EVAL-ADV7183AEBM [ADI]

Multiformat SDTV Video Decoder; 多格式SDTV视频解码器
EVAL-ADV7183AEBM
型号: EVAL-ADV7183AEBM
厂家: ADI    ADI
描述:

Multiformat SDTV Video Decoder
多格式SDTV视频解码器

解码器 电视
文件: 总104页 (文件大小:891K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiformat SDTV Video Decoder  
ADV7183A  
Differential gain: 0.5% typ  
Differential phase: 0.5° typ  
Programmable video controls:  
FEATURES  
Multiformat video decoder supports NTSC-(M, N, 4.43),  
PAL-(B/D/G/H/I/M/N), SECAM  
Peak-white/hue/brightness/saturation/contrast  
Integrated on-chip video timing generator  
Free run mode (generates stable video ouput with no I/P)  
VBI decode support for  
Close captioning, WSS, CGMS, EDTV, Gemstar® 1×/2×  
Integrates three 54 MHz, 10-bit ADCs  
Clocked from a single 27 MHz crystal  
Line-locked clock compatible (LLC)  
Adaptive Digital Line Length Tracking (ADLLT™)  
5-line adaptive comb filters  
Proprietary architecture for locking to weak, noisy, and  
unstable video sources such as VCRs and tuners  
Power-down mode  
2-wire serial MPU interface (I2C® compatible)  
3.3 V analog, 1.8 V digital core; 3.3 V IO supply  
2 temperature grades: –25°C to +70°C and –40°C to +85°C  
80-lead LQFP Pb-free package  
Subcarrier frequency lock and status information output  
Integrated AGC with adaptive peak white mode  
Macrovision® copy protection detection  
CTI (chroma transient improvement)  
DNR (digital noise reduction)  
Multiple programmable analog input formats:  
CVBS (composite video)  
APPLICATIONS  
DVD recorders  
Video projectors  
HDD-based PVRs/DVDRs  
LCD TVs  
S-Video (Y/C)  
YPrPb component (VESA, MII, SMPTE, and BetaCam)  
12 analog video input channels  
Set-top boxes  
Automatic NTSC/PAL/SECAM identification  
Digital output formats (8-bit or16-bit):  
ITU-R BT.656 YCrCb 4:2:2 output + HS, VS, and FIELD  
0.5 V to 1.6 V analog signal input range  
Security systems  
Digital televisions  
AVR receiver  
GENERAL DESCRIPTION  
video signal peak-to-peak range of 0.5 V up to 1.6 V.  
Alternatively, these can be bypassed for manual settings.  
The ADV7183A integrated video decoder automatically detects  
and converts a standard analog baseband television signal  
compatible with worldwide standards NTSC, PAL, and SECAM  
into 4:2:2 component video data compatible with 16-/8-bit  
CCIR601/CCIR656.  
The fixed 54 MHz clocking of the ADCs and datapath for all  
modes allows very precise, accurate sampling and digital  
filtering. The line-locked clock output allows the output data  
rate, timing signals, and output clock signals to be synchronous,  
asynchronous, or line locked even with 5ꢀ line length  
variation. The output control signals allow glueless interface  
connections in almost any application. The ADV7183A modes  
are set up over a 2-wire, serial, bidirectional port (I2C  
compatible).  
The advanced and highly flexible digital output interface  
enables performance video decoding and conversion in line-  
locked clock based systems. This makes the device ideally suited  
for a broad range of applications with diverse analog video  
characteristics, including tape based sources, broadcast sources,  
security/surveillance cameras, and professional systems.  
The ADV7183A is fabricated in a 3.3 V CMOS process. Its  
monolithic CMOS construction ensures greater functionality  
with lower power dissipation.  
The 10-bit accurate A/D conversion provides professional  
quality video performance and is unmatched. This allows true  
8-bit resolution in the 8-bit output mode.  
The ADV7183A is packaged in a small 80-lead LQFP Pb-free  
package.  
The 12 analog input channels accept standard Composite, S-  
Video, YPrPb video signals in an extensive number of  
combinations. AGC and clamp restore circuitry allow an input  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
ADV7183A  
TABLE OF CONTENTS  
Introduction ...................................................................................... 4  
Analog Front End......................................................................... 4  
Standard Definition Processor ................................................... 4  
Functional Block Diagram .............................................................. 5  
Specifications..................................................................................... 6  
Electrical Characteristics............................................................. 6  
Video Specifications..................................................................... 7  
Timing Specifications .................................................................. 8  
Analog Specifications................................................................... 8  
Thermal Specifications ................................................................ 8  
Timing Diagrams.......................................................................... 9  
Absolute Maximum Ratings.......................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Analog Front End ........................................................................... 13  
Analog Input Muxing ................................................................ 13  
Global Control Registers ............................................................... 16  
Power-Save Modes...................................................................... 16  
Reset Control .............................................................................. 16  
Global Pin Control..................................................................... 17  
Global Status Registers................................................................... 19  
Identification............................................................................... 19  
Status 1 ......................................................................................... 19  
Status 2 ......................................................................................... 20  
Status 3 ......................................................................................... 20  
Standard Definition Processor (SDP).......................................... 21  
SD Luma Path ............................................................................. 21  
SD Chroma Path......................................................................... 21  
SDP Sync Processing.................................................................. 22  
SDP VBI Data Recovery............................................................ 22  
SDP General Setup..................................................................... 22  
SDP Color Controls ................................................................... 25  
SDP Clamp Operation............................................................... 27  
SDP Luma Filter ......................................................................... 28  
SDP Chroma Filter..................................................................... 31  
SDP Gain Operation.................................................................. 32  
SDP Chroma Transient Improvement (CTI).......................... 36  
SDP Digital Noise Reduction (DNR) ...................................... 37  
SDP Comb Filters....................................................................... 37  
SDP AV Code Insertion and Controls..................................... 40  
SDP Synchronization Output Signals...................................... 42  
SDP Sync Processing.................................................................. 51  
SDP VBI Data Decode............................................................... 52  
Pixel Port Configuration ............................................................... 63  
MPU Port Description................................................................... 64  
Register Accesses ........................................................................ 65  
Register Programming............................................................... 65  
I2C Sequencer.............................................................................. 65  
I2C Control Register Map.......................................................... 66  
I2C Register Map Details ........................................................... 70  
Appendix A...................................................................................... 97  
I2C Programming Examples ..................................................... 97  
Appendix B.................................................................................... 100  
PCB Layout Recommendations ............................................. 100  
Appendix C ................................................................................... 102  
Typical Circuit Connection .................................................... 102  
Outline Dimensions..................................................................... 104  
Ordering Guide ........................................................................ 104  
Rev. A | Page 2 of 104  
ADV7183A  
REVISION HISTORY  
Revision A  
6/04—Changed from Rev. 0 to Rev. A.  
Addition to Applications List...........................................................1  
Changes to Table 3 ............................................................................8  
Changes to Table 5 ............................................................................8  
Change to Drive Strength Selection (Data) Section ...................17  
Changes to Figure 42 ....................................................................103  
Revision 0  
5/04—Revision 0: Initial Version  
Rev. A | Page 3 of 104  
ADV7183A  
INTRODUCTION  
The ADV7183A is a high quality, single chip, multiformat video  
decoder that automatically detects and converts PAL, NTSC,  
and SECAM standards in the form of composite, S-Video, and  
component video into a digital ITU-R BT.656 format.  
STANDARD DEFINITION PROCESSOR  
The ADV7183A is capable of decoding a large selection of  
baseband video signals in composite, S-Video, and component  
formats. The video standards supported by the SDP include  
PAL B/D/I/G/H, PAL60, PAL M, PAL N, PAL Nc, NTSC M/J,  
NTSC 4.43, and SECAM B/D/G/K/L. The ADV7183A can  
automatically detect the video standard and process it  
accordingly.  
The advanced and highly flexible digital output interface  
enables performance video decoding and conversion in line-  
locked clock based systems. This makes the device ideally suited  
for a broad range of applications with diverse analog video  
characteristics, including tape based sources, broadcast sources,  
security/surveillance cameras, and professional systems.  
The ADV7183A has a 5-line, superadaptive, 2D comb filter that  
gives superior chrominance and luminance separation when  
decoding a composite video signal. This highly adaptive filter  
automatically adjusts its processing mode according to video  
standard and signal quality with no user intervention required.  
Video user controls such as brightness, contrast, saturation, and  
hue are also available within the ADV7183A.  
ANALOG FRONT END  
The ADV7183A analog front end comprises three 10-bit ADCs  
that digitize the analog video signal before applying it to the  
standard definition processor. The analog front end employs  
differential channels to each ADC to ensure high performance  
in mixed-signal applications.  
The ADV7183A implements a patented adaptive digital line-  
length tracking (ADLLT) algorithm to track varying video line  
lengths from sources such as a VCR. ADLLT enables the  
ADV7183A to track and decode poor quality video sources  
such as VCRs, noisy sources from tuner outputs, VCD players,  
and camcorders. The ADV7183A contains a chroma transient  
improvement (CTI) processor that sharpens the edge rate of  
chroma transitions, resulting in sharper vertical transitions.  
The front end also includes a 12-channel input mux that enables  
multiple video signals to be applied to the ADV7183A. Current  
and voltage clamps are positioned in front of each ADC to  
ensure that the video signal remains within the range of the  
converter. Fine clamping of the video signals is performed  
downstream by digital fine clamping within the ADV7183A.  
The ADCs are configured to run in 4× oversampling mode.  
The SDP can process a variety of VBI data services, such as  
closed captioning (CC), wide screen signaling (WSS), copy  
generation management system (CGMS), EDTV, Gemstar  
1×/2×, and extended data service (XDS). The ADV7183A is  
fully Macrovision certified; detection circuitry enables Type I,  
II, and III protection levels to be identified and reported to the  
user. The decoder is also fully robust to all Macrovision signal  
inputs.  
Rev. A | Page 4 of 104  
ADV7183A  
FUNCTIONAL BLOCK DIAGRAM  
0 4 8 2 1 - 0 - 0 0 1  
R
U T F O O R U M T A P T T E  
Figure 1.  
Rev. A | Page 5 of 104  
ADV7183A  
SPECIFICATIONS  
Temperature range: TMIN to TMAX, –40°C to +85°C. The min/max specifications are guaranteed over this range.  
ELECTRICAL CHARACTERISTICS  
At AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.65 V to 2.0 V (operating temperature range, unless  
otherwise noted).  
Table 1.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE  
Resolution (Each ADC)  
Integral Nonlinearity  
Differential Nonlinearity  
DIGITAL INPUTS  
N
INL  
DNL  
10  
3
–0.7/+2  
Bits  
LSB  
LSB  
BSL at 54 MHz  
BSL at 54 MHz  
–0.475/+0.6  
–0.25/+0.5  
Input High Voltage  
Input Low Voltage  
Input Current  
VIH  
VIL  
IIN  
2
V
V
µA  
µA  
pF  
0.8  
Pins listed in Note 1  
All other pins  
–50  
–10  
+50  
+10  
10  
Input Capacitance  
CIN  
DIGITAL OUTPUTS  
Output High Voltage  
Output Low Voltage  
High Impedance Leakage Current  
VOH  
VOL  
ILEAK  
ISOURCE = 0.4 mA  
ISINK = 3.2 mA  
Pins listed in Note 2  
All other pins  
2.4  
V
V
µA  
µA  
pF  
0.4  
50  
10  
20  
Output Capacitance  
POWER REQUIREMENTS3  
Digital Core Power Supply  
Digital I/O Power Supply  
PLL Power Supply  
Analog Power Supply  
Digital Core Supply Current  
Digital I/O Supply Current  
PLL Supply Current  
COUT  
DVDD  
DVDDIO  
PVDD  
AVDD  
IDVDD  
IDVDDIO  
IPVDD  
1.65  
3.0  
1.65  
3.15  
1.8  
3.3  
1.8  
3.3  
72  
2
10.5  
85  
2
V
V
V
V
mA  
mA  
mA  
mA  
mA  
mA  
ms  
3.6  
2.0  
3.45  
Analog Supply Current  
IAVDD  
CVBS input4  
YPrPb input5  
180  
1.5  
20  
Power-Down Current  
Power-Up Time  
IPWRDN  
tPWRUP  
1 Pins 36 and 79.  
2 Pins 1, 2, 5, 6, 7, 8, 12, 17, 18, 19, 20, 21, 22, 23, 24, 32, 33, 34, 35, 73, 74, 75, 76, and 80.  
3 Guaranteed by characterization.  
4 ADC1 powered on.  
5 All three ADCs powered on.  
Rev. A | Page 6 of 104  
 
 
 
 
 
ADV7183A  
VIDEO SPECIFICATIONS  
Guaranteed by characterization. At AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.65 V to 2.0 V  
(operating temperature range, unless otherwise noted).  
Table 2.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
NONLINEAR SPECIFICATIONS  
Differential Phase  
Differential Gain  
Luma Nonlinearity  
NOISE SPECIFICATIONS  
SNR Unweighted  
DP  
DG  
LNL  
CVBS I/P, modulate 5-step  
CVBS I/P, modulate 5-step  
CVBS I/P, 5-step  
0.5  
0.5  
0.5  
0.7  
0.7  
0.7  
°
%
%
Luma ramp  
54  
58  
56  
60  
60  
dB  
dB  
dB  
Luma flat field  
Analog Front End Crosstalk  
LOCK TIME SPECIFICATIONS  
Horizontal Lock Range  
Vertical Lock Range  
–5  
40  
+5  
70  
%
Hz  
Fsc Subcarrier Lock Range  
Color Lock In Time  
Sync Depth Range  
1.3  
60  
Hz  
Lines  
%
20  
5
200  
200  
Color Burst Range  
%
Vertical Lock Time  
2
100  
Fields  
Lines  
Autodetection Switch Speed  
CHROMA SPECIFICATIONS  
Hue Accuracy  
Color Saturation Accuracy  
Color AGC Range  
Chroma Amplitude Error  
Chroma Phase Error  
Chroma Luma Intermodulation  
LUMA SPECIFICATIONS  
Luma Brightness Accuracy  
Luma Contrast Accuracy  
HUE  
CL_AC  
1
1
°
%
%
%
°
5
400  
0.5  
0.4  
0.2  
%
CVBS, 1 V I/P  
CVBS, 1 V I/P  
1
1
%
%
Rev. A | Page 7 of 104  
ADV7183A  
TIMING SPECIFICATIONS  
Guaranteed by characterization. At AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.65 V to 2.0 V  
(operating temperature range, unless otherwise noted).  
Table 3.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
SYSTEM CLOCK AND CRYSTAL  
Nominal Frequency  
Frequency Stability  
27.00  
MHz  
ppm  
50  
I2C PORT  
SCLK Frequency  
400  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
SCLK Min Pulse Width High  
SCLK Min Pulse Width Low  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
SDA Setup Time  
SCLK and SDA Rise Time  
SCLK and SDA Fall Time  
Setup Time for Stop Condition  
RESET FEATURE  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0.6  
1.3  
0.6  
0.6  
100  
300  
300  
0.6  
Reset Pulse Width  
5
ms  
CLOCK OUTPUTS  
LLC1 Mark Space Ratio  
LLC1 Rising to LLC2 Rising  
LLC1 Rising to LLC2 Falling  
DATA AND CONTROL OUTPUTS  
Data Output Transitional Time  
Data Output Transitional Time  
Propagation Delay to Hi-Z  
Max Output Enable Access Time  
Min Output Enable Access Time  
t9:t10  
t11  
t12  
45:55  
55:45  
% Duty Cycle  
ns  
ns  
0.5  
0.5  
t13  
t14  
t15  
t16  
t17  
tACCESS = t10 – t13  
tHOLD = t9 + t14  
6
−0.6  
ns  
ns  
ns  
ns  
ns  
6
7
4
ANALOG SPECIFICATIONS  
Guaranteed by characterization. At AVDD = 3.15 V to 3.45 V, DVDD = 1.65 V to 2.0 V, DVDDIO = 3.0 V to 3.6 V, PVDD = 1.65 V to 2.0 V  
(operating temperature range, unless otherwise noted).  
Table 4.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
CLAMP CIRCUITRY  
External Clamp Capacitor  
Input Impedance  
Large Clamp Source Current  
Large Clamp Sink Current  
Fine Clamp Source Current  
Fine Clamp Sink Current  
0.1  
10  
0.75  
0.75  
60  
µF  
Clamps switched off  
MΩ  
mA  
mA  
µA  
60  
µA  
THERMAL SPECIFICATIONS  
Table 5.  
Parameter  
Symbol Test Conditions  
Min Typ Max Unit  
THERMAL CHARACTERISTICS  
Junction-to-Case Thermal Resistance  
Junction-to-Ambient Thermal Resistance (Still Air)  
θJC  
θJA  
4-layer PCB with solid ground plane  
4-layer PCB with solid ground plane  
7.6  
38.1  
°C/W  
°C/W  
Rev. A | Page 8 of 104  
ADV7183A  
TIMING DIAGRAMS  
t5  
t3  
t3  
SDA  
t1  
t6  
SCLK  
t4  
t7  
t8  
t2  
Figure 2. I2C Timing  
t9  
t10  
OUTPUT LLC1  
OUTPUT LLC2  
t11  
t12  
t13  
t14  
OUTPUTS P0–P15, VS,  
HS, FIELD,  
SFL/SYNC_OUT  
Figure 3. Pixel Port and Control Output Timing  
OE  
t15  
t17  
P0–P15, HS,  
VS, FIELD,  
SFL/SYNC_OUT  
t16  
Figure 4.  
OE  
Timing  
Rev. A | Page 9 of 104  
 
ADV7183A  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods may  
affect device reliability.  
Parameter  
Rating  
AVDD to GND  
4 V  
AVDD to AGND  
4 V  
DVDD to DGND  
2.2 V  
PVDD to AGND  
2.2 V  
DVDDIO to DGND  
4 V  
DVDDIO to AVDD  
PVDD to DVDD  
DVDDIO – PVDD  
DVDDIO – DVDD  
AVDD – PVDD  
AVDD – DVDD  
Digital Inputs Voltage to DGND  
Digital Output Voltage to DGND  
Analog Inputs to AGND  
Maximum Junction Temperature  
–0.3 V to +0.3 V  
–0.3 V to +0.3 V  
–0.3V to +2 V  
–0.3V to +2 V  
–0.3V to +2 V  
–0.3V to +2 V  
–0.3V to DVDDIO + 0.3 V  
–0.3V to DVDDIO + 0.3 V  
AGND – 0.3 V to AVDD + 0.3 V  
150°C  
(TJMAX  
)
Storage Temperature Range  
Infrared Reflow Soldering (20 s)  
–65°C to +150°C  
260°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 10 of 104  
ADV7183A  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
VS  
HS  
1
2
3
4
5
6
7
8
9
60 AIN5  
59 AIN11  
58 AIN4  
DGND  
DVDDIO  
P11  
57 AIN10  
56 AGND  
55 CAP C2  
54 CAP C1  
53 AGND  
52 CML  
P10  
P9  
P8  
DGND  
ADV7183A  
TOP VIEW  
(Not to Scale)  
DVDD 10  
NC 11  
51 REFOUT  
50 AVDD  
49 CAP Y2  
48 CAP Y1  
47 AGND  
46 AIN3  
SFL 12  
NC 13  
DGND 14  
DVDDIO 15  
NC 16  
45 AIN9  
NC 17  
44 AIN2  
NC 18  
43 AIN8  
P7 19  
42 AIN1  
P6 20  
41 AIN7  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
NC = NO CONNECT  
Figure 5. 80-Lead LQFP Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type Function  
3, 9, 14, 31, 71  
39, 40, 47, 53, 56  
4, 15  
10, 30, 72  
50  
DGND  
AGND  
DVDDIO  
DVDD  
AVDD  
PVDD  
AIN1–AIN12  
NC  
G
G
P
P
P
P
I
Digital Ground.  
Analog Ground.  
Digital I/O Supply Voltage (3.3 V).  
Digital Core Supply Voltage (1.8 V).  
Analog Supply Voltage (3.3 V).  
PLL Supply Voltage (1.8 V).  
Analog Video Input Channels.  
No Connect Pins.  
38  
41–46, 57–62  
11, 13, 16–18, 25,  
34, 35, 63, 65, 69,  
70, 77, 78  
5–8, 19–24,  
P0–P15  
O
Video Pixel Output Port.  
32, 33, 73–76  
2
1
80  
67  
68  
66  
HS  
VS  
FIELD  
SDA  
SCLK  
ALSB  
O
O
O
I/O  
I
HS is a horizontal synchronization output signal.  
VS is a vertical synchronization output signal.  
FIELD is a field synchronization output signal.  
I2C Port Serial Data Input/Output Pin.  
I2C Port Serial Clock Input (Max Clock Rate of 400 kHz).  
I
This pin selects the I2C address for the ADV7183A. ALSB set to Logic 0 sets the address for a  
write as 0x40; for ALSB set to logic high, the address selected is 0x42.  
64  
27  
26  
RESET  
LLC1  
LLC2  
I
System Reset Input, Active Low. A minimum low reset pulse width of 5 ms is required to  
reset the ADV7183A circuitry.  
This is a line-locked output clock for the pixel data output by the ADV7183A. Nominally  
27 MHz, but varies up or down according to video line length.  
This is a divide-by-2 version of the LLC1 output clock for the pixel data output by the  
ADV7183A. Nominally 13.5 MHz, but varies up or down according to video line length.  
O
O
Rev. A | Page 11 of 104  
 
ADV7183A  
Pin No.  
Mnemonic  
Type Function  
29  
XTAL  
I
This is the input pin for the 27 MHz crystal, or can be overdriven by an external 3.3 V,  
27 MHz clock oscillator source. In crystal mode, the crystal must be a fundamental crystal.  
28  
XTAL1  
O
This pin should be connected to the 27 MHz crystal or left as a no connect if an external  
3.3 V, 27 MHz clock oscillator source is used to clock the ADV7183A. In crystal mode, the  
crystal must be a fundamental crystal.  
36  
79  
PWRDN  
OE  
I
I
A logic low on this pin places the ADV7183A in a power-down mode. Refer to the I2C  
Control Register Map for more options on power-down modes for the ADV7183A.  
When set to a logic low, OE enables the pixel output bus, P15–P0 of the ADV7183A. A logic  
high on the OE pin places Pins P15–P0, HS, VS, SFL/SYNC_OUT into a high impedance state.  
37  
12  
ELPF  
SFL  
I
The recommended external loop filter must be connected to this ELPF pin, as shown in  
Figure 42.  
Subcarrier Frequency Lock. This pin contains a serial output stream that can be used to lock  
the subcarrier frequency when this decoder is connected to any Analog Devices, Inc. digital  
video encoder.  
O
51  
REFOUT  
O
O
I
Internal Voltage Reference Output. Refer to Figure 42 for a recommended capacitor  
network for this pin.  
The CML pin is a common-mode level for the internal ADCs. Refer to Figure 42 for a  
recommended capacitor network for this pin.  
ADC’s Capacitor Network. Refer to Figure 42 for a recommended capacitor network for  
this pin.  
ADC’s Capacitor Network. Refer to Figure 42 for a recommended capacitor network for  
this pin.  
52  
CML  
48, 49  
54, 55  
CAPY1, CAPY2  
CAPC1, CAPC2  
I
Rev. A | Page 12 of 104  
ADV7183A  
ANALOG FRONT END  
ANALOG INPUT MUXING  
ADC_SW_MAN_EN  
INSEL[3:0]  
INTERNAL  
MAPPING  
FUNCTIONS  
AIN1  
AIN7  
AIN2  
AIN8  
AIN3  
AIN9  
AIN4  
AIN10  
AIN5  
AIN11  
AIN6  
AIN12  
ADC0_SW[3:0]  
1
0
ADC0  
AIN3  
AIN9  
AIN4  
AIN10  
AIN5  
AIN11  
AIN6  
AIN12  
ADC1_SW[3:0]  
1
0
ADC1  
ADC1_SW[3:0]  
ADC2  
AIN2  
AIN8  
AIN5  
AIN11  
AIN6  
AIN12  
1
0
Figure 6. Internal Pin Connections  
ADI Recommended Input Muxing  
The ADV7183A has an integrated analog muxing section that  
allows more than one source of video signal to be connected to  
the decoder. Figure 6 outlines the overall structure of the input  
muxing provided in the ADV7183A.  
A maximum of 12 CVBS inputs can be connected and decoded  
by the ADV7183A. As can be seen from Figure 5, this means the  
sources will have to be connected to adjacent pins on the IC.  
This calls for a careful design of the PCB layout (e.g., ground  
shielding between all signals routed through tracks that are  
physically close together).  
As can be seen in Figure 6, there are two different ways in which  
the analog input muxes can be controlled:  
1. Control via functional registers (INSEL).  
Using INSEL[3:0] simplifies the setup of the muxes, and  
minimizes crosstalk between channels by pre-assigning the  
input channels. This is referred to as ADI recommended  
input muxing.  
INSEL[3:0] Input Selection, Address 0x00, [3:0]  
The INSEL bits allow the user to select an input channel as well  
as the input format. Depending on the PCB connections, only a  
subset of the INSEL modes are valid. Please note that the  
INSEL[3:0] does not only switch the analog input muxing, it  
also configures the standard definition processor core to  
process CVBS (Comp), S-video (Y/C), or component (YPbPr)  
format.  
2. Control via an I2C manual override  
(ADC_sw_man_en, ADC0_sw, ADC1_sw, ADC2_sw).  
This is provided for applications with special requirements  
(e.g., number/combinations of signals) that would not be  
served by the pre-assigned input connections. This is  
referred to as manual input muxing.  
Please refer to Figure 7 for an overview of the two methods of  
controlling the ADV7183A’s input muxing.  
Rev. A | Page 13 of 104  
 
 
ADV7183A  
CONNECTING  
ANALOG SIGNALS  
TO ADV7183A  
ADI RECOMMENDED  
INPUT MUXING; SEE TABLE 9  
YES  
NO  
SET INSEL[3:0] FOR REQUIRED  
MUXING CONFIGURATION  
SET INSEL[3:0] TO  
CONFIGURE ADV7183A TO  
DECODE VIDEO FORMAT:  
CVBS: 0000  
YC: 0110  
YPrPb: 1001  
USE MANUAL INPUT MUXING  
(ADC_SW_MAN_EN, ADC0_SW,  
ADC1_SW, ADC2_SW)  
Figure 7. Input Muxing Overview  
Table 8. Input Channel Switching Using INSEL[3:0]  
Table 9. Input Channel Assignments  
Description  
Input  
Channel No.  
Pin  
ADI Recommended Input Muxing Control  
INSEL[3:0]  
INSEL[3:0]  
0000*  
0001  
0010  
0011  
0100  
0101  
0110  
Analog Input Pins  
CVBS1 = AIN1  
CVBS2 = AIN2  
CVBS3 = AIN3  
CVBS4 = AIN4  
CVBS5 = AIN5  
CVBS6 = AIN6  
Y1 = AIN1  
Video Format (SDP)  
Composite  
Composite  
Composite  
Composite  
Composite  
Composite  
YC  
YC  
YC  
YC  
YC  
AIN7  
AIN1  
AIN8  
AIN2  
AIN9  
AIN3  
AIN10  
AIN4  
AIN11  
AIN5  
AIN12  
AIN6  
41  
42  
43  
44  
45  
46  
57  
58  
59  
60  
61  
62  
CVBS7  
CVBS1  
CVBS8  
CVBS2  
CVBS9  
CVBS3  
CVBS10  
CVBS4  
CVBS11  
CVBS5  
Not Available  
CVBS6  
YC1-Y  
YC2-Y  
YC3-Y  
YC1-C  
YC2-C  
YC3-C  
YPrPb1-Y  
YPrPb2-Y  
YPrPb2-Pb  
YPrPb1-Pb  
YPrPb1-Pr  
YPrPb2-Pr  
C1 = AIN4  
0111  
1000  
1001  
Y2 = AIN2  
C2 = AIN5  
Y3 = AIN3  
C3 = AIN6  
Y1 = AIN1  
PR1 = AIN4  
PB1 = AIN5  
Y2 = AIN2  
YC  
YPrPb  
YPrPb  
YPrPb  
YPrPb  
ADI recommended input muxing is designed to minimize  
crosstalk between signal channels and to obtain the highest  
level of signal integrity. Table 9 summarizes how PCB layout  
should connect analog video signals to the ADV7183A.  
1010  
PR2 = AIN3  
YPrPb  
PB2 = AIN6  
YPrPb  
Notes  
1011  
1100  
1101  
CVBS7 = AIN7  
CVBS8 = AIN8  
CVBS9 = AIN9  
CVBS10 = AIN10  
CVBS11 = AIN11  
Composite  
Composite  
Composite  
Composite  
Composite  
It is strongly recommended to connect any unused analog  
input pins to AGND to act as a shield.  
1110  
1111  
Inputs AIN7 to AIN11 should be connected to AGND in  
cases where only six input channels are used. This will  
improve the quality of the sampling due to better isolation  
between the channels.  
*Default value.  
AIN12 is not under the control of INSEL[3:0]. It can only  
be routed to ADC0/ADC1/ADC2 by manual muxing. See  
Table 10 for further details.  
Rev. A | Page 14 of 104  
 
ADV7183A  
This means INSEL must still be used to tell the ADV7183A  
whether the input signal is of component, YC, or CVBS  
format.  
Manual Input Muxing  
By accessing a set of manual override muxing registers, the  
analog input muxes of the ADV7183A can be controlled  
directly. This is referred to as manual input muxing.  
There are restrictions in the channel routing imposed by the  
analog signal routing inside the IC; every input pin cannot be  
routed to each ADC. Please refer to Figure 6 for an overview on  
the routing capabilities inside the chip. The three mux sections  
can be controlled by the reserved control signal buses  
ADC0/ADC1/ADC2_sw[3:0]. Table 10 explains the control  
words used.  
Notes  
Manual input muxing overrides other input muxing  
control bits (e.g., INSEL)  
The manual muxing is activated by setting the  
ADC_SW_MAN_EN bit. It only affects the analog  
switches in front of the ADCs.  
SETADC_sw_man_en, Manual Input Muxing Enable,  
Address 0xC4, [7]  
This means if the settings of INSEL and the manual input  
muxing registers (ADC0/1/2_sw) contradict each other,  
the ADC0/ADC1/ADC2_sw settings apply and INSEL is  
ignored.  
ADC0_sw[3:0], ADC0 mux configuration, Address 0xC3, [3:0]  
ADC1_sw[3:0], ADC1 mux configuration, Address 0xC3, [7:4]  
ADC2_sw[3:0], ADC2 mux configuration, Address 0xC4, [3:0]  
Manual input muxing only controls the analog input  
muxes. INSEL[3:0] still has to be set so the follow-on  
blocks process the video data in the correct format.  
Table 10. Manual Mux Settings for All ADCs  
SETADC_sw_man_en = 1  
ADC1_sw[3:0] ADC1 Connected to:  
ADC0_sw[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
ADC0 Connected to:  
No Connection  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
No Connection  
No Connection  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
No Connection  
ADC2_sw[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
ADC2 Connected to:  
No Connection  
No Connection  
AIN2  
No Connection  
No Connection  
AIN5  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
No Connection  
No Connection  
No Connection  
AIN3  
AIN4  
AIN5  
AIN6  
AIN6  
No Connection  
No Connection  
No Connection  
No Connection  
AIN9  
AIN10  
AIN11  
AIN12  
No Connection  
No Connection  
No Connection  
No Connection  
AIN8  
No Connection  
No Connection  
AIN11  
AIN12  
No Connection  
Rev. A | Page 15 of 104  
 
