  
0
1
Sinc Filter on DAC D, E, F  
0
1
Enabled.  
Reserved  
0
0 must be written to this bit.  
Disabled.  
HD Chroma SSAF  
0
1
Enabled.  
HD Chroma Input  
HD Double Buffering  
HD Timing Reset  
0
1
4:4:4  
4:2:2  
0
1
Disabled.  
Enabled.  
0x14  
HD Mode  
Register 5  
x
A low-high-low transition  
resets the internal HD timing  
counters.  
0x00  
HD Hsync Generation1  
HD Vsync Generation1  
HD Blank Polarity  
0
1
Refer to the / Output Control  
section.  
0
1
0
1
active high.  
active low.  
BLANK  
BLANK  
HD Macrovision for 525p  
and 625p  
0
1
Macrovision disabled.  
Macrovision enabled.  
Reserved  
0
0 must be written to these bits.  
HD  
/Field Input  
VSYNC  
0
1
0 = field input.  
1 =  
input.  
VSYNC  
Horizontal/Vertical  
Counters2  
0
1
Update field/line counter.  
Field/line counter free running.  
1 Used in conjunction with HD_SYNC in Register 0x02, Bit 7 set to 1.  
2 When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the standard selected. When set to 1, the  
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.  
Rev. 0 | Page 28 of 88  
 
 
ADV7320/ADV7321  
Table 12. Register 0x15  
SR7–  
Reset  
SR0  
Register  
Bit Description  
Reserved  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
Values  
0x15  
HD Mode  
Register 6  
0
0 must be written to this bit.  
Disabled.  
0x00  
HD RGB Input  
0
1
Enabled.  
HD Sync on PrPb  
0
1
Disabled.  
Enabled.  
HD Color DAC Swap  
0
1
DAC E = Pb; DAC F = Pr.  
DAC E = Pr; DAC F = Pb.  
Gamma Curve A.  
Gamma Curve B.  
Disabled.  
HD Gamma Curve A/B  
HD Gamma Curve Enable  
HD Adaptive Filter Mode  
HD Adaptive Filter Enable  
0
1
0
1
Enabled.  
0
1
Mode A.  
Mode B.  
0
1
Disabled.  
Enabled.  
Rev. 0 | Page 29 of 88  
ADV7320/ADV7321  
Table 13. Registers 0x16 to 0x37  
SR7–  
Register  
Setting  
Reset  
Values  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x16  
0x17  
HD Y Level1  
HD Cr Level1  
HD Cb Level1  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Y level value  
Cr level value  
0xA0  
0x80  
0x18  
x
x
x
x
x
x
x
x
Cb level value  
0x80  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
Reserved  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
HD Sharpness  
Filter Gain  
HD Sharpness Filter Gain Value A  
0
0
0
0
Gain A = 0  
0
0
0
1
Gain A = +1  
0
1
1
1
Gain A = +7  
1
0
0
0
Gain A = −8  
1
1
1
1
Gain A = −1  
HD Sharpness Filter Gain Value B  
0
0
0
0
0
Gain B = 0  
0
0
1
Gain B = +1  
0
1
1
1
Gain B = +7  
1
0
0
0
Gain B = −8  
1
1
1
1
Gain B = −1  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
HD CGMS Data 0  
HD CGMS Data 1  
HD CGMS Data 2  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma A  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD Gamma B  
HD CGMS Data Bits  
0
0
0
0
C19  
C11  
C3  
x
C18  
C10  
C2  
x
C17  
C9  
C1  
x
C16  
C8  
C0  
x
CGMS 19 to 16  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
HD CGMS Data Bits  
C15  
C7  
x
C14  
C6  
x
C13  
C5  
x
C12  
C4  
x
CGMS 15 to 8  
HD CGMS Data Bits  
CGMS 7 to 0  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve A Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
HD Gamma Curve B Data Points  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1 For use with internal test pattern only.  
Rev. 0 | Page 30 of 88  
 
ADV7320/ADV7321  
Table 14. Registers 0x38 to 0x3D  
SR7–  
Register  
Setting  
Reset  
Values  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
0x38  
HD Adaptive Filter  
Gain 1  
HD Adaptive Filter  
Gain 1 Value A  
Gain A = 0  
Gain A = +1  
0x00  
0x00  
0x00  
0
0
0
1
0
1
1
1
Gain A = +7  
Gain A = −8  
1
0
0
0
1
1
1
1
Gain A = −1  
Gain B = 0  
Gain B = +1  
HD Adaptive Filter  
Gain 1 Value B  
0
0
0
0
0
0
0
1
0
1
1
1
Gain B = +7  
Gain B = −8  
1
0
0
0
1
1
1
1
Gain B = −1  
Gain A = 0  
Gain A = +1  
0x39  
HD Adaptive Filter  
Gain 2  
HD Adaptive Filter  
Gain 2 Value A  
0
0
0
0
0
0
0
1
0
1
1
1
Gain A = +7  
Gain A = −8  
1
0
0
0
1
1
1
1
Gain A = −1  
Gain B = 0  
Gain B = +1  
HD Adaptive Filter  
Gain 2 Value B  
0
0
0
0
0
0
0
1
0
1
1
1
Gain B = +7  
Gain B = −8  
1
0
0
0
1
1
1
1
Gain B = −1  
Gain A = 0  
Gain A = +1  
0x3A  
HD Adaptive Filter  
Gain 3  
HD Adaptive Filter  
Gain 3 Value A  
0
0
0
0
0
0
0
1
0
1
1
1
Gain A = +7  
Gain A = −8  
1
0
0
0
1
1
1
1
Gain A = −1  
Gain B = 0  
Gain B = +1  
HD Adaptive Filter  
Gain 3 Value B  
0
0
0
0
0
0
0
1
0
1
1
1
Gain B = +7  
Gain B = −8  
1
0
0
0
1
1
1
1
Gain B = −1  
Threshold A  
0x3B  
0x3C  
0x3D  
HD Adaptive Filter  
Threshold A  
HD Adaptive Filter  
Threshold A  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x00  
0x00  
0x00  
HD Adaptive Filter  
Threshold B  
HD Adaptive Filter  
Threshold B  
x
x
x
x
x
x
x
x
Threshold B  
Threshold C  
HD Adaptive Filter  
Threshold C  
HD Adaptive Filter  
Threshold C  
Rev. 0 | Page 31 of 88  
ADV7320/ADV7321  
Table 15. Registers 0x3E to 0x43  
SR7–  
Reset  
Values  
0x00  
0x00  
0x00  
SR0  
Register  
Bit Description  
Reserved  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
0x3E  
0x3F  
0x40  
Reserved  
SD Mode Register 0  
SD Standard  
0
0
1
1
0
1
0
1
NTSC  
PAL B, D, G, H, I  
PAL M  
PAL N  
SD Luma Filter  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
LPF NTSC  
LPF PAL  
Notch NTSC  
Notch PAL  
SSAF luma  
Luma CIF  
Luma QCIF  
Reserved  
1.3 MHz  
0.65 MHz  
1.0 MHz  
2.0 MHz  
SD Chroma Filter  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Chroma CIF  
Chroma QCIF  
3.0 MHz  
0x41  
0x42  
Reserved  
SD PrPb SSAF  
0x00  
0x08  
SD Mode Register 1  
0
1
Disabled  
Enabled  
SD DAC Output 1  
SD DAC Output 2  
0
1
Refer to output  
configuration section  
0
1
Refer to output  
configuration section  
SD Pedestal  
0
1
Disabled  
Enabled  
SD Square Pixel  
SD VCR FF/RW Sync  
SD Pixel Data Valid  
0
1
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
0
1
0
1
SD SAV/EAV Step  
Edge Control  
0
1
Disabled  
Enabled  
0x43  
SD Mode Register 2  
SD Pedestal YPrPb  
Output  
SD Output Levels Y  
0
1
No pedestal on YUV  
7.5 IRE pedestal on YUV  
Y = 700 mV/300 mV  
Y = 714 mV/286 mV  
700 mV p-p (PAL); 1000  
mV p-p (NTSC)  
700 mV p-p  
0x00  
0
1
SD Output Levels PrPb  
0
0
0
1
1
1
0
1
1000 mV p-p  
648 mV p-p  
SD VBI Open  
0
1
Disabled  
Enabled  
SD CC Field Control  
0
0
1
1
0
1
0
1
CC disabled  
CC on odd field only  
CC on even field only  
CC on both fields  
Reserved  
Reserved  
0
Rev. 0 | Page 32 of 88  
ADV7320/ADV7321  
Table 16. Registers 0x44 to 0x49  
SR7–  
Reset  
SR0  
0x44  
Register  
SD Mode  
Register 3  
Bit Description  
SD -3H  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
Register Setting  
Disabled  
Values  
0x00  
VSYNC  
= 2.5 lines (PAL),  
VSYNC  
= 3 lines (NTSC)  
VSYNC  
SD RTC/TR/SCR  
0
0
1
1
0
1
0
1
Genlock disabled  
Subcarrier Reset  
Timing Reset  
RTC enabled  
SD Active Video Length  
SD Chroma  
0
1
720 pixels  
710 (NTSC)/702 (PAL)  
Chroma enabled  
Chroma disabled  
Enabled  
0
1
SD Burst  
0
1
Disabled  
SD Color Bars  
SD DAC Swap  
0
1
Disabled  
Enabled  
DAC A = luma, DAC B = chroma  
DAC A = chroma, DAC B = luma  
0
1
0x45  
0x46  
Reserved  
SD Mode  
Register 4  
0x00  
0x01  
NTSC Color Subcarrier  
Adjust (Falling Edge of  
HS to Start of Color  
Burst)1  
0
0
1
0
1
0
5.17 μs  
5.31 μs (default)  
5.59 μs (must be set for  
Macrovision compliance)  
Reserved  
Disabled  
Enabled  
1
1
0
1
0x47  
SD Mode  
Register 5  
SD PrPb Scale  
SD Y Scale  
0x00  
0
1
Disabled  
Enabled  
SD Hue Adjust  
SD Brightness  
SD Luma SSAF Gain  
0
1
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
0
1
0
1
Reserved  
Reserved  
Reserved  
0
0 must be written to this bit  
0 must be written to this bit  
0 must be written to this bit  
0
0
0x48  
SD Mode  
Register 6  
Reserved  
Reserved  
SD Double Buffering  
0
0x00  
0
0 must be written to this bit  
Disabled  
Enabled  
0
1
SD Input Format  
0
0
1
1
0
1
0
1
8-bit input  
16-bit input  
10-bit input  
20-bit input  
Disabled  
SD Digital Noise  
Reduction  
0
1
Enabled  
SD Gamma Control  
0
1
Disabled  
Enabled  
SD Gamma Curve  
0
1
Gamma Curve A  
Gamma Curve B  
Disabled  
−11 IRE  
−6 IRE  
0x49  
SD Mode  
Register 7  
SD Undershoot Limiter  
0
0
1
1
0
1
0
1
0x00  
−1.5 IRE  
Reserved  
SD Black Burst Output on  
DAC Luma  
0
0 must be written to this bit  
Disabled  
Enabled  
0
1
SD Chroma Delay  
0
0
1
1
0
1
0
1
Disabled  
4 clk cycles  
8 clk cycles  
Reserved  
Reserved  
Reserved  
0
0 must be written to this bit  
0 must be written to this bit  
0
1 NTSC color bar adjust should be set to 10 b for macrovision compliance (ADV7320 only).  
Rev. 0 | Page 33 of 88  
ADV7320/ADV7321  
Table 17. Registers 0x4A to 0x58  
SR7–  
Reset  
Value  
0x08  
SR0  
0x4A  
Register  
SD Timing  
Register 0  
Bit Description  
SD Slave/Master  
Mode  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
Register Setting  
Slave mode.  
Master mode.  
Mode 0.  
Mode 1.  
Mode 2.  
SD Timing Mode  
0
0
1
1
0
1
0
1
Mode 3.  
SD BLANK Input  
SD Luma Delay  
0
1
Enabled.  
Disabled.  
No delay.  
2 clk cycles.  
4 clk cycles.  
6 clk cycles.  
0
0
1
1
0
1
0
1
SD Min. Luma  
Value  
SD Timing Reset  
0
1
0
−40 IRE.  
−7.5 IRE.  
A low-high-low transition will  
reset the internal SD timing  
counters.  
x
0
0
0
0
0
0
0x4B  
SD Timing  
Register 1  
SD  
Width  
0
0
1
1
0
1
0
1
Ta = 1 clk cycle.  
Ta = 4 clk cycles.  
Ta = 16 clk cycles.  
Ta = 128 clk cycles.  
Tb = 0 clk cycle.  
Tb = 4 clk cycles.  
Tb = 8 clk cycles.  
0x00  
HSYNC  
SD  
VSYNC  
to  
Delay  
0
0
1
1
0
1
0
1
HSYNC  
Tb = 18 clk cycles.  
SD  
to  
HSYNC VSYNC  
x
x
0
1
Tc = Tb.  
Tc = Tb + 32 µs.  
Rising Edge Delay  
(Mode 1 Only)  
Width  
0
0
1
1
0
1
0
1
1 clk cycle.  
4 clk cycles.  
16 clk cycles.  
128 clk cycles.  
0 clk cycles.  
1 clk cycle.  
2 clk cycles.  
3 clk cycles.  
Subcarrier Frequency Bits 7 to 0.  
VSYNC  
(Mode 2 Only)  
to Pixel  
Data Adjust  
0
0
1
1
x
0
1
0
1
x
HSYNC  
0x1E1  
0x7C  
0xF0  
0x21  
0x00  
0x00  
0x4C  
SD FSC Register 01  
x
x
x
x
x
x
0x4D  
0x4E  
0x4F  
0x50  
0x51  
SD FSC Register 1  
SD FSC Register 2  
SD FSC Register 3  
SD FSC Phase  
SD Closed  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Subcarrier Frequency Bits 15 to 8.  
Subcarrier Frequency Bits 23 to 16.  
Subcarrier Frequency Bits 31 to 24.  
Subcarrier Phase Bits 9 to 2.  
Extended Data on  
Even Fields  
Extended Data Bits 7 to 0.  
Captioning  
0x52  
0x53  
0x54  
0x55  
SD Closed  
Captioning  
SD Closed  
Captioning  
SD Closed  
Captioning  
SD Pedestal  
Register 0  
Extended Data on  
Even Fields  
Data on Odd Fields  
x
x
x
x
x
x
x
x
Extended Data Bits 15 to 8.  
Data Bits 7 to 0.  
0x00  
0x00  
0x00  
0x00  
x
x
x
x
x
x
x
x
Data on Odd Fields  
x
x
x
x
x
x
x
x
Data Bits 15 to 8.  
Pedestal on Odd  
Fields  
17  
16  
15  
14  
13  
12  
11  
10  
Setting any of these bits to 1 will  
disable pedestal on the line num-  
ber indicated by the bit settings.  
0x56  
0x57  
0x58  
SD Pedestal  
Register 1  
SD Pedestal  
Register 2  
SD Pedestal  
Register 3  
Pedestal on Odd  
Fields  
Pedestal on Even  
Fields  
Pedestal on Even  
Fields  
25  
17  
25  
24  
16  
24  
23  
15  
23  
22  
14  
22  
21  
13  
21  
20  
12  
20  
19  
11  
19  
18  
10  
18  
0x00  
0x00  
0x00  
1 For precise NTSC Fsc, this register should be programmed to 0x1F.  
LINE 1  
LINE 313  
LINE 314  
HSYNC  
tA  
tC  
tB  
VSYNC  
Figure 48. Timing Register 1 in PAL Mode  
Rev. 0 | Page 34 of 88  
 
ADV7320/ADV7321  
Table 18. Registers 0x59 to 0x64  
SR7–  
Reset  
SR0  
0x59  
Register  
SD CGMS/WSS 0  
Bit Description  
SD CGMS Data  
SD CGMS CRC  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
19  
Bit 2  
18  
Bit 1  
17  
Bit 0  
16  
Register Setting  
CGMS Data Bits C19 to C16  
Disabled  
Values  
0x00  
0
1
Enabled  
SD CGMS on Odd  
Fields  
0
1
Disabled  
Enabled  
SD CGMS on Even  
Fields  
0
1
Disabled  
Enabled  
SD WSS  
0
1
Disabled  
Enabled  
0x5A  
SD CGMS/WSS 1  
SD CGMS/WSS Data  
13  
5
12  
4
11  
3
10  
2
9
8
CGMS Data Bits C13 to C8,  
or WSS Data Bits C13 to C8  
CGMS Data Bits C15 to C14  
CGMS/WSS Data Bits C7 to  
C0  
0x00  
15  
7
14  
6
0x00  
0x00  
0x5B  
0x5C  
SD CGMS/WSS 2  
SD LSB Register  
SD CGMS/WSS Data  
1
x
0
x
SD LSB for Y Scale  
Value  
SD Y Scale Bits 1 to 0  
SD LSB for Cb Scale  
Value  
SD LSB for Cr Scale  
Value  
x
x
SD Cb Scale Bits 1 to 0  
SD Cr Scale Bits 1 to 0  
x
x
SD LSB for FSC Phase  
SD Y Scale Value  
x
x
x
x
Subcarrier Phase Bits 1 to 0  
SD Y Scale Bits 7 to 2  
0x5D  
0x5E  
0x5F  
SD Y Scale  
Register  
SD Cb Scale  
Register  
SD Cr Scale  
Register  
SD Hue Register  
SD Brightness/  
WSS  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x00  
0x00  
0x00  
SD Cb Scale Value  
SD Cr Scale Value  
x
x
x
x
x
SD Cb Scale Bits 7 to 2  
SD Cr Scale Bits 7 to 2  
0x60  
0x61  
SD Hue Adjust Value  
SD Brightness Value  
SD Blank WSS Data  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
SD Hue Adjust Bits 7 to 0  
SD Brightness Bits 6 to 0  
Disabled  
Enabled  
−4 dB  
0 dB  
+4 dB  
No gain  
+1/16 [–1/8]  
+2/16 [–2/8]  
+3/16 [–3/8]  
+4/16 [–4/8]  
+5/16 [–5/8]  
+6/16 [–6/8]  
+7/16 [–7/8]  
+8/16 [–1]  
No gain  
+1/16 [–1/8]  
+2/16 [–2/8]  
+3/16 [–3/8]  
+4/16 [–4/8]  
+5/16 [–5/8]  
+6/16 [–6/8]  
+7/16 [–7/8]  
+8/16 [–1]  
0
0x00  
0x00  
Line 23  
0
1
0
0
0
0x62  
0x63  
SD Luma SSAF  
SD DNR 0  
SD Luma SSAF  
Gain/Attenuation  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
0
1
1
1
1
0
0
1
0
0
0
1
1
0
0
1
1
0
0
0
0
0
1
0
1
0
1
0
1
0
0x00  
Coring Gain Border  
Coring Gain Data  
DNR Threshold  
0x00  
In DNR  
mode,  
the  
values in  
brackets  
apply.  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
1
1
0x64  
SD DNR 1  
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0x00  
1
62  
63  
Border Area  
0
1
2 pixels  
4 pixels  
Block Size Control  
0
1
8 pixels  
16 pixels  
Rev. 0 | Page 35 of 88  
ADV7320/ADV7321  
Table 19. Registers 0x65 to 0x7C  
SR7–  
Reset  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
Values  
0x65  
SD DNR 2  
DNR Input Select  
0
0
0
1
0
1
1
0
1
0
1
0
Filter A  
0x00  
Filter B  
Filter C  
Filter D  
DNR Mode  
0
1
0
1
0
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
DNR mode  
DNR sharpness mode  
DNR Block Offset  
0
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0 pixel offset  
1 pixel offset  
14 pixel offset  
15 pixel offset  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma A  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve A Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Gamma Curve B Data Points  
SD Brightness Value  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B0  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x6D SD Gamma A  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
SD Gamma A  
SD Gamma A  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
SD Gamma B  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
SD Brightness  
Detect  
Read only  
0x7B  
Field Count  
Register  
Field Count  
Reserved  
x
x
x
Read only  
Reserved  
Reserved  
Reserved  
Read only  
Reserved  
0x8x  
0
Reserved  
0
Reserved  
0
Revision Code  
Reserved  
1
0
0x7C  
0x00  
Rev. 0 | Page 36 of 88  
ADV7320/ADV7321  
Table 20. Registers 0x7D to 0x91  
SR7-  
Reset  
SR0  
Register  
Bit Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Setting  
Values  
0x7D  
0x7E  
0x7F  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x91  
Reserved  
Reserved  
Reserved  
Macrovision1  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
Macrovision  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bits  
MV Control Bit  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0 must be written to these bits  
1
Macrovision registers only on the ADV7320.  
Rev. 0 | Page 37 of 88  
ADV7320/ADV7321  
INPUT CONFIGURATION  
When 10-bit input data is applied, the following bits must be set  
to 1:  
PROGRESSIVE SCAN ONLY OR HDTV ONLY  
Address[0x01]: Input Mode = 001 or 010, Respectively  
Address 0x13, Bit 2 (HD 10-bit enable)  
Address 0x48, Bit 4 (SD 10-bit enable)  
YCrCb progressive scan, HDTV, or any other HD YCrCb data  
can be input in 4:2:2 or 4:4:4. In 4:2:2 input mode, the Y data is  
input on Pins Y9 to Y0 and the CrCb data is input on Pins C9 to  
C0. In 4:4:4 input mode, Y data is input on Pins Y9 to Y0, Cb data  
is input on Pins C9 to C0, and Cr data is input on Pins S9 to S0.  
If the YCrCb data does not conform to SMPTE 293M (525p),  
ITU-R BT.1358M (625p), SMPTE 274M (1080i), SMPTE 296M  
(720p), SMPTE 240M (1035i), or BTA-T1004/1362, the async  
timing mode must be used. RGB data can only be input in  
4:4:4 format in PS or HDTV input modes when HD RGB input  
is enabled. G data is input on Pins Y9 to Y0, R data is input on  
Pins S9 to S0, and B data is input on Pins C9 to C0. The clock  
signal must be input on Pin CLKIN_A.  
Note that the ADV7320 defaults to simultaneous standard  
definition and progressive scan upon power-up (Address[0x01]:  
Input Mode = 011).  
STANDARD DEFINITION ONLY  
Address[0x01]: Input Mode = 000  
The 8-/10-bit, multiplexed input data is input on Pins S9 to S0  
(or Pins Y9 to Y0, depending on Register Address 0x01, Bit 7),  
with S0 being the LSB in 10-bit input mode (see Table 21). Input  
standards supported are ITU-R BT.601/656. In 16-/20-bit input  
mode, the Y pixel data is input on Pins S9 to S2 and CrCb data  
is input on Pins Y9 to Y2 (see Table 21).  
MPEG2  
ADV7320/  
ADV7321  
DECODER  
16-/20-Bit Mode Operation  
27MHz  
YCrCb  
CLKIN_A  
When Register 0x01 Bit 7 = 0, CrCb data is input on the Y bus  
and Y data is input on the S bus. When Register 0x01 Bit 7 = 1,  
CrCb data is input on the C bus and Y data is input on Y bus.  
10  
10  
10  
Cb  
Cr  
Y
C[9:0]  
S[9:0]  
Y[9:0]  
INTERLACED TO  
PROGRESSIVE  
The 27 MHz clock input must be input on Pin CLKIN_A. Input  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
3
sync signals are input on the  
,
, and  
S_VSYNC S_HSYNC  
pins.  
S_BLANK  
Figure 50. Progressive Scan Input Mode  
SIMULTANEOUS STANDARD DEFINITION AND  
PROGRESSIVE SCAN OR HDTV  
Table 21. SD 8-/10-Bit and 16-/20-Bit Configuration  
Configuration  
Parameter  
8-/10-Bit Mode 16-/20-Bit Mode  
Address[0x01]: Input Mode 011 (SD 10-Bit, PS 20-Bit) or 101  
(SD and HD, SD Oversampled), 110 (SD and HD, HD  
Oversampled), Respectively  
Register 0x01, Bit 7 = 0  
Y Bus  
CrCb  
S Bus  
C Bus  
656/601, YCrCb  
656/601, YCrCb  
Y
YCrCb PS and HD data must be input in 4:2:2 format. In 4:2:2  
input mode, the HD Y data is input on Pins Y9 to Y0 and the  
HD CrCb data is input on Pins C9 to C0. If PS 4:2:2 data is  
interleaved onto a single 10-bit bus, Pins Y9 to Y0 are used for  
the input port. The input data is to be input at 27 MHz, with the  
data being clocked upon the rising and falling edges of the input  
clock. The input mode register at Address 0x01 is set  
accordingly. If the YCrCb data does not conform to SMPTE  
293M (525p), ITU-R BT.1358M (625p), SMPTE 274M (1080i),  
SMPTE 296M (720p), SMPTE 240M (1035i), or BTA-T1004,  
the async timing mode must be used.  
Register 0x01, Bit 7 = 1  
Y Bus  
S Bus  
C Bus  
Y
CrCb  
ADV7320/  
ADV7321  
S_VSYNC,  
S_HSYNC,  
S_BLANK  
3
MPEG2  
DECODER  
27MHz  
10  
The 8- or 10-bit standard definition data must be compliant  
with ITU-R BT.601/656 in 4:2:2 format. Standard definition  
data is input on Pins S9 to S0, with S0 being the LSB. Using  
8-bit input format, the data is input on Pins S9 to S2. The clock  
input for SD must be input on CLKIN_A, and the clock input  
for HD must be input on CLKIN_B. Synchronization signals are  
CLKIN_A  
YCrCb  
S[9:0] OR Y[9:0]*  
*SELECTED BY ADDRESS 0x01 BIT 7  
Figure 49. SD Only Input Mode  
Rev. 0 | Page 38 of 88  
 
ADV7320/ADV7321  
optional. SD syncs are input on Pins  
,
, and  
S_VSYNC S_HSYNC  
PROGRESSIVE SCAN AT 27 MHZ (DUAL EDGE)  
OR 54 MHZ  
S_BLANK  
. HD syncs are input on Pins  
,
,
P_VSYNC P_HSYNC  
and  
.
P_BLANK  
Address[0x01]: Input Mode 100 or 111, Respectively  
ADV7320/  
ADV7321  
YCrCb progressive scan data can be input at 27 MHz or  
54 MHz. The input data is interleaved onto a single 8-/10-bit  
bus and is input on Pins Y9 to Y0. When a 27 MHz clock is  
supplied, the data is clocked in upon the rising and falling edges  
of the input clock, and the clock edge bit [Address 0x01, Bit 1]  
must be set accordingly.  
S_VSYNC,  
S_HSYNC,  
S_BLANK  
3
MPEG2  
DECODER  
27MHz  
CLKIN_A  
S[9:0]  
YCrCb  
10  
Table 22 provides an overview of all possible input configurations.  
Figure 54, Figure 55, and Figure 56 show the possible conditions:  
Cb data on the rising edge, and Y data on the rising edge.  
CrCb  
Y
10  
10  
C[9:0]  
Y[9:0]  
INTERLACED TO  
PROGRESSIVE  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
3
CLKIN_B  
27MHz  
CLKIN_B  
Y9–Y0  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
Figure 51. Simultaneous PS and SD Input  
CLOCK EDGE ADDRESS 0x00 BIT 1 SHOULD BE SET TO 0 IN THIS CASE.  
ADV7320/  
ADV7321  
Figure 54. Input Sequence in PS Bit Interleaved Mode (EAV/SAV)  
S_VSYNC,  
S_HSYNC,  
3
S_BLANK  
SDTV  
DECODER  
27MHz  
CLKIN_A  
CLKIN_B  
YCrCb 10  
S[9:0]  
Y9–Y0  
3FF  
00  
00  
XY  
Y0  
Cb0  
Y1  
Cr0  
HDTV  
DECODER  
CrCb 10  
C[9:0]  
Y[9:0]  
1080i  
OR  
Y
10  
3
720p  
OR  
CLOCK EDGE ADDRESS 0x00 BIT 1 SHOULD BE SET TO 1 IN THIS CASE.  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
1035i  
Figure 55. Input Sequence in PS Bit Interleaved Mode (EAV/SAV)  
74.25MHz  
CLKIN_B  
CLKIN_B  
Figure 52. Simultaneous HD and SD Input  
PIXEL INPUT  
In simultaneous SD/HD input mode, if the two clock phases  
3FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
DATA  
differ by less than 9.25 ns or more than 27.75 ns, the clock align  
bit [Address 0x01, Bit 3] must be set accordingly. If the  
application uses the same clock source for both SD and PS, the  
clock align bit must be set because the phase difference between  
both inputs is less than 9.25 ns.  
WITH A 54MHz CLOCK, THE DATA IS LATCHED ON EVERY RISING EDGE.  
Figure 56. Input Sequence in PS Bit Interleaved Mode (EAV/SAV)  
MPEG2  
DECODER  
CLKIN_A  
CLKIN_B  
ADV7320/  
ADV7321  
27MHz OR 54MHz  
YCrCb  
CLKIN_A  
t
t
< 9.25ns OR  
> 27.75ns  
DELAY  
DELAY  
INTERLACED  
YCrCb  
10  
TO  
Figure 53. Clock Phase with Two Input Clocks  
Y[9:0]  
PROGRESSIVE  
P_VSYNC,  
P_HSYNC,  
P_BLANK  
3
Figure 57. 10-Bit PS at 27 MHz or 54 MHz  
Rev. 0 | Page 39 of 88  
 
 
 