ADV7183A  
GLOBAL CONTROL REGISTERS  
Register control bits listed in this section affect the whole chip.  
PWRDN_ADC_0, Address 0x3A, [3]  
Table 13. PWRDN_ADC_0 Function  
POWER-SAVE MODES  
Power-Down  
PWRDN_ADC_0  
Description  
0*  
1
ADC normal operation.  
Power down ADC 0.  
PDBP, Address 0x0F, [2]  
*Default value.  
There are two ways to shut down the digital core of the  
ADV7183A: a pin (  
) and a bit (PWRDN see below).  
PWRDN  
The PDBP controls which of the two has the higher priority.  
The default is to give the pin ( ) priority. This allows the  
PWRDN_ADC_1, Address 0x3A, [2]  
Table 14. PWRDN_ADC_1 Function  
PWRDN_ADC_1 Description  
PWRDN  
user to have the ADV7183A powered down by default.  
0*  
ADC normal operation.  
Power down ADC 1.  
Table 11. PDBP Function  
1
PDBP Description  
*Default value.  
0*  
Digital core power controlled by the PWRDN pin (bit is  
disregarded).  
Bit has priority (pin is disregarded).  
PWRDN_ADC_2, Address 0x3A, [1]  
Table 15. PWRDN_ADC_2 Function  
1
*Default value.  
PWRDN_ADC_2  
Description  
0*  
1
ADC normal operation.  
Power down ADC 2.  
PWRDN, Address 0x0F, [5]  
*Default value.  
Setting the PWRDN bit switches the ADV7183A into a chip-  
wide power-down mode. The power-down stops the clock from  
entering the digital section of the chip, thereby freezing its  
operation. No I2C bits are lost during power-down. The  
PWRDN bit also affects the analog blocks and switches them  
into low current modes. The I2C interface itself is unaffected,  
and remains operational in power-down mode.  
RESET CONTROL  
Chip Reset (RES), Address 0x0F, [7]  
Setting this bit, equivalent to controlling the  
pin on the  
RESET  
ADV7183A, issues a full chip reset. All I2C registers get reset to  
their default values6. After the reset sequence, the part immedi-  
ately starts to acquire the incoming video signal.  
The ADV7183A leaves the power-down state if the PWRDN bit  
is set to 0 (via I2C), or if the overall part is reset using Pin  
Notes  
.
RESET  
After setting the RES bit (or initiating a reset via the pin),  
the part returns to the default mode of operation with  
respect to its primary mode of operation. All I2C bits are  
loaded with their default values, making this bit self-  
clearing.  
Note that PDBP must be set to 1 for the PWRDN bit to power  
down the ADV7183A.  
Table 12. PWRDN Function  
PWRDN  
Description  
0*  
1
Chip operational.  
ADV7183A in chip-wide power-down.  
Executing a software reset takes approximately 2 ms.  
However, it is recommended to wait 5 ms before any  
further I2C writes are performed.  
*Default value.  
ADC Power-Down Control  
The I2C master controller receives a no acknowledge  
condition on the ninth clock cycle when Chip Reset is  
implemented. See the MPU Port Description section.  
The ADV7183A contains three 10-bit ADCs (ADC 0, ADC 1,  
and ADC 2). If required, it is possible to power down each ADC  
individually.  
Table 16. RES Function  
When should the ADCs be powered down?  
RES  
Description  
CVBS mode. ADC 1 and ADC 2 should be powered down  
to save on power consumption.  
0*  
1
Normal operation.  
Start reset sequence.  
*Default value.  
S-Video mode. ADC 2 should be powered down to save on  
power consumption.  
6 Some register bits do not have a reset value specified. They keep their last  
written value. Those bits are marked as having a reset value of x in the  
register table.  
Rev. A | Page 16 of 104  
 
ADV7183A  
Timing Signals Output Enable  
GLOBAL PIN CONTROL  
Three-State Output Drivers  
TIM_OE, Address 0x04, [3]  
TOD, Address 0x03, [6]  
The TIM_OE bit should be regarded as an addition to the TOD  
bit. Setting it high forces the output drivers for HS, VS, and  
FIELD into the active (i.e., driving) state even if the TOD bit is  
set. If set to low, the HS, VS, and FIELD pins are three-stated  
dependent on the TOD bit. This functionality is useful if the  
decoder is to be used as a timing generator only. This may be  
the case if only the timing signals are to be extracted from an  
incoming signal, or if the part is in free-run mode where a  
separate chip can output, for instance, a company logo.  
This bit allows the user to three-state the output drivers of the  
ADV7183A.  
Upon setting the TOD bit, the P15–P0, HS, VS, FIELD, and SFL  
pins are three-stated.  
Note that the timing pins (HS/VS/FIELD) can be forced active  
via the TIM_OE bit. For more information on three-state  
control, refer to the following sections:  
For more information on three-state control, refer to the  
following sections:  
Three-State LLC Driver  
Timing Signals Output Enable  
Three-State Output Drivers  
Three-State LLC Driver  
Individual drive strength controls are provided via the  
DR_STR_XX bits.  
Individual drive strength controls are provided via the  
DR_STR_XX bits.  
Note that the ADV7183A supports three-stating via a dedicated  
pin. When set high, the  
pin three-states the output drivers  
OE  
Table 19. TIM_OE Function  
for P15–P0, HS, VS, FIELD, and SFL. The output drivers are  
TIM_OE  
Description  
three-stated if the TOD bit or the  
pin is set high.  
OE  
0*  
1
HS, VS, FIELD three-stated according to the TOD bit.  
HS, VS, FIELD are forced active all the time. The  
DR_STR_S[1:0] setting determines drive strength.  
Table 17. TOD Function  
TOD  
Description  
*Default value.  
0*  
Output drivers enabled.  
1
Output drivers three-stated.  
Drive Strength Selection (Data)  
*Default value.  
DR_STR[1:0] Address 0x04, [5:4]  
Three-State LLC Driver  
For EMC and crosstalk reasons, it may be desirable to  
strengthen or weaken the drive strength of the output drivers.  
The DR_STR[1:0] bits affect the P[15:0] output drivers.  
TRI_LLC, Address 0x0E, [6]  
This bit allows the output drivers for the LLC1 and LLC2 pins  
of the ADV7183A to be three-stated. For more information on  
three-state control, refer to the following sections:  
For more information on three-state control, refer to the  
following sections:  
Three-State Output Drivers  
Timing Signals Output Enable  
Drive Strength Selection (Clock)  
Drive Strength Selection (Sync)  
Table 20. DR_STR Function  
Individual drive strength controls are provided via the  
DR_STR_XX bits.  
DR_STR[1:0]  
Description  
00  
01*  
10  
11  
Low drive strength (1×).  
Table 18. TRI_LLC Function  
Medium low drive strength (2×).  
Medium high drive strength (3×).  
High drive strength (4×).  
TRI_LLC  
Description  
0*  
LLC pin drivers working according to the  
DR_STR_C[1:0] setting (pin enabled).  
*Default value.  
1
LLC pin drivers three-stated.  
*Default value.  
Rev. A | Page 17 of 104  
 
 
 
 
ADV7183A  
Drive Strength Selection (Clock)  
Enable Subcarrier Frequency Lock Pin  
DR_STR_C[1:0] Address 0x0E, [3:2]  
EN_SFL_PIN Address 0x04, [1]  
The DR_STR_C[1:0] bits can be used to select the strength of  
the clock signal output driver (LLC pin). For more information,  
refer to the following sections:  
The subcarrier frequency lock pin (SDP, output only) has a  
double function: it can also output raw sync-related information  
(SogOut). The EN_SFL_PIN bit enables the output of  
subcarrier lock information (also known as GenLock) from the  
SDP core to an encoder in a decoder-encoder back-to-back  
arrangement.  
Drive Strength Selection (Sync)  
Drive Strength Selection (Data)  
Table 23. EN_SFL_PIN  
EN_SFL_PIN Description  
Table 21. DR_STR Function  
DR_STR[1:0]  
Description  
0*  
1
Subcarrier frequency lock output is disabled.  
Subcarrier frequency lock information is  
presented on the SFL pin.  
00  
Low drive strength (1×).  
01*  
10  
11  
Medium low drive strength (2×).  
Medium high drive strength (3×).  
High drive strength (4×).  
*Default value.  
*Default value.  
Polarity LLC Pin  
Drive Strength Selection (Sync)  
PCLK Address 0x37, [0]  
The polarity of the clock that leaves the ADV7183A via the  
LLC1 and LLC2 pins can be inverted using the PCLK bit. Note  
that this inversion affects the clock for SDP.  
DR_STR_S[1:0] Address 0x0E, [1:0]  
The DR_STR_S[1:0] bits allow the user to select the strength of  
the synchronization signals with which HS, VS, and F are  
driven. For more information, refer to the following sections:  
Changing the polarity of the LLC clock output may be  
necessary to meet the setup-and-hold time expectations of  
follow-on chips.  
Drive Strength Selection (Clock)  
Drive Strength Selection (Data)  
Note that this bit also inverts the polarity of the LLC2 clock.  
Table 22. DR_STR Function  
Table 24. PCLK Function  
DR_STR[1:0]  
Description  
PCLK  
Description  
00  
01*  
10  
11  
Low drive strength (1×).  
0
1*  
Invert LLC output polarity.  
LLC output polarity normal (as per the Timing  
Diagrams)  
Medium low drive strength (2×).  
Medium high drive strength (3×).  
High drive strength (4×).  
*Default value.  
*Default value.  
Rev. A | Page 18 of 104  
 
 
ADV7183A  
GLOBAL STATUS REGISTERS  
There are four registers that provide summary information  
about the video decoder. The IDENT register allows the user to  
identify the revision code of the ADV7183A. The other three  
registers contain status bits from the SDP.  
Depending on the setting of the FSCLE bit, the Status[0] and  
Status[1] are based solely on horizontal timing info or on the  
horizontal timing and lock status of the color subcarrier. See the  
FSCLE Fsc Lock Enable (SDP), Address 0x51, [7] section.  
SDP Autodetection Result  
IDENTIFICATION  
AD_RESULT[2:0] Address 0x10, [6:4]  
IDENT[7:0] Address 0x11, [7:0]  
The AD_RESULT[2:0] bits report back on the findings from the  
SDP autodetection block. Consult the SDP General Setup sec-  
tion for more information on enabling the autodetection block,  
and the Autodetection of SDP Modes section to find out how to  
configure it.  
Provides identification of the revision of the ADV7183A. Please  
review the list of IDENT code readback values for the various  
versions shown in Table 25.  
Table 25. IDENT Function  
IDENT[7:0]  
Description  
Table 26. AD_RESULT Function  
0x0D  
0x0E  
0x0F or 0x10  
0x11  
ADV7183A-ES1  
ADV7183A-ES2  
ADV7183A-FT  
AD_RESULT[2:0]  
Description  
000  
001  
010  
011  
100  
101  
110  
111  
NTSM-MJ  
NTSC-443  
PAL-M  
PAL-60  
PAL-BGHID  
SECAM  
ADV7183A (Version 2)  
STATUS 1  
STATUS_1[7:0] Address 0x10, [7:0]  
This read-only register provides information about the internal  
status of the ADV7183A.  
PAL-Combination N  
SECAM 525  
Please see CIL[2:0] Count Into Lock (SDP), Address 0x51, [2:0]  
and COL[2:0] Count Out of Lock (SDP), Address 0x51, [5:3] for  
information on the timing.  
Table 27. STATUS 1 Function  
STATUS 1 [7:0]  
Bit Name  
Block  
SDP  
SDP  
SDP  
SDP  
SDP  
SDP  
SDP  
SDP  
Description  
0
1
2
3
4
5
6
7
IN_LOCK  
LOST_LOCK  
FSC_LOCK  
FOLLOW_PW  
AD_RESULT.0  
AD_RESULT.1  
AD_RESULT.2  
COL_KILL  
In lock (right now).  
Lost lock (since last read of this register).  
Fsc locked (right now).  
AGC follows peak white algorithm.  
Result of SDP autodetection.  
Result of SDP autodetection.  
Result of SDP autodetection.  
Color kill active.  
Rev. A | Page 19 of 104  
 
 
 
ADV7183A  
STATUS 2  
STATUS_2[7:0], Address 0x12, [7:0]  
Table 28. STATUS 2 Function  
STATUS 2 [7:0]  
Bit Name  
MVCS DET  
MVCS T3  
MV_PS DET  
MV_AGC DET  
LL_NSTD  
Block  
SDP  
SDP  
SDP  
SDP  
SDP  
SDP  
Description  
0
1
2
3
4
5
6
7
Detected Macrovision color striping.  
Macrovision color striping protection. Conforms to Type 3 (if high), and Type 2 (if low).  
Detected Macrovision pseudo Sync pulses.  
Detected Macrovision AGC pulses.  
Line length is nonstandard.  
Fsc frequency is nonstandard.  
FSC_NSTD  
Reserved  
Reserved  
STATUS 3  
STATUS_3[7:0], Address 0x13, [7:0]  
Table 29. STATUS 3 Function  
STATUS 3 [7:0] Bit Name  
Block Description  
0
1
2
3
4
INST_HLOCK  
SDP Horizontal lock indicator (instantaneous).  
Reserved for future use.  
Reserved for future use.  
Reserved for future use.  
SDP outputs a blue screen (see theDEF_VAL_AUTO_EN Default Value Automatic Enable (SDP),  
Address 0x0C, [1] section).  
FREE_RUN_ACT SDP  
5
6
7
STD_FLD_LEN  
INTERLACED  
PAL_SW_LOCK  
SDP  
SDP  
SDP  
Field length is correct for currently selected video standard.  
Interlaced video detected (field sequence found).  
Reliable sequence of swinging bursts detected.  
Rev. A | Page 20 of 104  
ADV7183A  
STANDARD DEFINITION PROCESSOR (SDP)  
STANDARD DEFINITION PROCESSOR  
MACROVISION  
DETECTION  
STANDARD  
AUTODETECTION  
SLLC  
CONTROL  
VBI DATA  
RECOVERY  
LUMA  
DIGITAL  
FINE  
DIGITIZED CVBS  
DIGITIZED Y (YC)  
LUMA  
2D COMB  
LUMA  
FILTER  
GAIN  
CONTROL  
LUMA  
RESAMPLE  
CLAMP  
LINE  
AV  
SYNC  
EXTRACT  
RESAMPLE  
CONTROL  
VIDEO DATA  
OUTPUT  
LENGTH  
CODE  
PREDICTOR  
INSERTION  
CHROMA  
DIGITAL  
FINE  
MEASUREMENT  
BLOCK (= >1 C)  
DIGITIZED CVBS  
DIGITIZED C (YC)  
CHROMA  
DEMOD  
CHROMA  
FILTER  
GAIN  
CONTROL  
CHROMA  
RESAMPLE  
CHROMA  
2D COMB  
2
CLAMP  
VIDEO DATA  
PROCESSING  
BLOCK  
F
SC  
RECOVERY  
Figure 8. Block Diagram of the Standard Definition Processor  
A block diagram of the ADV7183A’s standard definition  
processor (SDP) is shown in Figure 8.  
SD CHROMA PATH  
The input signal is processed by the following blocks:  
The SDP block can handle standard definition video in CVBS,  
YC, and YPrPb formats. It can be divided into a luminance and  
chrominance path. If the input video is of a composite type  
(CVBS), both processing paths are fed with the CVBS input.  
Digital Fine Clamp. This block uses a high precision  
algorithm to clamp the video signal.  
Chroma Demodulation. This block employs a color  
subcarrier (Fsc) recovery unit to regenerate the color  
subcarrier for any modulated chroma scheme. The  
demodulation block then performs an AM demodulation  
for PAL and NTSC ,and an FM demodulation for SECAM.  
SD LUMA PATH  
The input signal is processed by the following blocks:  
Digital Fine Clamp. This block uses a high precision  
algorithm to clamp the video signal.  
Chroma Filter Block. This block contains a chroma  
decimation filter (CAA) with a fixed response, and some  
shaping filters (CSH) that have selectable responses.  
Luma Filter Block. This block contains a luma decimation  
filter (YAA) with a fixed response, and some shaping filters  
(YSH) that have selectable responses.  
Gain Control. Automatic gain control (AGC) can operate  
on several different modes, including gain based on the  
color subcarriers amplitude, gain based on the depth of the  
horizontal sync pulse on the luma channel, or fixed manual  
gain.  
Luma Gain Control. The automatic gain control (AGC) can  
operate on a variety of different modes, including gain  
based on the depth of the horizontal sync pulse, peak white  
mode, and fixed manual gain.  
Chroma Resample. The chroma data is digitally resampled  
to keep it perfectly aligned with the luma data. The  
resampling is done to correct for static and dynamic line-  
length errors of the incoming video signal.  
Luma Resample. To correct for line-length errors as well as  
dynamic line-length changes, the data is digitally  
resampled.  
Luma 2D Comb. The two-dimensional comb filter provides  
YC separation.  
Chroma 2D Comb. The two-dimensional, 5-line,  
superadaptive comb filter provides high quality YC  
separation in case the input signal is CVBS.  
AV Code Insertion. At this point, the decoded luma (Y)  
signal is merged with the retrieved chroma values. AV  
codes (as per ITU-R. BT-656) can be inserted.  
AV Code Insertion. At this point, the demodulated chroma  
(Cr and Cb) signal is merged with the retrieved luma  
values. AV codes (as per ITU-R. BT-656) can be inserted.  
Rev. A | Page 21 of 104  
 
ADV7183A  
SDP SYNC PROCESSING  
SDP GENERAL SETUP  
Video Standard Selection (SDP)  
The SDP extracts syncs embedded in the video data stream.  
There is currently no support for external HS/VS inputs. The  
sync extraction has been optimized to support imperfect video  
sources (e.g., videocassette recorders with head switches). The  
actual algorithm used employs a coarse detection based on a  
threshold crossing followed by a more detailed detection using  
an adaptive interpolation algorithm. The raw sync information  
is sent to a line-length measurement and prediction block. The  
output of this is then used to drive the digital resampling  
section to ensure that the SDP outputs 720 active pixels per line.  
The VID_SEL[3:0] register allows the user to force the digital  
core into a specific video standard. Under normal  
circumstances, this should not be necessary. The VID_SEL[3:0]  
bits default to an autodetection mode that supports PAL, NTSC,  
SECAM, and variants thereof.  
Refer to the Autodetection of SDP Modes section for more  
information on the autodetection system.  
Autodetection of SDP Modes  
In order to guide the autodetect system of the SDP block,  
individual enable bits are provided for each of the supported  
video standards. Setting the relevant bit to 0 inhibits the  
standard from being detected automatically. Instead, the system  
picks the closest of the remaining enabled standards. The results  
of SDP autodetection can be read back via the status registers.  
See the Global Status Registers section for more information.  
The sync processing on the ADV7183A also includes two  
specialized postprocessing blocks that filter and condition the  
raw sync information retrieved from the digitized analog video.  
VSYNC Processor. This block provides extra filtering of the  
detected VSYNCs to give improved vertical lock.  
HSYNC Processor. The HSYNC processor is designed to  
filter incoming HSYNCs that have been corrupted by  
noise, providing much improved performance for video  
signals with stable time base but poor SNR.  
Table 30. VID_SEL Function  
VID_SEL[3:0]  
Address 0x00 [7:4]  
Description  
0000*  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
Autodetect (PAL BGHID) <–> NTSC J.  
Autodetect (PAL BGHID) <–> NTSC M.  
Autodetect (PAL N) <–> NTSC J.  
Autodetect (PAL N) <–> NTSC M.  
NTSC J (1)  
NTSC M (1).  
PAL 60.  
NTSC 4.43 (1).  
PAL BGHID.  
PAL N ( = PAL BGHID (with pedestal)).  
PAL M (without pedestal).  
PAL M.  
PAL combination N.  
PAL combination N (with pedestal).  
SECAM.  
SDP VBI DATA RECOVERY  
The SDP can retrieve the following information from the input  
video:  
Wide-screen signaling (WSS)  
Copy generation management system (CGMS)  
Closed caption (CC)  
Macrovision protection presence  
EDTV data  
Gemstar compatible data slicing  
1101  
1110  
1111  
The SDP is also capable of automatically detecting the incoming  
video standard with respect to  
SECAM (with pedestal).  
*Default value.  
Color subcarrier frequency  
Field rate  
AD_SEC525_EN Enable Autodetection of SECAM 525 line  
video (SDP), Address 0x07, [7]  
Table 31. AD_SEC525_EN Function  
Line rate  
AD_SEC525_EN Description  
0*  
Disable the autodetection of a 525-line  
system with a SECAM style, FM-modulated  
color component.  
and can configure itself to support PAL-BGHID, PAL-M/N,  
PAL-combination N, NTSC-M, NTSC-J, SECAM 50 Hz/60 Hz,  
NTSC4.43, and PAL60.  
1
Enable the detection.  
*Default value.  
Rev. A | Page 22 of 104  
 
 
ADV7183A  
AD_SECAM_EN Enable Autodetection of SECAM (SDP),  
Address 0x07, [6]  
AD_PAL_EN Enable Autodetection of PAL (SDP),  
Address 0x07, [0]  
Table 32. AD_SECAM_EN Function  
Table 38. AD_PAL_EN Function  
AD_SECAM_EN  
Description  
AD_PAL_EN  
Description  
0
1*  
Disable the autodetection of SECAM.  
Enable the detection.  
0
1*  
Disable the detection of standard PAL.  
Enable the detection.  
*Default value.  
*Default value.  
SFL_INV Subcarrier Frequency Lock Inversion (SDP)  
AD_N443_EN Enable Autodetection of NTSC 443 (SDP),  
Address 0x07, [5]  
Table 33. AD_N443_EN Function  
This bit controls the behavior of the PAL switch bit in the SFL  
(GenLock Telegram) data stream. It was implemented to solve  
some compatibility issues with video encoders. It solves two  
problems:  
AD_N443_EN Description  
0
Disable the autodetection of NTSC style  
systems with a 4.43 MHz color subcarrier.  
1. The PAL switch bit is only meaningful in PAL. Some  
encoders (including Analog Devices encoders) also look at  
the state of this bit in NTSC.  
1*  
Enable the detection.  
*Default value.  
AD_P60_EN Enable Autodetection of PAL60 (SDP),  
Address 0x07, [4]  
Table 34. AD_P60_EN Function  
2. There was a design change in Analog Devices encoders  
from ADV717x to ADV719x. The older versions used the  
SFL (GenLock Telegram) bit directly, while the later ones  
invert the bit prior to using it. The reason for this is that the  
inversion compensated for the 1-line delay of an SFL  
(GenLock Telegram) transmission.  
AD_P60_EN Description  
0
Disable the autodetection of PAL systems with a  
60 Hz field rate.  
1*  
Enable the detection.  
As a result:  
*Default value.  
1. ADV717x encoders need the PAL switch bit in the SFL  
(GenLock Telegram) to be 1 for NTSC to work.  
AD_PALN_EN Enable Autodetection of PAL N (SDP),  
Address 0x07, [3]  
Table 35. AD_PALN_EN Function  
2. ADV7190/ADV7191/ADV7194 encoders need the PAL  
switch bit in the SFL to be 0 to work in NTSC.  
AD_PALN_EN  
Description  
0
1*  
Disable the detection of the PAL N standard.  
Enable the detection.  
If the state of the PAL switch bit is wrong, a 180°phase shift  
occurs.  
*Default value.  
In a decoder/encoder back-to-back system in which SFL is used,  
this bit must be set up properly for the specific encoder used.  
AD_PALM_EN Enable Autodetection of PAL M (SDP),  
Address 0x07, [2]  
Table 36. AD_PALM_EN Function  
Table 39. SFL_INV Function  
SFL_INV  
AD_PALM_EN  
Description  
0
1*  
Disable the autodetection of PAL M.  
Enable the detection.  
Address 0x41, [6] Description  
0
SFL compatible with ADV7190/ADV7191/  
ADV7194 encoders.  
*Default value.  
1*  
SFL compatible with ADV717x/ADV7173x  
encoders.  
AD_NTSC_EN Enable Autodetection of NTSC (SDP),  
Address 0x07, [1]  
*Default value.  
Table 37. AD_NTSC_EN Function  
AD_NTSC_EN Description  
0
1*  
Disable the detection of standard NTSC.  
Enable the detection.  
*Default value.  
Rev. A | Page 23 of 104  
ADV7183A  
CIL[2:0] Count Into Lock (SDP), Address 0x51, [2:0]  
Lock Related Controls (SDP)  
Lock information is presented to the user through Bits [1:0] of  
the Status 1 register. See the STATUS_1[7:0] Address 0x10, [7:0]  
section. Figure 9 outlines the signal flow and the controls  
available to influence the way the lock status information is  
generated.  
CIL[2:0] determines the number of consecutive lines for which  
the into lock condition must be true before the system switches  
into the locked state, and reports this via Status 0 [1:0].  
Table 42. CIL Function  
CIL[2:0]  
Description (Count Value in Lines of Video)  
000  
001  
1
2
SRLS Select Raw Lock Signal (SDP), Address 0x51, [6]  
Using the SRLS bit, the user can choose between two sources for  
determining the lock status (per Bits [1:0] in the Status 1  
register).  
010  
011  
100*  
101  
110  
5
10  
100  
500  
1000  
100000  
The time_win signal is based on a line-to-line evaluation of  
the horizontal synchronization pulse of the incoming  
video. It reacts quite quickly.  
111  
*Default value.  
The free_run signal evaluates the properties of the  
incoming video over several fields, and takes vertical  
synchronization information into account.  
COL[2:0] Count Out of Lock (SDP), Address 0x51, [5:3]  
COL[2:0] determines the number of consecutive lines for which  
the out of lock condition must be true before the system  
switches into unlocked state, and reports this via Status 0 [1:0].  
Table 40. SRLS Function  
SRLS  
0*  
1
Description  
Table 43. COL Function  
Select the free_run signal.  
Select the time_win signal.  
COL[2:0]  
Description (Count Value in Lines of Video)  
000  
1
*Default value.  
001  
2
010  
011  
100*  
101  
110  
5
10  
100  
500  
1000  
100000  
FSCLE Fsc Lock Enable (SDP), Address 0x51, [7]  
The FSCLE bit allows the user to choose whether the status of  
the color subcarrier loop is taken into account when the overall  
lock status is determined and presented via Bits [1:0] in Status  
Register 1. This bit must be set to 0 when operating the SDP in  
YPrPb component mode in order to generate a reliable HLOCK  
status bit.  
111  
*Default value.  
Table 41. FSCLE Function  
FSCLE  
Description  
0
Overall lock status only dependent on horizontal  
sync lock.  
1*  
Overall lock status dependent on horizontal sync  
lock and Fsc Lock.  
*Default value.  
SELECT THE RAW LOCK SIGNAL  
SRLS  
FILTER THE RAW LOCK SIGNAL  
CIL[2:0], COL[2:0]  
TIME_WIN  
1
0
0
1
FREE_RUN  
COUNTER INTO LOCK  
COUNTER OUT OF LOCK  
STATUS 1 [0]  
STATUS 1 [1]  
F
LOCK  
SC  
MEMORY  
TAKE F LOCK INTO ACCOUNT  
SC  
FSCLE  
Figure 9. SDP Lock Related Signal Path  
Rev. A | Page 24 of 104  
 