ADV7320/ADV7321  
Table 22. Input Configurations  
Input Format  
Total Bits  
Input Video Input Pins  
Subaddress Register Setting  
ITU-R BT.656 (See Table 21)  
8
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:2:2  
4:4:4  
YCrCb  
S9 to S2 (MSB = S9) 0x01  
0x00  
0x48  
S9 to S0 (MSB = S9) 0x01  
0x48  
S9 to S2 (MSB = S9) 0x01  
Y9 to Y2 (MSB = Y9) 0x48  
S9 to S0 (MSB = S9) 0x01  
Y9 to Y0 (MSB = Y9) 0x48  
Y9 to Y2 (MSB = Y9) 0x01  
0x48  
Y9 to Y0 (MSB = Y9) 0x01  
0x48  
Y9 to Y2 (MSB = Y9) 0x01  
0x13  
Y9 to Y0 (MSB = Y9) 0x01  
0x13  
Y9 to Y2 (MSB = Y9) 0x01  
0x13  
Y9 to Y0 (MSB = Y9) 0x01  
0x13  
0x00  
0x00  
0x10  
0x00  
0x08  
0x00  
0x18  
0x80  
0x00  
0x80  
0x10  
0x10  
0x40  
0x10  
0x44  
0x70  
0x40  
0x70  
0x44  
0x10  
0x40  
0x10  
0x44  
0x10  
0x00  
10  
YCrCb  
16  
Y
CrCb  
Y
CrCb  
YCrCb  
20  
8
10  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
YCrCb  
PS Only  
8 (27 MHz clock)  
10 (27 MHz clock)  
8 (54 MHz clock)  
10 (54 MHz clock)  
16  
20  
24  
Y
CrCb  
Y
CrCb  
Y
Cb  
Cr  
Y9 to Y2 (MSB = Y9) 0x01  
C9 to C2 (MSB = C9) 0x13  
Y9 to Y0 (MSB = Y9) 0x01  
C9 to C0 (MSB = C9) 0x13  
Y9 to Y2 (MSB = Y9) 0x01  
C9 to C2 (MSB = C9) 0x13  
S9 to S2 (MSB = S9)  
30  
4:4:4  
Y
Cb  
Cr  
Y9 to Y0 (MSB = Y9) 0x01  
C9 to C0 (MSB = C9) 0x13  
S9 to S0 (MSB = S9)  
0x10  
0x04  
HDTV Only  
16  
20  
24  
4:2:2  
4:2:2  
4:4:4  
Y
CrCb  
Y
CrCb  
Y
Cb  
Cr  
Y9 to Y2 (MSB = Y9) 0x01  
C9 to Y2 (MSB = C9) 0x13  
Y9 to Y0 (MSB = Y9) 0x01  
C9 to C0 (MSB = C9) 0x13  
Y9 to Y2 (MSB = Y9) 0x01  
C9 to C2 (MSB = C9) 0x13  
S9 to S2 (MSB = S9)  
0x20  
0x40  
0x20  
0x44  
0x20  
0x00  
30  
24  
30  
4:4:4  
4:4:4  
4:4:4  
Y
Cb  
Cr  
G
B
R
G
B
R
Y9 to Y0 (MSB = Y9) 0x01  
C9 to C0 (MSB = C9) 0x13  
S9 to S0 (MSB = S9)  
0x20  
0x04  
HD RGB  
Y9 to Y2 (MSB = Y9) 0x01  
C9 to C2 (MSB = C9) 0x13  
S9 to S2 (MSB = S9) 0x15  
Y9 to Y0 (MSB = Y9) 0x01  
C9 to C0 (MSB = C9) 0x13  
S9 to S0 (MSB = S9) 0x15  
S9 to S2 (MSB = S9) 0x01  
Y9 to Y2 (MSB = Y9) 0x13  
0x48  
0x10 or 0x20  
0x00  
0x02  
0x10 or 0x20  
0x04  
0x02  
0x40  
0x40  
ITU-R BT.656 and PS  
8 (SD)  
8 (PS)  
4:2:2  
4:2:2  
YCrCb  
YCrCb  
0x00  
ITU-R BT.656 and PS  
10 (SD)  
10 (PS)  
4:2:2  
4:2:2  
YCrCb  
YCrCb  
S9 to S0 (MSB = S9) 0x01  
Y9 to Y0 (MSB = Y9) 0x13  
0x48  
0x40  
0x44  
0x10  
ITU-R BT.656 and PS or HDTV  
ITU-R BT.656 and PS or HDTV  
8
16  
4:2:2  
4:2:2  
YCrCb  
Y
CrCb  
YCrCb  
Y
S9 to S2 (MSB = S9) 0x01  
Y9 to Y2 (MSB = Y9) 0x13  
C9 to C2 (MSB = C9) 0x48  
S9 to S0 (MSB = S9) 0x01  
Y9 to Y0 (MSB = Y9) 0x13  
C9 to C0 (MSB = C9) 0x48  
0x30, 0x50, or 0x60  
0x40  
0x00  
0x30, 0x50, or 0x60  
0x44  
0x10  
10  
20  
4:2:2  
4:2:2  
CrCb  
Rev. 0 | Page 40 of 88  
ADV7320/ADV7321  
FEATURES  
OUTPUT CONFIGURATION  
Table 23, Table 24, and Table 25 demonstrate what output signals are assigned to the DACs when the control bits are set accordingly.  
Table 23. Output Configuration in SD Only Mode  
RGB/YUV Output  
SD DAC Output 1  
SD DAC Output 2  
0x02, Bit 5  
0x42, Bit 2  
0x42, Bit 1  
DAC A  
CVBS  
G
DAC B  
Luma  
B
Luma  
B
Luma  
U
Luma  
U
DAC C  
DAC D  
G
CVBS  
CVBS  
G
DAC E  
B
Luma  
B
Luma  
U
Luma  
U
DAC F  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Chroma  
R
Chroma  
R
Chroma  
V
Chroma  
V
R
Chroma  
R
Chroma  
V
Chroma  
V
Chroma  
G
CVBS  
CVBS  
Y
Y
CVBS  
CVBS  
Y
Y
CVBS  
Luma  
Luma/Chroma Swap 0x44, Bit 7  
0
1
Table as above  
Table as above, but with all luma/chroma instances swapped  
Table 24. Output Configuration in HD/PS Only Mode  
HD/PS Input  
Format  
HD/PS RGB Input  
0x15, Bit 1  
RGB/YPrPb Output  
0x02, Bit 5  
HD/PS Color Swap  
0x15, Bit 3  
DAC A DAC B DAC C DAC D DAC E  
DAC F  
YCrCb 4:2:2  
YCrCb 4:2:2  
YCrCb 4:2:2  
YCrCb 4:2:2  
YCrCb 4:4:4  
YCrCb 4:4:4  
YCrCb 4:4:4  
YCrCb 4:4:4  
RGB 4:4:4  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
G
G
Y
B
R
Pb  
Pr  
B
R
B
Pr  
Pb  
R
Y
G
G
Y
R
B
Pb  
Pr  
B
R
B
Pr  
Pb  
R
B
R
Y
G
G
G
G
RGB 4:4:4  
RGB 4:4:4  
RGB 4:4:4  
R
B
Table 25. Output Configuration in Simultaneous SD and HD/PS Only Mode  
RGB/YPrPb Output  
0x02, Bit 5  
HD/PS Color Swap  
0x15, Bit 3  
Input Formats  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
ITU-R.BT656 and HD  
YCrCb in 4:2:2  
ITU-R.BT656 and HD  
YCrCb in 4:2:2  
ITU-R.BT656 and HD  
YCrCb in 4:2:2  
ITU-R.BT656 and HD  
YCrCb in 4:2:2  
0
0
1
1
0
1
0
1
CVBS  
Luma  
Luma  
Luma  
Luma  
Chroma  
Chroma  
Chroma  
Chroma  
G
B
R
CVBS  
CVBS  
CVBS  
G
Y
Y
R
B
Pb  
Pr  
Pr  
Pb  
Rev. 0 | Page 41 of 88  
 
 
 
ADV7320/ADV7321  
In async mode, the PLL must be turned off [Subaddress 0x00,  
Bit 1 = 1]. Register 0x10 should be programmed to 0x01.  
HD ASYNC TIMING MODE  
[Subaddress 0x10, Bits 3 and 2]  
Figure 58 and Figure 59 show examples of how to program the  
ADV7320/ADV7321 to accept a high definition standard other  
than SMPTE 293M, SMPTE 274M, SMPTE 296M, or ITU-R  
BT.1358.  
For any input data that does not conform to the standards  
selectable in input mode, Subaddress 0x10, asynchronous  
timing mode can be used to interface to the ADV7320/ADV7321.  
Timing control signals for  
,
, and  
must  
HSYNC VSYNC  
BLANK  
Table 26 must be followed when programming the control signals  
in async timing mode. For standards that do not require a trisync  
be programmed by the user. Macrovision and programmable  
oversampling rates are not available in async timing mode.  
level,  
must be tied low at all times.  
P_BLANK  
Table 26. Async Timing Mode Truth Table  
P_HSYNC P_VSYNC P_BLANK1  
Reference  
Reference in Figure 58 and Figure 59  
0
0 or 1  
0 or 1  
0
50% point of falling edge of trilevel horizontal sync signal  
25% point of rising edge of trilevel horizontal sync signal  
50% point of falling edge of trilevel horizontal sync signal  
50% start of active video  
a
1 0  
0
b
c
0 1  
0 or 1  
0 or 1  
0 or 1  
0 1  
1
1
d
e
0 1  
1 0  
50% end of active video  
1 When async timing mode is enabled,  
, Pin 25, becomes an active high input.  
is set to active low at Address 0x10, Bit 6.  
P_BLANK  
P_BLANK  
CLK  
P_HSYNC  
PROGRAMMABLE  
INPUT TIMING  
P_VSYNC  
P_BLANK  
SET ADDRESS 0x14,  
BIT 3 = 1  
HORIZONTAL SYNC  
ACTIVE VIDEO  
ANALOG  
OUTPUT  
81  
66  
66  
243  
1920  
a
b
c
d
e
Figure 58. Async Timing Mode—Programming Input Control Signals for SMPTE 295M Compatibility  
CLK  
P_HSYNC  
0
1
P_VSYNC  
P_BLANK  
SET ADDRESS 0x14  
BIT 3 = 1  
HORIZONTAL SYNC  
ACTIVE VIDEO  
ANALOG OUTPUT  
a
b
c
d
e
Figure 59. Async Timing Mode—Programming Input Control Signals for Bilevel Sync Signal  
Rev. 0 | Page 42 of 88  
 
 
 
ADV7320/ADV7321  
b. In subcarrier phase reset, a low-to-high transition on  
the RTC_SCR_TR pin (Pin 31) resets the subcarrier  
phase to zero on the field following the subcarrier  
phase reset when the SD RTC/TR/SCR control bits at  
Address 0x44 are set to 01.  
HD TIMING RESET  
A timing reset is achieved by toggling the HD timing reset control  
bit [Subaddress 0x14, Bit 0] from 0 to 1. In this state, the horizontal  
and vertical counters remain reset. When this bit is set back to 0,  
the internal counters resume counting.  
This reset signal must be held high for a minimum of  
one clock cycle.  
The minimum time the pin must be held high is one clock  
cycle; otherwise, this reset signal might not be recognized. This  
timing reset applies to the HD timing counters only.  
Because the field counter is not reset, it is  
recommended that the reset signal is applied in Field 7  
(PAL) or Field 3 (NTSC). The reset of the phase will  
then occur on the next field, i.e., Field 1, lined up  
correctly with the internal counters. The field count  
register at Address 0x7B can be used to identify the  
number of the active field.  
SD REAL-TIME CONTROL, SUBCARRIER RESET,  
AND TIMING RESET  
[Subaddress 0x44, Bits 2 and 1]  
Together with the RTC_SCR_TR pin and SD Mode Register 3  
[Address 0x44, Bits 1 and 2], the ADV7320/ADV7321 can be  
used in (a) timing reset mode, (b) subcarrier phase reset mode,  
or (c) RTC mode.  
c. In RTC mode, the ADV7320/ADV7321 can be used to  
lock to an external video source. The real-time control  
mode allows the ADV7320/ADV7321 to automatically  
alter the subcarrier frequency to compensate for line  
length variations. When the part is connected to a  
device, such as an ADV7183A video decoder (see  
Figure 62), that outputs a digital data stream in the  
RTC format, the part will automatically change to the  
compensated subcarrier frequency on a line-by-line  
basis. This digital data stream is 67 bits wide and the  
subcarrier is contained in Bits 0 to 21. Each bit is two  
clock cycles long. Write 0x00 into all four subcarrier  
frequency registers when this mode is used.  
a. A timing reset is achieved in a low-to-high transition  
on the RTC_SCR_TR pin (Pin 31). In this state, the  
horizontal and vertical counters remain reset. Upon  
releasing this pin (set to low), the internal counters  
resume counting, starting with Field 1, and the  
subcarrier phase is reset.  
The minimum time the pin must be held high is one  
clock cycle; otherwise, this reset signal might not be  
recognized. This timing reset applies to the SD timing  
counters only.  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 4 OR 8  
SC  
307  
310  
313  
320  
NO TIMING RESET APPLIED  
DISPLAY  
START OF FIELD 1  
F
PHASE = FIELD 1  
SC  
307  
1
2
3
4
5
6
7
21  
TIMING RESET PULSE  
TIMING RESET APPLIED  
Figure 60. Timing Reset Timing Diagram  
Rev. 0 | Page 43 of 88  
ADV7320/ADV7321  
DISPLAY  
310  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 4 OR 8  
SC  
307  
313  
320  
NO F RESET APPLIED  
SC  
DISPLAY  
START OF FIELD 4 OR 8  
F
PHASE = FIELD 1  
SC  
307  
310  
313  
320  
F
RESET PULSE  
SC  
F
RESET APPLIED  
SC  
Figure 61. Subcarrier Reset Timing Diagram  
ADV7320/  
ADV7321  
CLKIN_A  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
LCC1  
RTC_SCR_TR  
GLL  
COMPOSITE  
ADV7183A  
VIDEO  
1
VIDEO  
P19–P10  
5
Y9–Y0/S9–S0  
DECODER  
4 BITS  
RESERVED  
14 BITS  
H/L TRANSITION  
COUNT START  
LOW  
SEQUENCE RESET  
SUBCARRIER  
PHASE  
3
4
BIT  
BIT  
RESERVED  
2
PLL INCREMENT  
128  
F
SC  
13  
0
21  
19  
0
RTC  
6768  
TIME SLOT 01  
14  
VALID INVALID  
SAMPLE SAMPLE  
8/LINE  
LOCKED  
CLOCK  
5 BITS  
RESERVED  
NOTES  
1
i.e., VCR OR CABLE  
2
F
PLL INCREMENT IS 22 BITS LONG. VALUE LOADED INTO ADV7320/ADV7321 F DDS REGISTER IS F PLL INCREMENTS BITS 21:0  
SC  
SC SC  
PLUS BITS 0:9 OF SUBCARRIER FREQUENCY REGISTERS. ALL ZEROS SHOULD BE WRITTEN TO THE SUBCARRIER FREQUENCY REGISTERS  
OF THE ADV7320/ADV7321.  
3
SEQUENCE BIT  
PAL: 0 = LINE NORMAL, 1 = LINE INVERTED  
NTSC: 0 = NO CHANGE  
RESET ADV7320/ADV7321 DDS  
4
5
SELECTED BY REGISTER ADDRESS 0x01 BIT 7  
Figure 62. RTC Timing and Connections  
Rev. 0 | Page 44 of 88  
ADV7320/ADV7321  
signal usually occurs after the total number of lines/fields are  
reached. Conventionally this means that the output video will  
have corrupted field signals, because one signal is generated by  
the incoming video and another is generated when the internal  
lines/field counters reach the end of a field.  
RESET SEQUENCE  
A reset is activated with a high-to-low transition on the  
pin (Pin 33) according to the timing specifications, and the  
ADV7320/ADV7321 reverts to the default output  
RESET  
configuration. Figure 63 illustrates the  
timing sequence.  
RESET  
When the VCR FF/RW sync control is enabled [Subaddress 0x42,  
Bit 5], the lines/fields counters are updated according to the  
SD VCR FF/RW SYNC  
incoming  
signal, and the analog output matches the  
VSYNC  
[Subaddress 0x42, Bit 5]  
incoming  
signal.  
VSYNC  
In DVD record applications where the encoder is used with a  
decoder, the VCR FF/RW sync control bit can be used for  
nonstandard input video, i.e., in fast forward or rewind modes.  
This control is available in all slave timing modes except Slave  
Mode 0.  
In fast forward mode, the sync information at the start of a new  
field in the incoming video usually occurs before the correct  
number of lines/fields are reached; in rewind mode, this sync  
RESET  
DACs  
XXXXXX  
A, B, C  
OFF  
VALID VIDEO  
DIGITAL TIMING SIGNALS SUPPRESSED  
TIMING ACTIVE  
DIGITAL TIMING  
XXXXXX  
PIXEL DATA  
VALID  
RESET  
Figure 63.  
Timing Sequence  
Rev. 0 | Page 45 of 88  
 