ADV7183A  
SDP COLOR CONTROLS  
The following registers provide user control over the picture  
appearance, including control of the active data in the event of  
video being lost. They are independent of any other controls.  
For instance, brightness control is independent from picture  
clamping, although both controls affect the signals dc level.  
SD_SAT_Cr[7:0] SD Saturation Cr Channel (SDP),  
Address 0xE4, [7:0]  
This register allows the user to control the gain of the Cr  
channel only. This register affects the SDP core only.  
For this register to be active, SAT[7:0] must be programmed  
with its default value of 0x80. If SAT[7:0] is programmed with a  
different value, SD_SAT_Cb[7:0] and SD_SAT_Cr[7:0] are  
inactive.  
CON[7:0] Contrast Adjust (SDP), Address 0x08, [7:0]  
This is the user control for contrast adjustment for the SDP  
block only.  
Table 44. CON Function  
Table 47. SD_SAT_Cr Function  
CON[7:0]  
Description (Adjust Contrast of the Picture)  
Description  
SD_SAT_Cr[7:0] (Adjust Saturation of the Picture)  
0x80*  
Gain on luma channel = 1.  
0x80*  
Chroma gain = 0 dB  
0x00  
Gain on luma channel = 0.  
0x00  
0xFF  
Gain on luma channel = 2.  
0xFF  
*Default value.  
*Default value.  
SAT[7:0] Saturation Adjust (SDP), Address 0x09, [7:0]  
SD_OFF_Cb[7:0] SD Offset Cb Channel (SDP),  
Address 0xE1, [7:0]  
The user can adjust the saturation of the color output using this  
register. This registers affects the SDP core only.  
This register allows the user to select an offset for the Cb  
channel only. This register affects the SDP core only. There is a  
functional overlap with the Hue [7:0] register.  
ADI encourages users not to use the SAT[7:0] register, which  
may be removed in future revisions of the ADV7183A. Instead,  
the SD_SAT_Cb and SD_SAT_Cr registers should be used.  
Table 48.SD_OFF_Cb Function  
Table 45. SAT Function  
Description  
SAT[7:0] Description (Adjust Saturation of the Picture)  
(Adjust Hue of the Picture by Selecting an  
SD_OFF_Cb[7:0] Offset for Data on the Cb Channel)  
0x80*  
Chroma gain = 0 dB.  
Chroma gain = –42 dB.  
Chroma gain = 6 dB.  
0x80*  
0x7F  
0x00  
0xFF  
0xFF  
*Default value.  
*Default value.  
SD_SAT_Cb[7:0] SD Saturation Cb Channel (SDP),  
Address 0xE3, [7:0]  
SD_OFF_Cr [7:0] SD Offset Cr Channel (SDP),  
Address 0xE2, [7:0]  
This register allows the user to control the gain of the Cb  
channel only.  
This register allows the user to select an offset for the Cr  
channel only. This register affects the SDP core only. There is a  
functional overlap with the Hue [7:0] register.  
For this register to be active , SAT[7:0] must be programmed  
with its default value of 0x80. If SAT[7:0] is programmed with a  
different value, SD_SAT_Cb[7:0] and SD_SAT_Cr[7:0] are  
inactive.  
Table 49. SD_OFF_Cr Function  
Description  
(Adjust Hue of the Picture by Selecting an  
Table 46. SD_SAT_Cb Function  
SD_OFF_Cr[7:0] Offset for Data on Cr Channel)  
0x80*  
Description  
SD_SAT_Cb[7:0] (Adjust Saturation of the Picture)  
0x7F  
0x80*  
Chroma gain = 0 dB.  
0xFF  
0x00  
*Default value.  
0xFF  
*Default value.  
Rev. A | Page 25 of 104  
ADV7183A  
BRI[7:0] Brightness Adjust (SDP), Address 0x0A, [7:0]  
Table 52. DEF_Y Function  
DEF_Y[5:0]  
Description  
This register controls the brightness of the video signal through  
the SDP core.  
0x36 (Blue)*  
*Default value.  
Default value of Y.  
Table 50. BRI Function  
BRI[7:0]  
Description (Adjust Brightness of the Picture)  
DEF_C[7:0] Default Value C (SDP), Address 0x0D, [7:0]  
0x00*  
0x7F  
0xFF  
Offset of the luma channel = 0IRE.  
Offset of the luma channel = 100IRE.  
Offset of the luma channel = –100IRE.  
The DEF_C[7:0] register complements the DEF_Y[5:0] value. It  
defines the 4 MSBs of Cr and Cb values to be output if  
*Default value.  
The DEF_VAL_AUTO_EN bit is set to high and the  
ADV7183A can’t lock to the input video (automatic mode).  
HUE[7:0] Hue Adjust (SDP), Address 0x0B, [7:0]  
DEF_VAL_EN bit is set to high (forced output).  
This register contains the value for the color hue adjustment.  
The data that is finally output from the ADV7183A for the  
chroma side is Cr[7:0] = {DEF_C[7:4], 0, 0, 0, 0}, Cb[7:0] =  
{DEF_C[3:0], 0, 0, 0, 0}.  
HUE[7:0] has a range of 90°, with 0x00 equivalent to an  
adjustment of 0°. The resolution of HUE[7:0] is 1 bit = 0.7°.  
The hue adjustment value is fed into the AM color demodula-  
tion block. Therefore, it only applies to video signals that  
contain chroma information in the form of an AM modulated  
carrier (CVBS or Y/C in PAL or NTSC). It does not affect  
SECAM and does not work on component video inputs  
(YPrPb).  
Table 53. DEF_C Function  
DEF_C[7:0]  
Description  
0x7C (blue)*  
Default values for Cr and Cb.  
*Default value.  
DEF_VAL_EN Default Value Enable (SDP),  
Address 0x0C, [0]  
Table 51. HUE Function  
HUE[7:0]  
Description (Adjust Hue of the Picture)  
This bit forces the use of the default values for Y, Cr, and Cb.  
Refer to the descriptions for DEF_Y and DEF_C for additional  
information. The decoder also outputs a stable 27 MHz clock,  
HS, and VS in this mode.  
0x00*  
0x7F  
0xFF  
*Default value.  
Phase of the chroma signal = 0°.  
Phase of the chroma signal = –90°.  
Phase of the chroma signal = +90°.  
Table 54. DEF_VAL_EN Function  
DEF_VAL_EN Description  
DEF_Y[5:0] Default Value Y (SDP), Address 0x0C, [7:2]  
0*  
Don't force the use of default Y, Cr, and Cb  
values. Output colors dependent on  
DEF_VAL_AUTO_EN.  
In cases where the ADV7183A loses lock on the incoming video  
signal or where there is no input signal, the DEF_Y[5:0] register  
allows the user to specify a default luma value to be output.  
1
Always use default Y, Cr, and Cb values.  
Override picture data even if the video decoder  
is locked.  
This value is used under the following conditions:  
*Default value.  
If DEF_VAL_AUTO_EN bit is set to high and the  
ADV7183A lost lock to the input video signal. This is the  
intended mode of operation (automatic mode).  
DEF_VAL_AUTO_EN Default Value Automatic Enable  
(SDP), Address 0x0C, [1]  
This bit enables the automatic usage of the default values for Y,  
Cr, and Cb in cases where the ADV7183A cannot lock to the  
video signal.  
The DEF_VAL_EN bit is set, regardless of the lock status of  
the video decoder.  
This is a forced mode that may be useful during  
configuration.  
Table 55. DEF_VAL_AUTO_EN Function  
DEF_VAL_AUTO_EN Description  
0
Don't use default Y, Cr, and Cb values. If  
unlocked, output noise.  
Use default Y, Cr, and Cb values when  
decoder loses lock.  
The DEF_Y[5:0] values define the 6 MSBs of the output video.  
The remaining LSBs are padded with 0s. For example, in 8-bit  
mode, the output is Y[7:0] = {DEF_Y[5:0], 0, 0}.  
1*  
*Default value.  
Rev. A | Page 26 of 104  
ADV7183A  
SDP CLAMP OPERATION  
FINE  
CURRENT  
SOURCES  
COARSE  
CURRENT  
SOURCES  
DATA  
PRE  
PROCESSOR  
(DPP)  
ANALOG  
VIDEO  
INPUT  
SDP  
WITH DIGITAL  
FINE CLAMP  
ADC  
CLAMP CONTROL  
Figure 10. SDP Clamping Overview  
The input video is ac-coupled into the ADV7183A. Therefore,  
its dc value needs to be restored. This process is referred to as  
clamping the video. This section explains the general process of  
clamping on the ADV7183A for the SDP, and shows the  
different ways in which a user can configure its behavior.  
The clamping scheme has to complete two tasks: it must be able  
to acquire a newly connected video signal with a completely  
unknown dc level, and it must maintain the dc level during  
normal operation.  
For a fast acquiring of an unknown video signal, the large  
current clamps may be activated7. Control of the coarse and fine  
current clamp parameters is performed automatically by the  
decoder.  
The SDP block uses a combination of current sources and a  
digital processing block for clamping, as shown in Figure 10.  
The analog processing channel shown is replicated three times  
inside the IC. While only one single channel (and only one  
ADC) would be needed for a CVBS signal, two independent  
channels are needed for YC (S-VHS) type signals, and three  
independent channels are needed to allow component signals  
(YPrPb) to be processed.  
Standard definition video signals may have excessive noise on  
them. In particular, CVBS signals transmitted by terrestrial  
broadcast and demodulated using a tuner usually show very  
large levels of noise (>100 mV). A voltage clamp would be  
unsuitable for this type of video signal. Instead, the ADV7183A  
employs a set of four current sources that can cause coarse  
(>0.5 mA) and fine (<0.1 mA) currents to flow into and away  
from the high impedance node that carries the video signal (see  
Figure 10).  
The clamping can be divided into two sections:  
Clamping before the ADC (analog domain): current  
sources.  
The following sections describe the I2C signals that can be used  
to influence the behavior of SDP clamping.  
Clamping after the ADC (digital domain): digital  
processing block.  
The ADCs can digitize an input signal only if it resides within  
the ADCs 1.6 V input voltage range. An input signal with a dc  
level that is too large or too small is clipped at the top or bottom  
of the ADC range.  
Previous revisions of the ADV7183A had controls (FACL/FICL,  
fast and fine clamp length) to allow configuration of the length  
for which the coarse (fast) and fine current sources are switched  
on. These controls were removed on the ADV7183A-FT and  
replaced by an adaptive scheme.  
The primary task of the analog clamping circuits is to ensure  
that the video signal stays within the valid ADC input window  
so the analog-to-digital conversion can take place. It is not nec-  
essary to clamp the input signal with a very high accuracy in the  
analog domain as long as the video signal fits the ADC range.  
CCLEN Current Clamp Enable (SDP), Address 0x14, [4]  
The current clamp enable bit allows the user to switch off the  
current sources in the analog front end altogether. This may be  
useful if the incoming analog video signal is clamped externally.  
After digitization, the digital fine clamp block corrects for any  
remaining variations in dc level. Since the dc level of an input  
video signal refers directly to the brightness of the picture  
transmitted, it is important to perform a fine clamp with high  
accuracy; otherwise, brightness variations may occur.  
Furthermore, dynamic changes in the dc level will almost  
certainly lead to visually objectionable artifacts, and must  
therefore be prohibited.  
Table 56. CCLEN Function  
CCLEN  
Description  
0
1*  
Current sources switched off.  
Current sources enabled.  
*Default value.  
7 It is assumed that the amplitude of the video signal at this point is of a  
nominal value.  
Rev. A | Page 27 of 104  
 
 
 
ADV7183A  
DCT[1:0] Digital Clamp Timing (SDP), Address 0x15, [6:5]  
frequency noise, reducing the bandwidth of the luma signal  
improves visual picture quality. A follow-on video  
compression stage may work more efficiently if the video is  
low-pass filtered.  
The Clamp Timing register determines the time constant of the  
digital fine clamp circuitry. It is important to realize that the  
digital fine clamp reacts very fast since it is supposed to  
immediately correct any residual dc level error for the active  
line. The time constant of the digital fine clamp must be much  
quicker than the one from the analog blocks.  
The ADV7183A allows selection of two responses for the  
shaping filter: one that is used for good quality CVBS,  
component, and S-VHS type sources, and a second for  
nonstandard CVBS signals.  
By default, the time constant of the digital fine clamp is adjusted  
dynamically to suit the currently connected input signal.  
The YSH filter responses also include a set of notches for  
PAL and NTSC. However, it is recommended to use the  
comb filters for YC separation.  
Table 57. DCT Function  
DCT[1:0] Description  
00  
01  
10*  
11  
Slow (TC = 1 sec).  
Medium (TC = 0.5 sec).  
Fast (TC = 0.1 sec).  
Determined by ADV7183A dependent on video  
parameters.  
Luma peaking filter. This filter can be manually enabled.  
The user can select to boost or attenuate the midregion of  
the Y spectrum around 3 MHz. The peaking filter may  
visually improve the picture by showing more definition on  
those picture details that contain frequency components  
around 3 MHz. The peaking filter compensates for the  
effects of a wide notch filter: Where the notch starts to fall  
off, the peaking filter lifts the overall response back on.  
*Default value.  
DCFE Digital Clamp Freeze Enable (SDP), Address 0x15, [4]  
This register bit allows the user to freeze the digital clamp loop  
at any time. It is intended for users who would like to do their  
own clamping. Users should disable the current sources for  
analog clamping via the appropriate register bits, wait until the  
digital clamp loop settles, and then freeze it via the DCFE bit.  
Digital resampling filter. This block is used to allow  
dynamic resampling of the video signal to alter parameters  
such as the time base of a line of video. Fundamentally, the  
resampler is a set of low-pass filters. The actual response is  
chosen by the system with no requirement for user  
intervention.  
Table 58.  
DCFE  
Description  
0*  
1
Digital clamp operational.  
Digital clamp loop frozen.  
Figure 12 through Figure 15 show the overall response of all  
filters together. Unless otherwise noted, the filters are set into a  
typical wideband mode, and the peaking function is disabled.  
*Default value.  
SDP LUMA FILTER  
Data8 from the digital fine clamp block is processed by four sets  
of filters:  
Y Shaping Filter  
For input signals in CVBS format, the luma shaping filters play  
an essential role in removing the chroma component from a  
composite signal. YC separation must aim for best possible  
crosstalk reduction while still retaining as much bandwidth  
(especially on the luma component) as possible. High quality  
YC separation can be achieved by using the internal comb filters  
of the ADV7183A. Comb filtering, however, relies on the  
frequency relationship of the luma component (multiples of the  
video line rate) and the color subcarrier (Fsc). For good quality  
CVBS signals, this relationship is known; the comb filter  
algorithms can be used to separate out luma and chroma with  
high accuracy.  
Luma antialias filter (YAA). The SDP received video at a  
rate of 27 MHz9. The ITU-R BT.601 recommends a  
sampling frequency of 13.5 MHz. The luma antialias filter  
decimates the oversampled video using a high quality,  
linear phase, low-pass filter that preserves the luma signal  
while at the same time attenuating out-of-band  
components. The luma antialias filter (YAA) has a fixed  
response.  
Luma shaping filters (YSH). The shaping filter block is a  
programmable low-pass filter with a wide variety of  
responses. It can be used to selectively reduce the luma  
video signal bandwidth (needed prior to scaling, for  
example). For some video sources that contain high  
In the case of nonstandard video signals, the frequency  
relationship may be disturbed and the comb filters may not be  
able to remove all crosstalk artifacts in an optimum fashion  
without the assistance of the shaping filter block.  
8 The data format at this point is CVBS for CVBS input or luma only for Y/C and  
YPrPb input formats.  
9 In the case of 4× oversampled video, the ADCs sample at 54 MHz, and the  
first decimation is performed inside the DPP filters. Therefore, the data rate  
into the SDP core is always 27 MHz.  
Rev. A | Page 28 of 104  
 
 
 
ADV7183A  
An automatic mode is provided. Here, the ADV7183A evaluates  
the quality of the incoming video signal and selects the filter  
responses in accordance with the signal quality and video  
standard. YFSM, WYSFMOVR, and WYSFM allow the user to  
manually override the automatic decisions in part or in full.  
YSFM[4:0] Y Shaping Filter Mode (SDP), Address 0x17, [4:0]  
The Y shaping filter mode bits allow the user to select from a  
wide range of low-pass and notch filters. When switched in  
automatic mode, the filter is selected based on other register  
selections (e.g., detected video standard) as well as properties  
extracted from the incoming video itself (e.g., quality, time base  
stability). The automatic selection always picks the widest  
possible bandwidth for the video input encountered.  
The luma shaping filter has three control registers:  
YSFM[4:0] allows the user to manually select a shaping  
filter mode (applied to all video signals) or to enable an  
automatic selection (dependent on video quality and video  
standard).  
If the YSFM settings specify a filter (i.e., YSFM is set to  
values other than 00000 or 00001), the chosen filter is  
applied to all video, regardless of its quality.  
WYSFMOVR allows the user to manually override the  
WYSFM decision.  
In automatic selection mode, the notch filters are only used  
for bad quality video signals. For all other video signals,  
wideband filters are used.  
WYSFM[4:0] allows the user to select a different shaping  
filter mode for good quality CVBS, component (YPrPb),  
and S-VHS (YC) input signals.  
WYSFMOVR Wideband Y Shaping Filter Override (SDP),  
Address 0x18,[7]  
In automatic mode, the system preserves the maximum possible  
bandwidth for good CVBS sources (since they can successfully  
be combed) as well as for luma components of YPrPb and YC  
sources, since they need not be combed. For poor quality  
signals, the system selects from a set of proprietary shaping  
filter responses that complements comb filter operation in order  
to reduce visual artifacts.  
Setting the WYSFMOVR bit enables the use of the WYSFM[4:0]  
settings for good quality video signals. For more information,  
refer to the general discussion of the luma shaping filters in the  
Y Shaping Filter section and the flowchart shown in Figure 11.  
Table 59.  
WYSFMOVR Description  
0
Automatic selection of shaping filter for good  
quality video signals.  
The decisions of the control logic are shown in Figure 11.  
1*  
Enable manual override via WYSFM[4:0].  
*Default value.  
SET YSFM  
YSFM IN AUTO MODE?  
00000 OR 00001  
YES  
NO  
VIDEO  
QUALITY  
BAD  
GOOD  
USE YSFM SELECTED  
FILTER REGARDLESS FOR  
GOOD AND BAD VIDEO  
AUTO SELECT LUMA  
SHAPING FILTER TO  
COMPLEMENT COMB  
WYSFMOVR  
1
0
SELECT WIDEBAND  
FILTER AS PER  
WYSFM[4:0]  
SELECT AUTOMATIC  
WIDEBAND FILTER  
Figure 11. YSFM and WYSFM Control Flowchart  
Rev. A | Page 29 of 104  
 
ADV7183A  
Table 60. YSFM Function  
Table 61. WYSFM Function  
YSFM[4:0] Description  
WYSFM[4:0]  
Description  
Do not use  
Do not use  
SVHS 1  
SVHS 2  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
SVHS 7  
0'0000  
Automatic selection including a wide notch  
0'0000  
0'0001  
response (PAL/NTSC/SECAM)  
0'0001*  
Automatic selection including a narrow notch  
response (PAL/NTSC/SECAM)  
0'0010  
0'0011  
0'0100  
0'0101  
0'0110  
0'0111  
0'1000  
0'1001  
0'1010  
0'1011  
0'1100  
0'1101  
0'1110  
0'1111  
1'0000  
1'0001  
1'0010  
0'0010  
0'0011  
0'0100  
0'0101  
0'0110  
0'0111  
0'1000  
0'1001  
0'1010  
0'1011  
0'1100  
0'1101  
0'1110  
0'1111  
1'0000  
1'0001  
1'0010  
1'0011  
1'0100  
1'0101  
1'0110  
1'0111  
1'1000  
1'1001  
1'1010  
1'1011  
1'1100  
1'1101  
1'1110  
1'1111  
*Default value.  
SVHS 1  
SVHS 2  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
SVHS 7  
SVHS 8  
SVHS 8  
SVHS 9  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR 601)  
Do not use  
SVHS 9  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR 601)  
PAL NN 1  
PAL NN 2  
PAL NN 3  
PAL WN 1  
PAL WN 2  
NTSC NN 1  
NTSC NN 2  
NTSC NN 3  
NTSC WN 1  
NTSC WN 2  
NTSC WN 3  
Reserved  
1'0011*  
1'0100–1’1111  
*Default value.  
v740a COMBINED Y ANTIALIAS, S-VHS LOW-PASS FILTERS,  
Y RESAMPLE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
WYSFM[4:0] Wide Band Y Shaping Filter Mode (SDP),  
Address 0x18, [4:0]  
FREQUENCY (MHz)  
Figure 12. SDP Y S-VHS Combined Responses  
The WYSFM[4:0] bits allow the user to manually select a  
shaping filter for good quality video signals (e.g., CVBS with  
stable time base, luma component of YPrPb, luma component  
of YC). The WYSFM bits are only active if the WYSFMOVR bit  
is set to 1. See the general discussion of the shaping filter  
settings in the Y Shaping Filter section.  
The filter plots in Figure 12 show the S-VHS 1 (narrowest) to  
S-VHS 18 (widest) shaping filter settings. Figure 14 shows the  
PAL notch filter responses. The NTSC compatible notches are  
shown in Figure 15.  
Rev. A | Page 30 of 104  
 
ADV7183A  
v740a COMBINED Y ANTIALIAS, CCIR MODE SHAPING FILTER,  
Y RESAMPLE  
YPM[2:0] Y Peaking Filter Mode (SDP), Address 0x02, [2:0]  
0
–20  
Allows the user to select peaking. This function allows the user  
to boost/attenuate luma signals around the color subcarrier  
frequency. Selecting YPM = 000,001,010,011 sharpens the  
image; YPM = 101,110,111 attenuates the luma around the color  
subcarrier. In cases of incomplete cancellation in the Y comb  
filter, this could be used to attenuate any residual C components  
(hanging dots) in the Y output at the cost of a softer image.  
–40  
–60  
–80  
Table 62. YPM Function  
Filter Response (Peak Position)  
–100  
–120  
YPM[2:0]  
000  
001  
010  
011  
Composite (2.6 MHz)  
+4.5 dB  
S-VHS (3.75 MHz)  
+9.25 dB  
+9.25 dB  
+5.75 dB  
+3.3 dB  
0
2
4
6
8
10  
12  
+4.5 dB  
+4.5 dB  
FREQUENCY (MHz)  
Figure 13. SDP Y S-VHS 18 Extra Wideband Filter (CCIR 601 Compliant)  
+1.25 dB  
0
100*  
0
101  
110  
111  
–1.25 dB  
–1.75 dB  
–3.0 dB  
–3.0 dB  
–8.0 dB  
–8.0 dB  
v740a COMBINED Y ANTIALIAS, PAL NOTCH FILTERS,  
Y RESAMPLE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
*Default value.  
SDP CHROMA FILTER  
Data10 from the digital fine clamp block is processed by two sets  
of filters:  
Chroma Antialias Filter (CAA). The ADV7183A over-  
samples the CVBS by a factor of 2 and the Chroma/PrPb  
by a factor of 4. A decimating filter (CAA) is used to  
preserve the active video band and remove any out-of-  
band components. The CAA filter has a fixed response.  
0
2
4
6
8
10  
12  
Chroma Shaping Filters (CSH). The shaping filter block  
(CSH) can be programmed to perform a variety of low-  
pass responses. It can be used to selectively reduce the  
bandwidth of the chroma signal for scaling or  
compression.  
FREQUENCY (MHz)  
Figure 14. SDP Y S-VHS 18 Extra Wideband Filter (CCIR 601 Compliant)  
v740a COMBINED Y ANTIALIAS, NTSC NOTCH FILTERS,  
Y RESAMPLE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
Digital Resampling Filter. This block is used to allow  
dynamic resampling of the video signal to alter parameters  
such as the time base of a line of video. Fundamentally, the  
resampler is a set of low-pass filters. The actual response is  
chosen by the system with no requirement for user  
intervention.  
The plots in Figure 16 show the overall response of all filters  
together.  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 15. SDP Y S-VHS 18 Extra Wideband Filter (601)  
10 The data format at this point is CVBS for CVBS inputs, chroma only for Y/C,  
or U/V interleaved for YPrPb input formats.  
Rev. A | Page 31 of 104  
 
ADV7183A  
CSFM[2:0] C Shaping Filter Mode (SDP), Address 0x17, [7]  
SDP GAIN OPERATION  
The C shaping filter mode bits allow the user to select from a  
range of low-pass filters for the chrominance signal. When  
switched in automatic mode, the widest filter is selected based  
on the video standard/format and user choice (see settings 000  
and 001 in Table 63).  
The gain control within the ADV7183A is done on a purely  
digital basis. The input ADCs support a 10-bit range, mapped  
into a 1.6 V analog voltage range. Gain correction takes place  
after the digitization in the form of a digital multiplier.  
There are several advantages of this architecture over the  
commonly used PGA (programmable gain amplifier) before the  
ADCs; among them is the fact that the gain is now completely  
independent of supply, temperature, and process variations.  
Table 63. CSFM Function  
CSFM[2:0]  
Description  
000*  
Autoselect 1.5 MHz bandwidth  
001  
Autoselect 2.17 MHz bandwidth  
As shown in Figure 17, the ADV7183A can decode a video  
signal as long as it fits into the ADC window. There are two  
components to this: the amplitude of the input signal and the dc  
level it resides on. The dc level is set by the clamping circuitry  
(see the SDP Clamp Operation section).  
010  
011  
100  
101  
SH1  
SH2  
SH3  
SH4  
110  
SH5  
111  
*Default value.  
Wideband Mode  
If the amplitude of the analog video signal is too high, clipping  
may occur, resulting in visual artifacts. The analog input range  
of the ADC, together with the clamp level, determines the  
maximum supported amplitude of the video signal.  
v740a COMBINED C ANTIALIAS, C SHAPING FILTER,  
C RESAMPLER  
0
–10  
–20  
–30  
–40  
–50  
The minimum supported amplitude of the input video is  
determined by the SDP core’s ability to retrieve horizontal and  
vertical timing and to lock to the color burst (if present).  
There are two gain control units, one each for luma and chroma  
data. Both can operate independently of each other. The chroma  
unit, however, can also take its gain value from the luma path.  
Several AGC modes are possible; Table 64 summarizes them.  
It is possible to freeze the automatic gain control loops. This will  
cause the loops to stop updating and the AGC determined gain  
at the time of the freeze stays active until the loop is either  
unfrozen or the gain mode of operation is changed.  
–60  
0
1
2
3
4
5
6
FREQUENCY (MHz)  
Figure 16. SDP Chroma Shaping Filter Responses  
Figure 16 shows the responses of SH1 (narrowest) to SH5  
(widest) in addition to the wideband mode (in red).  
The currently active gain from any of the modes can be read  
back. Please refer to the description of the dual function manual  
gain registers, LG[11:0] Luma Gain and CG[11:0] Chroma  
Gain, in the SDP Luma Gain and SDP Chroma Gain sections.  
ANALOG VOLTAGE  
RANGE SUPPORTED BY ADC (1.6V RANGE FOR ADV7183A)  
MAXIMUM  
VOLTAGE  
SDP  
(GAIN SELECTION ONLY)  
DATA  
PRE  
ADC  
PROCESSOR  
(DPP)  
GAIN  
CONTROL  
MINIMUM  
VOLTAGE  
CLAMP  
LEVEL  
Figure 17. SDP Gain Control Overview  
Rev. A | Page 32 of 104  
 
 
 
ADV7183A  
Table 64. SDP AGC Modes  
Input Video Type  
Luma Gain  
Chroma Gain  
Any  
Manual gain luma.  
Manual gain chroma.  
CVBS  
Dependent on horizontal sync depth.  
Dependent on color burst amplitude.  
Taken from luma path.  
Peak White  
Dependent on color burst amplitude.  
Taken from luma path.  
Y/C  
Dependent on horizontal sync depth.  
Peak White.  
Dependent on color burst amplitude.  
Taken from luma path.  
Dependent on color burst amplitude.  
Taken from luma path.  
YPrPb  
Dependent on horizontal sync depth.  
Taken from luma path.  
SDP Luma Gain  
Table 66. LAGT Function  
LAGT[1:0]  
Description  
LAGC[2:0] Luma Automatic Gain Control (SDP), Address  
0x30, [7:0]  
00  
01  
10  
11*  
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Fast (TC = 0.2 sec)  
Adaptive  
The luma automatic gain control mode bits select the mode of  
operation for the gain control in the luma path.  
*Default value.  
There are ADI internal parameters to customize the peak white  
gain control. Contact ADI for more information.  
LG[11:0] Luma Gain (SDP), Address 0x2F, [3:0];  
Address 0x30, [7:0]; LMG[11:0] Luma Manual Gain (SDP),  
Address 0x2F, [3:0]; Address 0x30, [7:0]  
Table 65. LAGC Function  
LAGC[2:0] Description  
Luma gain [11:0] is a dual function register:  
000  
001  
Manual fixed gain (use LMG[11:0]).  
AGC (blank level to sync tip). No override through  
white peak.  
AGC (blank level to sync tip). Automatic override  
through white peak.  
If written to, a desired manual luma gain can be  
programmed. This gain becomes active if the LAGC[2:0]  
mode is switched to manual fixed gain.  
010*  
011  
100  
101  
110  
111  
*Default value.  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Freeze gain.  
Equation 1 shows how to calculate a desired gain.  
If read back, this register returns the current gain value.  
Depending on the setting in the ALCM[2:0] bits, this is one  
of the following values:  
o
Luma manual gain value (ALCM[2:0] set to luma  
manual gain mode)  
LAGT[1:0] Luma Automatic Gain Timing (SDP),  
Address 0x2F, [7:6]  
o
Luma automatic gain value (ALCM[2:0] set to any of  
the automatic modes)  
The luma automatic gain timing register allows the user to  
influence the tracking speed of the luminance automatic gain  
control. Please note that this register only has an effect if the  
LAGC[2:0] register is set to 001, 010, 011, or 100 (automatic  
gain control modes).  
Table 67. LG/LMG Function  
LG[11:0]/LMG[11:0] Read/Write Description  
LMG[11:0] = X  
Write  
Manual gain for luma  
path.  
If peak white AGC is enabled and active (see the  
LG[11:0]  
Read  
Actually used gain.  
STATUS_1[7:0] Address 0x10, [7:0] section), the actual gain  
update speed is dictated by the peak white AGC loop and, as a  
result, the LAGT settings have no effect. As soon as the part  
leaves peak white AGC, LAGT becomes relevant again.  
(
0 < LG 4095  
)
Luma _ Gain =  
= 0...2  
2048  
Equation 1. SDP Luma Gain Formula  
The update speed for the peak white algorithm can be  
customized by the use of internal parameters. Please contact  
ADI for more information.  
Rev. A | Page 33 of 104  
 
 
ADV7183A  
Example  
PW_UPD Peak White Update (SDP), Address 0x2B, [0]  
Program the ADV7183A into manual fixed gain mode with a  
desired gain of 0.89:  
The peak white and average video algorithms determine the  
gain based on measurements taken from the active video. The  
PW_UPD bit determines the rate of gain change. Please note  
that the LAGC[2:0] must be set to the appropriate mode to  
enable the peak white or average video mode in the first place.  
For more information, refer to the LAGC[2:0] Luma Automatic  
Gain Control (SDP), Address 0x30, [7:0] section.  
Use Equation 1 to convert the gain:  
0.89 × 2048 = 1822.72  
Truncate to integer value:  
1822.72 = 1822  
Table 69. PW_UPD Function  
Convert to hexadecimal:  
1822d = 0x71E  
PW_UPD  
Description  
0
1
Update gain once per video line.  
Update gain once per field.  
Split into two registers and program:  
Luma Gain Control 1 [3:0] = 0x7  
Luma Gain Control 2 [7:0] = 0x1E  
*Default value.  
SDP Chroma Gain  
Enable Manual Fixed Gain Mode:  
Set LAGC[2:0] to 000  
CAGC[1:0] Chroma Automatic Gain Control (SDP),  
Address 0x2C, [1:0]  
BETACAM Enable Betacam Levels (SDP), Address 0x01, [5]  
The two bits of Color Automatic Gain Control mode select the  
basic mode of operation for automatic gain control in the  
chroma path.  
If YPrPb data is routed through the SDP core, the automatic  
gain control modes can target different video input levels, as  
outlined in Table 72. Please note that the BETACAM bit is valid  
only if the input mode is YPrPb (component) and if the data is  
routed through the SDP core. The BETACAM bit basically sets  
the target value for AGC operation.  
Table 70. CAGC Function  
CAGC[1:0]  
Description  
00  
01  
10*  
11  
Manual fixed gain (use CMG[11:0]).  
Use luma gain for chroma.  
Automatic gain (based on color burst).  
Freeze chroma gain.  
A review of the following sections is useful:  
INSEL[3:0] Input Selection, Address 0x00, [3:0] to find how  
component video (YPrPb) can be routed through the SDP  
core.  
*Default value.  
CAGT[1:0] Chroma Automatic Gain Timing (SDP),  
Address 0x2D, [7:6]  
Video Standard Selection (SDP) to select the various  
standards (e.g., with and without pedestal)  
The Chroma Automatic Gain Timing register allows the user to  
influence the tracking speed of the chroma automatic gain  
control. This register only has an effect if the CAGC[1:0]  
register is set to 10 (automatic gain).  
The automatic gain control (AGC) algorithms adjust the levels  
based on the setting of the BETACAM bit(see Table 68.).  
Table 68. BETACAM Function  
BETACAM Description  
Table 71. CAGT Function  
CAGT[1:0]  
Description  
0*  
Assuming YPrPb is selected as input format.  
Selecting PAL with pedestal selects MII.  
00  
01  
10  
11*  
Slow (TC = 2 sec)  
Medium (TC = 1 sec)  
Fast (TC = 0.2 sec)  
Adaptive  
Selecting PAL without pedestal selects SMPTE.  
Selecting NTSC with pedestal selects MII.  
Selecting NTSC without pedestal selects SMPTE.  
Assuming YPrPb is selected as input format.  
Selecting PAL with pedestal selects BETACAM.  
*Default value.  
1
Selecting PAL without pedestal selects BETACAM  
variant.  
Selecting NTSC with pedestal selects BETACAM.  
Selecting NTSC without pedestal selects BETACAM  
variant.  
*Default value.  
Rev. A | Page 34 of 104  
 
ADV7183A  
Table 72. Betacam Levels  
Name  
Betacam (mV)  
Betacam Variant (mV)  
0 to 714  
SMPTE (mV)  
0 to 700  
MII (mV)  
Y Range  
0 to 714 (incl. 7.5% pedestal)  
0 to 700 (incl. 7.5% pedestal)  
Pb and Pr Range  
Sync Depth  
–467 to +467  
286  
–505 to +505  
286  
–350 to +350  
300  
–324 to +324  
300  
If color kill is enabled, and if the color carrier of the incoming  
video signal is less than the threshold for 128 consecutive video  
lines, color processing is switched off (black and white output).  
To switch the color processing back on, another 128 consecutive  
lines with a color burst greater than the threshold are required.  
CG[11:0] Chroma Gain (SDP), Address 0x2D, [3:0];  
Address 0x2E, [7:0] CMG[11:0] Chroma Manual Gain (SDP),  
Address 0x2D, [3:0]; Address 0x2E, [7:0]  
Chroma gain [11:0] is a dual function register:  
If written to, a desired manual chroma gain can be  
programmed. This gain becomes active if the CAGC[1:0]  
mode is switched to manual fixed gain.  
The color kill option only works for input signals with a  
modulated chroma part. For component input (YPrPb), there is  
no color kill.  
Table 74. CKE Function  
Refer to Equation 2 for calculating a desired gain.  
CKE  
Description  
If read back, this register returns the current gain value.  
Depending on the setting in the CAGC[1:0] bits, this will  
be one of the following values:  
0
1*  
Color kill disabled.  
Color kill enabled.  
*Default value.  
o
Chroma manual gain value (CAGC[1:0] set to chroma  
manual gain mode).  
CKILLTHR[2:0] Color Kill Threshold (SDP),  
Address 0x3D, [6:4]  
The CKILLTHR[2:0] bits allow the user to select a threshold for  
the color kill function. The threshold only applies to QAM  
based (NTSC and PAL) or FM modulated (SECAM) video  
standards.  
o
Chroma automatic gain value (CAGC[1:0] set to any  
of the automatic modes).  
Table 73. CG/CMG Function  
CG[11:0]/CMG[11:0] Read/Write Description  
CMG[11:0]  
Write  
Manual gain for chroma  
path.  
Currently active gain.  
To enable the color kill function, the CKE bit must be set. For  
settings 000, 001, 010, and 011, chroma demodulation inside the  
ADV7183A may not work satisfactorily for poor input video  
signals.  
CG[11:0]  
Read  
(
0 < CG 4095  
)
Table 75. CKILLTHR Function  
Chroma _ Gain =  
= 0...4  
Description  
1024  
CKILLTHR[2:0] SECAM  
NTSC, PAL  
Equation 2. SDP Chroma Gain Formula  
000  
001  
010  
011  
100*  
101  
110  
111  
No color kill  
Kill at < 0.5%  
Kill at < 1.5%  
Kill at < 2.5%  
Kill at < 4.0%  
Kill at < 8.5%  
Kill at < 16.0%  
Kill at < 32.0%  
Kill at < 5%  
Kill at < 7%  
Kill at < 8%  
Kill at < 9.5%  
Kill at < 15%  
Kill at < 32%  
Example  
Freezing the automatic gain loop and reading back the  
CG[11:0] register results in a value of  
Convert the read back value to decimal:  
0x47A = 1146d  
Reserved for ADI internal use only. Do not  
select.  
Apply Equation 2 to convert the readback value:  
1146/1024 = 1.12  
*Default value.  
CKE Color Kill Enable (SDP), Address 0x2B, [6]  
The Color Kill Enable bit allows the optional color kill function  
to be switched on or off.  
For QAM based video standards (PAL and NTSC) as well as FM  
based systems (SECAM), the threshold for the color kill  
decision is selectable via the CKILLTHR[2:0] bits.  
Rev. A | Page 35 of 104  
 