ADV7320/ADV7321  
VERTICAL BLANKING INTERVAL  
SUBCARRIER FREQUENCY REGISTERS  
The ADV7320/ADV7321 accepts input data that contains VBI  
data (such as CGMS, WSS, VITS) in SD and HD modes.  
[Subaddresses 0x4C to 0x4F]  
Four 8-bit registers are used to set up the subcarrier frequency.  
The value of these registers is calculated using the equation  
For the SMPTE 293M (525p) standard, VBI data can be  
inserted on Lines 13 to 42 of each frame, or on Lines 6 to 43 for  
the ITU-R BT.1358 (625p) standard.  
Subcarrier Frequency Register =  
Number of subcarrier periods in one video line  
×232  
This data can be present on Lines 10 to 20 for SD NTSC and on  
Lines 7 to 22 for PAL.  
Number of 27 MHz clk cycles in one video line  
where the sum is rounded to the nearest integer.  
For example, in NTSC mode  
If VBI is disabled [Address 0x11, Bit 4 for HD; Address 0x43,  
Bit 4 for SD], VBI data is not present at the output and the  
entire VBI is blanked. These control bits are valid in all master  
and slave modes.  
227.5  
1716  
Subcarrier Register Value =  
×
32 = 569408543  
2  
In Slave Mode 0, if VBI is enabled, the blanking bit in the  
EAV/SAV code is overwritten. It is possible to use VBI in this  
timing mode as well.  
where:  
Subcarrier Register Value = 0x21F07C1F  
SD FSC Register 0: 0x1F  
SD FSC Register 1: 0x7C  
SD FSC Register 2: 0xF0  
SD FSC Register 3: 0x21  
In Slave Mode 1 or 2, the  
control bit must be enabled  
BLANK  
[Address 0x4A, Bit 3] to allow VBI data to pass through the  
ADV7320/ADV7321. Otherwise, the ADV7320/ADV7321  
automatically blanks the VBI to standard.  
See the MPU Port Description section for more details on  
accessing the subcarrier frequency registers.  
If CGMS is enabled and VBI is disabled, the CGMS data will  
nevertheless be available at the output.  
Programming the FSC  
See Appendix 1—Copy Generation Management System.  
The subcarrier register value is divided into 4 FSC registers as  
shown above. To load the value into the encoder, users must  
write to the FSC registers in sequence, starting with FSC0. The  
value is not loaded until the FSC4 write is complete.  
Note that the ADV7320/ADV7321 power-up value for FSC0 is  
0x1E. For precise NTSC FSC, write 0x1F to this register.  
Rev. 0 | Page 46 of 88  
ADV7320/ADV7321  
SQUARE PIXEL TIMING MODE  
[Address 0x42, Bit 4]  
In square pixel mode, the following timing diagrams apply.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
8
0
0
0
F
F
F A A  
F B B  
A
B
8
0
0
0
C
b
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
272 CLOCK  
1280 CLOCK  
1536 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
344 CLOCK  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 64. EAV/SAV Embedded Timing  
HSYNC  
FIELD  
PAL = 44 CLOCK CYCLES  
NTSC = 44 CLOCK CYCLES  
BLANK  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 308 CLOCK CYCLES  
NTSC = 236 CLOCK CYCLES  
Figure 65. Active Pixel Timing  
Rev. 0 | Page 47 of 88  
ADV7320/ADV7321  
–40 dB at 3.8 MHz, as shown in Figure 66. This filter can be  
controlled with Address 0x42, Bit 0.  
FILTERS  
Table 27 shows an overview of the programmable filters  
available on the ADV7320/ADV7321.  
EXTENDED UV FILTER MODE  
0
Table 27. Selectable Filters  
Filter  
Subaddress  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x42  
0x13  
0x13  
0x13  
–10  
–20  
–30  
–40  
–50  
–60  
SD Luma LPF NTSC  
SD Luma LPF PAL  
SD Luma Notch NTSC  
SD Luma Notch PAL  
SD Luma SSAF  
SD Luma CIF  
SD Luma QCIF  
SD Chroma 0.65 MHz  
SD Chroma 1.0 MHz  
SD Chroma 1.3 MHz  
SD Chroma 2.0 MHz  
SD Chroma 3.0 MHz  
SD Chroma CIF  
SD Chroma QCIF  
SD UV SSAF  
HD Chroma Input  
HD Sinc Filter  
0
1
2
3
4
5
6
FREQUENCY (MHz)  
Figure 66. UV SSAF Filter  
If this filter is disabled, one of the chroma filters shown in  
Table 28 can be selected and used for the CVBS or luma/  
chroma signal.  
Table 28. Internal Filter Specifications  
Pass-Band  
3 dB Bandwidth2  
(MHz)  
HD Chroma SSAF  
Filter  
Ripple1 (dB)  
Luma LPF NTSC  
Luma LPF PAL  
Luma Notch NTSC  
Luma Notch PAL  
Luma SSAF  
0.16  
0.1  
0.09  
0.1  
0.04  
0.127  
Monotonic  
Monotonic  
Monotonic  
0.09  
4.24  
4.81  
2.3/4.9/6.6  
3.1/5.6/6.4  
6.45  
3.02  
1.5  
0.65  
1
1.395  
2.2  
3.2  
0.65  
0.5  
SD Internal Filter Response  
[Subaddress 0x40 [7:2]; Subaddress 0x42, Bit 0]  
The Y filter supports several different frequency responses,  
including two low-pass responses, two notch responses, an  
extended (SSAF) response with or without gain boost  
attenuation, a CIF response, and a QCIF response. The UV  
filter supports several different frequency responses, including  
six low-pass responses, a CIF response, and a QCIF response, as  
shown in Figure 35 and Figure 36.  
Luma CIF  
Luma QCIF  
Chroma 0.65 MHz  
Chroma 1.0 MHz  
Chroma 1.3 MHz  
Chroma 2.0 MHz  
Chroma 3.0 MHz  
Chroma CIF  
0.048  
If SD SSAF gain is enabled, there are 12 response options in the  
range −4 dB to +4 dB [Subaddress 0x47, Bit 4]. Choose the  
desired response by programming the correct value via the I2C  
[Subaddress 0x62]. The variation of frequency responses are  
shown in Figure 32 and Figure 33.  
Monotonic  
Monotonic  
Monotonic  
Chroma QCIF  
1 Pass-band ripple is the maximum fluctuation from the 0 dB response in the  
pass band, measured in dB. The pass band is defined to have 0 Hz to fc (Hz)  
frequency limits for a low-pass filter, and 0 Hz to f1 (Hz) and f2 (Hz) to infinity  
for a notch filter, where fc, f1, and f2 are the −3 dB points.  
In addition to the chroma filters listed in Table 27, the  
ADV7320/ADV7321 contains an SSAF filter specifically  
designed for the color difference component outputs, U and V.  
This filter has a cutoff frequency of about 2.7 MHz and a gain of  
2 3 dB bandwidth refers to the −3 dB cutoff frequency.  
Rev. 0 | Page 48 of 88  
 
 
 
 
ADV7320/ADV7321  
PS/HD Sinc Filter  
Table 29. Sample Color Values for EIA 770.2  
Output Standard Selection  
[Subaddress 0x13, Bit 3]  
Sample Color  
Y Value  
235 (EB)  
16 (10)  
81 (51)  
145 (91)  
41 (29)  
210 (D2)  
170 (AA)  
106 (6A)  
Cr Value  
128 (80)  
128 (80)  
240 (F0)  
34 (22)  
110 (6E)  
146 (92)  
16 (10)  
Cb Value  
128 (80)  
128 (80)  
90 (5A)  
54 (36)  
240 (F0)  
16 (10)  
0.5  
White  
Black  
Red  
Green  
Blue  
Yellow  
Cyan  
0.4  
0.3  
0.2  
0.1  
0
166 (A6)  
202 (CA)  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
Magenta  
222 (DE)  
RGB Matrix  
[Subaddresses 0x03 to 0x09]  
The internal RGB matrix automatically performs all YCrCb to  
RGB scaling according to the input standard programmed in  
the device as selected by input mode Register 0x01 [6:4]. Table 30  
shows the options available in this Matrix.  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
Figure 67. HD Sinc Filter Enabled  
0.5  
0.4  
Note that it is not possible to do a color space conversion from  
RGB-in to YPrPb-out. Also, it is not possible to input SD RGB.  
0.3  
Table 30. Matrix Conversion Options  
HDTV/SD/PS  
0.2  
Reg 0x15, Bit 1  
(RGB IN/YCrCb IN,  
PS/HD Only)  
0.1  
Reg 0x02,Bit 5  
Input Output (YUV/RGB OUT)  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
YCrCb YPrPb  
YCrCb RGB  
1
0
0
0
0
1
RGB  
RGB  
Manual RGB Matrix Adjust Feature  
0
5
10  
15  
20  
25  
30  
Normally, there is no need to enable this feature in Register 0x02,  
Bit 3, because the RGB matrix automatically performs color  
space conversion depending on the input mode chosen (SD/PS,  
HD) and the polarity of RGB/YPrPb output in Register 0x02,  
Bit 5 (see Table 30). For this reason, the manual RGB matrix  
adjust feature is disabled by default. However, For HDTV  
YCrCb-to-RGB conversion, the RGB matrix must be enabled to  
invoke the correct coefficients for this color space. The  
coefficients do not need to be adjusted.  
FREQUENCY (MHz)  
Figure 68. HD Sinc Filter Disabled  
COLOR CONTROLS AND RGB MATRIX  
HD Y Level, HD Cr Level, HD Cb Level  
[Subaddresses 0x16 to 0x18]  
Three 8-bit registers at Addresses 0x16, 0x17, and 0x18 are used  
to program the output color of the internal HD test pattern  
generator, be it the lines of the cross hatch pattern or the  
uniform field test pattern. They are not functional as color  
controls for external pixel data input. For this purpose the RGB  
matrix is used.  
The manual RGB matrix adjust feature provides custom  
coefficient manipulation and is used in progressive scan and  
high definition modes only.  
When the manual RGB matrix adjust feature is enabled, the  
default values in Registers 0x05 to 0x09 are correct for HDTV  
color space only. The color components are converted  
according to the 1080i and 720p standards (SMPTE 274M,  
SMPTE 296M):  
The values for Y and the color difference signals used to obtain  
white, black, and saturated primary and complementary colors  
conform to the ITU-R BT.601-4 standard.  
Table 29 shows sample color values that can be programmed  
into the color registers when the output standard selection is  
set to EIA 770.2.  
Rev. 0 | Page 49 of 88  
 
 
ADV7320/ADV7321  
R = Y + 1.575Pr  
If YPrPb output is selected, the following equations are used:  
G = Y − 0.468Pr − 0.187Pb  
B = Y + 1.855Pb  
Y = GY × Y  
U = BU × Pb  
V = RV × Pr  
This is reflected in the preprogrammed values for GY = 0x13B,  
GU = 0x3B, GV = 0x93, BU = 0x248, and RV = 0x1F0.  
Upon power-up, the RGB matrix is programmed with the  
default values in Table 31.  
If RGB matrix is enabled and another input standard (such as  
SD or PS) is used, the scale values for GY, GU, GV, BU, and RV  
must be adjusted according to this input standard color space.  
The user should consider that the color component conversion  
might use different scale values. For example, SMPTE 293M  
uses the following conversion:  
Table 31. RGB Matrix Default Values  
Address  
Default  
0x03  
0xF0  
0x4E  
0x0E  
0x24  
0x92  
0x7C  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
R = Y + 1.402Pr  
G = Y – 0.714Pr – 0.344Pb  
B = Y + 1.773Pb  
When the manual RGB matrix adjust feature is not enabled, the  
ADV7320/ADV7321 automatically scales YCrCb inputs to all  
standards supported by this part as selected by the input mode  
Register 0x01 [6:4].  
The manual RGB matrix adjust feature can be used to control  
the HD output levels in cases where the video output does not  
conform to the standard due to altering the DAC output stages  
such as termination resistors. The programmable RGB matrix is  
used for external HD/PS data and is not functional when internal  
test patterns are enabled. To adjust Registers 0x05 to 0x09, the  
manual RGB matrix adjust must be enabled [Register 0x02,  
Bit 3 =1].  
SD Luma and Color Control  
[Subaddresses 0x5C, 0x5D, 0x5E, 0x5F]  
SD Y Scale, SD Cr Scale, and SD Cb Scale are three 10-bit-wide  
control registers that scale the Y, Cb, and Cr output levels.  
Programming the RGB Matrix  
Each of these registers represents the value required to scale the  
Cb or Cr level from 0.0 to 2.0 and the Y level from 0.0 to 1.5 of  
its initial level. The value of these 10 bits is calculated using the  
following equation:  
If custom manipulation of coefficients is required, enable the  
RGB matrix in Address 0x02, Bit 3, set the output to RGB  
[Address 0x02, Bit 5], and disable sync on PrPb (default)  
[Address 0x15, Bit 2]. Enabling sync on RGB is optional  
[Address 0x02, Bit 4].  
Y, Cr, or Cb Scalar Value = Scale Factor × 512  
For example,  
GY at Addresses 0x03 and 0x05 controls the green signal output  
levels. BU at Addresses 0x04 and 0x08 control the blue signal  
output levels, and RV at Addresses 0x04 and 0x09 control the red  
signal output levels. To control YPrPb output levels, enable the  
YUV output [Address 0x02, Bit 5]. In this case GY [Address 0x05;  
Address 0x03, Bits 0 and 1] is used for the Y output, RV  
[Address 0x09; Address 0x04, Bits 0 and 1] is used for the Pr  
output, and BU [Address 0x08; Address 0x04, Bits 2 and 3] is  
used for the Pb output.  
Scale Factor = 1.18  
Y, Cb, or Cr Scale Value = 1.18 × 512 = 665.6  
Y, Cb, or Cr Scale Value = 665 (rounded to the nearest  
integer)  
Y, Cb, or Cr Scale Value = 1010 0110 01b  
Address 0x5C, SD LSB Register = 0x15  
Address 0x5D, SD Y Scale Register = 0xA6  
Address 0x5E, SD Cb Scale Register = 0xA6  
Address 0x5F, SD Cr Scale Register = 0xA6  
If RGB output is selected, the RGB matrix scaler uses the  
following equations:  
G = GY × Y + GU × Pb + GV × Pr  
B = GY × Y + BU × Pb  
Note that this feature affects all interlaced output signals, i.e.,  
CVBS, Y-C, YPrPb, and RGB.  
R = GY × Y + RV × Pr  
Rev. 0 | Page 50 of 88  
 
ADV7320/ADV7321  
SD Hue Adjust Value  
For example,  
[Subaddress 0x60]  
1. To add +20 IRE brightness level to an NTSC signal with  
pedestal, write 0x28 to Address 0x61, SD brightness.  
The hue adjust value is used to adjust the hue on the composite  
and chroma outputs.  
0x[SD Brightness Value] =  
These eight bits represent the value required to vary the hue of  
the video data, i.e., the variance in phase of the subcarrier  
during active video with respect to the phase of the subcarrier  
during the color burst. The ADV7320/ADV7321 provides a  
range of 22.5° increments of 0.17578125°. For normal  
operation (zero adjustment), this register is set to 0x80. Values  
0xFF and 0x00 represent the upper and lower limits  
(respectively) of adjustment attainable.  
0x[IRE Value × 2.015631] =  
0x[20 × 2.015631] = 0x[40.31262] = 0x28  
2. To add –7 IRE brightness level to a PAL signal, write 0x72 to  
Address 0x61, SD brightness.  
[IRE Value| × 2.075631  
[7 × 2.015631] = [14.109417] = 0001110b  
Hue Adjust (°) = 0.17578125° (HCRd − 128) for positive hue  
adjust value.  
[0001110] into twos complement = [1110010]b = 0x72  
Table 32. Brightness Control Values1  
For example, to adjust the hue by +4°, write 0x97 to the hue  
adjust value register:  
Setup Level In  
NTSC with  
Pedestal  
Setup Level In  
NTSC No  
Pedestal  
Setup  
Level In  
PAL  
SD  
Brightness  
4
+ 128 = 105d = 0x97 .  
22.5 IRE  
15 IRE  
7.5 IRE  
0 IRE  
15 IRE  
7.5 IRE  
0 IRE  
15 IRE  
7.5 IRE  
0 IRE  
0x1E  
0x0F  
0x00  
0x71  
0.17578125  
where the sum is rounded to the nearest integer.  
–7.5 IRE  
–7.5 IRE  
To adjust the hue by −4°, write 0x69 to the hue adjust value  
register:  
1 Values in the range of 0x3F to 0x44 might result in an invalid output  
signal.  
4  
+ 128 = 105d = 0x69  
0.17578125  
where the sum is rounded to the nearest integer.  
SD Brightness Control  
[Subaddress 0x61]  
The brightness is controlled by adding a programmable setup  
level onto the scaled Y data. This brightness level may be added  
onto the scaled Y data. For NTSC with pedestal, the setup can  
vary from 0 IRE to 22.5 IRE. For NTSC without pedestal and  
for PAL, the setup can vary from −7.5 IRE to +15 IRE.  
The brightness control register is an 8-bit register. Seven bits of  
this 8-bit register are used to control the brightness level, which  
can be a positive or negative value.  
Rev. 0 | Page 51 of 88  
ADV7320/ADV7321  
Double buffering can be activated on the following HD  
registers: HD gamma A and gamma B curves and HD CGMS  
registers.  
SD Brightness Detect  
[Subaddress 0x7A]  
The ADV7320/ADV7321 allow monitoring the brightness level  
of the incoming video data. Brightness detect is a read-only  
register.  
Double buffering can be activated on the following SD registers:  
SD gamma A and gamma B curves, SD Y scale, SD U scale, SD V  
scale, SD brightness, SD closed captioning, and SD Macrovision  
Bits 5 to 0.  
Double Buffering  
[Subaddress 0x13, Bit 7; Subaddress 0x48, Bit 2]  
Double buffered registers are updated once per field upon the  
falling edge of the Vsync signal. Double buffering improves the  
overall performance because modifications to register settings  
will not be made during active video, but take effect upon the  
start of the active video.  
NTSC WITHOUT PEDESTAL  
+7.5 IRE  
–7.5 IRE  
100 IRE  
0 IRE  
POSITIVE SETUP  
VALUE ADDED  
NEGATIVE SETUP  
VALUE ADDED  
NO SETUP  
VALUE ADDED  
Figure 69. Examples of Brightness Control Values  
Rev. 0 | Page 52 of 88  
ADV7320/ADV7321  
Table 33. DAC Gain Control  
PROGRAMMABLE DAC GAIN CONTROL  
DAC  
Current  
(mA)  
DACs A, B, and C are controlled by REG 0A.  
Reg 0x0A or  
0x0B  
% Gain  
Note  
DACs D, E, and F are controlled by REG 0B.  
0100 0000 (0x40)  
0011 1111 (0x3F)  
0011 1110 (0x3E)  
...  
4.658  
4.653  
4.648  
...  
7.5000%  
7.3820%  
7.3640%  
...  
The I2C control registers will adjust the output signal gain up or  
down from its absolute level.  
CASE A  
...  
...  
...  
GAIN PROGRAMMED IN DAC OUTPUT LEVEL  
REGISTERS, SUBADDRESS 0x0A, 0x0B  
0000 0010 (0x02)  
0000 0001 (0x01)  
0000 0000 (0x00)  
4.43  
4.38  
4.33  
0.0360%  
0.0180%  
0.0000%  
700mV  
(I2C Reset Value,  
Nominal)  
1111 1111 (0xFF)  
1111 1110 (0xFE)  
...  
...  
4.25  
4.23  
...  
−0.0180%  
−0.0360%  
...  
...  
...  
1100 0010 (0xC2) 4.018  
1100 0001 (0xC1) 4.013  
1100 0000 (0xC0) 4.008  
−7.3640%  
−7.3820%  
−7.5000%  
300mV  
NEGATIVE GAIN PROGRAMMED IN  
CASE B  
DAC OUTPUT LEVEL REGISTERS,  
SUBADDRESS 0x0A, 0x0B  
700mV  
GAMMA CORRECTION  
[Subaddresses 0x24 to 0x37 for HD,  
Subaddresses 0x66 to 0x79 for SD]  
Gamma correction is available for SD and HD video. For each  
standard, there are twenty 8-bit-wide registers. They are used to  
program the Gamma Correction Curves A and B. HD Gamma  
Curve A is programmed at Addresses 0x24 to 0x2D, and HD  
Gamma Curve B is programmed at 0x2E to 0x7. SD Gamma  
Curve A is programmed at Addresses 0x66 to 0x6F, and SD  
Gamma Curve B is programmed at Addresses 0x70 to 0x79.  
300mV  
Figure 70. Programmable DAC Gain—Positive and Negative Gain  
In case A, the video output signal is gained. The absolute level  
of the sync tip and blanking level both increase with respect to  
the reference video output signal. The overall gain of the signal  
is increased from the reference signal.  
Generally gamma correction is applied to compensate for the  
nonlinear relationship between signal input and brightness level  
output (as perceived on the CRT). It can also be applied  
wherever nonlinear processing is used.  
In case B, the video output signal is reduced. The absolute level  
of the sync tip and blanking level both decrease with respect to  
the reference video output signal. The overall gain of the signal  
is reduced from the reference signal.  
Gamma correction uses the function  
γ
SignalOUT  
=
(
SignalIN  
)
where γ = gamma power factor.  
The range of this feature is specified for 7.5% of the nominal  
output from the DACs. For example, if the output current of the  
DAC is 4.33 mA, the DAC tune feature can change this output  
current from 4.008 mA (−7.5%) to 4.658 mA (+7.5%).  
Gamma correction is performed on the luma data only. The  
user may choose either of two curves, Curve A or Curve B. At  
any one time, only one of these curves can be used.  
The reset value of the vid_out_ctrl registers is 0x00; therefore,  
nominal DAC current is output. The following table is an  
example of how the output current of the DACs varies for a  
nominal 4.33 mA output current.  
The response of the curve is programmed at 10 predefined  
locations. In changing the values at these locations, the gamma  
curve can be modified. Between these points, linear interpolation  
is used to generate intermediate values. Considering the curve  
to have a total length of 256 points, the 10 locations are at 24,  
32, 48, 64, 80, 96, 128, 160, 192, and 224. Locations 0, 16, 240,  
and 255 are fixed and cannot be changed.  
Rev. 0 | Page 53 of 88  
ADV7320/ADV7321  
GAMMA CORRECTION BLOCK OUTPUT TO A RAMP INPUT  
For the length of 16 to 240, the gamma correction curve has to  
be calculated as follows:  
300  
250  
y = xγ  
SIGNAL OUTPUT  
0.5  
where:  
200  
150  
100  
50  
y = gamma corrected output  
x = linear input signal  
γ = gamma power factor  
To program the gamma correction registers, calculate the seven  
values for y using the following formula:  
SIGNAL INPUT  
x(n16)  
yn =  
γ ×(240 16) + 16  
0
(240 16)  
0
50  
100  
150  
LOCATION  
200  
250  
where:  
(n − 16) = Value for x along x axis at points  
Figure 71. Signal Input (Ramp) and Signal Output for Gamma 0.5  
x
n = 24, 32, 48, 64, 80, 96, 128, 160, 192, or 224  
yn = value for y along the y axis, which must be written into the  
gamma correction register  
GAMMA CORRECTION BLOCK TO A RAMP INPUT FOR  
VARIOUS GAMMA VALUES  
300  
For example,  
250  
y24 = [(8/224)0.5 × 224] + 16 = 58  
y32 = [(16/224)0.5 × 224] + 16 = 76  
y48 = [(32/224)0.5 × 224] + 16 = 101  
y64 = [(48/224)0.5 × 224] + 16 = 120  
y80 = [(64/224)0.5 × 224] + 16 = 136  
y96 = [(80/224)0.5 × 224] + 16 = 150  
0.3  
200  
0.5  
150  
1.5  
100  
1.8  
50  
0
0
50  
100  
150  
LOCATION  
200  
250  
y
y
y
y
128 = [(112/224)0.5 × 224] + 16 = 174  
160 = [(144/224)0.5 × 224] + 16 = 195  
192 = [(176/224)0.5 × 224] + 16 = 214  
224 = [(208/224)0.5 × 224] + 16 = 232  
Figure 72. Signal Input (Ramp) and Selectable Output Curves  
where the sum of each equation is rounded to the nearest  
integer.  
The gamma curves in Figure 71 and Figure 72 are examples only;  
any user-defined curve is acceptable in the range of 16 to 240.  
Rev. 0 | Page 54 of 88  
 
 
ADV7320/ADV7321  
The derivative of the incoming signal is compared to the three  
programmable threshold values: HD Adaptive Filter Threshold  
A, B, and C. The recommended threshold range is from 16 to  
235, although any value in the range of 0 to 255 can be used.  
HD SHARPNESS FILTER AND ADAPTIVE FILTER  
CONTROLS  
[Subaddresses 0x20, 0x38 to 0x3D]  
There are three filter modes available on the ADV7320/  
ADV7321: sharpness filter mode and two adaptive filter modes.  
The edges can then be attenuated with the settings in HD  
adaptive filter gain 1, 2, and 3 registers, and HD sharpness filter  
gain register.  
HD Sharpness Filter Mode  
To enhance or attenuate the Y signal in the frequency ranges  
shown in Figure 73, the HD sharpness filter must be enabled  
and the HD adaptive filter enable must be disabled.  
According to the settings of the HD adaptive filter mode  
control, there are two adaptive filter modes available:  
1. Mode A is used when adaptive filter mode is set to 0.  
In this case, Filter B (LPF) will be used in the adaptive  
filter block. Also, only the programmed values for  
Gain B in the HD sharpness filter gain and HD  
Adaptive Filter Gain 1, 2, and 3 are applied when  
needed. The Gain A values are fixed and cannot be  
changed.  
To select one of the 256 individual responses, the corresponding  
gain values, which range from –8 to +7, for each filter must be  
programmed into the HD sharpness filter gain register at  
Address 0x20.  
HD Adaptive Filter Mode  
The HD adaptive filter threshold A, B, and C registers, the HD  
adaptive filter gain 1, 2, and 3 registers, and the HD sharpness  
gain register are used in adaptive filter mode. To activate the  
adaptive filter control, the HD sharpness filter and the HD  
adaptive filter must be enabled.  
2. Mode B is used when adaptive filter mode is set to 1.  
In this mode, a cascade of Filter A and Filter B is used.  
Both settings for Gain A and Gain B in the HD  
sharpness filter gain and HD Adaptive Filter Gain 1, 2,  
and 3 become active when needed.  
SHARPNESS AND ADAPTIVE FILTER CONTROL BLOCK  
1.5  
1.4  
1.5  
1.6  
1.5  
1.4  
1.4  
1.3  
1.2  
1.1  
1.0  
1.3  
1.2  
1.1  
1.0  
INPUT  
SIGNAL:  
STEP  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.9  
0.8  
0.7  
0.6  
0.5  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FILTER A RESPONSE (Gain Ka)  
FREQUENCY (MHz)  
FILTER B RESPONSE (Gain Kb)  
FREQUENCY (MHz)  
FREQUENCY RESPONSE IN SHARPNESS  
FILTER MODE WITH Ka = 3 AND Kb = 7  
Figure 73. Sharpness and Adaptive Filter Control Block  
Rev. 0 | Page 55 of 88  
 
ADV7320/ADV7321  
HD SHARPNESS FILTER AND ADAPTIVE FILTER  
APPLICATION EXAMPLES  
HD Sharpness Filter Application  
The HD sharpness filter can be used to enhance or attenuate the  
Y video output signal. The following register settings were used  
to achieve the results shown in Figure 74. Input data was  
generated by an external signal source.  
Table 34. Sharpness Control  
Address  
0x00  
0x01  
0x02  
0x10  
0x11  
0x20  
0x20  
0x20  
0x20  
0x20  
0x20  
Register Setting  
Reference1  
0xFC  
0x10  
0x20  
0x00  
0x81  
0x00  
0x08  
0x04  
a
b
c
d
e
f
0x40  
0x80  
0x22  
1 See Figure 74.  
d
e
a
b
R2  
R4  
1
R1  
c
f
1
R2  
CH1 500mV  
REF A  
M 4.00µs  
1 9.99978ms  
CH1  
ALL FIELDS  
CH1 500mV  
M 4.00µs  
1 9.99978ms  
CH1  
ALL FIELDS  
500mV 4.00µs  
REF A  
500mV 4.00µs  
Figure 74. HD Sharpness Filter Control with Different Gain Settings for HS Sharpness Filter Gain Values  
Rev. 0 | Page 56 of 88  
 
ADV7320/ADV7321  
When changing the adaptive filter mode to Mode B  
Adaptive Filter Control Application  
[Address 0x15, Bit 6], the output shown in Figure 77 can be  
obtained.  
Figure 75 and Figure 76 show typical signals to be processed by  
the adaptive filter control block.  
Figure 77. Output Signal from Adaptive Filter Control  
Figure 75. Input Signal to Adaptive Filter Control  
SD DIGITAL NOISE REDUCTION  
[Subaddresses 0x63, 0x64, 0x65]  
DNR is applied to the Y data only. A filter block selects the high  
frequency, low amplitude components of the incoming signal  
(DNR input select). The absolute value of the filter output is  
compared to a programmable threshold value (DNR threshold  
control). There are two DNR modes available: DNR mode and  
DNR sharpness mode.  
In DNR mode, if the absolute value of the filter output is  
smaller than the threshold, it is assumed to be noise. A  
programmable amount (coring gain border, coring gain data) of  
this noise signal will be subtracted from the original signal. In  
DNR sharpness mode, if the absolute value of the filter output is  
less than the programmed threshold, it is assumed to be noise,  
as before. Otherwise, if the level exceeds the threshold, now  
being identified as a valid signal, a fraction of the signal (coring  
gain border, coring gain data) will be added to the original  
signal to boost high frequency components and sharpen the  
video image.  
Figure 76. Output Signal after Adaptive Filter Control  
The register settings in Table 35 were used to obtain the results  
shown in Figure 76, i.e., to remove the ringing on the Y signal.  
Input data was generated by an external signal source.  
Table 35. Register Settings for Figure 76  
Address  
0x00  
0x01  
0x02  
0x10  
0x11  
0x15  
0x20  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
Register Setting  
0xFC  
0x38  
0x20  
0x00  
0x81  
0x80  
0x00  
0xAC  
0x9A  
0x88  
0x28  
0x3F  
In MPEG systems, it is common to process the video  
information in blocks of 8 pixels × 8 pixels for MPEG2 systems,  
or 16 pixels × 16 pixels for MPEG1 systems (block size control).  
DNR can be applied to the resulting block transition areas that  
are known to contain noise. Generally, the block transition area  
contains two pixels. It is possible to define this area to contain  
four pixels (border area).  
It is also possible to compensate for variable block positioning  
or differences in YCrCb pixel timing with the use of the DNR  
block offset.  
0x64  
The digital noise reduction registers are three 8-bit registers.  
They are used to control the DNR processing.  
Rev. 0 | Page 57 of 88  
 
 
 