ADV7183A  
SDP CHROMA TRANSIENT IMPROVEMENT (CTI)  
The signal bandwidth allocated for chroma is typically much  
smaller than that of luminance. In the past, this was a valid way  
to fit a color video signal into a given overall bandwidth because  
the human eye is less sensitive to chrominance than to  
luminance.  
CTI_AB_EN Chroma Transient Improvement Alpha Blend  
Enable (SDP), Address 0x4D, [1]  
The CTI_AB_EN bit enables an alpha-blend function within  
the CTI block. If set to 1, the alpha blender mixes the transient  
improved chroma with the original signal. The sharpness of the  
alpha blending can be configured via the CTI_AB[1:0] bits.  
The uneven bandwidth, however, may lead to some visual  
artifact when it comes to sharp color transitions. At the border  
of two bars of color, both components (luma and chroma)  
change at the same time (see Figure 18). Due to the higher  
bandwidth, the signal transition of the luma component is  
usually a lot sharper than that of the chroma component. The  
color edge is not sharp but blurred, in the worst case, over  
several pixels.  
For the alpha blender to be active, the CTI block must be  
enabled via the CTI_EN bit.  
Table 77. CTI_AB_EN  
CTI_AB_EN  
Description  
0
1*  
Disable CTI alpha blender.  
Enable CTI alpha-blend mixing function.  
*Default value.  
LUMA SIGNAL WITH A  
CTI_AB[1:0] Chroma Transient Improvement Alpha Blend  
(SDP), Address 0x4D, [3:2]  
TRANSITION, ACCOMPANIED  
LUMA  
SIGNAL  
BY A CHROMA TRANSITION  
The CTI_AB[1:0] controls the behavior of alpha-blend circuitry  
that mixes the sharpened chroma signal with the original one. It  
thereby controls the visual impact of CTI on the output data.  
ORIGINAL, "SLOW" CHROMA  
DEMODULATED  
TRANSITION PRIOR TO CTI  
CHROMA  
SHARPENED CHROMA  
SIGNAL  
For CTI_AB[1:0] to become effective, the CTI block must be  
enabled via the CTI_EN bit, and the alpha blender must be  
switched on via CTI_AB_EN.  
TRANSITION AT THE  
OUTPUT OF CTI  
Figure 18. CTI Luma/Chroma Transition  
Sharp blending maximizes the effect of CTI on the picture, but  
may also increase the visual impact of small amplitude, high  
frequency chroma noise.  
The chroma transient improvement block examines the input  
video data. It detects transitions of chroma, and can be  
programmed to “steepen” the chroma edges in an attempt to  
artificially restore lost color bandwidth. The CTI block,  
however, only operates on edges above a certain threshold to  
ensure that noise is not emphasized. Care has also been taken to  
ensure that edge ringing and undesirable saturation or hue  
distortion are avoided.  
Table 78. CTI_AB Function  
CTI_AB[1:0] Description  
00  
Sharpest mixing between sharpened and original  
chroma signal.  
01  
Sharp mixing.  
10  
11*  
Smooth mixing.  
Smoothest alpha blend function.  
Chroma transient improvements are needed primarily for  
signals that experienced severe chroma bandwidth limitations.  
For those types of signals, it is strongly recommended to enable  
the CTI block via CTI_EN.  
*Default value.  
CTI_C_TH[7:0] CTI Chroma Threshold (SDP),  
Address 0x4E, [7:0]  
CTI_EN Chroma Transient Improvement Enable (SDP),  
Address 0x4D, [0]  
The CTI_C_TH[7:0] value is an unsigned, 8-bit number speci-  
fying how big the amplitude step in a chroma transition has to  
be in order to be steepened by the CTI block. Programming a  
small value into this register causes even smaller edges to be  
steepened by the CTI block. Making CTI_C_TH[7:0] a large  
value causes the block to improve large transitions only.  
The CTI_EN bit enables the CTI function. If set to 0, the CTI  
block is inactive and the chroma transients are left untouched.  
Table 76. CTI_EN Function  
CTI_EN  
Description  
0*  
Disable CTI.  
Table 79. CTI_C_TH Function  
1
Enable CTI block.  
CTI_C_TH[7:0] Description  
*Default value.  
0x08*  
Threshold for chroma edges prior to CTI.  
*Default value.  
Rev. A | Page 36 of 104  
 
ADV7183A  
SDP DIGITAL NOISE REDUCTION (DNR)  
SDP COMB FILTERS  
Digital noise reduction is based on the assumption that high  
frequency signals with low amplitude are probably noise, and  
that their removal therefore improves picture quality.  
The comb filters of the ADV7183A have been greatly improved  
to automatically handle video of all types, standards, and levels  
of quality. Two user registers are available to customize comb  
filter operation.  
DNR_EN Digital Noise Reduction Enable (SDP),  
Address 0x4D, [5]  
Depending on whichever video standard has been detected (by  
autodetection) or selected (by manual programming), the  
NTSC or PAL configuration registers are used. In addition to  
the bits listed in this section, there are some further ADI  
internal controls; please contact ADI for more information.  
The DNR_EN bit enables the DNR block or bypasses it.  
Table 80. DNR_EN Function  
DNR_EN  
Description  
0
Bypass DNR (disable).  
NTSC Comb Filter Settings  
1*  
Enable digital noise reduction on the luma data.  
Used for NTSC-M/J CVBS inputs.  
DNR_TH[7:0] DNR Noise Threshold, Address 0x50, [7:0]  
NSFSEL[1:0] Split Filter Selection NTSC (SDP),  
Address 0x19, [3:2]  
The DNR_TH[7:0] value is an unsigned 8-bit number used to  
determine the maximum edge that will be interpreted as noise  
and therefore blanked from the luma data. Programming a large  
value into DNR_TH[7:0] causes the DNR block to interpret  
even large transients as noise and remove them. The effect on  
the video data will therefore be more visible.  
The NSFSEL[1:0] control selects how much of the overall signal  
bandwidth is fed to the combs. A narrow split filter selection  
gives better performance on diagonal lines, but leaves more dot  
crawl in the final output image. The opposite is true for  
selecting a wide bandwidth split filter.  
Programming a small value causes only small transients to be  
seen as noise and to be removed.  
Table 82.NSFSEL Function  
NSFSEL[1:0]  
Description  
Narrow  
Medium  
Medium  
Wide  
00*  
01  
10  
11  
It should be noted that the recommended DNR_TH[7:0] setting  
for A/V inputs is 0x04, and the recommended DNR_TH[7:0]  
setting for tuner inputs is 0x0A.  
Table 81. DNR_TH Function  
*Default value.  
DNR_TH[7:0] Description  
0x08*  
Threshold for maximum luma edges to be  
interpreted as noise.  
CTAPSN[1:0] Chroma Comb Taps NTSC (SDP),  
Address 0x38, [7:6]  
Table 83. CTAPSN Function  
*Default value.  
CTAPSN[1:0]  
Description  
00  
01  
Do not use.  
NTSC chroma comb adapts 3 lines (3 taps) to  
2 lines (2 taps).  
10*  
NTSC chroma comb adapts 5 lines (5 taps) to  
3 lines (3 taps).  
11  
NTSC chroma comb adapts 5 lines (5 taps) to  
4 lines (4 taps).  
*Default value.  
Rev. A | Page 37 of 104  
ADV7183A  
CCMN[2:0] Chroma Comb Mode NTSC (SDP), Address 0x38, [5:3]  
Table 84. CCMN Function  
CCMN[2:0]  
Description  
0xx*  
Adaptive comb mode.  
Adaptive 3-line chroma comb for CTAPSN = 01.  
Adaptive 4-line chroma comb for CTAPSN = 10.  
Adaptive 5-line chroma comb for CTAPSN = 11.  
100  
101  
Disable chroma comb.  
Fixed chroma comb (top lines of line memory).  
Fixed 2-line chroma comb for CTAPSN = 01.  
Fixed 3-line chroma comb for CTAPSN = 10.  
Fixed 4-line chroma comb for CTAPSN = 11.  
Fixed 3-line chroma comb for CTAPSN = 01.  
Fixed 4-line chroma comb for CTAPSN = 10.  
Fixed 5-line chroma comb for CTAPSN = 11.  
Fixed 2-line chroma comb for CTAPSN = 01.  
Fixed 3-line chroma comb for CTAPSN = 10.  
Fixed 4-line chroma comb for CTAPSN = 11.  
110  
Fixed chroma comb (all lines of line memory).  
111  
Fixed chroma comb (bottom lines of line memory).  
*Default value.  
YCMN[2:0] Luma Comb Mode NTSC (SDP), Address 0x38, [2:0]  
Table 85.YCMN Function  
YCMN[2:0]  
Description  
0xx*  
100  
101  
110  
Adaptive comb mode.  
Disable luma comb.  
Fixed luma comb (top lines of line memory).  
Fixed luma comb (all lines of line memory).  
Fixed luma comb (bottom lines of line memory).  
Adaptive 3-line (3 taps) luma comb.  
Use low-pass/notch filter; see the Y Shaping Filter section.  
Fixed 2-line (2 taps) luma comb.  
Fixed 3-line (3 taps) luma comb.  
Fixed 2-line (2 taps) luma comb.  
111  
*Default value.  
Rev. A | Page 38 of 104  
ADV7183A  
CTAPSP[1:0] Chroma Comb Taps PAL (SDP),  
Address 0x39, [7:6]  
Table 87. CTAPSP Function  
PAL Comb Filter Settings  
Used for PAL-B/G/H/I/D, PAL-M, PAL-Combinational N, PAL-  
60 and NTSC443 CVBS inputs.  
CTAPSP[1:0] Description  
00  
01  
Do not use.  
PAL chroma comb adapts 5 lines (3 taps) to  
3 lines (2 taps); cancels cross luma only.  
PSFSEL[1:0] Split Filter Selection PAL (SDP),  
Address 0x19, [1:0]  
The NSFSEL[1:0] control selects how much of the overall signal  
bandwidth is fed to the combs. A wide split filter selection  
eliminates dot crawl, but shows imperfections on diagonal lines.  
The opposite is true for selecting a narrow bandwidth split filter.  
10  
PAL chroma comb adapts 5 lines (5 taps) to  
3 lines (3 taps); cancels cross luma and hue error  
less well.  
PAL chroma comb adapts 5 lines (5 taps) to  
4 lines (4 taps); cancels cross luma and hue error  
well.  
11*  
Table 86. PSFSEL Function  
PSFSEL[1:0]  
Description  
Narrow  
Medium  
Wide  
*Default value.  
00  
01*  
10  
11  
Widest  
*Default value.  
CCMP[2:0] Chroma Comb Mode PAL (SDP), Address 0x39, [5:3]  
Table 88. CCMP Function  
CCMP[2:0]  
Description  
0xx*  
Adaptive comb mode.  
Adaptive 3-line chroma comb for CTAPSP = 01.  
Adaptive 4-line chroma comb for CTAPSP = 10.  
Adaptive 5-line chroma comb for CTAPSP = 11.  
100  
101  
Disable chroma comb.  
Fixed chroma comb (top lines of line memory).  
Fixed 2-line chroma comb for CTAPSP = 01.  
Fixed 3-line chroma comb for CTAPSP = 10.  
Fixed 4-line chroma comb for CTAPSP = 11.  
Fixed 3-line chroma comb for CTAPSP = 01.  
Fixed 4-line chroma comb for CTAPSP = 10.  
Fixed 5-line chroma comb for CTAPSP = 11.  
Fixed 2-line chroma comb for CTAPSP = 01.  
Fixed 3-line chroma comb for CTAPSP = 10.  
Fixed 4-line chroma comb for CTAPSP = 11.  
110  
Fixed chroma comb (all lines of line memory).  
111  
Fixed chroma comb (bottom lines of line memory).  
*Default value.  
YCMP[2:0] Luma Comb Mode PAL (SDP), Address 0x39, [2:0]  
Table 89. YCMP Function  
YCMP[2:0]  
Description  
0xx*  
100  
101  
110  
Adaptive comb mode .  
Disable luma comb.  
Fixed luma comb (top lines of line memory).  
Fixed luma comb (all lines of line memory).  
Fixed luma comb (bottom lines of line memory).  
Adaptive 5 lines (3 taps) luma comb.  
Use low-pass/notch filter; see the Y Shaping Filter section.  
Fixed 3 lines (2 taps) luma comb.  
Fixed 5 lines (3 taps) luma comb.  
Fixed 3 lines (2 taps) luma comb.  
111  
*Default value.  
Rev. A | Page 39 of 104  
ADV7183A  
SDP AV CODE INSERTION AND CONTROLS  
This section describes the I2C based controls that affect  
In an 8-bit-wide output interface (Cb/Y/Cr/Y interleaved data),  
the AV codes are defined as FF/00/00/AV, with AV being the  
transmitted word that contains information about H/V/F.  
Insertion of AV codes into the data stream  
Data blanking during the vertical blank interval (VBI)  
In this output interface mode, the following assignment takes  
place: Cb = FF, Y = 00, Cr = 00, and Y = AV.  
The range of data values permitted in the output data  
stream  
In a 16-bit output interface where Y and Cr/Cb are delivered via  
separate data buses, the AV code is over the whole 16 bits. The  
SD_DUP_AV bit allows the user to double up the AV codes, so  
the full sequence can be found on the Y bus as well as  
(= duplicated) the Cr/Cb bus. See Figure 19.  
The relative delay of luma versus chroma signals  
Please note that some of the decoded VBI data is being inserted  
during the horizontal blanking interval. See the Gemstar Data  
Recovery section for more information.  
Table 91. SD_DUP_AV Function  
SD_DUP_AV Description  
BT656-4 ITU Standard BT-R.656-4 Enable (SDP),  
Address 0x04, [7]  
0
AV codes in single fashion (to suit 8-bit  
interleaved data output).  
AV codes duplicated (for 16-bit interfaces).  
1
The ITU has changed the position for toggling of the V bit  
within the SAV EAV codes for NTSC between revisions 3 and 4.  
The BT656-4 standard bit allows the user to select an output  
mode that is compliant with either the previous or the new  
standard. For further information, please review the standard at  
http://www.itu.int.  
*Default value.  
VBI_EN Vertical Blanking Interval Data Enable (SDP),  
Address 0x03, [7]  
The VBI enable bit allows data such as intercast and closed  
caption data to be passed through the luma channel of the SDP  
decoder with only a minimal amount of filtering. All data for  
lines 1 to 21 is passed through and available at the output port.  
The ADV7183A does not blank the luma data, and  
automatically switches all filters along the luma data path into  
their widest bandwidth. For active video, the filter settings for  
YSH and YPK are restored.  
Please note that the standard change affects NTSC only and has  
no bearing on PAL.  
Table 90. BT656-4 Function  
BT656-4  
Description  
0*  
BT656-3 Spec: V bit goes low at EAV of lines 10  
and 273.  
1
BT656-4 Spec: V bit goes low at EAV of lines 20  
and 283.  
Refer to the BL_C_VBI Blank Chroma during VBI section for  
information on the chroma path.  
*Default value.  
Table 92.  
VBI_EN  
0*  
SD_DUP_AV SDP Duplicate AV codes (SDP),  
Address 0x03, [0]  
Description  
All video lines are filtered/scaled.  
Only active video region is filtered/scaled.  
1
Depending on the output interface width, it may be necessary to  
duplicate the AV codes from the luma path into the chroma  
path.  
*Default value.  
SD_DUP_AV = 1  
SD_DUP_AV = 0  
16-BIT INTERFACE  
16-BIT INTERFACE  
AV  
8-BIT INTERFACE  
Y DATA BUS  
FF  
FF  
00  
00  
AV  
AV  
Y
00  
Y
Cb/Y/Cr/Y  
INTERLEAVED  
FF  
00  
00  
AV  
Cb  
Cr/Cb DATA BUS  
00  
00  
Cb  
FF  
00  
Cb  
AV CODE SECTION  
AV CODE SECTION  
AV CODE SECTION  
Figure 19. SDP AV Code Duplication Control  
Rev. A | Page 40 of 104  
 
ADV7183A  
BL_C_VBI Blank Chroma during VBI (SDP),  
Address 0x04, [2]  
Table 95. AUTO_PDC_EN Function  
AUTO_PDC_EN Description  
0
Use LTA[1:0] and CTA[2:0] values for delaying  
luma and chroma samples. Refer to the  
LTA[1:0] Luma Timing Adjust (SDP), Address  
0x27, [1:0] and CTA[2:0] Chroma Timing  
Adjust (SDP), Address 0x27, [5:3] sections.  
The ADV7183A automatically determines the  
LTA and CTA values to have luma and chroma  
aligned at the output.  
Setting BL_C_VBI high, the Cr and Cb values of all VBI lines  
get blanked. This is done so any data that may come during VBI  
is not decoded as color and output through Cr and Cb. As a  
result, it should be possible to send VBI lines into the decoder,  
then output them through an encoder again, undistorted.  
Without this blanking, any wrongly decoded color gets encoded  
by the video encoder; therefore, the VBI lines are distorted.  
1*  
*Default value.  
Table 93. BL_C_VBI Function  
BL_C_VBI Description  
LTA[1:0] Luma Timing Adjust (SDP), Address 0x27, [1:0]  
0
Decode and output color during VBI.  
The Luma Timing Adjust register allows the user to specify a  
timing difference between chroma and luma samples.  
1*  
Blank Cr and Cb values during VBI (no color, 0x80).  
*Default value.  
Please note the following:  
RANGE Range Selection (SDP), Address 0x04, [0]  
There is a certain functionality overlap with the CTA[2:0]  
register.  
AV codes (as per ITU-R BT-656, formerly known as CCIR-656)  
consist of a fixed header made up of 0xFF and 0x00 values.  
These two values are reserved and therefore are not to be used  
for active video. Additionally, the ITU also specifies that the  
nominal range for video should be restricted to values between  
16 and 235 for luma and 16 to 240 for chroma.  
For manual programming, use the following defaults:  
o
o
o
CVBS input LTA[1:0] = 00.  
YC input LTA[1:0] = 01.  
YPrPb input LTA[1:0] =01.  
The RANGE bit allows the user to limit the range of values  
output by the ADV7183A to the recommended value range. In  
any case, it is ensured that the reserved values of 255d (0xFF)  
and 00d (0x00) are not presented on the output pins unless they  
are part of an AV code header.  
Table 96. LTA Function  
LTA[1:0]  
Description  
00*  
No delay.  
01  
10  
11  
Luma 1 clk (37 ns) delayed.  
Luma 2clk (74 ns) early.  
Luma 1 clk (37 ns) early.  
Table 94. RANGE Function  
RANGE  
Description  
16 ≤ Y ≤ 235  
1 ≤ Y ≤ 254  
0
16 ≤ C/P ≤ 240  
1 ≤ C/P ≤ 254  
*Default value.  
1*  
*Default value.  
AUTO_PDC_EN Automatic Programmed Delay Control  
(SDP), Address 0x27, [6]  
Enabling the AUTO_PDC_EN function activates a function  
within the ADV7183A that automatically programs the  
LTA[1:0] and CTA[2:0] to have the chroma and luma data  
match delays for all modes of operation. If set, manual registers  
LTA[1:0] and CTA[2:0] are not used by the SDP. If the  
automatic mode is disabled (via setting the AUTO_PDC_EN bit  
to 0), the values programmed into LTA[1:0] and CTA[2:0]  
registers take effect.  
Rev. A | Page 41 of 104  
 
ADV7183A  
The position of this edge is controlled by placing a binary  
number into HSB[10:0]. The number applied offsets the edge  
with respect to an internal counter that is reset to 0 immediately  
after EAV code FF,00,00,XY (see Figure 20). HSB is set to  
00000000010b, which is 2 LLC1 clock cycles from count[0].  
CTA[2:0] Chroma Timing Adjust (SDP), Address 0x27, [5:3]  
The Chroma Timing Adjust register allows the user to specify a  
timing difference between chroma and luma samples. This may  
be used to compensate for external filter group delay differences  
in the luma versus chroma path, and to allow for a different  
number of pipeline delays while processing the video down-  
stream. Please review this functionality together with the  
LTA[1:0] register.  
Table 98. HSB Function  
HSB[10:0] Description  
0x002  
The HS pulse starts after the HSB[10:0] pixel after  
the falling edge of HS.  
*Default value.  
Note that the chroma can only be delayed/advanced in chroma  
pixel steps. One chroma pixel step is equal to two luma pixels.  
The programmable delay occurs after demodulation, where one  
can no longer delay by luma pixel steps.  
HSE[10:0] HS End, Address 0x34, [2:0], Address 0x36, [7:0]  
The HS Begin and HS End registers allow the user to freely  
position the HS output (pin) within the video line. The values in  
HSB[10:0] and HSE[10:0] are measured in pixel units from the  
falling edge of HS. Using both values, the user can program  
both the position and length of the HS output signal.  
For manual programming use the following defaults:  
CVBS input CTA[2:0] = 011.  
YC input CTA[2:0] = 101.  
YPrPb input CTA[2:0] =110.  
The position of this edge is controlled by placing a binary  
number into HSE[10:0]. The number applied offsets the edge  
with respect to an internal counter that is reset to 0 immediately  
after EAV code FF,00,00,XY (see Figure 20). HSE is set to  
00000000000b, which is 0 LLC1 clock cycles from count[0].  
Table 97. CTA Function  
CTA[2:0]  
Description  
000  
001  
010  
011*  
Not used.  
Table 99. HSE Function  
HSE[9:0] Description  
Chroma + 2 chroma pixel (early).  
Chroma + 1 chroma pixel (early).  
No delay.  
000*  
HS pulse ends after HSE[10:0] pixel after falling edge  
of HS.  
100  
101  
110  
111  
Chroma – 1 chroma pixel (late).  
Chroma – 2 chroma pixel (late).  
Chroma – 3 chroma pixel (late).  
Not used.  
*Default value.  
Example  
1. To shift the HS towards active video by 20 LLC1s, add 20  
LLC1s to both HSB and HSE. i.e., HSB[10:0] =  
[00000010110], HSE[10:0] = [00000010100]  
*Default value.  
SDP SYNCHRONIZATION OUTPUT SIGNALS  
HS Configuration  
2. To shift the HS away from active video by 20 LLC1s, add  
169611 LLC1s to both HSB and HSE (for NTSC).i.e.,  
HSB[10:0] = [11000000100], HSE[10:0] = [11000000110]  
The following controls allow the user to configure the behavior  
of the HS output pin only:  
Beginning of HS signal via HSB[10:0]  
End of HS signal via HSE[10:0]  
Polarity of HS using PHS  
To move 20 LLC1s away from active video is equal to  
subtracting 20 from 1716 and adding the result in binary to  
both HSB[10:0] and HSE[10:0].  
PHS Polarity HS (SDP), Address 0x37, [7]  
HSB[10:0] HS Begin, Address 0x34, [6:4], Address 0x35, [7:0]  
The polarity of the HS pin as it comes from the SDP block can  
be inverted using the PHS bit.  
The HS Begin and HS End registers allow the user to freely  
position the HS output (pin) within the video line. The values in  
HSB[10:0] and HSE[10:0] are measured in pixel units from the  
falling edge of HS. Using both values, the user can program  
both the position and length of the HS output signal.  
Table 100. PHS Function  
PHS  
Description  
0*  
1
HS active high.  
HS active low.  
11 1696 is derived from the NTSC total number of pixels = 1716  
Rev. A | Page 42 of 104  
 
ADV7183A  
Table 101. HS Timing Parameters (see Figure 20)  
Characteristic  
HS to Active Video  
(LLC1 Clock Cycles)  
(C in Figure 20)1  
Active Video  
Samples/Line  
(D in Figure 20)  
Total LLC1  
Clock Cycles  
(E in Figure 20)  
HS Begin Adjust  
(HSB[10:0])1  
HS End Adjust  
(HSE[10:0])1  
Standard  
NTSC  
00000000010b  
00000000010b  
00000000000b  
00000000000b  
272  
276  
720Y + 720C = 1440  
640Y + 640C = 1280  
1716  
1560  
NTSC Square  
Pixel  
PAL  
00000000010b  
00000000000b  
284  
720Y + 720C = 1440  
1728  
1Default.  
LLC1  
PIXEL  
Cr  
Y
FF  
00  
EAV  
00  
XY  
80  
10  
80  
10  
80  
10  
FF  
00  
00  
SAV  
XY  
Cb  
Y
Cr  
Y
Cb  
Y
Cr  
BUS  
ACTIVE  
VIDEO  
H BLANK  
ACTIVE VIDEO  
HS  
HSE[10:0]  
4 LLC1  
HSB[10:0]  
C
D
D
E
E
Figure 20. HS Timing (SDP)  
Rev. A | Page 43 of 104  
 
 
ADV7183A  
VS and FIELD Configuration  
The following controls allow the user to configure the behavior  
of the VS and FIELD output pins, as well as the generation of  
embedded AV codes:  
HVSTIM Horizontal VS Timing (SDP), Address 0x31, [3]  
The HVSTIM bit allows the user to select where the VS signal is  
being asserted within a line of video. Some interface circuitry  
may require VS to go low while HS is low.  
ADV encoder compatible signals via NEWAVMODE  
Table 103. HVSTIM Function  
PVS, PF  
HVSTIM  
Description  
HVSTIM  
0*  
1
Start of line relative to HSE.  
Start of line relative to HSB.  
VSBHO, VSBHE  
VSEHO, VSEHE  
For NTSC control:  
*Default value.  
VSBHO VS Begin Horizontal Position Odd (SDP),  
Address 0x32, [7]  
The VSBHO and VSBHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) goes active. Some  
follow-on chips require the VS pin to only change state when  
HS is high/low.  
o
o
o
NVBEGDELO, NVBEGDELE, NVBEGSIGN,  
NVBEG[4:0]  
NVENDDELO, NVENDDELE, NVENDSIGN,  
NVEND[4:0]  
Table 104. VSBHO Function  
VSBHO  
Description  
NFTOGDELO, NFTOGDELE, NFTOGSIGN,  
NFTOG[4:0]  
0*  
VS pin goes high at the middle of a line of video  
(odd field).  
1
VS pin changes state at the start of a line (odd  
field).  
For PAL control:  
*Default value.  
o
o
o
PVBEGDELO, PVBEGDELE, PVBEGSIGN,  
PVBEG[4:0]  
VSBHE VS Begin Horizontal Position Even (SDP),  
Address 0x32, [6]  
PVENDDELO, PVENDDELE, PVENDSIGN,  
PVEND[4:0]  
The VSBHO and VSBHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) goes active. Some  
follow-on chips require the VS pin to only change state when  
HS is high/low.  
PFTOGDELO, PFTOGDELE, PFTOGSIGN,  
PFTOG[4:0]  
Table 105. VSBHE Function  
NEWAVMODE New AV Mode, Address 0x31, [4]  
Table 102. NEWAVMODE Function  
NEWAVMODE Description  
VSBHE  
Description  
0*  
VS pin goes high at the middle of a line of video  
(even field).  
0
EAV/SAV codes generated to suit ADI  
encoders. No adjustments possible.  
1
VS pin changes state at the start of a line (even field).  
*Default value.  
1*  
Enable Manual Position of VSYNC, Field, and  
AV codes using 0x34 to 0x37 and 0xE5 to 0xEA.  
Default register settings are CCIR656  
VSEHO VS End Horizontal Position Odd (SDP),  
Address 0x33, [7]  
compliant; see Figure 21 for NTSC and  
Figure 26 for PAL. For recommended manual  
user settings, see Table 110 and Figure 22 for  
NTSC; see Table 123 and Figure 27 for PAL.  
The VSEHO and VSEHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) goes active. Some  
follow-on chips require the VS pin to only change state when  
HS is high/low.  
*Default value.  
Table 106. VSEHO Function  
VSEHO  
Description  
0*  
VS pin goes low (inactive) at the middle of a line of  
video (odd field).  
1
VS pin changes state at the start of a line (odd field).  
*Default value.  
Rev. A | Page 44 of 104  
ADV7183A  
VSEHE VS End Horizontal Position Even (SDP),  
Address 0x33, [6]  
PVS Polarity VS (SDP), Address 0x37, [5]  
The polarity of the VS pin as it comes from the SDP block can  
be inverted using the PVS bit.  
The VSEHO and VSEHE bits select the position within a line at  
which the VS pin (not the bit in the AV code) goes active. Some  
follow-on chips require the VS pin to only change state when  
HS is high/low.  
Table 108. PVS Function  
PVS  
Description  
VS active high.  
VS active low.  
0*  
1
Table 107. VSEHE Function  
VSEHE  
Description  
*Default value.  
0*  
VS pin goes low (inactive) at the middle of a line of  
video (even field).  
PF Polarity FIELD (SDP), Address 0x37, [3]  
1
VS pin changes state at the start of a line (even field).  
The polarity of the FIELD pin as it comes from the SDP block  
can be inverted using the PF bit.  
*Default value.  
Table 109. PF Function  
PF  
Description  
0*  
FIELD active high.  
FIELD active low.  
1
*Default value.  
FIELD 1  
525  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
19  
20  
21  
22  
OUTPUT  
VIDEO  
H
V
NVBEG[4:0] = 5h  
NVEND[4:0] = 4h  
*BT.656-4  
REG 04h. BIT 7 = 1  
F
NFTOG[4:0] = 3h  
FIELD 2  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
283  
284  
285  
OUTPUT  
VIDEO  
H
V
*BT.656-4  
REG 04h. BIT 7 = 1  
NVBEG[4:0] = 5h  
NVEND[4:0] = 4h  
F
NFTOG[4:0] = 3h  
*APPLIES IF NEMAVMODE = 0  
MUST BE MANUALLY SHIFTED IF NEWAVMODE = 1.  
Figure 21. NTSC Default (BT.656). The polarity of H, V, and F is embedded in the data.  
Rev. A | Page 45 of 104  
ADV7183A  
FIELD 1  
525  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
21  
22  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
FIELD  
OUTPUT  
NVBEG[4:0] = 0h  
NVEND[4:0] = 3h  
NFTOG[4:0] = 5h  
FIELD 2  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
284  
285  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
NVBEG[4:0] = 0h  
NVEND[4:0] = 3h  
FIELD  
OUTPUT  
NFTOG[4:0] = 5h  
Figure 22. NTSC Typical VSync/Field Positions Using Register Writes in Table 110  
Table 110. Recommended User Settings for NTSC (See Figure 22)  
Register  
Register Name  
VSync Field Control 1  
VSync Field Control 2  
VSync Field Control 3  
Polarity  
Write  
0x12  
0x81  
0x84  
0x29  
0x0  
0x31  
0x32  
0x33  
0x37  
0xE5  
NTSV_V_Bit_Beg  
NTSC_V_Bit_End  
NTSC_F_Bit_Tog  
0xE6  
0x3  
0xE7  
0x85  
Rev. A | Page 46 of 104  
 