 
ADV7320/ADV7321  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
output, which lies above the threshold range. The result is  
added to the original signal.  
DNR MODE  
DNR CONTROL  
BLOCK SIZE CONTROL  
BORDER AREA  
BLOCK OFFSET  
GAIN  
CORING GAIN DATA  
CORING GAIN BORDER  
APPLY DATA  
APPLY BORDER  
CORING GAIN CORING GAIN  
NOISE  
SIGNAL PATH  
INPUT FILTER  
BLOCK  
O X X X X X X O O X X X X X X O  
OFFSET CAUSED  
BY VARIATIONS IN  
INPUT TIMING  
FILTER  
SUBTRACT SIGNAL  
IN THRESHOLD  
RANGE FROM  
OUTPUT  
O X X X X X X O O X X X X X X O  
Y DATA  
INPUT  
< THRESHOLD?  
ORIGINAL SIGNAL  
DNR27 – DNR24 = 0x01 O X X X X X X O O X X X X X X O  
FILTER OUTPUT  
> THRESHOLD  
+
DNR OUT  
MAIN SIGNAL PATH  
Figure 79. DNR Offset Control  
DNR THRESHOLD  
DNR  
SHARPNESS  
MODE  
DNR CONTROL  
[Address 0x64, Bits 5 to 0]  
BLOCK SIZE CONTROL  
BORDER AREA  
BLOCK OFFSET  
These six bits are used to define the threshold value in the range  
of 0 to 63. The range is an absolute value.  
GAIN  
CORING GAIN DATA  
CORING GAIN BORDER  
NOISE  
SIGNAL PATH  
BORDER AREA  
INPUT FILTER  
BLOCK  
[Address 0x64, Bit 6]  
FILTER  
ADD SIGNAL  
ABOVE  
THRESHOLD  
RANGE FROM  
ORIGINAL SIGNAL  
OUTPUT  
When this bit is set to Logic 1, the block transition area can be  
defined to consist of four pixels. If this bit is set to Logic 0, the  
border transition area consists of two pixels, where one pixel  
refers to two clock cycles at 27 MHz.  
Y DATA  
INPUT  
> THRESHOLD?  
+
FILTER OUTPUT  
< THRESHOLD  
+
DNR OUT  
MAIN SIGNAL PATH  
720 × 485 PIXELS  
2-PIXEL  
BORDER  
(NTSC)  
Figure 78. DNR Block Diagram  
DATA  
CORING GAIN BORDER  
[Address 0x63, Bits 3 to 0]  
These four bits are assigned to the gain factor applied to border  
areas. In DNR mode, the range of gain values is 0 to 1 in  
increments of 1/8. This factor is applied to the DNR filter  
output, which lies below the set threshold range. The result is  
then subtracted from the original signal.  
8 × 8 PIXEL BLOCK  
8 × 8 PIXEL BLOCK  
Figure 80. DNR Border Area  
BLOCK SIZE CONTROL  
In DNR sharpness mode, the range of gain values is 0 to 0.5 in  
increments of 1/16. This factor is applied to the DNR filter  
output, which lies above the threshold range. The result is  
added to the original signal.  
[Address 0x64, Bit 7]  
This bit is used to select the size of the data blocks to be  
processed. Setting the block size control function to Logic 1  
defines a 16 pixel × 16 pixel data block, and Logic 0 defines an  
8 pixel × 8 pixel data block, where one pixel refers to two clock  
cycles at 27 MHz.  
CORING GAIN DATA  
[Address 0x63, Bits 7 to 4]  
These four bits are assigned to the gain factor applied to the luma  
data inside the MPEG pixel block. In DNR mode, the range of  
gain values is 0 to 1 in increments of 1/8. This factor is applied  
to the DNR filter output, which lies below the set threshold  
range. The result is then subtracted from the original signal.  
DNR INPUT SELECT CONTROL  
[Address 0x65, Bits 2 to 0]  
Three bits are assigned to select the filter, which is applied to the  
incoming Y data. The signal that lies in the pass band of the  
selected filter is the signal that will be DNR processed. Figure 81  
shows the filter responses selectable with this control.  
Rev. 0 | Page 58 of 88  
ADV7320/ADV7321  
original signal, since this data is assumed to be valid data and  
not noise. The overall effect is that the signal will be boosted  
(similar to using Extended SSAF filter).  
1.0  
0.8  
0.6  
0.4  
0.2  
0
FILTER D  
FILTER C  
BLOCK OFFSET CONTROL  
[Address 0x65, Bits 7 to 4]  
Four bits are assigned to this control, which allows a shift of the  
data block of 15 pixels maximum. Consider the coring gain  
positions fixed. The block offset shifts the data in steps of one  
pixel such that the border coring gain factors can be applied at the  
same position regardless of variations in input timing of the data.  
FILTER B  
FILTER A  
1
2
3
0
4
5
6
SD ACTIVE VIDEO EDGE  
FREQUENCY (Hz)  
[Subaddress 0x42, Bit 7]  
Figure 81. DNR Input Select  
DNR MODE CONTROL  
When the active video edge feature is enabled, the first three  
pixels and the last three pixels of the active video on the luma  
channel are scaled so that maximum transitions on these pixels  
are not possible. The scaling factors are ×1/8, ×1/2, and ×7/8.  
All other active video passes through unprocessed.  
[Address 0x65, Bit 4]  
This bit controls the DNR mode selected. Logic 0 selects DNR  
mode; Logic 1 selects DNR sharpness mode.  
DNR works on the principle of defining low amplitude, high  
frequency signals as probable noise and subtracting this noise  
from the original signal.  
SAV/EAV STEP EDGE CONTROL  
The ADV7320/ADV7321 have the capability of controlling fast  
rising and falling signals at the start and end of active video to  
minimize ringing.  
In DNR mode, it is possible to subtract a fraction of the signal  
that lies below the set threshold, assumed to be noise, from the  
original signal. The threshold is set in DNR Register 1.  
An algorithm monitors SAV and EAV and determines when the  
edges are rising or falling too fast. The result is reduced ringing  
at the start and end of active video for fast transitions.  
Subaddress 0x42, Bit 7 = 1, enables this feature.  
When DNR sharpness mode is enabled, it is possible to add a  
fraction of the signal that lies above the set threshold to the  
LUMA CHANNEL WITH  
ACTIVE VIDEO EDGE  
DISABLED  
LUMA CHANNEL WITH  
ACTIVE VIDEO EDGE  
ENABLED  
100 IRE  
0 IRE  
100 IRE  
87.5 IRE  
50 IRE  
12.5 IRE  
0 IRE  
Figure 82. Example of Active Video Edge Functionality  
Rev. 0 | Page 59 of 88  
ADV7320/ADV7321  
VOLTS  
IRE:FLT  
100  
0.5  
50  
0
0
F2  
L135  
–50  
2
0
4
6
8
10  
12  
Figure 83. Address 0x42, Bit 7 = 0  
VOLTS  
IRE:FLT  
100  
0.5  
50  
0
0
F2  
L135  
–50  
0
–2  
2
4
6
8
10  
12  
Figure 84. Address 0x42, Bit 7 = 1  
Rev. 0 | Page 60 of 88  
ADV7320/ADV7321  
/
OUTPUT CONTROL  
HSYNC VSYNC  
The ADV7320/21 has the ability to accept either embedded time codes in the input data, or external Hsync and Vsync signals on  
/
, outputting the respective signals on the  
and pins.  
P_HSYNC P_VSYNC  
P_HSYNC  
P_VSYNC  
Table 36. Hsync Output Control1  
HD/ED2  
Slave Mode  
(0x10, bit 2)  
HD/ED  
Sync Out Enable  
(0x02, Bit 7)  
SD  
I2C_HSYNC _gen_sel  
(0x14, Bit 1)  
Sync Out Enable  
(0x02, Bit 6)  
Signal on S_HSYNC Pin  
Duration  
x
x
0
0
0
1
x
x
Tristate  
Pipelined SD  
See Appendix  
5—SD Timing  
Modes  
HSYNC  
External  
1
x
0
Pipelined Ext HD/ED  
As per  
timing  
HSYNC  
/Field  
HSYNC  
HSYNC  
&
VSYNC  
Mode  
EAV/SAV Mode  
x
1
1
x
x
0
1
Pipelined HD/ED  
Same as line  
blanking interval  
HSYNC  
based on AV code H bit  
Pipelined HD/ED  
Same as  
embedded  
HSYNC  
HSYNC  
based on horizontal counter  
______________________________  
1
HSYNC  
HSYNC  
HSYNC  
pulse is aligned with the falling edge of the embedded in the output video.  
In all HD/ED standards where there is an  
2 ED = enhanced definition.  
o/p, the start of the  
Table 37.  
HD/ED2  
Output Control1  
HD/ED  
VSYNC  
SD  
I2C_VSYNC _gen_sel  
(0x14, Bit 2)  
Signal on  
S_VSYNC Pin  
Slave Mode  
(0x10, Bit 2)  
Sync out Enable Sync Out Enable  
Video  
Standard  
(0x02, Bit 7)  
(0x02, Bit 6)  
Duration  
x
x
0
0
0
1
x
x
x
Tristate  
Pipelined SD  
-
Interlaced  
See Appendix  
5—SD Timing  
Modes  
/ field  
VSYNC  
External  
1
x
0
x
Pipelined EXT  
HD/ED  
As per Ext  
VSYNC  
or field signal  
HSYNC  
/Field  
or  
VSYNC  
field signal  
&
VSYNC  
Mode  
EAV/SAV Mode  
1
1
x
x
0
0
All HD interlace  
standards  
External pipelined Field  
field signal based  
on AV code F bit  
EAV/SAV Mode  
All HD/ED  
progressive  
standards  
Pipelined  
based on AV code  
V bit  
Vertical blanking  
interval  
VSYNC  
x
x
1
1
x
x
1
1
All HD/ED stan-  
dards except  
525p  
External pipelined Aligned with  
HD/ED serration lines  
based on vertical  
counter  
VSYNC  
525p  
External pipelined Vertical blanking  
HD/ED  
interval  
VSYNC  
based on vertical  
counter  
1
HSYNC  
HSYNC  
HSYNC  
pulse is aligned with the falling edge of the embedded in the output video.  
In all HD/ED standards where there is an  
2 ED = enhanced definition.  
o/p, the start of the  
Rev. 0 | Page 61 of 88  
 
ADV7320/ADV7321  
BOARD DESIGN AND LAYOUT  
CIRCUIT FREQUENCY RESPONSE  
0
DAC TERMINATION AND LAYOUT  
CONSIDERATIONS  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
24n  
21n  
18n  
15n  
12n  
9n  
–30  
MAGNITUDE (dB)  
The ADV7320/ADV7321 contain an on-board voltage  
reference. The ADV7320/ADV7321 can be used with an  
external VREF (AD1580).  
–60  
–90  
–120  
–150  
–180  
–210  
–240  
The RSET resistors are connected between the RSET pins and  
AGND and are used to control the full-scale output current  
and, therefore, the DAC voltage output levels. For full-scale  
output, RSET must have a value of 3040 Ω. The RSET values should  
not be changed. RLOAD has a value of 300 Ω for full-scale output.  
PHASE (Degrees)  
GROUP DELAY (Seconds)  
6n  
3n  
0
VIDEO OUTPUT BUFFER AND OPTIONAL  
OUTPUT FILTER  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Output buffering on all six DACs is necessary to drive output  
devices, such as SD or HD monitors. Analog Devices produces  
a range of suitable op amps for this application, e.g., the  
AD8061. More information on line driver buffering circuits is  
given in the relevant op amps’ data sheets.  
Figure 86. Filter Plot for Output Filter for SD, 16× Oversampling  
4.7µH  
DAC  
OUTPUT  
3
4
75Ω  
BNC  
OUTPUT  
6.8pF  
6.8pF  
600Ω  
1
600  
An optional analog reconstruction low-pass filter (LPF) may be  
required as an anti-imaging filter if the ADV7320/ADV7321 are  
connected to devices that require this filtering.  
560  
560  
The filter specifications vary with the application.  
Figure 87. Example of Output Filter for PS, 8× Oversampling  
Table 38. External Filter Requirements  
DAC  
OUTPUT  
Cutoff  
Frequency  
Application Oversampling (MHz)  
Attenuation  
–50 dB @  
(MHz)  
3
470nH 220nH  
75Ω  
BNC  
OUTPUT  
1
3
4
300Ω  
SD  
SD  
PS  
PS  
HDTV  
HDTV  
2×  
16×  
1×  
8×  
1×  
2×  
>6.5  
>6.5  
>12.5  
>12.5  
>30  
20.5  
209.5  
14.5  
203.5  
44.25  
118.5  
75Ω  
1
33pF  
82pF  
4
500Ω  
500Ω  
>30  
Figure 88. Example of Output Filter for HDTV, 2× Oversampling  
10µH  
DAC  
OUTPUT  
3
Table 39. Possible Output Rates  
from the ADV7320/ADV7321  
75Ω  
BNC  
OUTPUT  
600  
22pF  
600Ω  
1
Input Mode Address  
0x01, Bits 6 to 4  
PLL Address  
0x00, Bit 1  
Output Rate  
(MHz)  
4
560  
SD Only  
Off  
27 (2×)  
560  
On  
Off  
216 (16×)  
27 (1×)  
PS Only  
Figure 85. Example of Output Filter for SD, 16× Oversampling  
On  
216 (8×)  
HDTV Only  
Off On  
74.25 (1×)  
148.5 (2×)  
Rev. 0 | Page 62 of 88  
ADV7320/ADV7321  
CIRCUIT FREQUENCY RESPONSE  
There should be a separate analog ground plane and a separate  
digital ground plane.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
480  
400  
320  
240  
160  
80  
18n  
16n  
MAGNITUDE (dB)  
Power planes should encompass a digital power plane and an  
analog power plane. The analog power plane should contain the  
DACs and all associated circuitry, VREF circuitry. The digital  
power plane should contain all logic circuitry.  
14n  
PHASE  
(Degrees)  
12n  
10n  
8n  
GROUP DELAY (Seconds)  
The analog and digital power planes should be individually  
connected to the common power plane at a single point  
through a suitable filtering device, such as a ferrite bead.  
0
6n  
–80  
–160  
–240  
4n  
DAC output traces on a PCB should be treated as transmission  
lines. It is recommended that the DACs be placed as close as  
possible to the output connector, with the analog output traces  
being as short as possible (less than 3 inches). The DAC termi-  
nation resistors should be placed as close as possible to the DAC  
outputs and should overlay the PCB’s ground plane. As well as  
minimizing reflections, short analog output traces will reduce  
noise pickup due to neighboring digital circuitry.  
2n  
0
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 89. Filter Plot for Output Filter for PS, 8× Oversampling  
CIRCUIT FREQUENCY RESPONSE  
480  
0
–10  
–20  
–30  
–40  
–50  
–60  
18n  
15n  
12n  
9n  
360  
240  
120  
0
MAGNITUDE (dB)  
To avoid crosstalk between the DAC outputs, it is recom-  
mended that as much space as possible be left between the  
tracks of the individual DAC output pins. The addition of  
ground tracks between outputs is also recommended.  
GROUP DELAY (Seconds)  
Supply Decoupling  
Noise on the analog power plane can be further reduced by the  
use of decoupling capacitors.  
6n  
PHASE (Degrees)  
–120  
3n  
Optimum performance is achieved by the use of 10 nF and  
0.1 µF ceramic capacitors. Each group of VAA, VDD, or VDD_IO  
pins should be individually decoupled to ground. This should  
be done by placing the capacitors as close as possible to the  
device with the capacitor leads as short as possible, thus  
minimizing lead inductance.  
–240  
0
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 90. Filter Plot for Output Filter for HDTV, 2× Oversampling  
PCB BOARD LAYOUT  
A 1 µF tantalum capacitor is recommended across the VAA  
supply in addition to 10 nF ceramic. See the circuit layout in  
Figure 91.  
The ADV7320/ADV7321 are optimally designed for lowest  
noise performance of both radiated and conducted noise. To  
complement the excellent noise performance of the ADV7320/  
ADV7321, it is imperative that great care be given to the PC  
board layout.  
Digital Signal Interconnect  
The digital signal lines should be isolated as much as possible  
from the analog outputs and other analog circuitry. Digital  
signal lines should not overlay the analog power plane.  
The layout should be optimized for lowest noise on the  
ADV7320/ ADV7321 power and ground lines. This can be  
achieved by shielding the digital inputs and providing good  
decoupling. The lead length between groups of VAA and AGND,  
VDD and DGND, and VDD_IO and GND_IO pins should be kept  
as short as possible to minimized inductive ringing.  
Due to the high clock rates used, avoid long clock lines to the  
ADV7320/ADV7321 to minimize noise pickup.  
Any active pull-up termination resistors for the digital inputs  
should be connected to the digital power plane and not the  
analog power plane.  
It is recommended that a 4-layer printed circuit board is used,  
with power and ground planes separating the layer of the signal  
carrying traces of the components and solder side layer. Com-  
ponent placement should be carefully considered in order to  
separate noisy circuits, such as crystal clocks, high speed logic  
circuitry, and analog circuitry.  
Analog Signal Interconnect  
Locate the ADV7320/ADV7321 as close as possible to the  
output connectors to minimize noise pickup and reflections due  
to impedance mismatch.  
Rev. 0 | Page 63 of 88  
ADV7320/ADV7321  
For optimum performance, the analog outputs should each be  
source- and load-terminated, as shown in Figure 91. The  
termination resistors should be as close as possible to the  
ADV7320/ADV7321 to minimize reflections.  
For optimum performance, it is recommended that all  
decoupling and external components relating to the  
ADV7320/ADV7321 are located on the same side of the PCB  
and as close as possible to the ADV7320/ADV7321. Any  
unused inputs should be tied to ground.  
POWER SUPPLY DECOUPLING  
FOR EACH POWER SUPPLY GROUP  
V
V
V
AA  
+
V
V
10nF  
10nF  
1µF  
AA AA  
0.1  
µF  
0.1µF  
DD  
0.1  
0.1  
µ
µ
F
F
V
DD_IO  
10, 56  
V
V
AA  
DD_IO  
5kΩ  
45  
36  
41  
1
10nF  
1.1k  
COMP1, 2  
V
V
DD  
AA  
DD_IO  
2
19  
I C  
46  
44  
V
REF  
ADV7320/  
ADV7321  
RECOMMENDED EXTERNAL  
AD1580 FOR OPTIMUM  
PERFORMANCE  
100nF  
S0–S9  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
300  
300  
300  
300  
300  
300  
50  
49  
S_HSYNC  
S_VSYNC  
43  
42  
39  
38  
37  
48 S_BLANK  
C0–C9  
UNUSED  
INPUTS  
SHOULD BE  
GROUNDED  
Y0–Y9  
63  
23  
CLKIN_B  
P_HSYNC  
V
24 P_VSYNC  
25 P_BLANK  
AA  
+
4.7k  
V
V
DD_IO  
5k  
DD_IO  
33  
32  
RESET  
5kΩ  
100  
100  
2
I C BUS  
22  
21  
SCLK  
SDA  
4.7µF  
CLKIN_A  
V
AA  
820pF  
34  
EXT_LF  
V
DD_IO  
20  
35  
ALSB  
5k  
R
SET2  
680Ω  
3.9nF  
SELECTION HERE  
DETERMINES  
DEVICE ADDRESS  
3040Ω  
47  
R
SET1  
GND_ IO  
64  
AGND DGND  
40  
3040Ω  
11, 57  
ALL COMPONENTS IN DASHED BOXES MUST BE LOCATED ON THE SAME SIDE  
OF THE PCB AS THE ADV7320/21 AND AS CLOSE AS POSSIBLE TO THE ADV7320/21.  
Figure 91. ADV7320/ADV7321 Circuit Layout  
Rev. 0 | Page 64 of 88  
 
ADV7320/ADV7321  
APPENDIX 1—COPY GENERATION MANAGEMENT SYSTEM  
PS CGMS  
FUNCTION OF CGMS BITS  
Data Registers 2 to 0  
For Word 0 to 6 bits, Word 1 to 4 bits, and Word 2 to 6 bits CRC  
6 bits,  
[Subaddresses 0x21, 0x22, 0x23]  
CRC Polynomial = x6 + x + 1  
525p  
Using the vertical blanking interval 525p system, 525p CGMS  
conforms to the CGMS-A EIA-J CPR1204-1 (March 1998)  
transfer method of video identification information and to the  
IEC61880 (1998) 525p/60 video systems analog interface for the  
video and accompanying data.  
where default is preset to 111111.  
720p System  
CGMS data is applied to Line 24 of the luminance vertical  
blanking interval.  
1080i System  
When PS CGMS is enabled [Subaddress 0x12, Bit 6 = 1], CGMS  
data is inserted on Line 41. The 525p CGMS data registers are at  
Addresses 0x21, 0x22, and 0x23.  
CGMS data is applied to Line 19 and Line 582 of the luminance  
vertical blanking interval.  
CGMS FUNCTIONALITY  
625p  
If SD CGMS CRC [Address 0x59, Bit 4] or PS/HD CGMS CRC  
[Subaddress 0x12, Bit 7] is set to Logic 1, the last six bits, C19 to  
C14, which comprise the 6-bit CRC check sequence, are  
automatically calculated on the ADV7320/ADV7321. This  
calculation is based on the lower 14 bits (C0 to C13) of the data  
in the data registers and output with the remaining 14 bits to  
form the complete 20 bits of the CGMS data. The calculation of  
the CRC sequence is based on the polynomial ×6 + x + 1 with a  
preset value of 111111. If SD CGMS CRC [Address 0x59, Bit 4]  
and PS/HD CGMS CRC [Address 0x12, Bit 7] are set to Logic 0,  
all 20 bits (C0 to C19) are output directly from the CGMS  
registers (CRC must be calculated by the user manually).  
The 625p CGMS conforms to the IEC62375 (2004) 625p/50  
video system’s analog interface for the video and accompanying  
data using the vertical blanking interval.  
When PS CGMS is enabled [Subaddress 0x12, Bit 6 = 1], CGMS  
data is inserted on Line 43. The 625p CGMS data registers are at  
Addresses 0x22, and 0x23.  
HD CGMS  
[Address 0x12, Bit 6]  
The ADV7320/ADV7321 support copy generation management  
system (CGMS) in HDTV mode (720p and 1080i) in  
accordance with EIAJ CPR-1204-2.  
The HD CGMS data registers are found at Addresses 0x021,  
0x22, and 0x23.  
SD CGMS  
Data Registers 2 to 0  
[Subaddresses 0x59, 0x5A, 0x5B]  
The ADV7320/ADV7321 support copy generation management  
system (CGMS), conforming to the EIAJ CPR-1204 and ARIB  
TR-B15 standards. CGMS data is transmitted on Line 20 of the  
odd fields and Line 283 of even fields. Bits C/W05 and C/W06  
control whether CGMS data is output on odd and even fields.  
CGMS data can be transmitted only when the  
ADV7320/ADV7321 is configured in NTSC mode. The CGMS  
data is 20 bits long. The CGMS data is preceded by a reference  
pulse of the same amplitude and duration as a CGMS bit; see  
Figure 94.  
Rev. 0 | Page 65 of 88  
ADV7320/ADV7321  
CRC SEQUENCE  
+700mV  
REF  
70% ± 10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
–300mV  
21.2µs ± 0.22µs  
22T  
5.8µs ± 0.15µs  
6T  
T = 1/(fH × 33) = 963ns  
fH = HORIZONTAL SCAN FREQUENCY  
T ± 30ns  
Figure 92. Progressive Scan 525p CGMS Waveform (Line 41)  
R = RUN-IN  
S = START CODE  
PEAK WHITE  
C0  
LSB  
C13  
MSB  
R
S
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12  
500mV ± 25mV  
SYNC LEVEL  
13.7µs  
5.5µs ± 0.125µs  
Figure 93. Progressive Scan 625p CGMS-A Waveform (Line 43)  
+100 IRE  
+70 IRE  
CRC SEQUENCE  
REF  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0 IRE  
–40 IRE  
49.1µs ± 0.5µs  
11.2µs  
2.235µs ± 20ns  
Figure 94. Standard Definition CGMS Waveform  
Rev. 0 | Page 66 of 88  
ADV7320/ADV7321  
CRC SEQUENCE  
+700mV  
REF  
70%  
±
10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
T
± 30ns  
–300mV  
17.2µ  
s
±
160ns  
4T  
22T  
3.128  
µ
s
±
90ns  
T = 1/(fH  
× 1650/58) = 781.93ns  
fH = HORIZONTAL SCAN FREQUENCY  
1H  
Figure 95. HDTV 720p CGMS Waveform  
CRC SEQUENCE  
+700mV  
REF  
70%  
±
10%  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0mV  
T
± 30ns  
–300mV  
22.84  
µ
s
±
210ns  
4T  
22T  
4.15µs ± 60ns  
T = 1/(f  
×
2200/77) = 1.038  
µs  
H
f
= HORIZONTAL SCAN FREQUENCY  
H
1H  
Figure 96. HDTV 1080i CGMS Waveform  
Rev. 0 | Page 67 of 88  
ADV7320/ADV7321  
APPENDIX 2—SD WIDE SCREEN SIGNALING  
The WSS data is preceded by a run-in sequence and a start  
code; see Figure 97. If SD WSS [Address 0x59, Bit 7] is set to  
Logic 1, it enables the WSS data to be transmitted on Line 23.  
The latter portion of Line 23 (42.5 s from the falling edge of  
[Subaddresses 0x59, 0x5A, 0x5B]  
The ADV7320/ADV7321 support wide screen signaling (WSS)  
conforming to the ETS 300 294 standard. WSS data is  
transmitted on Line 23. WSS data can be transmitted only when  
the device is configured in PAL mode. The WSS data is 14 bits  
long, and the function of each of these bits is shown in Table 40.  
) is available for the insertion of video. It is possible to  
blank the WSS portion of Line 23 with Subaddress 0x61, Bit 7.  
HSYNC  
Table 40. Function of WSS Bits  
Bit  
Description  
Bit 0 to Bit 2  
Aspect Ratio/Format/Position  
Bit 3  
B0  
0
1
0
1
0
1
0
Odd Parity Check of Bit 0 to Bit 2  
B1  
0
0
1
1
0
0
1
1
B2  
0
0
0
0
1
1
1
1
B3  
1
0
0
1
0
1
1
0
Aspect Ratio  
4:3  
14:9  
14:9  
16:9  
16:9  
>16:9  
14:9  
Format  
Position  
N/A  
Center  
Top  
Center  
Top  
Center  
Center  
N/A  
Full Format  
Letterbox  
Letterbox  
Letterbox  
Letterbox  
Letterbox  
Full Format  
N/A  
1
16:9  
1
1
1
0
16:9  
B4  
0
1
Camera Mode  
Film Mode  
B5  
0
Standard Coding  
1
Motion Adaptive Color Plus  
B6  
0
No Helper  
1
Modulated Helper  
Reserved  
B7  
B9  
0
B10  
0
No Open Subtitles  
1
0
1
0
1
1
Subtitles in Active Image Area  
Subtitles out of Active Image Area  
Reserved  
B11  
0
1
No Surround Sound Information  
Surround Sound Mode  
Reserved  
B12  
B13  
Reserved  
500mV  
RUN-IN  
SEQUENCE  
ACTIVE  
VIDEO  
START  
CODE  
W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13  
11.0µs  
38.4µs  
42.5µs  
Figure 97. WSS Waveform Diagram  
Rev. 0 | Page 68 of 88  
 
 
ADV7320/ADV7321  
APPENDIX 3—SD CLOSED CAPTIONING  
[Subaddresses 0x51 to 0x54]  
FCC Code of Federal Regulations (CFR) 47 section 15.119 and  
EIA608 describe the closed captioning information for Line 21  
and Line 284.  
The ADV7320/ADV7321 support closed captioning conforming  
to the standard television synchronizing waveform for color  
transmission. Closed captioning is transmitted during the  
blanked active line time of Line 21 of the odd fields and Line  
284 of the even fields.  
The ADV7320/ADV7321 use a single buffering method. This  
means that the closed captioning buffer is only 1 byte deep;  
therefore, there will be no frame delay in outputting the closed  
captioning data, unlike other 2-byte-deep buffering systems.  
The data must be loaded one line before it is output on Line 21  
and Line 284. A typical implementation of this method is to use  
Closed captioning consists of a 7-cycle sinusoidal burst that is  
frequency and phase locked to the caption data. After the clock  
run-in signal, the blanking level is held for two data bits and is  
followed by Logic 1 start bit. Sixteen bits of data follow the start  
bit. These consist of two 8-bit bytes, seven data bits, and one  
odd parity bit. The data for these bytes is stored in the SD  
closed captioning registers [Addresses 0x53 to 0x54].  
to interrupt a microprocessor, which in turn will load  
VSYNC  
the new data (2 bytes) in every field. If no new data is required  
for transmission, 0s must be inserted in both data registers; this  
is called nulling. It is also important to load control codes, all of  
which are double bytes, on Line 21, or a TV will not recognize  
them. If there is a message such as “Hello World” that has an  
odd number of characters, it is important to add a blank  
character at the end so that the end-of-caption, 2-byte control  
code lands in the same field.  
The ADV7320/ADV7321 also support the extended closed  
captioning operation, which is active during even fields and  
encoded on Scan Line 284. The data for this operation is stored  
in the SD closed captioning registers [Addresses 0x51 to 0x52].  
All clock run-in signals and timing to support closed captioning  
on Lines 21 and 284 are generated automatically by the  
ADV7320/ ADV7321. All pixels inputs are ignored during  
Lines 21 and 284 if closed captioning is enabled.  
10.5  
±
0.25µ  
s
12.91µs  
7 CYCLES OF  
0.5035MHz  
CLOCK RUN-IN  
TWO 7-BIT + PARITY  
ASCII CHARACTERS  
(DATA)  
P
A
R
I
T
Y
P
A
R
I
T
Y
S
T
A
R
T
D0–D6  
D0–D6  
50 IRE  
40 IRE  
BYTE 0  
BYTE 1  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003µs  
27.382  
µ
s
33.764µs  
Figure 98. Closed Captioning Waveform, NTSC  
Rev. 0 | Page 69 of 88  
ADV7320/ADV7321  
APPENDIX 4—TEST PATTERNS  
The ADV7320/ADV7321 can generate SD and HD test patterns.  
T
T
2
2
CH2 200mV  
M 10.0  
µ
s
A CH2 1.20V  
CH2 100mV  
M 10.0µs  
CH2  
EVEN  
T
30.6000µs  
T
1.82600ms  
Figure 99. NTSC Color Bars  
Figure 102. PAL Black Bar  
(–21 mV, 0 mV, 3.5 mV, 7 mV, 10.5 mV, 14 mV, 18 mV, 23 mV)  
T
T
2
2
CH2 200mV  
M 10.0µs  
A CH2 1.21V  
CH2 200mV  
M 4.0µs  
CH2  
EVEN  
T
30.6000µs  
T
1.82944ms  
Figure 103. 525p Hatch Pattern  
Figure 100. PAL Color Bars  
T
T
2
2
CH2 100mV  
M 10.0µs  
CH2  
EVEN  
CH2 200mV  
M 4.0µs  
CH2  
EVEN  
T
1.82380ms  
1.84208ms  
T
Figure 101. NTSC Black Bar  
(–21 mV, 0 mV, 3.5 mV, 7 mV, 10.5 mV, 14 mV,18 mV, 23 mV)  
Figure 104. 625p Hatch Pattern  
Rev. 0 | Page 70 of 88  
ADV7320/ADV7321  
T
T
2
2
CH2 200mV  
M 4.0µs  
CH2  
EVEN  
CH2 100mV  
M 4.0µs  
CH2  
EVEN  
T
1.82872ms  
T
1.82936ms  
Figure 107. 525p Black Bar  
(−35 mV, 0 mV, 7 mV, 14 mV, 21 mV, 28 mV, 35 mV)  
Figure 105. 525p Field Pattern  
T
T
2
2
CH2 100mV  
M 4.0  
µ
s
CH2  
EVEN  
CH2 200mV  
M 4.0µs  
CH2  
EVEN  
T
1.84176ms  
T
1.84176ms  
Figure 106. 625p Field Pattern  
Figure 108. 625p Black Bar  
(−35 mV, 0 mV, 7 mV, 14 mV, 21 mV, 28 mV, 5 mV)  
Rev. 0 | Page 71 of 88  
ADV7320/ADV7321  
The register settings in Table 41 are used to generate an SD  
NTSC CVBS output on DAC A, S-video on DACs B and C, and  
YPrPb on DACs D, E, and F. Upon power-up, the subcarrier  
registers are programmed with the appropriate values for  
NTSC. All other registers are set as normal/default.  
The register settings in Table 43 are used to generate a 525p  
hatch pattern on DAC D, E, and F. All other registers are set as  
normal/default.  
Table 43. 525p Test Pattern Register Writes.  
Subaddress  
Register Setting  
Table 41. NTSC Test Pattern Register Writes  
Ox00  
0xFC  
Subaddress  
Register Setting  
0x01  
0x10  
0x00  
0xFC  
0x10  
0x00  
0x40  
0x10  
0x11  
0x05  
0x42  
0x40  
0x16  
0xA0  
0x44  
0x4A  
0x40 (internal test pattern on)  
0x08  
0x17  
0x18  
0x80  
0x80  
For PAL CVBS output on DAC A, the same settings are used,  
except that Subaddress 0x40 is programmed to 0x11 and the FSC  
registers are programmed as shown in Table 42.  
For 625p hatch pattern on DAC D, the same register settings are  
used except that Subaddress 0x10 = 0x18.  
Table 42. PAL FSC Register Writes  
Subaddress  
Description  
Register Setting  
0x4C  
0x4D  
0x4E  
0x4F  
FSC0  
FSC1  
FSC2  
FSC3  
0xCB  
0x8A  
0x09  
0x2A  
Note that when programming the FSC registers, the user must  
write the values in the sequence FSC0, FSC1, FSC2, FSC3. The full  
FSC value to be written is only accepted after the FSC3 write is  
complete.  
Rev. 0 | Page 72 of 88  
 
 
 