 
ADV7183A  
NVBEGSIGN NTSC VSync Begin Sign, Address 0xE5, [5]  
Table 113. NVBEGSIGN Function  
1
NVBEGSIGN  
0
NVBEGSIGN Description  
ADVANCE BEGIN OF  
VSYNC BY NVBEG[4:0]  
DELAY BEGIN OF  
VSYNC BY NVBEG[4:0]  
0
Delay start of VSync. Set for user manual  
programming.  
1*  
Advance start of VSync. Not recommended for  
user programming.  
NOT VALID FOR USER  
PROGRAMMING  
*Default value.  
ODD FIELD?  
YES  
NO  
NVBEG[4:0] NTSC VSync Begin, Address 0xE5, [4:0]  
Table 114. NVBEG Function  
NVBEG  
Description  
NVBEGDELO  
1
NVBEGDELE  
1
00101*  
*Default value.  
NTSC VSync begin position.  
0
0
Note: For all NTSC/PAL VSync timing controls, both the V bit  
in the AV code and the VSync on the VS pin are modified.  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
1
NVENDSIGN  
0
VSBHO  
1
VSBHE  
1
ADVANCE END OF  
VSYNC BY NVEND[4:0]  
DELAY END OF VSYNC  
BY NVEND[4:0]  
0
0
NOT VALID FOR USER  
PROGRAMMING  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
ODD FIELD?  
YES  
NO  
VSYNC BEGIN  
NVENDDELO  
1
NVENDDELE  
1
Figure 23. NTSC VSync Begin  
0
0
NVBEGDELO NTSC VSync Begin Delay on Odd Field,  
Address 0xE5, [7]  
Table 111. NVBEGDELO Function  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
NVBEGDELO Description  
0*  
1
No Delay.  
Delay VSync going high on an odd field by a line  
relative to NVBEG.  
VSEHO  
1
VSEHE  
1
*Default value.  
0
0
NVBEGDELE NTSC Vsync Begin Delay on Even Field,  
Address 0xE5, [6]  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
Table 112. NVBEGDELE Function  
NVBEGDELE Description  
0*  
1
No Delay.  
VSYNC END  
Delay VSync going high on an even field by a  
line relative to NVBEG.  
Figure 24. NTSC VSync End  
*Default value.  
Rev. A | Page 47 of 104  
ADV7183A  
NVENDDELO NTSC VSync End Delay on Odd Field,  
Address 0xE6, [7]  
NFTOGSIGN  
1
0
Table 115. NVENDDELO Function  
NVENDDELO Description  
ADVANCE TOGGLE OF  
FIELD BY NFTOG[4:0]  
DELAY TOGGLE OF  
FIELD BY NFTOG[4:0]  
0*  
1
No Delay.  
Delay VSync going low on an odd field by a line  
relative to NVEND.  
NOT VALID FOR USER  
PROGRAMMING  
*Default value.  
ODD FIELD?  
YES  
NO  
NVENDDELE NTSC VSync End Delay on Even Field,  
Address 0xE6, [6]  
Table 116. NVENDDELE Function  
NFTOGDELO  
1
NFTOGDELE  
1
NVENDDELE Description  
0
0
0*  
1
No Delay.  
Delay VSync going low on an even field by a line  
relative to NVEND  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
*Default value.  
NVENDSIGN NTSC VSync End Sign, Address 0xE6, [5]  
Table 117. NVENDSIGN Function  
NVENDSIGN Description  
FIELD  
TOGGLE  
0*  
Delay start of VSync. Set for user manual  
programming.  
Figure 25. NTSC FIELD Toggle  
1
Advance start of VSync. Not recommended for  
user programming.  
NFTOGSIGN NTSC Field Toggle Sign, Address 0xE7, [5]  
Table 121. NFTOGSIGN Function  
*Default value.  
NFTOGSIGN Description  
0
Delay field transition. Set for user manual  
programming.  
Advance field transition. Not recommended for  
user programming.  
NVEND NTSC[4:0] VSync End, Address 0xE6, [4:0]  
Table 118. NVEND Function  
1*  
NVEND  
Description  
00100*  
NTSC VSync end position.  
*Default value.  
*Default value.  
Note: For all NTSC/PAL VSync timing controls, both the V bit  
in the AV code and the VSync on the VS pin are modified.  
NFTOG[4:0] NTSC Field Toggle, Address 0xE7, [4:0]  
Table 122. NFTOG Function  
NFTOG  
Description  
00011*  
*Default value.  
NTSC Field toggle position.  
NFTOGDELO NTSC Field Toggle Delay on Odd Field,  
Address 0xE7, [7]  
Table 119. NFTOGDELO Function  
NFTOGDELO Description  
Note: For all NTSC/PAL Field timing controls, both the F bit in  
the AV code and the Field signal on the FIELD/DE pin are  
modified.  
0*  
1
No delay.  
Delay Field toggle/transition on an odd field by  
a line relative to NFTOG.  
Table 123. Recommended User Settings for PAL  
(see Figure 27)  
*Default value.  
Register  
Register Name  
VSync Field Control 1  
VSync Field Control 2  
VSync Field Control 3  
Polarity  
Write  
0x12  
0x81  
0x84  
0x29  
0x1  
NFTOGDELE NTSC Field Toggle Delay on Even Field,  
Address 0xE7, [6]  
Table 120. NFTOGDELE Function  
0x31  
0x32  
0x33  
NFTOGDELE Description  
0x37  
0
No Delay  
0xE8  
PAL_V_Bit_Beg  
PAL_V_Bit_End  
PAL_F_Bit_Tog  
1*  
Delay Field toggle/transition on an even field by  
a line relative to NFTOG.  
0xE9  
0x4  
0xEA  
0x6  
*Default value.  
Rev. A | Page 48 of 104  
 
ADV7183A  
FIELD 1  
622  
623  
624  
625  
1
2
3
4
5
6
7
8
9
10  
22  
23  
24  
OUTPUT  
VIDEO  
H
V
PVBEG[4:0] = 5  
PVEND[4:0] = 4  
F
PFTOG[4:0] = 3  
FIELD 2  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
335  
336  
337  
OUTPUT  
VIDEO  
H
V
PVBEG[4:0] = 5  
PVEND[4:0] = 4  
F
PFTOG[4:0] = 3  
Figure 26. PAL Default (BT.656). The polarity of H, V, and F is embedded in the data.  
FIELD 1  
622  
623  
624  
1
2
3
4
5
6
7
8
9
10  
11  
23  
24  
625  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
PVBEG[4:0] = 1h  
PVEND[4:0] = 4h  
FIELD  
OUTPUT  
PFTOG[4:0] = 6h  
FIELD 2  
310  
311  
312  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
336  
337  
313  
OUTPUT  
VIDEO  
HS  
OUTPUT  
VS  
OUTPUT  
PVBEG[4:0] = 1h  
PVEND[4:0] = 4h  
FIELD  
OUTPUT  
PFTOG[4:0] = 6h  
Figure 27. PAL Typical VSync/Field Positions Using Register Writes in Table 123  
Rev. A | Page 49 of 104  
ADV7183A  
PVBEGSIGN PAL VSync Begin Sign, Address 0xE8, [5]  
Table 126. PVBEGSIGN Function  
PVBEGSIGN  
1
0
PVBEGSIGN Description  
ADVANCE BEGIN OF  
VSYNC BY PVBEG[4:0]  
DELAY BEGIN OF  
VSYNC BY PVBEG[4:0]  
0
Delay begin of VSync. Set for user manual  
programming.  
1*  
Advance begin of VSync. Not recommended for  
user programming.  
NOT VALID FOR USER  
PROGRAMMING  
*Default value.  
ODD FIELD?  
YES  
NO  
PVBEG[4:0] PAL VSync Begin, Address 0xE8, [4:0]  
Table 127. PVBEG Function  
PVBEG  
Description  
PVBEGDELO  
1
PVBEGDELE  
1
00101*  
*Default value.  
PAL VSync begin position.  
0
0
For all NTSC/PAL VSync timing controls, both the V bit in the  
AV code and the VSync on the VS pin are modified.  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
1
PVENDSIGN  
0
VSBHO  
1
VSBHE  
1
ADVANCE END OF  
VSYNC BY PVEND[4:0]  
DELAY END OF VSYNC  
BY PVEND[4:0]  
0
0
NOT VALID FOR USER  
PROGRAMMING  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
ODD FIELD?  
YES  
NO  
VSYNC BEGIN  
PVENDDELO  
1
PVENDDELE  
1
Figure 28. PAL VSync Begin  
0
0
PVBEGDELO PAL VSync Begin Delay on Odd Field,  
Address 0xE8, [7]  
Table 124. PVBEGDELO Function  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
PVBEGDELO Description  
0*  
1
No delay.  
Delay VSync going high on an odd field by a line  
relative to PVBEG.  
VSEHO  
1
VSEHE  
1
*Default value.  
0
0
PVBEGDELE PAL VSync Begin Delay on Even Field,  
Address 0xE8, [6]  
ADVANCE BY  
0.5 LINE  
ADVANCE BY  
0.5 LINE  
Table 125. PVBEGDELE Function  
PVBEGDELE Description  
0
No delay.  
VSYNC END  
1*  
Delay VSync going high on an even field by a line  
relative to PVBEG.  
Figure 29. PAL VSync End  
*Default value.  
PVENDDELO PAL VSync End Delay on Odd Field,  
Address 0xE9,[7]  
Table 128. PVENDDELO Function  
PVENDDELO Description  
0*  
1
No delay.  
Delay VSync going low on an odd field by a line  
relative to PVEND.  
*Default value.  
Rev. A | Page 50 of 104  
ADV7183A  
PVENDDELE PAL VSync End Delay on Even Field,  
Address 0xE9,[6]  
PFTOG PAL Field Toggle, Address 0xEA [4:0]  
Table 135. PFTOG Function  
Table 129. PVENDDELE Function  
PFTOG  
Description  
PVENDDELE Description  
00011*  
PAL Field toggle position.  
*Default value.  
0*  
1
No delay.  
Delay VSync going low on an even field by a line  
relative to PVEND.  
For all NTSC/PAL Field timing controls, the F bit in the AV  
code and the Field signal on the FIELD/DE pin are modified.  
*Default value.  
PVENDSIGN PAL VSync End Sign, Address 0xE9, [5]  
Table 130. PVENDSIGN Function  
PFTOGSIGN  
1
0
PVENDSIGN Description  
ADVANCE TOGGLE OF  
FIELD BY PTOG[4:0]  
DELAY TOGGLE OF  
FIELD BY PFTOG[4:0]  
0*  
Delay end of VSync. Set for user manual  
programming.  
NOT VALID FOR USER  
PROGRAMMING  
1
Advance end of VSync. Not recommended for  
user programming.  
ODD FIELD?  
*Default value.  
YES  
NO  
PVEND[4:0] PAL Vsync End, Address 0xE9,[4:0]  
Table 131. PVEND Function  
PFTOGDELO  
1
PFTOGDELE  
1
PVEND  
Description  
10100*  
PAL VSync end position.  
0
0
*Default value.  
ADDITIONAL  
DELAY BY  
1 LINE  
ADDITIONAL  
DELAY BY  
1 LINE  
Note: For all NTSC/PAL VSync timing controls, both the V bit  
in the AV code and the VSync on the VS pin are modified.  
PFTOGDELO PAL Field Toggle Delay on Odd Field,  
Address 0xEA, [7]  
Table 132. PFTOGDELO Function  
FIELD  
TOGGLE  
Figure 30. PAL F Toggle  
PFTOGDELO Description  
0*  
1
No delay.  
SDP SYNC PROCESSING  
Delay F toggle/transition on an odd field by a  
line relative to PFTOG.  
The ADV7183A has two additional sync processing blocks that  
postprocess the raw synchronization information extracted  
from the digitized input video. If desired, the blocks can be  
disabled via the following two I2C bits.  
*Default value.  
PFTOGDELE PAL Field Toggle Delay on Even Field,  
Address 0xEA [6]  
Table 133. PFTOGDELE Function  
PFTOGDELE Description  
ENHSPLL Enable HSync Processor (SDP), Address 0x01, [6]  
The HSYNC processor is designed to filter incoming HSyncs  
that have been corrupted by noise, providing improved per-  
formance for video signals with stable time bases but poor SNR.  
0
No delay.  
1*  
Delay F toggle/transition on an even field by a  
line relative to PFTOG.  
*Default value.  
For CVBS PAL/NTSC, YC PAL/NTSC enable the HSync  
processor. For SECAM disable the HSync Processor. For YPrPb  
through SDP, disable HSYNC Processor.  
PFTOGSIGN PAL Field Toggle Sign, Address 0xEA, [5]  
Table 134. PFTOGSIGN Function  
PFTOGSIGN Description  
Table 136. ENHSPLL Function  
ENHSPLL  
Description  
0
Delay Field transition. Set for user manual  
programming.  
Advance Field transition. Not recommended for  
user programming.  
0
1*  
Disable the HSync processor.  
Enable the HSync processor.  
1*  
*Default value.  
*Default value.  
Rev. A | Page 51 of 104  
ADV7183A  
ENVSPROC Enable VSync Processor (SDP),  
Address 0x01, [3]  
WSSD Wide Screen Signaling Detected (SDP),  
Address 0x90, [0]  
This block provides extra filtering of the detected VSyncs to  
give improved vertical lock.  
Logic 1 for this bit indicates that the data in the WSS1 and  
WSS2 registers is valid.  
Table 137. ENVSPROC Function  
The WSSD bit goes high if the rising edge of the start bit is  
detected within a time window, and if the polarity of the parity  
bit matches the data transmitted.  
ENVSPROC  
Description  
0
1*  
Disable VSync processor.  
Enable VSync processor.  
Table 138. WSSD Function  
*Default value.  
WSSD Description  
SDP VBI DATA DECODE  
0
1
No WSS detected. Confidence in decoded data is low.  
WSS detected. Confidence in decoded data is high.  
The following low data rate VBI signals can be decoded by the  
ADV7183A:  
CCAPD Closed Caption Detected (SDP), Address 0x90, [1]  
Wide screen signaling (WSS)  
Copy generation management systems (CGMS)  
Closed captioning (CCAP)  
A Logic 1 for this bit indicates that the data in the CCAP1 and  
CCAP2 registers is valid.  
The CCAPD bit goes high if the rising edge of the start bit is  
detected within a time window, and if the polarity of the parity  
bit matches the data transmitted.  
EDTV  
Table 139. CCAPD Function  
CCAPD Description  
Gemstar 1× and 2× compatible data recovery  
The presence of any of the above signals is detected and, if  
applicable, a parity check is performed. The result of this testing  
is contained in a confidence bit in the VBI Info[7:0] register.  
Users are encouraged to first examine the VBI Info register  
before reading the corresponding data registers. All VBI data  
decode bits are read-only.  
0
No CCAP signals detected. Confidence in decoded  
data is low.  
CCAP sequence detected. Confidence in decoded data  
is high.  
1
EDTVD EDTV Sequence Detected (SDP), Address 0x90, [2]  
A Logic 1 for this bit indicates that the data in the EDTV1, 2, 3  
registers is valid.  
All VBI data registers are double-buffered with the field signals.  
This means that data is extracted from the video lines and  
appears in the appropriate I2C registers with the next field  
transition. They are then static until the next field.  
The EDTVD bit goes high if the rising edge of the start bit is  
detected within a time window, and if the polarity of the parity  
bit matches the data transmitted.  
The user should start an I2C read sequence with VS by first  
examining the VBI Info register. Then, depending on what data  
was detected, the appropriate data registers should be read.  
Table 140. EDTVD Function  
EDTVD Description  
0
No EDTV sequence detected. Confidence in decoded  
data is low.  
Note that the data registers are filled with decoded VBI data  
even if their corresponding detection bits are low; it is likely  
that bits within the decoded data stream are wrong.  
1
EDTV sequence detected. Confidence in decoded data  
is high.  
Notes  
CGMSD CGMS-A Sequence Detected (SDP),  
Address 0x90, [3]  
The closed captioning data (CCAP) is available in the I2C  
registers, and is also inserted into the output video data  
stream during horizontal blanking.  
Logic 1 for this bit indicates that the data in the CGMS1, 2, 3  
registers is valid. The CGMSD bit goes high if a valid CRC  
checksum has been calculated from a received CGMS packet.  
The Gemstar compatible data is not available in the I2C  
registers, and is inserted into the data stream only during  
horizontal blanking.  
Table 141. CGMSD Function  
CGMSD  
Description  
0
1
No CGMS transmission detected. Confidence low.  
CGMS sequence decoded. Confidence high.  
Rev. A | Page 52 of 104  
ADV7183A  
CRC_ENABLE CRC CGMS-A Sequence (SDP),  
Address 0xB2, [2]  
Wide Screen Signaling Data  
WSS1[7:0] (SDP), Address 0x91, [7:0], WSS2[7:0] (SDP),  
Address 0x92, [7:0]  
For certain video sources, the CRC data bits may have an  
invalid format. In such circumstances, the CRC checksum  
validation procedure can be disabled. The CGMSD bit goes  
high if the rising edge of the start bit is detected within a time  
window.  
Figure 31 shows the bit correspondence between the analog  
video waveform and the WSS1/WSS2 registers. Please note that  
WSS2[7:6] are undetermined and should be masked out by  
software.  
Table 142. CRC_ENABLE Function  
CRC_ENABLE Description  
EDTV Data Registers  
0
No CRC check performed. The CGMSD bit goes  
high if the rising edge of the start bit is detected  
within a time window.  
EDTV1[7:0] (SDP), Address 0x93, [7:0], EDTV2[7:0] (SDP),  
Address 0x94, [7:0], EDTV3[7:0] (SDP), Address 0x95, [7:0]  
1*  
Use CRC checksum to validate the CGMS-A  
sequence. The CGMSD bit goes high for a valid  
checksum. ADI recommended setting.  
Figure 32 shows the bit correspondence between the analog  
video waveform and the EDTV1/EDTV2/EDTV3 registers.  
*Default value.  
Note that EDTV3[7:6] are undetermined and should be masked  
out by software. EDTV3[5] is reserved for future use and, for  
now, will contain 0. The three LSBs of the EDTV waveform are  
currently not supported.  
WSS1[7:0]  
WSS2[5:0]  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
RUN-IN  
SEQUENCE  
START  
CODE  
ACTIVE  
VIDEO  
11.0µs  
38.4µs  
42.5µs  
Figure 31. SDP WSS Data Extraction  
Table 143. SDP WSS Access Information  
Signal Name  
WSS1 [7:0]  
WSS2 [5:0]  
Block  
Register Location  
Address  
Register Default Value  
Readback Only  
Readback Only  
SDP  
SDP  
WSS 1 [7:0]  
WSS 2 [5:0]  
145d  
146d  
91h  
92h  
EDTV1[7:0]  
2
EDTV2[7:0]  
EDTV3[5:0]  
0
1
NOT SUPPORTED  
4 5  
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
Figure 32. SDP EDTV Data Extraction  
Table 144. SDP EDTV Access Information  
Signal Name  
EDTV1[7:0]  
EDTV2[7:0]  
EDTV3[7:0]  
Block  
Register Location  
Address  
93h  
Register Default Value  
SDP  
SDP  
SDP  
EDTV 1 [7:0]  
EDTV 2 [7:0]  
EDTV 3 [7:0]  
147d  
148d  
149d  
Readback Only  
Readback Only  
Readback Only  
94h  
95h  
Rev. A | Page 53 of 104  
 
 
ADV7183A  
CGMS Data Registers  
Closed Caption Data Registers  
CGMS1[7:0] (SDP), Address 0x96, [7:0], CGMS2[7:0] (SDP),  
Address 0x97, [7:0], CGMS3[7:0] (SDP), Address 0x98, [7:0]  
CCAP1[7:0] (SDP), Address 0x99, [7:0], CCAP2[7:0] (SDP),  
Address 0x9A, [7:0]  
Figure 33 shows the bit correspondence between the analog  
video waveform and the CGMS1/CGMS2/CGMS3 registers.  
CGMS3[7:4] are undetermined and should be masked out by  
software.  
Figure 34 shows the bit correspondence between the analog  
video waveform and the CCAP1/CCAP2 registers.  
Notes  
CCAP1[7] contains the parity bit from the first word.  
CCAP2[7] contains the parity bit from the second word.  
Refer to the GDECAD Gemstar Decode Ancillary Data  
Format (SDP), Address 0x4C, [0] section.  
+100 IRE  
REF  
CGMS1[7:0]  
CGMS2[7:0]  
CGMS3[3:0]  
+70 IRE  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
0 IRE  
49.1µs  
± 0.5µs  
–40 IRE  
11.2µs  
CRC SEQUENCE  
2.235µs  
± 20ns  
Figure 33. SDP CGMS Data Extraction  
Table 145. SDP CGMS Access Information  
Signal Name  
CGMS1[7:0]  
CGMS2[7:0]  
CGMS3[3:0]  
Block  
Register Location  
Address  
96h  
Register Default Value  
Readback Only  
Readback Only  
SDP  
SDP  
SDP  
CGMS 1 [7:0]  
CGMS 2 [7:0]  
CGMS 3 [3:0]  
150d  
151d  
152d  
97h  
98h  
Readback Only  
10.5  
±
0.25µs  
12.91µs  
7 CYCLES  
OF 0.5035MHz  
(CLOCK RUN-IN)  
CCAP1[7:0]  
CCAP2[7:0]  
0 1 2 3 4 5 6 7 0 1 2 3 4 5  
6
7
S
T
A
R
T
P
A
R
I
T
Y
P
A
R
I
T
Y
50 IRE  
40 IRE  
BYTE 0  
BYTE 1  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003µs  
27.382µs  
33.764µs  
Figure 34. SDP Closed Caption Data Extraction  
Table 146. SDP CCAP Access Information  
Signal Name  
CCAP1[7:0]  
CCAP2[7:0]  
Block  
Register Location  
Address  
99h  
9Ah  
Register Default Value  
Readback Only  
Readback Only  
SDP  
SDP  
CCAP 1 [7:0]  
CCAP 2 [7:0]  
153d  
154d  
Rev. A | Page 54 of 104  
 
 
ADV7183A  
Letterbox Detection  
There is no “letterbox detected” bit. The user is asked to  
read the LB_LCT[7:0] and LB_LCB[7:0] register values and  
to come to a conclusion about the presence of letterbox  
type video in software.  
Incoming video signals may conform to different aspect ratios  
(16:9 wide screen of 4:3 standard). For certain transmissions in  
the wide screen format, a digital sequence (WSS) is transmitted  
with the video signal. If a WSS sequence is provided, the aspect  
ratio of the video can be derived from the digitally decoded bits  
WSS contains.  
LB_LCT[7:0] Letterbox Line Count Top (SDP), Address  
0x9B, [7:0]; LB_LCM[7:0] Letterbox Line Count Mid (SDP),  
Address 0x9C, [7:0]; LB_LCB[7:0] Letterbox Line Count  
Bottom (SDP), Address 0x9D, [7:0]  
In the absence of a WSS sequence, letterbox detection may be  
used to find wide screen signals. The detection algorithm  
examines the active video content of lines at the start and end of  
a field. If black lines are detected, this may serve as an indication  
that the currently shown picture is in wide screen format.  
Table 147. LB_LCx Access Information  
Signal Name  
LB_LCT[7:0]  
LB_LCM[7:0]  
LB_LCB[7:0]  
Block Address  
Register Default Value  
SDP  
SDP  
SDP  
0x9B  
0x9C  
0x9D  
Readback only  
Readback only  
Readback only  
The active video content (luminance magnitude) over a line of  
video is summed together. At the end of a line, this accumulated  
value is compared with a threshold, and a decision is made as to  
whether or not a particular line is black. The threshold value  
needed may depend on the type of input signal; some control is  
provided via LB_TH[4:0].  
LB_TH[4:0] Letterbox Threshold Control (SDP),  
Address 0xDC, [4:0]  
Table 148.LB_TH Function  
LB_TH[4:0]  
Description  
01100*  
Default threshold for detection of black lines.  
01101 to  
10000  
Increase threshold (need larger active video  
content before identifying nonblack lines).  
Detection at the Start of a Field  
00000 to  
01011  
*Default value.  
Decrease threshold (even small noise levels can  
cause the detection of nonblack lines).  
The ADV7183A expects a section of at least six consecutive  
black lines of video at the top of a field. Once those lines have  
been detected, Register LB_LCT[7:0] reports back the number  
of black lines that were actually found. By default, the  
ADV7183A starts looking for those black lines in sync with the  
beginning of active video (e.g., straight after the last VBI video  
line). LB_SL[3:0] allows the user to set the start of letterbox  
detection from the beginning of a frame on a line-by-line basis.  
The detection window closes in the middle of the field.  
LB_SL[3:0] Letterbox Start Line (SDP), Address 0xDD, [7:4]  
Table 149. LB_SL Function  
LB_SL[3:0]  
Description  
0100*  
Letterbox detection is aligned with active video.  
Window starts after the EDTV VBI data line. For  
example, 0100 = 23/286 (NTSC).  
0001, 0010  
For example, 0101 = 24/287 (NTSC).  
Detection at the End of a Field  
*Default value.  
The ADV7183A expects at least six continuous lines of black  
video at the bottom of a field before reporting back the number  
of lines actually found via the LB_LCB[7:0] value. The activity  
window for letterbox detection (end of field) starts in the mid-  
dle of an active field. Its end is programmable via LB_EL[3:0].  
LB_EL[3:0] Letterbox End Line (SDP), Address 0xDD, [3:0]  
Table 150. LB_EL Function  
LB_EL[3:0] Description  
1101*  
Letterbox detection ends with the last active line  
of video on a field. For example, 1101 = 262/ 525  
(NTSC).  
Detection at the Midrange  
0001,0010  
For example, 1100 = 261/524 (NTSC).  
*Default value.  
Some transmissions of wide screen video include subtitles  
within the lower black box. If the ADV7183A finds at least two  
black lines followed by some more nonblack video (e.g.,. the  
subtitle) and finally followed by the remainder of the bottom  
black block, it reports back a midcount via LB_LCM[7:0]. In  
cases where no subtitles are found, LB_LCM[7:0] reports the  
same number as LB_LCB[7:0].  
Gemstar Data Recovery  
The Gemstar compatible data recovery block (GSCD) supports  
1× and 2× data transmissions. In addition, it can serve as a  
closed caption decoder. Gemstar compatible data transmissions  
can occur only in NTSC. Closed caption data can be decoded in  
both PAL and NTSC.  
The block is configured via I2C in the following ways:  
Notes  
There is a 2-field delay in the reporting of any line count  
parameters.  
GDECEL[15:0] allow data recovery on selected video lines  
on even fields to be enabled and disabled.  
GDECOL[15:0] enable the data recovery on selected lines  
for odd fields.  
Rev. A | Page 55 of 104  
ADV7183A  
Entries within the packet are as follows:  
GDECAD configures the way in which data is embedded  
in the video data stream.  
Fixed preamble sequence of 0x00, 0xFF, 0xFF.  
The recovered data is not available through I2C, but is being  
inserted into the horizontal blanking period of an ITU-R BT656  
compatible data stream. The data format is intended to comply  
with the recommendation by the International  
Data identification word (DID). The value for the DID  
marking a Gemstar or CCAP data packet is 0x140 (10-bit  
value).  
Telecommunications Union, ITU-R BT.13642. See Figure 35.  
Secondary data identification word (SDID), which contains  
information about the video line from which data was  
retrieved, whether the Gemstar transmission was of 1× or  
2× format, and whether it was retrieved from an even or  
odd field.  
The format of the data packet depends on the following criteria:  
Transmission is 1× or 2×  
Data is output in 8-bit or 4-bit format (see the description  
of the GDECAD Gemstar Decode Ancillary Data Format  
(SDP), Address 0x4C, [0] bit)  
Data count byte, giving the number of user data-words that  
follow.  
Data is Closed Caption (CCAP) or Gemstar compatible  
User data section.  
Data packets are output if the corresponding enable bit is set  
(see the GDECEL and GDECOL descriptions), and if the  
decoder detects the presence of data. This means that for video  
lines where no data has been decoded, no data packet is output  
even if the corresponding line enable bit is set.  
Optional padding to ensure that the length of the user  
data-word section of a packet is a multiple of four bytes.3  
Checksum byte.  
Table 151 lists the values within a generic data packet that is  
output by the ADV7183A in 8-bit format. 4  
Each data packet starts immediately after the EAV code of the  
preceding line. See Figure 35 and Table 151, which show the  
overall structure of the data packet.  
2 For more information, see the ITU website at www.itu.ch.  
3Requirement as set in ITU-R BT.1364.  
4 In 8-bit systems, Bits D1 and D0 in the data packets are disregarded.  
DATA IDENTIFICATION  
SECONDARY DATA IDENTIFICATION  
DATA  
COUNT  
OPTIONAL PADDING CHECK  
00  
FF  
FF  
DID  
SDID  
USER DATA  
BYTES  
SUM  
PREAMBLE FOR ANCILLARY DATA  
USER DATA (4 OR 8 WORDS)  
Figure 35. Gemstar and CCAP Embedded Data Packet (Generic)  
Table 151. Generic Data Output Packet  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0
Description  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
1
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
2X  
0
line[3:0]  
0
SDID  
5
0
0
DC[1]  
word1[7:4]  
word1[3:0]  
word2[7:4]  
word2[3:0]  
word3[7:4]  
word3[3:0]  
word4[7:4]  
word4[3:0]  
DC[0]  
0
Data count (DC)  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
6
0
0
0
7
0
0
0
8
0
0
0
9
0
0
0
10  
11  
12  
13  
14  
0
0
0
0
0
0
0
0
0
0
0
0
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
0
Rev. A | Page 56 of 104  
 
 
 
 
 