ADV7320/ADV7321  
APPENDIX 5—SD TIMING MODES  
[Subaddress 0x4A]  
MODE 0 (CCIR-656)—SLAVE OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 0 0 0)  
The ADV7320/ADV7321 are controlled by the SAV (start active  
video) and EAV (end active video) time codes in the pixel data.  
All timing information is transmitted using a 4-byte  
synchronization pattern. A synchronization pattern is sent  
immediately before and after each line during active picture and  
retrace. If Pins  
,
, and  
are not  
S_VSYNC S_HSYNC  
S_BLANK  
used, they should be tied high during this mode. Blank output  
is available.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
r
C
b
8
0
0
0
F
F
F A A  
F B B  
A
B
8
0
0
0
C
b
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
1440 CLOCK  
1440 CLOCK  
268 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
280 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 109. SD Slave Mode 0  
Rev. 0 | Page 73 of 88  
ADV7320/ADV7321  
MODE 0 (CCIR-656)—MASTER OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 0 0 1)  
The ADV7320/ADV7321 generate H, V, and F signals required  
for the SAV (start active video) and EAV (end active video) time  
codes in the CCIR656 standard. The H bit is output on  
, the V bit is output on  
, and the F bit is  
S_HSYNC  
S_BLANK  
output on  
.
S_VSYNC  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
4
522  
523  
524  
525  
1
2
3
5
6
7
8
10  
11  
20  
21  
22  
9
H
V
ODD FIELD  
EVEN FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 110. SD Master Mode 0, NTSC  
Rev. 0 | Page 74 of 88  
ADV7320/ADV7321  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
4
22  
23  
1
2
3
5
6
7
21  
H
V
ODD FIELD  
EVEN FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
318  
334  
335  
336  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 111. SD Master Mode 0, PAL  
ANALOG  
VIDEO  
H
F
V
Figure 112. SD Master Mode 0, Data Transitions  
Rev. 0 | Page 75 of 88  
ADV7320/ADV7321  
MODE 1—SLAVE OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 0 1 0)  
In this mode, the ADV7320/ADV7321 accept horizontal sync  
and odd/even field signals. When  
is low, a transition of  
HSYNC  
the field input indicates a new frame, i.e., vertical retrace. The  
signal is optional. When the input is disabled,  
BLANK  
ADV7320/ADV7321 automatically blank all normally blank  
lines as per CCIR-624. , and FIELD are input  
BLANK  
,
HSYNC BLANK  
on  
,
, and  
.
S_VSYNC  
S_HSYNC S_BLANK  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
3
4
5
7
9
10  
11  
1
2
6
8
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 113. SD Slave Mode 1 (NTSC)  
Rev. 0 | Page 76 of 88  
ADV7320/ADV7321  
MODE 1—MASTER OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 0 1 1)  
In this mode, the ADV7320/ADV7321 can generate horizontal  
sync and odd/even field signals. When  
is low, a  
HSYNC  
transition of the field input indicates a new frame, i.e., vertical  
retrace. The signal is optional. When the input  
BLANK  
BLANK  
is disabled, ADV7320/ADV7321 automatically blank all  
normally blank lines as per CCIR-624. Pixel data is latched on  
the rising clock edge following the timing signal transitions.  
,
, and FIELD are output on  
,
HSYNC BLANK  
S_HSYNC  
, and  
.
S_BLANK  
S_VSYNC  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
3
4
5
7
622  
623  
624  
625  
1
2
6
21  
22  
23  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 114. SD Slave Mode 1 (PAL)  
HSYNC  
FIELD  
PAL = 12  
×
CLOCK/2  
NTSC = 16  
× CLOCK/2  
BLANK  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 132  
×
CLOCK/2  
NTSC = 122  
× CLOCK/2  
Figure 115. SD Timing Mode 1—Odd/Even Field Transitions Master/Slave  
Rev. 0 | Page 77 of 88  
ADV7320/ADV7321  
MODE 2— SLAVE OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 1 0 0)  
In this mode, the ADV7320/ADV7321 accept horizontal and  
vertical sync signals. A coincident low transition of both  
HSYNC  
inputs indicates the start of an odd field. A  
VSYNC  
and  
VSYNC  
low transition when  
is high indicates the start of an even  
HSYNC  
field. The  
signal is optional. When the  
input is  
BLANK  
BLANK  
disabled, ADV7320/ADV7321 automatically blank all normally  
blank lines as per CCIR-624. , and are  
,
HSYNC BLANK  
VSYNC  
, respectively.  
S_VSYNC  
S_HSYNC  
input on  
,
, and  
S_BLANK  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
3
4
5
7
8
20  
21  
22  
2
6
10  
11  
9
HSYNC  
BLANK  
VSYNC  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 116. SD Slave Mode 2 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
4
622  
623  
624  
625  
1
2
3
5
6
7
21  
22  
23  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 117. SD Slave Mode 2 (PAL)  
Rev. 0 | Page 78 of 88  
ADV7320/ADV7321  
MODE 2—MASTER OPTION  
(TIMING REGISTER 0 TR0 = X X X X X 1 0 1)  
In this mode, the ADV7320/ADV7321 can generate horizontal  
and vertical sync signals. A coincident low transition of both  
and  
inputs indicates the start of an odd field.  
HSYNC  
VSYNC  
A
low transition when  
is high indicates the  
VSYNC  
HSYNC  
start of an even field. The  
signal is optional. When the  
BLANK  
input is disabled, the ADV7320/ADV7321  
BLANK  
automatically blank all normally blank lines as per CCIR-624.  
, and are output on  
,
,
S_HSYNC  
HSYNC BLANK  
VSYNC  
, and  
, respectively.  
S_BLANK  
S_VSYNC  
HSYNC  
VSYNC  
PAL = 12  
×
CLOCK/2  
CLOCK/2  
NTSC = 16  
×
BLANK  
PIXEL  
DATA  
Cb  
Cr  
Y
Y
PAL = 132  
×
CLOCK/2  
CLOCK/2  
NTSC = 122  
×
Figure 118. SD Timing Mode 2 Even-to-Odd Field Transition Master/Slave  
HSYNC  
VSYNC  
PAL = 864 × CLOCK/2  
NTSC = 858 × CLOCK/2  
PAL = 12 × CLOCK/2  
NTSC = 16 × CLOCK/2  
BLANK  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
Cb  
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 119. SD Timing Mode 2 Odd-to-Even Field Transition  
Rev. 0 | Page 79 of 88  
ADV7320/ADV7321  
MODE 3—MASTER/SLAVE OPTION  
(TIMING REGISTER 0 TR0 =  
X X X X X 1 1 0 OR X X X X X 1 1 1)  
In this mode, the ADV7320/ADV7321 accept or generate hori-  
zontal sync and odd/even field signals. When  
is high, a  
HSYNC  
transition of the field input indicates a new frame, i.e., vertical  
retrace. The signal is optional. When the input  
BLANK  
is disabled, ADV7320/ADV7321 automatically blank all  
normally blank lines as per CCIR-624.  
BLANK  
,
, and  
HSYNC BLANK  
are output in master mode and input in slave mode on  
VSYNC  
,
, and  
, respectively.  
S_VSYNC  
S_VSYNC S_BLANK  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
4
20  
21  
22  
10  
11  
1
2
3
5
6
7
8
9
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 120. SD Timing Mode 3 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
5
6
7
21  
22  
23  
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
Figure 121. SD Timing Mode 3 (PAL)  
Rev. 0 | Page 80 of 88  
ADV7320/ADV7321  
APPENDIX 6—HD TIMING  
DISPLAY  
FIELD 1  
VERTICAL BLANKING INTERVAL  
1124 1125  
1
2
3
4
5
6
7
8
20  
21  
22  
560  
P_VSYNC  
P_HSYNC  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
P_VSYNC  
P_HSYNC  
HSYNC  
VSYNC  
Input Timing  
Figure 122. 1080i  
and  
Rev. 0 | Page 81 of 88  
ADV7320/ADV7321  
APPENDIX 7—VIDEO OUTPUT LEVELS  
HD YPrPb OUTPUT LEVELS  
EIA-770.2, STANDARD FOR Y  
EIA-770.3, STANDARD FOR Y  
INPUT CODE  
INPUT CODE  
940  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
940  
700mV  
700mV  
64  
64  
300mV  
300mV  
EIA-770.3, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
EIA-770.2, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
960  
512  
64  
960  
600mV  
700mV  
512  
64  
700mV  
Figure 123. EIA 770.2 Standard Output Signals (525p/625p)  
Figure 125. EIA 770.3 Standard Output Signals (1080i/720p)  
EIA-770.1, STANDARD FOR Y  
Y–OUTPUT LEVELS FOR  
FULL INPUT SELECTION  
INPUT CODE  
1023  
OUTPUT VOLTAGE  
INPUT CODE  
OUTPUT VOLTAGE  
782mV  
940  
700mV  
714mV  
64  
64  
300mV  
286mV  
Pr/Pb–OUTPUT LEVELS FOR  
FULL INPUT SELECTION  
OUTPUT VOLTAGE  
INPUT CODE  
1023  
EIA-770.1, STANDARD FOR Pr/Pb  
OUTPUT VOLTAGE  
960  
700mV  
700mV  
512  
64  
64  
300mV  
Figure 124. EIA 770.1 Standard Output Signals (525p/625p)  
Figure 126. Output Levels for Full Input Selection  
Rev. 0 | Page 82 of 88  
ADV7320/ADV7321  
RGB OUTPUT LEVELS  
Pattern: 100%/75% Color Bars  
700mV  
525mV  
700mV  
525mV  
300mV  
300mV  
700mV  
525mV  
700mV  
525mV  
300mV  
300mV  
700mV  
525mV  
700mV  
525mV  
300mV  
300mV  
Figure 127. PS RGB Output Levels  
Figure 129. SD RGB Output Levels—RGB Sync Disabled  
700mV  
700mV  
700mV  
525mV  
700mV  
700mV  
700mV  
525mV  
300mV  
0mV  
300mV  
0mV  
525mV  
525mV  
300mV  
0mV  
300mV  
0mV  
525mV  
525mV  
300mV  
0mV  
300mV  
0mV  
Figure 128. PS RGB Output Levels—RGB Sync Enabled  
Figure 130. SD RGB Output Levels—RGB Sync Enabled  
Rev. 0 | Page 83 of 88  
ADV7320/ADV7321  
YPrPb LEVELS—SMPTE/EBU N10  
Pattern: 100% Color Bars  
700mV  
700mV  
Figure 131. Pb Levels—NTSC  
Figure 134. Pr Levels—PAL  
700mV  
700mV  
300mV  
Figure 132. Pb Levels—PAL  
Figure 135. Y Levels—NTSC  
700mV  
700mV  
300mV  
Figure 136. Y Levels—PAL  
Figure 133. Pr Levels—NTSC  
Rev. 0 | Page 84 of 88  
ADV7320/ADV7321  
VOLTS  
0.6  
VOLTS IRE:FLT  
100  
0.4  
0.2  
0
0.5  
50  
0
0
–0.2  
0
F1  
–50  
L608  
L76  
0
10  
20  
30  
MICROSECONDS  
PRECISION MODE OFF  
40  
50  
60  
10  
20  
30  
40  
50  
60  
NOISE REDUCTION: 0.00dB  
APL = 39.1%  
625 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
MICROSECONDS  
PRECISION MODE OFF  
APL = 44.5%  
525 LINE NTSC  
SYNCHRONOUS SYNC = A  
FRAMES SELECTED 1, 2  
SYNCHRONOUS SOUND-IN-SYNC OFF  
FRAMES SELECTED 1, 2, 3, 4  
SLOW CLAMP TO 0.00V AT 6.72µs  
Figure 137. NTSC Color Bars 75%  
Figure 140. PAL Color Bars 75%  
VOLTS  
0.5  
VOLTS IRE:FLT  
0.4  
50  
0.2  
0
0
0
–0.2  
–0.4  
–50  
–0.5  
F1  
L76  
L575  
20  
0
10  
20  
30  
40  
50  
60  
10  
30  
40  
50  
60  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL NEEDS SYNC SOURCE.  
525 LINE NTSC NO FILTERING  
MICROSECONDS NO BUNCH SIGNAL  
PRECISION MODE OFF  
PRECISION MODE OFF  
APL NEEDS SYNC SOURCE.  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72  
SYNCHRONOUS SYNC = B  
FRAMES SELECTED 1, 2  
SYNCHRONOUS SOUND-IN-SYNC OFF  
SLOW CLAMP TO 0.00 AT 6.72µs  
µs  
FRAMES SELECTED 1  
Figure 141. PAL Chroma  
Figure 138. NTSC Chroma  
VOLTS  
0.5  
VOLTS IRE:FLT  
0.6  
0.4  
50  
0
0.2  
0
0
0
–0.2  
F2  
L575  
20  
L238  
0
10  
30  
40  
50  
60  
70  
10  
20  
30  
40  
50  
60  
MICROSECONDS NO BUNCH SIGNAL  
PRECISION MODE OFF  
NOISE REDUCTION: 15.05dB MICROSECONDS  
APL NEEDS SYNC SOURCE.  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72  
APL = 44.3%  
PRECISION MODE OFF  
SYNCHRONOUS SOUND-IN-SYNC OFF  
525 LINE NTSC NO FILTERING  
SLOW CLAMP TO 0.00 AT 6.72µs  
SYNCHRONOUS SYNC = SOURCE  
FRAMES SELECTED 1, 2  
µ
s
FRAMES SELECTED 1  
Figure 142. PAL Luma  
Figure 139. NTSC Luma  
Rev. 0 | Page 85 of 88  
ADV7320/ADV7321  
APPENDIX 8—VIDEO STANDARDS  
0
DATUM  
H
SMPTE 274M  
ANALOG WAVEFORM  
DIGITAL HORIZONTAL BLANKING  
272T  
*1  
4T  
4T  
1920T  
DIGITAL  
ACTIVE LINE  
ANCILLARY DATA  
(OPTIONAL) OR BLANKING CODE  
EAV CODE  
SAV CODE  
F
F
F
F
0
0
0
0
F
F
0
0
0
0
C
C
r
C
INPUT PIXELS  
Y
V
V
Y
b
r
H*  
H*  
4 CLOCK  
4 CLOCK  
192  
0
2199  
SAMPLE NUMBER  
2112  
2116 2156  
44  
188  
2111  
FVH* = FVH AND PARITY BITS  
SAV/EAV: LINE 1–562: F = 0  
SAV/EAV: LINE 563–1125: F = 1  
SAV/EAV: LINE 1–20; 561–583; 1124–1125: V = 1  
SAV/EAV: LINE 21–560; 584–1123: V = 0  
FOR A FRAME RATE OF 30Hz: 40 SAMPLES  
FOR A FRAME RATE OF 25Hz: 480 SAMPLES  
Figure 143. EAV/SAV Input Data Timing Diagram—SMPTE 274M  
SMPTE 293M  
ANALOG WAVEFORM  
ANCILLARY DATA  
(OPTIONAL)  
DIGITAL  
SAV CODE  
F
EAV CODE  
F
ACTIVE LINE  
F
F
0
0
0
0
F
F
0
0
0
0
C
b
C
r
C
r
INPUT PIXELS  
V
Y
V
Y
Y
H*  
H*  
4 CLOCK  
4 CLOCK  
853 857  
SAMPLE NUMBER  
719  
723 736  
DATUM  
799  
0
719  
0
H
DIGITAL HORIZONTAL BLANKING  
FVH* = FVH AND PARITY BITS  
SAV: LINE 43–525 = 200H  
SAV: LINE 1–42 = 2AC  
EAV: LINE 43–525 = 274H  
EAV: LINE 1–42 = 2D8  
Figure 144. EAV/SAV Input Data Timing Diagram—SMPTE 293M  
Rev. 0 | Page 86 of 88  
ADV7320/ADV7321  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
522 523 524 525  
1
2
5
6
7
8
9
12  
13  
14  
15  
16  
42  
43  
44  
Figure 145. SMPTE 293M (525p)  
ACTIVE  
VIDEO  
ACTIVE  
VIDEO  
VERTICAL BLANK  
12  
13  
1
2
5
6
7
8
9
43  
44  
45  
622 623  
624 625  
4
10  
11  
Figure 146. ITU-R BT.1358 (625p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
1
2
3
4
5
6
7
747  
748  
749  
750  
26  
27  
744  
745  
8
25  
Figure 147. SMPTE 296M (720p)  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 1  
560  
1124  
1125  
1
2
3
4
5
6
7
8
20  
21  
22  
DISPLAY  
VERTICAL BLANKING INTERVAL  
FIELD 2  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
583  
584  
585  
1123  
Figure 148. SMPTE 274M (1080i)  
Rev. 0 | Page 87 of 88  
ADV7320/ADV7321  
OUTLINE DIMENSIONS  
0.75  
0.60  
0.45  
12.00  
BSC SQ  
1.60  
MAX  
64  
49  
1
48  
SEATING  
PLANE  
PIN 1  
10.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
10°  
6°  
2°  
1.45  
1.40  
1.35  
0.20  
0.09  
VIEW A  
7°  
3.5°  
16  
33  
0.15  
0.05  
0°  
17  
32  
SEATING  
PLANE  
0.08 MAX  
COPLANARITY  
0.27  
0.22  
0.17  
0.50  
BSC  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026BCD  
Figure 149. 64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
ADV7320KSTZ1  
0°C to 70°C  
64-Lead Low Profile Quad Flat  
Package [LQFP]  
64-Lead Low Profile Quad Flat  
Package [LQFP]  
ST-64-2  
ADV7321KSTZ1  
0°C to 70°C  
ST-64-2  
EVAL-ADV7320EB  
EVAL-ADV7321EB  
Evaluation Board  
Evaluation Board  
1 Z = Pb-free part.  
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05067–0–10/04(0)  
Rev. 0 | Page 88 of 88  
 
 

相关型号:

EVAL-ADV7321EB

Multiformat 216 MHz Video Encoder with Six NSV 12-Bit DACs
ADI

EVAL-ADV7322EB

Multiformat 11-Bit HDTV Video Encoder
ADI

EVAL-ADV7340EBZ

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

EVAL-ADV7341EBZ

Multiformat Video Encoder, Six 12-Bit Noise Shaped Video㈢ DACS
ADI

EVAL-ADV7390EBZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

EVAL-ADV7391EBZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

EVAL-ADV7392EBZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

EVAL-ADV7393EBZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

EVAL-ADV739XFEZ

Low Power, Chip Scale 10-Bit SD/HD Video Encoder
ADI

EVAL-ADV7400AEBM

10-Bit Intergrated Multiformat SDTV/HDTV Video Decoder and RGB Graphics Digitizer
ADI

EVAL-ADV7441AFEZ_1

10-Bit Integrated, Multiformat SDTV/HDTV Video Decoder, RGB Graphics Digitizer, and 2:1 Multiplexed HDMI/DVI Interface
ADI

EVAL-ADV7441AFEZ_2

10-Bit Integrated, Multiformat SDTV/HDTV Video Decoder, RGB Graphics Digitizer, and 2:1 Multiplexed HDMI/DVI Interface
ADI