ADV7183A  
Table 152. Data Byte Allocation  
Raw Information Bytes  
Retrieved from the Video Line  
User Data-Words  
(Including Padding)  
2×  
1
1
0
0
GDECAD  
Padding Bytes  
DC[1:0]  
10  
01  
01  
01  
4
4
2
2
0
1
0
1
8
4
4
4
0
0
0
2
straight (i.e., two bytes transmitted as two bytes) or  
whether they are split into nibbles (i.e., two bytes  
transmitted as four half bytes). Padding bytes are then  
added where necessary.  
Notes  
DID. The data identification value is 140h (10-bit value).  
Care has been taken that in 8-bit systems, the 2 LSBs do  
not carry vital information.  
CS[8:2]. The checksum is provided to determine the  
integrity of the ancillary data packet. It is calculated by  
summing up D[8:2] of DID, SDID, the Data Count byte,  
and all UDWs, and ignoring any overflow during the  
summation. Since all data bytes that are used to calculate  
the checksum have their 2 LSBs set to 0, the CS[1:0] bits are  
also always 0.  
EP and !EP. The EP bit is set to ensure even parity on the  
data-word D[8:0]. Even parity means there will always be  
an even number of 1s within the D[8:0] bit arrangement.  
This includes the EP bit. !EP describes the logic inverse of  
EP and is output on D[9]. The !EP is output to ensure that  
the reserved codes of 00 and FF cannot happen.  
!CS[8] describes the logic inversion of CS[8]. The value  
!CS[8] is included in the checksum entry of the data packet  
to ensure that the reserved values of 0x00 and 0xFF do not  
occur.  
EF. Even field identifier. EF = 1 indicates that the data was  
recovered from a video line on an even field.  
2X. This bit indicates whether the data sliced was in  
Gemstar 1× or 2× format. A high indicates 2× format.  
Table 153 to Table 156 outline the possible data packages.  
line[3:0]. This entry provides a code that is unique for each  
of the possible 16 source lines of video from which  
Gemstar data may have been retrieved. Please refer to Table  
164 and Table 165.  
Gemstar 2× Format, Half-Byte Output Mode  
Half-byte output mode is selected by setting CDECAD = 0; full-  
byte output mode is selected by setting CDECAD = 1. See the  
GDECAD Gemstar Decode Ancillary Data Format (SDP),  
Address 0x4C, [0] section.  
DC[1:0]. Data count value. The number of User Data  
Words in the packet divided by 4. The number of user data  
words (UDW) in any packet must be an integral number of  
4. Padding is required at the end, if necessary12. See to Table  
152.  
Gemstar 1× Format  
Half-byte output mode is selected by setting CDECAD = 0, full-  
byte output mode is selected by setting CDECAD = 1. See the  
GDECAD Gemstar Decode Ancillary Data Format (SDP),  
Address 0x4C, [0] section.  
The 2X bit determines whether the raw information  
retrieved from the video line was 2 or 4 bytes. The state of  
the GDECAD bit affects whether the bytes are transmitted  
12 Requirement as set in ITU-R BT.1364.  
Rev. A | Page 57 of 104  
 
 
ADV7183A  
Table 153. Gemstar 2× Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
1
line[3:0]  
0
0
SDID  
5
0
0
0
0
0
Data count  
1
0
6
0
0
Gemstar word1[7:4]  
Gemstar word1[3:0]  
Gemstar word2[7:4]  
Gemstar word2[3:0]  
Gemstar word3[7:4]  
Gemstar word3[3:0]  
Gemstar word4[7:4]  
Gemstar word4[3:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
11  
12  
13  
14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 154. Gemstar 2× Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
0
D[0]  
Description  
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
0
line[3:0]  
0
0
0
4
!EP  
!EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
0
0
Data count  
1
6
Gemstar word1[7:0]  
Gemstar word2[7:0]  
Gemstar word3[7:0]  
Gemstar word4[7:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
8
0
0
9
0
0
10  
!CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 155. Gemstar 1× Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
3
0
1
0
1
0
line[3:0]  
0
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
0
SDID  
0
5
0
0
0
0
0
0
Data count  
1
6
0
0
Gemstar word1[7:4]  
Gemstar word1[3:0]  
Gemstar word2[7:4]  
Gemstar word2[3:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Checksum  
Rev. A | Page 58 of 104  
ADV7183A  
Table 156. Gemstar 1× Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
!EP  
!EP  
EP  
EP  
EF  
0
line[3:0]  
0
0
SDID  
5
0
0
0
0
Data count  
0
1
6
Gemstar word1[7:0]  
Gemstar word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 200h  
UDW padding 200h  
Checksum  
7
0
0
8
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
!CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 157. NTSC CCAP Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
1
1
0
0
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
0
SDID  
0
5
0
0
0
0
Data count  
6
0
0
CCAP word1[7:4]  
CCAP word1[3:0]  
CCAP word2[7:4]  
CCAP word2[3:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 158. NTSC CCAP Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
1
1
0
0
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
!EP  
!EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
Data count  
6
CCAP word1[7:0]  
CCAP word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 200h  
UDW padding 200h  
Checksum  
7
0
0
8
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
!CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Notes  
NTSC CCAP Data  
Only closed caption data from the SDP core can be  
embedded in the output data stream.  
Half-byte output mode is selected by setting CDECAD = 0, the  
full-byte mode is enabled by CDECAD = 1. See the GDECAD  
Gemstar Decode Ancillary Data Format (SDP), Address 0x4C,  
[0]. The data packet formats are shown in Table 157 and  
Table 158.  
NTSC closed caption data is sliced on line 21d on even and  
odd fields. The corresponding enable bit has to be set high.  
See the GDECEL[15:0] Gemstar Decoding Even Lines  
(SDP), Address 0x48, [7:0]; Address 0x49, [7:0] and  
GDECOL[15:0] Gemstar Decoding Odd Lines (SDP),  
Address 0x4A, [7:0]; Address 0x4B, [7:0] sections.  
Rev. A | Page 59 of 104  
 
ADV7183A  
PAL CCAP Data  
Notes  
Half-Byte output mode is selected by setting CDECAD = 0, full-  
byte output mode is selected by setting CDECAD = 1. See the  
GDECAD Gemstar Decode Ancillary Data Format (SDP),  
Address 0x4C, [0] section. Table 159 and Table 160 list the bytes  
of the data packet.  
Only closed caption data from the SDP core can be  
embedded in the output data stream. PAL closed caption  
data is sliced from lines 22 and 335. The corresponding  
enable bits have to be set.  
See the GDECEL[15:0] Gemstar Decoding Even Lines  
(SDP), Address 0x48, [7:0]; Address 0x49, [7:0] and  
GDECOL[15:0] Gemstar Decoding Odd Lines (SDP),  
Address 0x4A, [7:0]; Address 0x4B, [7:0] sections.  
Table 159. PAL CCAP Data, Half-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Description  
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
0
0
0
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
0
0
1
1
1
1
1
1
1
2
1
1
1
1
1
1
3
0
1
0
1
0
0
4
!EP  
!EP  
!EP  
!EP  
!EP  
!EP  
!CS[8]  
EP  
EP  
EP  
EP  
EP  
EP  
CS[8]  
EF  
0
0
SDID  
0
5
0
0
0
0
Data count  
6
0
0
CCAP word1[7:4]  
CCAP word1[3:0]  
CCAP word2[7:4]  
CCAP word2[3:0]  
0
0
User data-words  
User data-words  
User data-words  
User data-words  
Checksum  
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
10  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Table 160. PAL CCAP Data, Full-Byte Mode  
Byte  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
0
D[0]  
Description  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
0
Fixed preamble  
Fixed preamble  
Fixed preamble  
DID  
1
1
1
1
1
1
2
1
1
1
1
1
3
0
1
0
0
0
4
!EP  
!EP  
EP  
EP  
EF  
0
0
0
SDID  
5
0
0
Data Count  
6
CCAP word1[7:0]  
CCAP word2[7:0]  
0
0
User data-words  
User data-words  
UDW padding 200h  
UDW padding 200h  
Checksum  
7
0
0
8
1
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
10  
!CS[8]  
CS[8]  
CS[7]  
CS[6]  
CS[5]  
CS[4]  
CS[3]  
CS[2]  
CS[1]  
CS[0]  
Rev. A | Page 60 of 104  
ADV7183A  
GDECEL[15:0] Gemstar Decoding Even Lines (SDP),  
Address 0x48, [7:0]; Address 0x49, [7:0]  
GDECAD Gemstar Decode Ancillary Data Format (SDP),  
Address 0x4C, [0]  
The 16 bits of the GDECEL[15:0] are interpreted as a collection  
of 16 individual line decode enable signals. Each bit refers to a  
line of video in an even field. Setting the bit enables the decoder  
block trying to find Gemstar or closed caption compatible data  
on that particular line. Setting the bit to 0 prevents the decoder  
from trying to retrieve data. See Table 164 and Table 165.  
The decoded data from Gemstar compatible transmissions or  
closed caption is inserted into the horizontal blanking period of  
the respective line of video. There is a potential problem if the  
retrieved data bytes have the value 0x00 or 0xFF. In an ITU-R  
BT.656 compatible data stream, those values are reserved and  
used only to form a fixed preamble.  
Notes  
The GDECAD bit allows the data to be inserted into the  
horizontal blanking period in two ways:  
To retrieve closed caption data services on NTSC (line  
284), GDECEL[11] must be set.  
Insert all data straight into the data stream, even the  
reserved values of 0x00 and 0xFF, if they occur. This may  
violate the output data format specification ITU-R  
BT.1364.  
To retrieve closed caption data services on PAL (line 335),  
GDECEL[14] must be set.  
Table 161. GDECEL Function  
GDECEL[15:0] Description  
0x0000*  
Split all data into nibbles and insert the half-bytes over  
double the number of cycles in a 4-bit format.  
Do not attempt to decode Gemstar compatible  
data or CCAP on any line (even field).  
Table 163. GDECAD Function  
*Default value.  
GDECAD  
Description  
0*  
1
Split data into half-bytes and insert.  
Output data straight in 8-bit format.  
GDECOL[15:0] Gemstar Decoding Odd Lines (SDP),  
Address 0x4A, [7:0]; Address 0x4B, [7:0]  
*Default value.  
The 16 bits of the GDECOL[15:0] form a collection of 16  
individual line decode enable signals. See Table 164 and  
Table 165.  
Notes  
To retrieve closed caption data services on NTSC (line 21),  
GDECOL[11] must be set.  
To retrieve closed caption data services on PAL (line 22),  
GDECOL[14] must be set.  
Table 162. GDECOL Function  
GDECOL[15:0] Description  
0x0000*  
Do not attempt to decode Gemstar  
compatible data or CCAP on any line (odd  
field).  
*Default value.  
Rev. A | Page 61 of 104  
ADV7183A  
Table 164. NTSC Line Enable Bits and Corresponding Line  
Table 165. PAL Line Enable Bits and Corresponding Line  
Numbering  
Numbering  
Line Number  
(ITU-R BT.470)  
Line Number  
line[3:0] (ITU-R BT.470)  
line[3:0]  
Enable Bit  
GDECOL[0]  
GDECOL[1]  
GDECOL[2]  
GDECOL[3]  
GDECOL[4]  
GDECOL[5]  
GDECOL[6]  
GDECOL[7]  
GDECOL[8]  
GDECOL[9]  
GDECOL[10]  
GDECOL[11]  
Comment  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Enable Bit  
GDECOL[0]  
GDECOL[1]  
GDECOL[2]  
GDECOL[3]  
GDECOL[4]  
GDECOL[5]  
GDECOL[6]  
GDECOL[7]  
GDECOL[8]  
GDECOL[9]  
GDECOL[10]  
GDECOL[11]  
GDECOL[12]  
GDECOL[13]  
GDECOL[14]  
GDECOL[15]  
GDECEL[0]  
GDECEL[1]  
GDECEL[2]  
GDECEL[3]  
GDECEL[4]  
GDECEL[5]  
GDECEL[6]  
GDECEL[7]  
GDECEL[8]  
GDECEL[9]  
GDECEL[10]  
GDECEL[11]  
GDECEL[12]  
GDECEL[13]  
GDECEL[14]  
GDECEL[15]  
Comment  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Closed caption  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Not valid  
Closed caption  
Not valid  
0
1
2
3
4
5
6
7
8
9
10  
11  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
321 (8)  
322 (9)  
323 (10)  
324 (11)  
325 (12)  
326 (13)  
327 (14)  
328 (15)  
329 (16)  
330 (17)  
331 (18)  
332 (19)  
333 (20)  
334 (21)  
335 (22)  
336 (23)  
Gemstar or  
closed caption  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
9
10  
11  
22  
23  
24  
25  
GDECOL[12]  
GDECOL[13]  
GDECOL[14]  
GDECOL[15]  
GDECEL[0]  
GDECEL[1]  
GDECEL[2]  
GDECEL[3]  
GDECEL[4]  
GDECEL[5]  
GDECEL[6]  
GDECEL[7]  
GDECEL[8]  
GDECEL[9]  
GDECEL[10]  
GDECEL[11]  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
9
10  
11  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
9
10  
11  
273 (10)  
274 (11)  
275 (12)  
276 (13)  
277 (14)  
278 (15)  
279 (16)  
280 (17)  
281 (18)  
282 (19)  
283 (20)  
284 (21)  
Gemstar or  
closed caption  
Gemstar  
Gemstar  
Gemstar  
Gemstar  
12  
13  
14  
15  
285 (22)  
286 (23)  
287 (24)  
288 (25)  
GDECEL[12]  
GDECEL[13]  
GDECEL[14]  
GDECEL[15]  
Rev. A | Page 62 of 104  
ADV7183A  
PIXEL PORT CONFIGURATION  
The ADV7183A has a very flexible pixel port that can be  
config-ured in a variety of formats to accommodate  
downstream ICs. Table 168 and Table 169 summarize the  
various functions that the ADV7183A’s pins can have in  
different modes of operation.  
SWPC Swap Pixel Cr/Cb (SDP), Address 0x27, [7]  
This bit allows Cr and Cb samples of the SDP block to be  
swapped.  
Table 166. SWPC Function  
SWPC  
Description  
The ordering of components (e.g., Cr versus Cb, CHA/B/C) can  
be changed. Refer to the SWPC Swap Pixel Cr/Cb (SDP),  
Address 0x27, [7] section. Table 168 indicates the default  
positions for the Cr/Cb components.  
0*  
1
No swapping.  
Swap Cr and Cb values.  
*Default value.  
LLC1 Output Selection, LLC_PAD_SEL[2:0] (SDP),  
Address 0x8F, [6:4]  
OF_SEL[3:0] Output Format Selection, Address 0x03, [5:2]  
The following I2C write allows the user to select between the  
LLC1 (nominally at 27 MHz) and LLC2 (nominally at  
13.5 MHz).  
There are several modes in which the ADV7183A pixel port can  
be configured. These modes are under the control of  
OF_SEL[3:0]. See Table 169 for details.  
The default LLC frequency output on the LLC1 pin is approxi-  
mately 27 MHz. For modes that operate with a nominal data  
rate of 13.5 MHz (0001, 0010), the clock frequency on the LLC1  
pin stays at the higher rate of 27 MHz. For information on  
outputting the nominal 13.5 MHz clock on the LLC1 pin, see  
the LLC1 Output Selection, LLC_PAD_SEL[2:0] (SDP),  
Address 0x8F, [6:4] section.  
The LLC2 signal is useful for LLC2 compatible wide bus  
(16-bit) output modes. See OF_SEL[3:0] Output Format  
Selection, Address 0x03, [5:2] for additional information. The  
LLC2 signal and data on the data bus are synchronized. By  
default, the rising edge of LLC1/LLC2 is aligned with the Y data;  
the falling edge occurs when the data bus holds C data. The  
polarity of the clock, and therefore the Y/C assignments to the  
clock edges, can be altered by using the Polarity LLC pin.  
Table 167. LLC_PAD_SEL Function  
LLC_PAD_SEL[2:0] Description  
000*  
101  
Output nominal 27 MHz LLC on LLC1 pin  
Output nominal 13.5 MHz LLC on LLC1 pin  
*Default value.  
Table 168. P15–P0 Output/Input Pin Mapping  
Data Port Pins P[15:0]  
10  
Processor, Format, and Mode  
15  
14  
13  
12  
11  
9
8
7
6
5
4
3
2
1
0
SDP  
SDP  
Video Out, 8-Bit, 4:2:2  
Video Out, 16-Bit, 4:2:2  
YCrCb[7:0]OUT  
Y[7:0]OUT  
CrCb[7:0] OUT  
Table 169. Standard Definition Pixel Port Modes  
P[15: 0]  
P[7: 0]  
OF_SEL[3:0]  
0010  
Format  
P[15:8]  
Y[7:0]  
16-Bit @LLC2 4:2:2  
8-Bit @LLC1 4:2:2  
Reserved  
CrCb[7:0]  
0011*  
YCrCb[7:0]  
Three-State  
0110-1111  
*Default value.  
Reserved. Do not use.  
Rev. A | Page 63 of 104  
 
 
 
 
 
ADV7183A  
MPU PORT DESCRIPTION  
condition and the correct transmitted address. The R/W bit  
determines the direction of the data. Logic 0 on the LSB of the  
first byte means the master will write information to the  
peripheral. Logic 1 on the LSB of the first byte means the master  
will read information from the peripheral.  
The ADV7183A supports a 2-wire (I2C compatible) serial inter-  
face. Four inputs, serial data (SDA1 and SDA2) and serial clock  
(SCLK1 and SCLK2), carry information between the  
ADV7183A and the system I2C master controller. Each slave  
device is recognized by a unique address. The ADV7183A has  
two ports: the control port, which allows the user to set up and  
configure the decoder; and the VBI data readback port, which  
allows the user to read back captured VBI data. Both the control  
and VBI ports have four possible slave addresses for both read  
and write operations, depending on the logic level on the ALSB  
pin. These four unique addresses are shown in Table 170. The  
ADV7183A’s ALSB pin controls Bit 1 of the slave address. By  
altering the ALSB, it is possible to control two ADV7183As in  
an application without having a conflict with the same slave  
address. The LSB (Bit 0) sets either a read or write operation.  
Logic 1 corresponds to a read operation; Logic 0 corresponds to  
a write operation.  
The ADV7183A acts as a standard slave device on the bus. The  
data on the SDA pin is eight bits long, supporting the 7-bit  
addresses plus the R/W bit. The ADV7183A has 196 subad-  
dresses to enable access to the internal registers. It therefore  
interprets the first byte as the device address and the second  
byte as the starting subaddress. The subaddresses auto-  
increment, allowing data to be written to or read from the  
starting subaddress. A data transfer is always terminated by a  
Stop condition. The user can also access any unique subaddress  
register on a one-by-one basis without updating all the registers.  
Stop and Start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of  
sequence with normal read and write operations, they cause an  
immediate jump to the idle condition. During a given SCLK  
high period, the user should only issue one Start condition, one  
Stop condition, or a single Stop condition followed by a single  
Start condition. If an invalid subaddress is issued by the user,  
the ADV7183A will not issue an acknowledge and will return to  
the idle condition.  
Table 170. I2C Address for ADV7183A  
Slave Address  
Control Port  
Slave Address  
VBI Port  
ALSB  
R/W  
0
0
1
1
0
1
0
1
0x40  
0x41  
0x42  
0x43  
0x20  
0x21  
0x22  
0x23  
To control the device on the bus, a specific protocol must be  
followed. First, the master initiates a data transfer by establish-  
ing a Start condition, which is defined by a high-to-low  
If in auto-increment mode the user exceeds the highest  
subaddress, the following action is taken:  
transition on SDA1/SDA2 while SCLK1/SCLK2 remains high.  
This indicates that an address/data stream will follow. All per-  
ipherals respond to the Start condition and shift the next eight  
bits (7-bit address + R/W bit). The bits are transferred from  
MSB down to LSB. The peripheral that recognizes the trans-  
mitted address responds by pulling the data line low during the  
ninth clock pulse; this is known as an acknowledge bit. All other  
devices withdraw from the bus at this point and maintain an  
idle condition. The idle condition is where the device monitors  
the SDA1/SDA2 and SCLK1/SCLK2 lines, waiting for the Start  
1. In read mode, the highest subaddress register contents  
continue to be output until the master device issues a no-  
acknowledge. This indicates the end of a read. A no-  
acknowledge condition is where the SDA line is not pulled  
low on the ninth pulse.  
2. In write mode, the data for the invalid byte is not loaded  
into any subaddress register, a no acknowledge is issued by  
the ADV7183A, and the part returns to the idle condition.  
SDATA  
SCLOCK  
S
P
1–7  
8
9
1–7  
8
9
1–7  
DATA  
8
9
START ADDR R/W ACK SUBADDRESS ACK  
ACK  
STOP  
Figure 36. Bus Data Transfer  
WRITE  
S
S
SLAVE ADDR A(S) SUB ADDR  
LSB = 0  
A(S)  
DATA  
A(S)  
DATA  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S) SUB ADDR  
A(S)  
S
SLAVE ADDR A(S)  
DATA  
A(M)  
DATA  
A(M) P  
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A(S) = NO-ACKNOWLEDGE BY SLAVE  
A(M) = NO-ACKNOWLEDGE BY MASTER  
Figure 37: Read and Write Sequence  
Rev. A | Page 64 of 104  
 
ADV7183A  
REGISTER ACCESSES  
I2C SEQUENCER  
An I2C sequencer is employed in cases where a parameter  
exceeds eight bits, and is therefore distributed over two or more  
I2C registers (e.g., HSB [11:0]).  
The MPU can write to or read from all of the ADV7183A’s  
registers, except the Subaddress register, which is write-only.  
The Subaddress register determines which register the next read  
or write operation accesses. All communications with the part  
through the bus start with an access to the Subaddress register.  
Then, a read/write operation is performed from/to the target  
address, which then increments to the next address until a Stop  
command on the bus is performed.  
When such a parameter is changed using two or more I2C write  
operations, the parameter may hold an invalid value for the  
time between the first I2C finishing and the last I2C being  
completed. In other words, the top bits of the parameter may  
already hold the new value while the remaining bits of the  
parameter still hold the previous value.  
REGISTER PROGRAMMING  
The following section describe each register in terms of its  
configuration. The Communications register is an 8-bit, write-  
only register. After the part has been accessed over the bus and a  
read/write operation is selected, the subaddress is set up. The  
Subaddress register determines to/from which register the  
operation takes place. Table 172 lists the various operations  
under the control of the Subaddress register for the control port.  
To avoid this problem, the I2C sequencer holds the already  
updated bits of the parameter in local memory; all bits of the  
parameter are updated together once the last register write  
operation has completed.  
The correct operation of the I2C sequencer relies on the  
following:  
All I2C registers for the parameter in question must be  
written to in order of ascending addresses. (e.g., for  
HSB[10:0], write to Address 0x34 first, followed by 0x35).  
Table 173 lists the various readback registers under the control  
of the Subaddress register for the VBI port.  
Register Select (SR7-SR0)  
No other I2C taking place between the two (or more) I2C  
writes for the sequence (e.g., for HSB[10:0], write to  
Address 0x34 first, immediately followed by 0x35).  
These bits are set up to point to the required starting address.  
Rev. A | Page 65 of 104  
ADV7183A  
I2C CONTROL REGISTER MAP  
Table 171. Control Port Register Map Details  
Subaddress  
Hex  
00  
Gemstar Ctrl 1  
Gemstar Ctrl 2  
Gemstar Ctrl 3  
Gemstar Ctrl 4  
GemStar Ctrl 5  
CTI DNR Ctrl 1  
CTI DNR Ctrl 2  
Reserved  
00000000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxx0  
1110 1111  
0000 1000  
xxxx xxxx  
0000 1000  
1010 0100  
xxxx xxxx  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0001 1100  
xxxx xxxx  
xxxx xxxx  
0xxx xxxx  
xxxx xxxx  
1010 1100  
0100 1100  
0000 0000  
0000 0000  
0001 0100  
1000 0000  
1000 0000  
1000 0000  
1000 0000  
0010 0101  
0000 0100  
0110 0011  
0110 0101  
0001 0100  
0110 0011  
rw 72  
rw 73  
rw 74  
rw 75  
rw 76  
rw 77  
rw 78  
rw 79  
rw 80  
rw 81  
rw 82–142  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
Register Name  
Input Control  
Reset Value rw  
0000 0000  
1100 1000  
0000 0100  
0000 1100  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
0
1
2
3
4
5
6
7
8
9
Video Selection  
Video Selection 2  
Output Control  
01  
02  
03  
Extended Output Control 0101 0101  
04  
Reserved  
0000 0000  
0000 0010  
0111 1111  
1000 0000  
1000 0000  
0000 0000  
0000 0000  
0011 0110  
0111 1100  
0000 0101  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0001 0010  
0100 xxxx  
xxxx xxxx  
0000 0001  
1001 0011  
1111 0001  
xxxx xxxx  
0101 1000  
xxxx xxxx  
1110 0011  
1010 1110  
1111 0100  
0000 0000  
1111 xxxx  
xxxx xxxx  
0001 0010  
0100 0001  
1000 0100  
0000 0000  
0000 0010  
0000 0000  
0000 0001  
1000 0000  
1100 0000  
0001 0000  
xxxx xxxx  
0100 0011  
0101 0000  
05  
CTI DNR Ctrl 4  
Lock Count  
Reserved  
50  
51  
52–8E  
8F  
Reserved  
06  
Autodetect Enable  
Contrast  
07  
08  
Free Run Line Length 1  
Free Run Line Length 2  
VBI Info  
w
w
r
143  
144  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
Reserved  
09  
90  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
Brightness  
rw 10  
rw 11  
rw 12  
rw 13  
rw 14  
rw 15  
0A  
0B  
Hue  
WSS 1  
r
Default Value Y  
Default Value C  
ADI Control  
0C  
WSS 2  
r
0D  
0E  
EDTV 1  
r
EDTV 2  
r
Power Management  
Status 1  
0F  
EDTV 3  
r
r
r
r
r
16  
17  
18  
19  
10  
CGMS 1  
r
Ident  
11  
CGMS 2  
r
Status 2  
12  
CGMS 3  
r
Status 3  
13  
CCAP 1  
r
Analog Clamp Control  
Digital Clamp Control 1  
Reserved  
rw 20  
rw 21  
rw 22  
rw 23  
rw 24  
rw 25  
14  
CCAP 2  
r
15  
Letterbox 1  
Letterbox 2  
Letterbox 3  
Reserved  
r
16  
r
Shaping Filter Control  
Shaping Filter Control 2  
Comb Filter Control  
Reserved  
17  
r
18  
rw 158-177 9E–B1  
178 B2  
rw 179–194 B2–C2  
19  
CRC Enable  
Reserved  
w
rw 26–38  
rw 39  
rw 40  
rw 43  
rw 44  
rw 45  
rw 46  
rw 47  
rw 48  
rw 49  
rw 50  
51  
1A–26  
27  
Pixel Delay Control  
Reserved  
ADC Switch 1  
ADC Switch 2  
Reserved  
rw 195  
rw 196  
C3  
C4  
28–2A  
2B  
Misc Gain Control  
AGC Mode Control  
Chroma Gain Control 1  
Chroma Gain Control 2  
Luma Gain Control 1  
Luma Gain Control 2  
VSync Field Control 1  
VSync Field Control 2  
VSync Field Control 3  
HSync Position Control 1  
HSync Position Control 2  
HSync Position Control 3  
Polarity  
rw 197–219 C5–DB  
2C  
Letterbox Control 1  
Letterbox Control 2  
Reserved  
rw 220  
rw 221  
rw 222  
rw 223  
rw 224  
rw 225  
rw 226  
rw 227  
rw 228  
rw 225  
rw 226  
rw 227  
rw 225  
rw 226  
rw 227  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
2D  
2E  
2F  
Reserved  
30  
Reserved  
31  
SD Offset Cb  
SD Offset Cr  
SD Saturation Cb  
SD Saturation Cr  
NTSC V Bit Begin  
NTSC V Bit End  
NTSC F Bit Toggle  
PAL V Bit Begin  
PAL V Bit End  
PAL F Bit Toggle  
32  
33  
rw 52  
rw 53  
rw 54  
rw 55  
rw 56  
rw 57  
rw 58  
rw 59–60  
rw 61  
rw 62–70  
34  
35  
36  
37  
NTSC Comb Control  
PAL Comb Control  
ADC Control  
38  
39  
3A  
Reserved  
3B–3C  
3D  
Manual Window Control  
Reserved  
3E–47  
Rev. A | Page 66 of 104  
ADV7183A  
Table 172. Control Port Register Map Bit Details  
Register Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Input Control  
VID_SEL.3  
VID_SEL.2  
ENHSPLL  
VID_SEL.1  
BETACAM  
VID_SEL.0  
INSEL.3  
ENVSPROC  
INSEL.2  
INSEL.1  
INSEL.0  
Video Selection  
Video Selection 2  
Output Control  
YPM.2  
YPM.1  
YPM.0  
VBI_EN  
TOD  
OF_SEL.3  
DR_STR.1  
OF_SEL.2  
DR_STR.0  
OF_SEL.1  
TIM_OE  
OF_SEL.0  
BL_C_VBI  
SD_DUP_AV  
RANGE  
Extended Output  
Control  
BT656-4  
EN_SFL_PI  
Reserved  
Reserved  
Autodetect Enable  
Contrast  
AD_SEC525_EN  
CON.7  
AD_SECAM_EN  
CON.6  
AD_N443_EN  
CON.5  
AD_P60_EN  
CON.4  
AD_PALN_EN  
CON.3  
AD_PALM_EN  
CON.2  
AD_NTSC_EN  
CON.1  
AD_PAL_EN  
CON.0  
Reserved  
Brightness  
Hue  
BRI.7  
BRI.6  
BRI.5  
BRI.4  
BRI.3  
BRI.2  
BRI.1  
BRI.0  
HUE.7  
HUE.6  
HUE.5  
HUE.4  
HUE.3  
HUE.2  
HUE.1  
HUE.0  
Default Value Y  
Default Value C  
ADI Control  
DEF_Y.5  
DEF_C.7  
DEF_Y.4  
DEF_C.6  
TRI_LLC  
DEF_Y.3  
DEF_C.5  
DEF_Y.2  
DEF_C.4  
DEF_Y.1  
DEF_C.3  
DR_STR_C.1  
DEF_Y.0  
DEF_C.2  
DR_STR_C.0  
PDBP  
DEF_VAL_AUTO_EN  
DEF_C.1  
DEF_VAL_EN  
DEF_C.0  
DR_STR_S.1  
DR_STR_S.0  
Power  
PWRDN  
Management  
Status 1  
Ident  
COL_KILL  
IDENT.7  
AD_RESULT.2  
IDENT.6  
AD_RESULT.1  
IDENT.5  
AD_RESULT.0  
IDENT.4  
FOLLOW_PW  
IDENT.3  
FSC_LOCK  
IDENT.2  
LOST_LOCK  
IDENT.1  
IN_LOCK  
IDENT.0  
Status 2  
Status 3  
FSC NSTD  
LL NSTD  
MV AGC DET  
MV PS DET  
MVCS T3  
MVCS DET  
INST_HLOCK  
PAL SW LOCK  
INTERLACE  
DCT.1  
STD FLD LEN  
FREE_RUN_ACT  
CCLEN  
Analog Clamp  
Control  
Digital Clamp  
Control 1  
DCT.0  
Reserved  
Shaping Filter  
Control  
CSFM.2  
CSFM.1  
CSFM.0  
YSFM.4  
YSFM.3  
YSFM.2  
YSFM.1  
YSFM.0  
Shaping Filter  
Control 2  
WYSFMOVR  
WYSFM.4  
WYSFM.3  
NSFSEL.1  
WYSFM.2  
NSFSEL.0  
WYSFM.1  
PSFSEL.1  
WYSFM.0  
PSFSEL.0  
Comb Filter Control  
Reserved  
Pixel Delay Control  
Reserved  
SWPC  
AUTO_PDC_EN  
CTA.2  
CTA.1  
CTA.0  
LTA.1  
LTA.0  
Misc Gain Control  
AGC Mode Control  
CKE  
PW_UPD  
CAGC.0  
CMG.8  
LAGC.2  
CAGT.0  
LAGC.1  
CMG.5  
LAGC.0  
CMG.4  
CAGC.1  
CMG.9  
Chroma Gain  
Control 1  
CAGT.1  
CMG.7  
LAGT.1  
LMG.7  
CMG.11  
CMG.3  
LMG.11  
LMG.3  
CMG.10  
CMG.2  
LMG.10  
LMG.2  
Chroma Gain  
Control 2  
CMG.6  
LGAT.0  
LMG.6  
CMG.1  
LMG.9  
LMG.1  
CMG.0  
LMG.8  
LMG.0  
Luma Gain  
Control 1  
Luma Gain  
Control 2  
LMG.5  
LMG.4  
VSync Field  
Control 1  
NEWAVMODE  
HVSTIM  
VSync Field  
Control 2  
VSBHO  
VSEHO  
VSBHE  
VSEHE  
HSB.10  
HSB.6  
HSE.6  
VSync Field  
Control 3  
HSync Position  
Control 1  
HSB.9  
HSB.5  
HSE.5  
HSB.8  
HSB.4  
HSE.4  
HSE.10  
HSB.2  
HSE.2  
HSE.9  
HSB.1  
HSE.1  
HSE.8  
HSB.0  
HSE.0  
HSync Position  
Control 2  
HSB.7  
HSE.7  
HSB.3  
HSE.3  
HSync Position  
Control 3  
Polarity  
PHS  
PVS  
PF  
PCLK  
NTSC Comb Control  
PAL Comb Control  
ADC Control  
Reserved  
CTAPSN.1  
CTAPSP.1  
CTAPSN.0  
CTAPSP.0  
CCMN.2  
CCMP.2  
CCMN.1  
CCMP.1  
CCMN.0  
CCMP.0  
YCMN.2  
YCMN.1  
YCMN.0  
YCMP.0  
YCMP.2  
YCMP.1  
PWRDN_AD C_0  
PWRDN_AD C_1  
PWRDN_ADC_2  
Manual Window  
Control  
CKILLTHR.2  
CKILLTHR.1  
CKILLTHR.0  
Reserved  
Rev. A | Page 67 of 104  
ADV7183A  
Register Name  
Gemstar Ctrl 1  
Gemstar Ctrl 2  
Gemstar Ctrl 3  
Gemstar Ctrl 4  
Gemstar Ctrl 5  
CTI DNR Ctrl 1  
CTI DNR Ctrl 2  
Reserved  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
GDECEL.15  
GDECEL.7  
GDECOL.15  
GDECOL.7  
GDECEL.14  
GDECEL.6  
GDECOL.14  
GDECOL.6  
GDECEL.13  
GDECEL.5  
GDECOL.13  
GDECOL.5  
GDECEL.12  
GDECEL.4  
GDECOL.12  
GDECOL.4  
GDECEL.11  
GDECEL.3  
GDECOL.11  
GDECOL.3  
GDECEL.10  
GDECEL.2  
GDECOL.10  
GDECOL.2  
GDECEL.9  
GDECEL.1  
GDECOL.9  
GDECOL.1  
GDECEL.8  
GDECEL.0  
GDECOL.8  
GDECOL.0  
GDECAD  
CTI_EN  
DNR_EN  
CTI_AB.1  
CTI_AB.0  
CTI_AB_EN  
CTI_C_TH.1  
CTI_C_TH.7  
CTI_C_TH.6  
CTI_C_TH.5  
CTI_C_TH.4  
CTI_C_TH.3  
CTI_C_TH.2  
CTI_C_TH.0  
CTI DNR Ctrl 4  
Lock Count  
DNR_TH.7  
FSCLE  
DNR_TH.6  
SRLS  
DNR_TH.5  
COL.2  
DNR_TH.4  
COL.1  
DNR_TH.3  
COL.0  
DNR_TH.2  
CIL.2  
DNR_TH.1  
CIL.1  
DNR_TH.0  
CIL.0  
Reserved  
Free Run Line  
Length 1  
LLC_PAD_SEL.2  
LLC_PAD_SEL.1  
LLC_PAD_SEL.0  
Free Run Line  
Length 2  
VBI Info  
CGMSD  
EDTVD  
CCAPD  
WSSD  
WSS 1  
WSS1.7  
WSS1.6  
WSS1.5  
WSS1.4  
WSS1.3  
WSS1.2  
WSS1.1  
WSS1.0  
WSS 2  
WSS2.7  
WSS2.6  
WSS2.5  
WSS2.4  
WSS2.3  
WSS2.2  
WSS2.1  
WSS2.0  
EDTV 1  
EDTV1.7  
EDTV2.7  
EDTV3.7  
CGMS1.7  
CGMS2.7  
CGMS3.7  
CCAP1.7  
CCAP2.7  
LB_LCT.7  
LB_LCM.7  
LB_LCB.7  
EDTV1.6  
EDTV2.6  
EDTV3.6  
CGMS1.6  
CGMS2.6  
CGMS3.6  
CCAP1.6  
CCAP2.6  
LB_LCT.6  
LB_LCM.6  
LB_LCB.6  
EDTV1.5  
EDTV2.5  
EDTV3.5  
CGMS1.5  
CGMS2.5  
CGMS3.5  
CCAP1.5  
CCAP2.5  
LB_LCT.5  
LB_LCM.5  
LB_LCB.5  
EDTV1.4  
EDTV2.4  
EDTV3.4  
CGMS1.4  
CGMS2.4  
CGMS3.4  
CCAP1.4  
CCAP2.4  
LB_LCT.4  
LB_LCM.4  
LB_LCB.4  
EDTV1.3  
EDTV2.3  
EDTV3.3  
CGMS1.3  
CGMS2.3  
CGMS3.3  
CCAP1.3  
CCAP2.3  
LB_LCT.3  
LB_LCM.3  
LB_LCB.3  
EDTV1.2  
EDTV2.2  
EDTV3.2  
CGMS1.2  
CGMS2.2  
CGMS3.2  
CCAP1.2  
CCAP2.2  
LB_LCT.2  
LB_LCM.2  
LB_LCB.2  
EDTV1.1  
EDTV2.1  
EDTV3.1  
CGMS1.1  
CGMS2.1  
CGMS3.1  
CCAP1.1  
CCAP2.1  
LB_LCT.1  
LB_LCM.1  
LB_LCB.1  
EDTV1.0  
EDTV2.0  
EDTV3.0  
CGMS1.0  
CGMS2.0  
CGMS3.0  
CCAP1.0  
CCAP2.0  
LB_LCT.0  
LB_LCM.0  
LB_LCB.0  
EDTV 2  
EDTV 3  
CGMS 1  
CGMS 2  
CGMS 3  
CCAP 1  
CCAP 2  
Letterbox 1  
Letterbox 2  
Letterbox 3  
Reserved  
CRC Enable  
Reserved  
CRC_ENABLE  
ADC Switch 1  
ADC Switch 2  
Reserved  
ADC1_SW.3  
ADC1_SW.2  
LB_SL.2  
ADC1_SW.1  
LB_SL.1  
ADC1_SW.0  
ADC0_SW.3  
ADC2_SW.3  
ADC0_SW.2  
ADC2_SW.2  
ADC0_SW.1  
ADC2_SW.1  
ADC0_SW.0  
ADC2_SW.0  
ADC_SW_M AN  
Letterbox Control 1  
Letterbox Control 2  
Reserved  
LB_TH.4  
LB_SL.0  
LB_TH.3  
LB_EL.3  
LB_TH.2  
LB_EL.2  
LB_TH.1  
LB_EL.1  
LB_TH.0  
LB_EL.0  
LB_SL.3  
Reserved  
Reserved  
SD Offset Cb  
SD Offset Cr  
SD Saturation Cb  
SD Saturation Cr  
NTSC V Bit Begin  
NTSC V Bit End  
NTSC F Bit Toggle  
PAL V Bit Begin  
PAL V Bit End  
PAL F Bit Toggle  
SD_OFF_CB.7  
SD_OFF_CR.7  
SD_SAT_CB.7  
SD_SAT_CR.7  
NVBEGDEL O  
NVENDDEL O  
NFTOGDEL O  
PVBEGDEL O  
PVENDDEL O  
PFTOGDEL O  
SD_OFF_CB.6  
SD_OFF_CR.6  
SD_SAT_CB.6  
SD_SAT_CR.6  
NVBEGDEL E  
NVENDDEL E  
NFTOGDEL E  
PVBEGDEL E  
PVENDDEL E  
PFTOGDEL E  
SD_OFF_CB.5  
SD_OFF_CR.5  
SD_SAT_CB.5  
SD_SAT_CR.5  
NVBEGSIGN  
NVENDSIGN  
NFTOGSIGN  
PVBEGSIGN  
PVENDSIGN  
PFTOGSIGN  
SD_OFF_CB.4  
SD_OFF_CR.4  
SD_SAT_CB.4  
SD_SAT_CR.4  
NVBEG.4  
SD_OFF_CB.3  
SD_OFF_CR.3  
SD_SAT_CB.3  
SD_SAT_CR.3  
NVBEG.3  
SD_OFF_CB.2  
SD_OFF_CR.2  
SD_SAT_CB.2  
SD_SAT_CR.2  
NVBEG.2  
SD_OFF_CB.1  
SD_OFF_CR .1  
SD_SAT_CB.1  
SD_SAT_CR.1  
NVBEG.1  
SD_OFF_CB.0  
SD_OFF_CR.0  
SD_SAT_CB.0  
SD_SAT_CR.0  
NVBEG.0  
NVEND.4  
NVEND.3  
NVEND.2  
NVEND.1  
NVEND.0  
NFTOG.4  
NFTOG.3  
NFTOG.2  
NFTOG.1  
NFTOG.0  
PVBEG.4  
PVBEG.3  
PVBEG.2  
PVBEG.1  
PVBEG.0  
PVEND.4  
PVEND.3  
PVEND.2  
PVEND.1  
PVEND.0  
PFTOG.4  
PFTOG.3  
PFTOG.2  
PFTOG.1  
PFTOG.0  
Rev. A | Page 68 of 104  
ADV7183A  
Table 173. VBI Port Register Map Details  
Register  
Name  
Reset  
Value  
rw Subaddress  
7
6
5
4
3
2
1
0
VBI Info  
WSS 1  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
r
r
r
r
r
r
r
r
r
r
r
0
1
2
3
4
5
6
7
8
9
10  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
CGMSD  
WSS1.3  
WSS2.3  
EDTV1.3  
EDTV2.3  
EDTV3.3  
EDTVD  
WSS1.2  
WSS2.2  
EDTV1.2  
EDTV2.2  
EDTV3.2  
CCAPD  
WSS1.1  
WSS2.1  
EDTV1.1  
EDTV2.1  
EDTV3.1  
WSSD  
WSS1.7  
WSS2.7  
EDTV1.7  
EDTV2.7  
EDTV3.7  
WSS1.6  
WSS2.6  
EDTV1.6  
EDTV2.6  
EDTV3.6  
WSS1.5  
WSS2.5  
EDTV1.5  
EDTV2.5  
EDTV3.5  
WSS1.4  
WSS2.4  
EDTV1.4  
EDTV2.4  
EDTV3.4  
WSS1.0  
WSS2.0  
EDTV1.0  
EDTV2.0  
EDTV3.0  
WSS 2  
EDTV 1  
EDTV 2  
EDTV 3  
CGMS 1  
CGMS 2  
CGMS 3  
CCAP 1  
CCAP 2  
CGMS1.7 CGMS1.6 CGMS1.5 CGMS1.4 CGMS1.3 CGMS1.2 CGMS1.1 CGMS1.0  
CGMS2.7 CGMS2.6 CGMS2.5 CGMS2.4 CGMS2.3 CGMS2.2 CGMS2.1 CGMS2.0  
CGMS3.7 CGMS3.6 CGMS3.5 CGMS3.4 CGMS3.3 CGMS3.2 CGMS3.1 CGMS3.0  
CCAP1.7 CCAP1.6 CCAP1.5 CCAP1.4 CCAP1.3 CCAP1.2 CCAP1.1 CCAP1.0  
CCAP2.7 CCAP2.6 CCAP2.5 CCAP2.4 CCAP2.3 CCAP2.2 CCAP2.1 CCAP2.0  
Rev. A | Page 69 of 104  
ADV7183A  
I2C REGISTER MAP DETAILS  
Table 174. Register 0x00  
Bit  
Subaddress Register  
Bit Description  
Register Setting  
Comments  
7
6
5
4
3
2
1
0
0x00  
Input  
Control  
INSEL [3:0]. The INSEL bits allow the  
user to select an input channel as  
well as the input format.  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
CVBS in on AIN1  
CVBS in on AIN2  
CVBS in on AIN3  
CVBS in on AIN4  
CVBS in on AIN5  
CVBS in on AIN6  
Y on AIN1, C on AIN4  
Y on AIN2, C on AIN5  
Y on AIN3, C on AIN6  
Composite  
S-Video  
YPbPr  
Y on AIN1, Pr on AIN4, Pb on  
AIN5  
1
0
1
0
Y on AIN2, Pr on AIN3, Pb on  
AIN6  
1
1
1
1
1
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
CVBS in on AIN7  
CVBS in on AIN8  
CVBS in on AIN9  
CVBS in on AIN10  
CVBS in on AIN11  
Composite  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
Auto-detect PAL (BGHID),  
NTSC (without pedestal)  
VID_SEL [3:0]. The VID_SEL bits  
allow the user to select the input  
video standard.  
Auto-detect PAL (BGHID),  
NTSC (M) (with pedestal)  
Auto-detect PAL (N), NTSC  
(M) (without pedestal)  
Auto-detect PAL (N), NTSC  
(M) (with pedestal)  
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
1
0
1
0
1
NTSC(J)  
NTSC(M)  
PAL 60  
NTSC 4.43  
PAL BGHID  
PAL N (BGHID without  
pedestal)  
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
PAL M (without pedestal)  
PAL M  
PAL combination N  
PAL combination N  
SECAM (with pedestal)  
SECAM (with pedestal)  
Note: Grayed out sections mark the reset value of the register  
Rev. A | Page 70 of 104  
ADV7183A  
Table 175. Register 0x01  
Bit  
Subaddress Register Bit Description  
Register Setting  
Comments  
7
6
5
4
3
2
1
0
0x01  
Video  
Selection  
Reserved  
0
0
0
Set to default  
ENVSPROC  
0
1
Disable VSync processor  
Enable VSync processor  
Reserved  
BETACAM  
0
Set to default  
0
1
Standard video input  
Betacam input enable  
ENHSPLL  
Reserved  
0
1
Disable HSync processor SECAM standard. YPrPb through SDP.  
Enable HSync processor  
1
Set to default  
Table 176. Register 0x02  
Bit  
Register  
Setting  
Subaddress Register  
Bit Description  
YPM [2:0]. Y Peaking Filter  
Enhancement mode. This function allows the  
Comments  
7
6
5
4
3
2
1
0
0x02  
Video  
Used to enhance the  
picture and improve  
contrast  
Control  
user to boost/ attenuate luma  
signals around the color  
subcarrier frequency.  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
C = +4.5 dB,  
S = +9.25 dB  
C = Composite (2.6 MHz),  
S = S-Video (3.75 MHz)  
C = +4.5 dB,  
S = +9.25 dB  
C = +4.5 dB,  
S = +5.75 dB  
C = +1.25 dB,  
S = +3.3 dB  
No Change.  
C = +0 dB,  
S = +0 dB  
1
1
1
0
1
1
1
0
1
C = –1.25 dB,  
S = –3 dB  
C = –1.75 dB,  
S = –8 dB  
C = –3.0 dB,  
S = –8 dB  
Reserved  
0
0
0
0
0
Set to  
default  
Rev. A | Page 71 of 104  
ADV7183A  
Table 177. Register 0x03  
Bit  
Subaddress Register  
Bit Description  
Register Setting  
Comments  
7
6
5
4
3
2
1
0
0x03  
Output  
Control  
SD_DUP_AV. Duplicates the AV codes  
from the Luma into the chroma path.  
0
AV codes to suit 8-bit  
interleaved data  
output  
1
AV codes duplicated  
(for 16-bit interfaces)  
Reserved  
0
Set as default  
OF_SEL [3:0]. Allows the user to choose  
from a set of output formats.  
0
0
0
0
0
0
1
0
0
0
1
1
0
1
0
1
Reserved  
Reserved  
16-bit @ LLC1 4:2:2  
8-bit @ LLC1 4:2:2  
ITU-R BT.656  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
See also  
TIM_OE  
(Table 178);  
TRI_LLC  
TOD. Three-State Output Drivers. This bit  
allows the user to three-state the output  
drivers: P[19:0], HS, VS, FIELD, and SFL.  
(Table 180)  
0
1
Output pins enabled  
Drivers three-stated  
VBI_EN. Allows VBI data (Lines 1 to 21)  
to be passed through with only a  
minimum amount of filtering performed.  
0
1
All lines filtered and  
scaled  
Only active video  
region filtered  
Rev. A | Page 72 of 104  
 
ADV7183A  
Table 178. Register 0x04  
Bit  
Register  
Setting  
Subaddress Register  
Bit Description  
Comments  
7
6
5
4
3
2
1
0
0x04  
Extended  
Output  
Control  
RANGE. Allows the user to select  
the range of output values. Can  
be BT656 compliant, or can fill the  
whole accessible number range.  
0
1
16 < Y < 235,  
16 < C < 240  
ITU-R BT.656  
1 < Y < 254,  
1 < C < 254  
Extended Range  
EN_SFL_PIN  
SFL output enables  
encoder and decoder to  
be connected directly.  
0
1
SFL output is  
disabled  
SFL information  
output on the  
SFL pin  
During VBI  
BL_C_VBI. Blank Chroma during  
VBI. If set, enables data in the VBI  
region to be passed through the  
decoder undistorted.  
0
1
Decode and  
output color  
Blank Cr and Cb  
Controlled by TOD  
TIM_OE. Timing signals output  
enable.  
0
1
HS, VS, F three-  
stated  
HS, VS, F forced  
active  
Recommended  
DR_STR[1:0]. Drive strength of  
output drivers can be increased or  
decreased for EMC or crosstalk  
reasons.  
0
0
1
0
1
0
Low drive, 1×  
Medium-low, 2×  
Medium-high,  
3×  
1
1
High drive, 4×  
Reserved  
1
Set to default  
BT656-4. Allows the user to select  
an output mode compatible with  
ITU- R BT656-3/4.  
0
1
BT656-3  
compatible  
BT656-4  
compatible  
Rev. A | Page 73 of 104  
 
ADV7183A  
Table 179. Register 0x07 and 0x08  
Bit  
Register  
Setting  
Subaddress  
Register  
Bit Description  
Comments  
7
6
5
4
3
2
1
0
0x07  
Autodetect  
Enable  
AD_PAL_EN. PAL B/G/I/H autodetect  
enable.  
0
1
Disable  
Enable  
AD_NTSC_EN. NTSC autodetect enable.  
AD_PALM_EN. PAL M autodetect enable.  
AD_PALN_EN. PAL N autodetect enable.  
AD_P60_EN. PAL 60 autodetect enable.  
AD_N443_EN. NTSC443 autodetect enable.  
AD_SECAM_EN. SECAM autodetect enable.  
0
1
Disable  
Enable  
0
1
Disable  
Enable  
0
1
Disable  
Enable  
0
1
Disable  
Enable  
0
1
Disable  
Enable  
0
1
Disable  
Enable  
AD_SEC525_EN. SECAM 525 autodetect  
enable.  
0
1
Disable  
Enable  
0x08  
Contrast  
Register  
0x00 Gain = 0;  
0x80 Gain = 1;  
0xFF Gain = 2  
CON[7:0]. Contrast adjust. This is the user  
control for contrast adjustment.  
1
0
0
0
0
0
0
0
Luma gain = 1  
Rev. A | Page 74 of 104  
ADV7183A  
Table 180. Register 0x09 to 0x0E  
Subaddress Register Bit Description  
Bit  
7
1
0
6
0
0
5
0
0
4
0
0
3
0
0
2
0
0
1
0
0
0
0
0
Register Setting  
Comments  
0x09  
Reserved  
(Saturation)  
Reserved  
0x0A  
Brightness  
Register  
0x00 = 0IRE;  
0x7F = 100IRE;  
0xFF = –100IRE  
BRI[7:0]. This register controls  
the brightness of the video  
signal.  
0x0B  
0x0C  
Hue Register  
Hue range =  
–90° to +90°  
HUE[7:0]. This register  
contains the value for the color  
hue adjustment.  
0
0
0
0
0
0
0
0
0
1
Default Value Y  
DEF_VAL_EN. Default value  
enable.  
Free Run mode  
dependent on  
DEF_VAL_AUTO_EN  
Force SDP Free Run  
mode on and output  
blue screen  
DEF_VAL_AUTO_EN. Default  
value.  
0
1
Disable SDP Free Run  
mode  
When lock is lost,  
Free Run mode  
can be enabled  
to output stable  
timing, clock,  
Enable Automatic Free  
Run mode (blue  
screen)  
and a set color.  
Default Y value  
output in free-  
run mode.  
DEF_Y[5:0]. Default value Y.  
This register holds the Y  
default value.  
0
0
0
1
1
1
1
1
0
1
1
1
Y[7:0] = {DEF_Y[5:0],  
0, 0, 0, 0}  
0x0D  
0x0E  
Default Value C  
ADI Control  
Cr[7:0] = {DEF_C[7:4],  
0, 0, 0, 0, 0, 0}  
Cb[7:0] = {DEF_C[3:0],  
Default Cb/Cr  
value output in  
Free Run mode.  
Default values  
give blue screen  
output.  
DEF_C[7:0]. Default value C. Cr  
and Cb default values are  
defined in this register.  
0, 0, 0, 0, 0, 0}  
0
0
0
0
DR_STR_S[1:0]. Select the  
drive strength of the sync  
signals. HS, VS, and F can be  
increased or decreased for  
EMC or crosstalk reasons.  
Low drive strength  
(1×)  
0
1
1
1
0
1
Medium-low (2×)  
Medium-high (3×)  
High drive strength  
(4×)  
DR_STR_C[1:0]. Select the  
strength of the clock signal  
output driver. Can be  
increased or decreased for  
EMC or crosstalk reasons.  
0
0
Low drive strength  
(1×)  
0
1
1
1
0
1
Medium-low (2×)  
Medium-high (3×)  
High drive strength  
(4×)  
Reserved  
0
0
Set as default  
LLC pin active  
See TOD  
(Table 177);  
TIM_OE  
TRI_LLC. Enables the LLC pin  
to be three-stated.  
0
1
(Table 178).  
LLC pin drivers three-  
stated  
Reserved  
0
Set as default  
Rev. A | Page 75 of 104  
ADV7183A  
Table 181. Register 0x0F to 0x11  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Register Setting  
Comments  
0x0F  
Power  
Management  
Reserved  
0
0
Set to default  
PDBP. Power-down bit  
priority selects between  
PWRDN bit or PIN.  
0
1
Chip power-down  
controlled by pin  
Bit has priority (pin  
disregarded)  
Reserved  
0
0
Set to default  
PWRDN. Power-down places  
the decoder in a full power-  
down mode.  
0
1
System functional  
Powered down  
See PDBP, 0x0F  
Bit 2.  
Reserved  
0
Set to default  
0
1
Normal operation  
Executing reset  
takes approx. 2 ms.  
This bit is self-  
clearing.  
RES. Chip Reset will load all  
I2C bits with default values.  
Start reset sequence  
0x10  
Status Register  
Read-Only  
STATUS_1[7:0]. Provides  
information about the  
internal status of the  
decoder.  
STATUS_1[3:0]  
x
In lock (right now) = 1  
x
Lost lock (since last  
read)  
x
Fsc lock (right now) = 1  
x
Peak white AGC mode  
active = 1  
STATUS_1[6:4]  
AD_RESULT[2:0].  
Autodetection result reports  
the findings.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
NTSM-MJ  
NTSC-443  
PAL-M  
Detected standard.  
PAL-60  
PAL-BGHID  
SECAM  
PAL combination N  
SECAM 525  
STATUS_1[7] COL_KILL.  
Color Kill.  
x
x
Color kill is active = 1  
0x11  
Info Register  
Read-Only  
IDENT[7:0] Provides  
identification on the revision  
of the part.  
x
x
x
x
x
x
x
Rev. A | Page 76 of 104  
ADV7183A  
Table 182. Register 0x12 to 0x13  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Register Setting  
Comments  
0x12  
Status Register 2.  
Read-Only.  
STATUS_2[7:0]. Provides  
information about the internal status  
of the decoder.  
STATUS_2[5:0]  
x
MV color striping  
detected  
1 = Detected  
x
MV color striping  
type  
0 = Type 2,  
1 = Type 3  
x
MV pseudosync  
detected  
1 = Detected  
1 = Detected  
1 = Detected  
1 = Detected  
x
MV AGC pulses  
detected  
x
Nonstandard line  
length  
x
Fsc frequency  
nonstandard  
Reserved  
x
x
x
0x13  
Status Register 3.  
Read-Only.  
STATUS_3[7:0]. Provides  
information about the internal status  
of the decoder.  
x
1 = horizontal  
lock achieved  
Unfiltered  
x
x
x
1 = Reserved bits  
No function  
x
1 = Free Run  
mode active  
Blue screen  
output  
1 = Field length  
standard  
x
1 = Swinging  
burst detected  
Reliable  
sequence  
Table 183. Register 0x14  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Register Setting  
0x14  
Analog Clamp  
Control  
Reserved  
0
0
1
0
Reserved. Set to default.  
CCLEN. Current clamp enable allows the user to  
switch off the current sources in the analog front.  
0
1
I sources switched off  
I sources enabled  
Reserved  
Reserved  
0
Reserved set to default  
Reserved set to default  
0
0
Table 184. Register 0x15  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Register Setting  
0x15h  
Digital Clamp  
Control 1  
Reserved  
x
x
x
x
x
Set to default  
DCT[1:0]. Digital clamp timing determines the  
time constant of the digital fine clamp circuitry.  
0
0
1
1
0
1
0
1
Slow (TC = 1 s)  
Medium (TC = 0.5 s)  
Fast (TC = 0.1 s)  
TC dependant on video  
Reserved  
0
Set to default  
Rev. A | Page 77 of 104  
ADV7183A  
Table 185. Register 0x17  
Bit  
Subaddress Register  
Bit Description  
Register Setting  
Comments  
7
6
5
4
3
2
1
0
0x17  
Shaping  
Filter  
Control  
Decoder selects  
optimum Y shaping  
filter depending on  
CVBS quality.  
YSFM[4:0]. Selects Y  
Shaping Filter mode  
when in CVBS only  
mode. Allows the user to  
select a wide range of  
low-pass and notch  
filters.  
If either auto mode is  
selected, the decoder  
selects the optimum Y  
filter depending on the  
CVBS video source  
0
0
0
0
0
Auto wide notch for poor  
quality sources or wide-  
band filter with Comb for  
good quality input  
0
0
0
0
1
Auto narrow notch for poor  
quality sources or wideband  
filter with comb for good  
quality input  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
SVHS 1  
If one of these modes is  
selected. The decoder  
does not change filter  
modes depending on  
video quality, a fixed  
filter response (the one  
selected) is used for  
good and bad quality  
video.  
SVHS 2  
quality (good vs. bad).  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
SVHS 7  
SVHS 8  
SVHS 9  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR601)  
PAL NN1  
PAL NN2  
PAL NN3  
PAL WN 1  
PAL WN 2  
NTSC NN1  
NTSC NN2  
NTSC NN3  
NTSC WN1  
NTSC WN2  
NTSC WN3  
Reserved  
Automatically selects a  
C filter based on video  
standard and quality.  
CSFM[2:0]. C Shaping  
Filter mode allows the  
selection from a range of  
low-pass chrominance  
filters.  
If either auto mode is  
selected, the decoder  
selects the optimum C  
filter depending on the  
CVBS video source  
quality (good vs. bad).  
Non auto settings force a  
C filter for all standards  
and quality of CVBS  
video.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Auto selection 15. MHz  
Auto selection 2.17 MHz  
SH1  
Selects a C filter for all  
video standards and for  
good and bad video.  
SH2  
SH3  
SH4  
SH5  
Wideband mode  
Rev. A | Page 78 of 104  
ADV7183A  
Table 186. Register 0x18 to 0x19  
Subaddress Register Bit Description  
Bit  
7
6
5
4
3
2
1
0
Comments  
0x18  
Shaping  
Filter  
Control 2  
WYSFM[4:0]. Wideband Y Shaping Filter mode allows  
the user to select which Y shaping filter is used for the Y  
component of Y/C, YPbPr, B/W input signals; it is also  
used when a good quality input CVBS signal is  
detected. For all other inputs, the Y shaping filter  
chosen is controlled by YSFM[4:0].  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Reserved. Do not use.  
Reserved. Do not use.  
SVHS 1  
SVHS 2  
SVHS 3  
SVHS 4  
SVHS 5  
SVHS 6  
SVHS 7  
SVHS 8  
SVHS 9  
SVHS 10  
SVHS 11  
SVHS 12  
SVHS 13  
SVHS 14  
SVHS 15  
SVHS 16  
SVHS 17  
SVHS 18 (CCIR 601)  
Reserved. Do not use.  
Reserved. Do not use.  
Reserved. Do not use.  
1
1
1
1
1
Reserved  
0
0
Set to default  
WYSFMOVR. Enables the use of automatic WYSFN  
filter.  
0
1
Manual select filter  
using WYSFM[4:0]  
Auto selection of best  
filter  
0x19  
Comb  
Filter  
PSFSEL[1:0]. Controls the signal bandwidth that is fed  
to the comb filters (PAL).  
0
0
1
1
0
1
0
1
Narrow  
Medium  
Wide  
Control  
Widest  
NSFSEL[1:0]. Controls the signal bandwidth that is fed  
to the comb filters (NTSC).  
0
0
1
1
0
1
0
1
Narrow  
Medium  
Medium  
Wide  
Reserved  
1
1
1
1
Set as default  
Rev. A | Page 79 of 104  
ADV7183A  
Table 187. Register 0x27 to 0x2A  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x27  
Pixel  
Delay  
Control  
CVBS mode  
LTA[1:0]. Luma timing adjust  
allows the user to specify a  
timing difference between  
chroma and luma samples.  
LTA[1:0] = 00b;  
S-Video mode  
LTA[1:0]= 01b,  
YPrPb mode  
LTA[1:0] = 01b  
0
0
1
0
0
1
0
1
No Delay  
Luma 1 clk (37 ns) delayed  
Luma 2 clk (72 ns) early  
Luma 1 clk (37 ns) early  
Reserved  
0
Set to 0  
CVBS mode  
CTA[2:0]. Chroma timing  
adjust allows a specified  
timing difference between  
the luma and chroma  
samples.  
CTA[2:0] = 011b,  
S-Video mode  
CTA[2:0] = 101b,  
YPrPb mode  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Not a valid setting  
Chroma + 2 pixels (early)  
Chroma + 1 pixel (early)  
No Delay  
CTA[2:0] = 110b  
Chroma – 1 pixel (late)  
Chroma – 2 pixels (late)  
Chroma – 3 pixels (late)  
Not a valid setting  
AUTO_PDC_EN.  
Automatically programs the  
LTA/CTA values so that luma  
and chroma are aligned at the  
output for all modes of  
operation.  
0
1
Use values in LTA[1:0] and  
CTA[2:0] for delaying  
luma/chroma  
LTA and CTA values  
determined automatically  
SWPC. Allows the Cr and Cb  
samples to be swapped.  
0
1
No swapping  
Swap the Cr and Cb  
Rev. A | Page 80 of 104  
ADV7183A  
Table 188. Register 0x2B to 0x2C  
Subaddress Register Bit Description  
Bit  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x2B  
Misc Gain  
Control  
PW_UPD. Peak white update  
determines the rate of gain.  
0
1
Update once per  
video line  
Peak white must be  
enabled. See LAGC[2:0]  
Update once per  
field  
Reserved  
0
1
1
0
1
0
1
0
Set to default  
For SECAM color kill,  
threshold is set at 8%  
CKE. Color kill enable allows  
the color kill function to be  
switched on and off.  
0
1
Color kill disabled  
Color kill enabled  
See CKILLTHR[2:0]  
(Table 196)  
Reserved  
1
Set to default  
0x2C  
AGC Mode  
Control  
CAGC[1:0]. Chroma automatic  
gain control selects the basic  
mode of operation for the AGC  
in the chroma path.  
0
0
0
1
Manual fixed gain  
Use CMG[11:0]  
Use luma gain for  
chroma  
1
1
0
1
Automatic gain  
Based on color burst  
Freeze chroma gain  
Reserved  
1
1
Set to 1  
LAGC[2:0]. Luma automatic  
gain control selects the mode  
of operation for the gain  
control in the luma path.  
0
0
0
0
0
1
Manual fixed gain  
Use LMG[11:0]  
AGC no override  
through white  
peak. Man IRE  
control.  
Blank level to sync tip  
0
0
1
1
1
0
0
1
0
AGC auto-override  
through white  
peak. Man IRE  
control.  
Blank level to sync tip  
Blank level to sync tip  
Blank level to sync tip  
AGC no override  
through white  
peak. Auto IRE  
control.  
AGC auto-override  
through white  
peak. Auto IRE  
control.  
1
1
1
0
1
1
1
0
1
AGC active video  
with white peak  
AGC active video  
with average video  
Freeze gain  
Reserved  
1
Set to 1  
Rev. A | Page 81 of 104  
ADV7183A  
Table 189. Register 0x2D to 0x30  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x2D  
Chroma  
Gain  
Control 1  
CAGC[1:0] settings  
decide in which  
mode CMG[11:0]  
operates  
CMG[11:8]. Chroma manual  
gain can be used to program a  
desired manual chroma gain.  
Reading back from this register  
in AGC mode gives the current  
gain.  
0
1
0
0
Reserved  
1
1
Set to 1  
Has an effect only if  
CAGC[1:0] is set to  
auto gain (10)  
CAGT[1:0]. Chroma automatic  
gain timing allows adjustment of  
the chroma AGC tracking speed.  
0
0
1
1
0
1
0
1
Slow (TC = 2 s)  
Medium (TC = 1 s)  
Fast (TC = 0.2 s)  
Adaptive  
0x2E  
0x2F  
Chroma  
Gain  
Control 2  
CMG[11:0] = 750d;  
gain is 1 in NTSC  
CMG[11:0] = 741d;  
gain is 1 in PAL  
Min value is 0dec  
(G = –60 dB)  
Max value is 3750  
(Gain = 5)  
CMG[7:0]. Chroma manual gain  
lower 8 bits. See CMG[11:8] for  
description.  
0
0
0
1
0
1
0
x
0
x
0
x
0
x
Luma Gain  
Control 1  
LAGC[1:0] settings  
decide in which  
mode LMG[11:0]  
operates  
LMG[11:8]. Luma manual gain  
can be used program a desired  
manual chroma gain, or to read  
back the actual gain value used.  
Reserved  
Set to 1  
Only has an effect if  
AGC[1:0] is set to  
auto gain (001, 010,  
011,or 100)  
LAGT[1:0]. Luma automatic gain  
timing allows adjustment of the  
luma AGC tracking speed.  
0
0
1
1
0
1
0
1
Slow (TC = 2 s)  
Medium (TC = 1 s)  
Fast (TC = 0.2 s)  
Adaptive  
0x30  
Luma Gain  
Control 2  
LMG[11:0] =  
1234dec; gain is 1 in NTSC 1024 (G = 0.85)  
NTSC LMG[11:0] =  
1266dec; gain is 1 in  
PAL  
Min value  
LMG[7:0]. Luma manual gain  
can be used to program a  
desired manual chroma gain or  
read back the actual used gain  
value.  
PAL (G = 0.81)  
Max value  
NTSC 2468 (G = 2),  
PAL = 2532 (G = 2)  
x
x
x
x
x
x
x
x
Rev. A | Page 82 of 104  
ADV7183A  
Table 190. Register 0x31  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x31  
VS and  
FIELD  
Reserved  
0
1
0
Set to default  
Control 1  
HVSTIM. Selects where  
within a line of video the VS  
signal is asserted.  
0
1
Start of line relative to HSE  
Start of line relative to HSB  
HSE = Hsync end  
HSB = Hsync begin  
NEWAVMODE. Sets the  
EAV/SAV mode.  
0
1
EAV/SAV codes generated  
to suit ADI encoders  
Manual VS/Field position  
controlled by registers  
0x32, 0x33, and 0xE5–0xEA  
Reserved  
0
0
0
Set to default  
Table 191. Register 0x32 to 0x33  
Bit  
Bit  
7
6
5
4
3
2
1
0
Subaddress Register  
Description  
Comments  
Notes  
0x32  
VSync Field  
Control 2  
Reserved  
0
0
0
0
0
1
Set to default  
VSBHE  
VSBHO  
NEWAVMODE bit must  
be set high  
0
1
VS goes high in the middle of  
the line (even field)  
VS changes state at the start of  
the line (even field)  
0
1
VS goes high in the middle of  
the line (odd field)  
VS changes state at the start of  
the line (odd field)  
0x33  
VSync Field  
Control 3  
Reserved  
0
0
0
1
0
0
Set to default  
VSEHE  
NEWAVMODE bit must  
be set high  
0
1
VS goes low in the middle of the  
line (even field)  
VS changes state at the start of  
the line (even field)  
VSEHO  
0
1
VS goes low in the middle of the  
line (odd field)  
VS changes state at the start of  
the line odd field  
Rev. A | Page 83 of 104  
ADV7183A  
Table 192. Register 0x34 to 0x36  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x34  
HS Position  
Control 1  
HS output ends  
HSE[10:0] pixels  
after the falling edge the position and  
Using HSB and HSE  
the user can program  
HSE[10:8]. HS end allows the  
positioning of the HS output  
within the video line.  
0
0
0
of HSync  
length of the output  
HSync  
Reserved  
0
Set to 0  
HS output starts  
HSB[10:0] pixels  
after the falling edge  
of HSync  
HSB[10:8]. HS begin allows  
the positioning of the HS  
output within the video line.  
0
0
0
Reserved  
0
0
Set to 0  
0x35  
0x36  
HS Position  
Control 2  
HSB[7:0] See above, using  
HSB[9:0] and HSE[9:0], the user  
can program the position and  
length of HS output signal  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
HS Position  
Control 3  
HSE[7:0] See above.  
0
Table 193. Register 0x37  
Bit  
Subaddress  
Register  
Bit Description  
7
6
5
4
3
2
1
0
Comment  
0x37  
Polarity  
PCLK. Sets the polarity of LLC1.  
0
1
Invert polarity  
Normal polarity as per Timing Diagrams  
Reserved  
0
0
Set to 0  
PF. Sets the FIELD polarity.  
0
1
Active high  
Active low  
Reserved  
0
Set to 0  
PVS. Sets the VS Polarity.  
0
1
Active high  
Active low  
Reserved  
0
Set to 0  
PHS. Sets HS Polarity.  
0
1
Active high  
Active low  
Rev. A | Page 84 of 104  
ADV7183A  
Table 194. Register 0x38  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x38  
NTSC Comb  
Control  
YCMN[2:0]. Luma  
Comb Mode, NTSC.  
0
0
0
Adaptive 3-line, 3-tap  
luma  
1
1
0
0
0
1
Use low-pass notch  
Fixed luma comb  
(2-line)  
Top lines of memory  
All lines of memory  
1
1
1
1
0
1
Fixed luma comb  
(3-Line)  
Fixed luma comb  
(2-line)  
Bottom lines of memory  
CCMN[2:0]. Chroma  
Comb Mode, NTSC.  
0
0
0
3-line adaptive for  
CTAPSN = 01  
4-line adaptive for  
CTAPSN = 10  
5-line adaptive for  
CTAPSN = 11  
1
1
0
0
0
1
Disable chroma comb  
Fixed 2-line for  
CTAPSN = 01  
Top lines of memory  
All lines of memory  
Fixed 3-line for  
CTAPSN = 10  
Fixed 4-line for  
CTAPSN = 11  
1
1
1
1
0
1
Fixed 3-line for  
CTAPSN = 01  
Fixed 4-line for  
CTAPSN = 10  
Fixed 5-line for  
CTAPSN = 11  
Fixed 2-line for  
CTAPSN = 01  
Bottom lines of memory  
Fixed 3-line for  
CTAPSN = 10  
Fixed 4-line for  
CTAPSN = 11  
CTAPSN[1:0].  
Chroma  
Comb Taps, NTSC.  
0
0
1
1
0
1
0
1
Adapts 3 lines – 2 lines  
Not used  
Adapts 5 lines – 3 lines  
Adapts 5 lines – 4 lines  
Rev. A | Page 85 of 104  
ADV7183A  
Table 195. Register 0x39 to 0x3A  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x39  
PAL Comb  
Control  
YCMP[2:0]. Luma Comb  
mode, PAL.  
0
1
1
0
0
1
0
0
0
Adaptive 5-line, 3-tap luma comb  
Use low-pass notch  
Fixed luma comb  
Top lines of  
memory  
1
1
1
1
0
1
Fixed luma comb (5-line)  
Fixed luma comb (3-line)  
All lines of  
memory  
Bottom lines  
of memory  
CCMP[2:0]. Chroma  
Comb mode, PAL.  
0
0
0
3-line adaptive for CTAPSN = 01  
4-line adaptive for CTAPSN = 10  
5-line adaptive for CTAPSN = 11  
1
1
0
0
0
1
Disable chroma comb  
Fixed 2-line for CTAPSN = 01  
Top lines of  
memory  
Fixed 3-line for CTAPSN = 10  
Fixed 4-line for CTAPSN = 11  
Fixed 3-line for CTAPSN = 01  
1
1
1
1
0
1
All lines of  
memory  
Fixed 4-line for CTAPSN = 10  
Fixed 5-line for CTAPSN = 11  
Fixed 2-line for CTAPSN = 01  
Bottom lines  
of memory  
Fixed 3-line for CTAPSN = 10  
Fixed 4-line for CTAPSN = 11  
CTAPSP[1:0]. Chroma  
comb taps, PAL.  
0
0
1
1
0
1
0
1
Adapts 5-lines – 2 lines (2 taps)  
Not used  
Adapts 5 lines – 3 lines (3 taps)  
Adapts 5 lines – 4 lines (4 taps)  
0x3A  
Reserved  
0
Set as default  
PWRDN_ADC_2. Enables  
power-down of ADC2.  
0
1
ADC2 normal operation  
Power down ADC2  
PWRDN_ADC_1. Enables  
power-down of ADC1.  
0
1
ADC1 normal operation  
Power down ADC1  
PWRDN_ADC_0. Enables  
power-down of ADC0.  
0
1
ADC0 normal operation  
Power down ADC0  
Reserved  
0
0
0
1
Set as default  
Rev. A | Page 86 of 104  
ADV7183A  
Table 196. Register 0x3D  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x3D  
Manual  
Window  
Reserved  
0
0
1
1
Set to default  
CKILLTHR[2:0].  
CKE = 1 enables the color kill function and  
must be enabled for CKILLTHR[2:0] to take  
effect.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Kill at 0.5%  
Kill at 1.5%  
Kill at 2.5%  
Kill at 4%  
Kill at 8.5%  
Kill at 16%  
Kill at 32%  
Reserved  
Reserved  
0
Set to default  
Table 197. Registers 0x41 to 0x4C  
Subaddress Register Bit Description  
Bit  
7
6
5
4
3
2
1
0
Comments  
Set to default  
Notes  
0x41  
Resample  
Control  
Reserved  
0
1
0
0
0
0
SFL_INV. Controls the  
behavior of the PAL switch  
bit.  
0
1
SFL compatible with  
ADV7190/ADV7191/ADV7194  
encoders  
SFL compatible with  
ADV717x/ADV7173x encoders  
Reserved  
0
Set to default  
0x48  
Gemstar  
Control 1  
LSB = Line 10,  
MSB = Line 25,  
Default = Do not  
check for  
GDECEL[15:0]. 16  
individual enable bits that  
select the lines of video  
(even field lines 10–25)  
that the decoder checks  
for Gemstar compatible  
data.  
Gemstar  
compatible data  
on any lines [10–  
25] in even fields  
GDECEL[15:8]. See above.  
GDECEL[7:0]. See above.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x49  
0x4A  
Gemstar  
Control 2  
Gemstar  
Control 3  
LSB = Line 10,  
MSB = Line 25,  
Default = Do not  
check for  
GDECOL[15:0]. 16  
individual enable bits that  
select the lines of video  
(odd field lines 10–25) that  
the decoder checks for  
Gemstar compatible data.  
Gemstar  
compatible data  
on any lines [10–  
25] in odd fields  
GDECOL[15:8]. See above.  
GDECOL[7:0]. See above.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x4B  
0x4C  
Gemstar  
Control 4  
Gemstar  
Control 5  
GDECAD. Controls the  
manner in which decoded  
Gemstar data is inserted  
into the horizontal  
0
1
Split data into half byte  
To avoid 00/FF  
code.  
Output in straight 8-bit format  
blanking period.  
Reserved  
x
x
x
x
x
x
x
Undefined  
Rev. A | Page 87 of 104  
ADV7183A  
Table 198. Registers 0x4D to 0x50  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
0x4D  
CTI DNR  
Control 1  
CTI_EN. CTI enable  
0
1
Disable CTI  
Enable CTI  
CTI_AB_EN. Enables the mixing of the  
transient improved chroma with the  
original signal.  
0
1
Disable CTI alpha blender  
Enable CTI alpha blender  
CTI_AB[1:0]. Controls the behavior of the  
alpha-blend circuitry.  
0
0
1
1
0
1
0
1
Sharpest mixing  
Sharp mixing  
Smooth  
Smoothest  
Reserved  
0
Set to default  
DNR_EN. Enable or bypass the DNR block.  
0
1
Bypass the DNR block  
Enable the DNR block  
Reserved  
Reserved  
1
Set to default  
Set to default  
1
0
0x4E  
0x50  
CTI DNR  
Control 2  
CTI_CTH[7:0]. Specifies how big the  
amplitude step must be to be steepened  
by the CTI block.  
0
0
0
0
0
0
1
1
0
0
0
0
0
0
CTI DNR  
Control 4  
Set to 0x04 for A/V input; set to  
0x0A for tuner input  
DNR_TH[7:0]. Specifies the maximum  
edge that is interpreted as noise and is  
therefore blanked.  
0
Rev. A | Page 88 of 104  
ADV7183A  
Table 199. Register 0x51  
Bit  
Subaddress Register Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x51  
Lock  
Count  
Operational only for  
SDP modes.  
CIL[2:0]. Count-into-lock  
determines the number of lines  
the system must remain in lock  
before showing a locked status.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 line of video  
2 lines of video  
5 lines of video  
10 lines of video  
100 lines of video  
500 lines of video  
1000 lines of video  
100000 lines of video  
COL[2:0]. Count-out-of-lock  
determines the number of lines  
the system must remain out-of-  
lock before showing a lost-  
locked status.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 line of video  
2 lines of video  
5 lines of video  
10 lines of video  
100 lines of video  
500 lines of video  
1000 lines of video  
100000 lines of video  
SRLS. Select raw lock signal.  
Selects the determination of  
the lock. Status.  
0
1
Over field with vertical  
info  
Line-to-line evaluation  
FSCLE. Fsc Lock Enable.  
FSCLE must be set to  
0 in YPrPb mode if a  
reliable LOST_LOCK  
bit is set to 0.  
0
1
Lock status set only by  
horizontal lock  
Lock status set by  
horizontal lock and  
subcarrier lock.  
Rev. A | Page 89 of 104  
ADV7183A  
Table 200. Registers 0x8F to 0x90  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x8F  
Free Run  
Line  
Reserved  
0
0
0
0
Set to default  
Length 1  
LLC_PAD_SEL [2:0]. Enables  
manual selection of clock for  
LLC1 pin.  
0
1
0
0
0
1
LLC1 (nominal 27 MHz)  
selected out on LLC1  
pin  
LLC2 (nominally  
13.5 MHz) selected out  
on LLC1 pin  
For 16-bit 4:2:2 out,  
OF_SEL[3:0] = 0010  
Reserved  
0
Set to default  
0x90  
VBI Info  
Read Mode  
Details  
Ready-only status  
bits  
WSSD. Screen signaling  
detected.  
0
1
No WSS detected  
WSS detected  
CCAPD. Closed caption data.  
EDTVD. EDTV sequence.  
CGMSD. CGMS sequence.  
Reserved  
0
1
No CCAP signals  
detected  
CCAP sequence  
detected  
0
1
No EDTV sequence  
detected  
EDTV sequence  
detected  
0
1
No CGMS transition  
detected  
CGMS sequence  
decoded  
x
x
x
x
Rev. A | Page 90 of 104  
ADV7183A  
Table 201. Registers 0x91 to 0x9D  
Subaddress Register Bit Description  
Bit  
7
6
5
4
3
2
1
0
Comments  
Notes  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
WSS1[7:0]  
WSS2[7:0]  
EDTV1[7:0]  
EDTV2[7:0]  
EDTV3[7:0]  
CGMS1[7:0]  
CGMS2[7:0]  
CGMS3[7:0]  
CCAP1[7:0]  
WSS1[7:0]. Wide  
screen signaling  
data. Read-only  
register.  
x
x
x
x
x
x
x
x
WSS2[7:6] are  
undetermined  
WSS1[7:0]. Wide  
screen signaling  
data. Read-only  
register  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
EDTV1[7:0].  
EDTV data  
register. Read-  
only register.  
EDTV2[7:0].  
EDTV data  
register. Read-  
x
x
x
x
x
x
x
x
only register.  
EDTV3[7:6] are  
undetermined  
EDTV3[5] is reserved for  
future use  
EDTV3[7:0]  
EDTV data  
register. Read-  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
only register.  
CGMS1[7:0].  
CGMS data  
register. Read-  
only register.  
CGMS2[7:0].  
CGMS data  
register. Read-  
x
x
x
x
x
x
x
x
only register.  
CGMS3[7:4] are  
undetermined  
CGMS3[7:0].  
CGMS data  
register. Read-  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
only register.  
CCAP1[7]contains parity  
bit for byte 0  
CCAP1[7:0].  
Closed caption  
data register.  
Read-only  
register.  
0x9A  
CCAP2[7:0]  
CCAP2[7]contains parity  
bit for byte 0  
CCAP2[7:0].  
Closed caption  
data register.  
Read-only  
x
x
x
x
x
x
x
x
register.  
0x9B  
0x9C  
LB_LCT[7:0]  
LB_LCM[7:0]  
Reports the number of  
black lines detected at  
the top of active video.  
This feature examines the  
active video at the start and  
at the end of each field. It  
enables format detection  
even if the video is not  
accompanied by a CGMS or  
WSS sequence.  
Letterbox 1.  
Read-only  
register.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Reports the number of  
black lines detected in  
the bottom half of active  
video if subtitles are  
detected.  
Letterbox 2.  
Read-only  
register.  
0x9D  
LB_LCB[7:0]  
Reports the number of  
black lines detected at  
the bottom of active  
video.  
Letterbox 3.  
Read-only  
register.  
x
x
x
x
x
x
x
x
Rev. A | Page 91 of 104  
ADV7183A  
Table 202. Register 0xB2  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
0xB2  
CRC Enable  
Write Register  
Reserved  
0
0
Set as default  
CRC_ENABLE. Enable CRC checksum  
decoded from CGMS packet to validate  
CGMSD.  
0
1
Turn off CRC check  
CGMSD goes high with  
valid checksum  
Reserved  
0
0
0
1
1
Set as default  
Table 203. Register 0xC3  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
0xC3  
ADC  
SWITCH 1  
SETADC_sw_man_en = 1  
ADC0_SW[3:0]. Manual muxing  
control for ADC0.  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No connection  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
No connection  
No connection  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
No connection  
ADC1_SW[3:0]. Manual muxing  
control for ADC1.  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No connection  
No connection  
No connection  
AIN3  
AIN4  
AIN5  
AIN6  
No connection  
No connection  
No connection  
No connection  
AIN9  
AIN10  
AIN11  
AIN12  
No connection  
Rev. A | Page 92 of 104  
ADV7183A  
Table 204. Register 0xC4  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
Notes  
SETADC_sw_man_en = 1  
0xC4  
ADC  
ADC2_SW[3:0]. Manual muxing  
SWITCH 2  
control for ADC2.  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No connection  
No connection  
AIN2  
No connection  
No connection  
AIN5  
AIN6  
No connection  
No connection  
No connection  
AIN8  
No connection  
No connection  
AIN11  
AIN12  
No connection  
Reserved  
x
x
x
ADC_SW_MAN_EN. Enable manual  
setting of the input signal muxing.  
0
1
Disable  
Enable  
Rev. A | Page 93 of 104  
ADV7183A  
Table 205. Registers 0xDC to 0xE4  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
0xDC  
Letterbox Control 1  
LB_TH [4:0]. Sets the threshold value  
that detects a black.  
0
1
1
0
0
Default threshold for the  
detection of black lines.  
Reserved  
1
0
1
Set as default  
0xDD  
Letterbox Control 2  
LB_EL[3:0]. Programs the end line of  
the activity window for LB detection  
(end of field).  
1
1
0
0
LB detection ends with the last  
line of active video on a field.  
1100: 262/525.  
LB_SL[3:0]. Program the start line of  
the activity window for LB detection  
(start of field).  
0
1
0
0
Letterbox detection aligned with  
the start of active video,  
0100: 23/286 NTSC.  
0xDE  
0xDF  
0xE0  
0xE1  
Reserved  
Reserved  
Reserved  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
SD Offset Cb  
SD_OFF_CB [7:0]. Adjusts the hue by  
selecting the offset for the Cb  
channel.  
0xE2  
0xE3  
SD Offset Cr  
SD_OFF_CR [7:0]. Adjusts the hue by  
selecting the offset for the Cr channel.  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SD Saturation Cb  
SD_SAT_CB [7:0]. Adjusts the  
saturation of the picture by affecting  
gain on the Cb channel.  
Chroma gain = 0 dB  
Chroma gain = 0 dB  
0xE4  
SD Saturation Cr  
SD_SAT_CR [7:0]. Adjusts the  
saturation of the picture by affecting  
gain on the Cr channel.  
1
0
0
0
0
0
0
0
Rev. A | Page 94 of 104  
ADV7183A  
Table 206. Registers 0xE5 to 0xE7  
Subaddress Register Bit Description  
Bit  
7
6
5
4
3
2
1
0
Comments  
0xE5  
0xE6  
0xE7  
NTSC V Bit  
Begin  
NVBEG[4:0]. How many lines after lCOUNT rollover  
to set V high.  
0
0
1
0
1
NTSC Default(BT.656)  
NVBEGSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user  
programming  
NVBEGDELE. Delay V bit going high by one line  
relative to NVBEG (even field).  
0
1
No delay  
Additional delay by 1 line  
NVBEGDELO. Delay V bit going high by one line  
relative to NVBEG (odd field).  
0
1
No delay  
Additional delay by 1 line  
NTSC V Bit  
End  
NVEND[4:0]. How many lines after lCOUNT rollover  
to set V low.  
0
0
1
0
0
NTSC Default (BT.656)  
NVENDSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user  
programming  
NVENDDELE. Delay V bit going low by one line  
relative to NVEND (even field).  
0
1
No delay  
Additional delay by 1 line  
NVENDDELO. Delay V bit going low by one line  
relative to NVEND (odd field).  
0
1
No delay  
Additional delay by 1 line  
NTSC F Bit  
Toggle  
NFTOG[4:0]. How many lines after lCOUNT rollover  
to toggle F signal.  
0
0
0
1
1
NTSC Default  
NFTOGSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user  
programming  
NFTOGDELE. Delay F transition by one line  
relative to NFTOG (even field).  
0
1
No delay  
Additional delay by 1 line  
NFTOGDELO. Delay F transition by one line  
relative to NFTOG (odd field).  
0
1
No delay  
Additional delay by 1 line  
Rev. A | Page 95 of 104  
ADV7183A  
Table 207. Registers 0xE8 to 0xEA  
Bit  
Subaddress Register  
Bit Description  
7
6
5
4
3
2
1
0
Comments  
0xE8  
0xE9  
0xEA  
PAL V Bit  
Begin  
PVBEG[4:0]. How many lines after lCOUNT rollover  
to set V high.  
0
0
1
0
1
PAL Default (BT.656)  
PVBEGSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user  
programming  
PVBEGDELE. Delay V bit going high by one line  
relative to PVBEG (even field).  
0
1
No delay  
Additional delay by 1 line  
PVBEGDELO. Delay V bit going high by one line  
relative to PVBEG (odd field).  
0
1
No delay  
Additional delay by 1 line  
PAL V Bit  
End  
PVEND[4:0]. How many lines after lCOUNT rollover  
to set V low.  
1
0
1
0
0
PAL Default (BT.656)  
PVENDSIGN  
0
1
Set to low when manual  
programming  
Not suitable for user  
programming  
PVENDDELE. Delay V bit going low by one line  
relative to PVEND (even field).  
0
1
No delay  
Additional delay by 1 line  
PVENDDELO. Delay V bit going low by one line  
relative to PVEND (odd field).  
0
1
No delay  
Additional delay by 1 line  
PAL F Bit  
Toggle  
PFTOG[4:0]. How many lines after lCOUNT rollover  
to toggle F signal.  
0
0
0
1
1
PAL Default (BT.656)  
PFTOGSIGN.  
0
1
Set to low when manual  
programming  
Not suitable for user  
programming  
PFTOGDELE. Delay F transition by one line  
relative to PFTOG (even field).  
0
1
No delay  
Additional delay by 1 line  
PFTOGDELO. Delay F transition by one line  
relative to PFTOG (odd field).  
0
1
No delay  
Additional delay by 1 line  
Rev. A | Page 96 of 104  
ADV7183A  
APPENDIX A  
I2C PROGRAMMING EXAMPLES  
Mode 1 CVBS Input (Composite Video on AIN5)  
All standards are supported through autodetect, 8-bit, 4:2:2, ITU-R BT.656 output on P15–P8.  
Table 208. Mode 1 CVBS Input  
Register Address  
Register Value  
Notes  
0x00  
0x01  
0x17  
0x04  
0x88  
0x41  
CVBS input on AIN5.  
Turn off HSYNC processor (SECAM only13).  
Set CSFM to SH1.  
0x2B  
0xE2  
AGC tweak  
0x3A  
0x51  
0xD2  
0x16  
0x24  
0x01  
Power down ADC 1 and ADC 2.  
Turn off FSC detect for IN LOCK status.  
AGC tweak.  
0xD3  
0x01  
AGC tweak.  
0xDB  
0x9B  
AGC tweak.  
0x0E  
0x85  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x89  
0x8D  
0x8F  
0xB5  
0xD4  
0xD6  
0xE2  
0xE3  
0xE4  
0xE8  
0x0E  
0x0D  
0x9B  
0x48  
0x8B  
0xFB  
0x6D  
0xAF  
0x00  
0xB5  
0xF3  
0x05  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
13 For all SECAM modes of operation, HSYNC PROCESSOR must be turned off.  
Rev. A | Page 97 of 104  
 
ADV7183A  
Mode 2 S-Video Input (Y on AIN1 and C on AIN4)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P15–P8.  
Table 209. Mode 2 S-Video Input  
Register Address  
Register Value  
Notes  
0x00  
0x01  
0x2B  
0x06  
0x88  
0xE2  
Y1 = AIN1, C1 = AIN4.  
Turn off HSYNC processor (SECAM only).  
AGC tweak.  
0x3A  
0x51  
0xD2  
0x12  
0x24  
0x01  
Power down ADC 2.  
Turn off FSC detect for IN LOCK status.  
AGC tweak.  
0xD3  
0x01  
AGC tweak.  
0xDB  
0x9B  
AGC tweak.  
0x0E  
0x85  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0xB5  
0xD4  
0xD6  
0xE2  
0xE3  
0xE4  
0xE8  
0x0E  
0x8B  
0xFB  
0x6D  
0xAF  
0x00  
0xB5  
0xF3  
0x05  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Mode 3 525i/625i YPrPb Input (Y on AIN2, Pr on AIN3, and Pb on AIN6)  
All standards are supported through autodetect, 8-bit, ITU-R BT.656 output on P15–P8.  
Table 210. Mode 3 YPrPb Input 525i/625i  
Register Address Register Value Notes  
0x00  
0x01  
0x2B  
0x3A  
0x51  
0xD2  
0xD3  
0xDB  
0x0E  
0x0A  
0x88  
0xE2  
0x10  
0x24  
0x01  
0x01  
0x9B  
0x85  
Y2 = AIN2, Pr2 = AIN3, Pb2 = AIN6.  
Disable HSync PLL.  
AGC tweak.  
Set latch clock.  
Turn off FSC detect for IN LOCK status.  
AGC tweak.  
AGC tweak.  
AGC tweak.  
ADI recommended programming sequence. This sequence must be followed exactly when setting  
up the decoder.  
0xD6  
0xE8  
0x0E  
0x6D  
0xF3  
0x05  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. A | Page 98 of 104  
ADV7183A  
Mode 4 CVBS Tuner Input PAL Only on AIN4  
8-bit, ITU-R BT.656 output on P15–P8.  
Table 211. Mode 4 Tuner Input CVBS PAL Only  
Register Address  
Register Value  
Notes  
0x00  
0x07  
0x17  
0x83  
0x01  
0x41  
CVBS AIN4 Force PAL only mode.  
Enable PAL autodetection only.  
Set CSFM to SH1.  
0x19  
0x2B  
0xFA  
0xE2  
Stronger dot crawl reduction.  
AGC tweak.  
0x3A  
0x50  
0x51  
0xD2  
0x16  
0x0A  
0x24  
0x01  
Power down ADC 1 and ADC 2.  
Set higher DNR threshold.  
Turn off FSC detect for IN LOCK status.  
AGC tweak.  
0xD3  
0x01  
AGC tweak.  
0xDB  
0x9B  
AGC tweak.  
0x0E  
0x85  
ADI recommended programming sequence. This sequence must be followed exactly when  
setting up the decoder.  
0x89  
0x8D  
0x8F  
0xB5  
0xD4  
0xD6  
0xE2  
0xE3  
0xE4  
0xE8  
0x0E  
0x0D  
0x9B  
0x48  
0x8B  
0xFB  
0x6D  
0xAF  
0x00  
0xB5  
0xF3  
0x05  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Recommended setting.  
Rev. A | Page 99 of 104  
ADV7183A  
APPENDIX B  
It is also recommend to use a single ground plane for the entire  
board. This ground plane should have a spacing gap between  
the analog and digital sections of the PCB (see Figure 39).  
PCB LAYOUT RECOMMENDATIONS  
The ADV7183A is a high precision, high speed mixed-signal  
device. To achieve the maximum performance from the part, it  
is important to have a well laid-out PCB board. The following is  
a guide for designing a board using the ADV7183A.  
ADV7183A  
Analog Interface Inputs  
ANALOG  
SECTION  
DIGITAL  
SECTION  
The inputs should receive care when being routed on the PCB.  
Track lengths should be kept to a minimum, and 75 Ω trace  
impedances should be used when possible. Trace impedances  
other than 75 Ω also increase the chance of reflections.  
Figure 39. PCB Ground Layout  
Power Supply Decoupling  
Experience has repeatedly shown that the noise performance is  
the same or better with a single ground plane. Using multiple  
ground planes can be detrimental because each separate ground  
plane is smaller, and long ground loops can result.  
It is recommended to decouple each power supply pin with  
0.1 µF and 10 nF capacitors. The fundamental idea is to have a  
decoupling capacitor within about 0.5 cm of each power pin.  
Also, avoid placing the capacitor on the opposite side of the PC  
board from the ADV7183A, as doing so interposes resistive vias  
in the path. The decoupling capacitors should be located  
between the power plane and the power pin. Current should  
flow from the power plane to the capacitor to the power pin. Do  
not make the power connection between the capacitor and the  
power pin. Placing a via underneath the 100 nF capacitor pads,  
down to the power plane, is generally the best approach (see  
Figure 38).  
In some cases, using separate ground planes is unavoidable. For  
those cases, it is recommended to at least place a single ground  
plane under the ADV7183A. The location of the split should be  
under the ADV7183A. For this case, it is even more important  
to place components wisely because the current loops will be  
much longer (current takes the path of least resistance). An  
example of a current loop: power plane to ADV7183A to digital  
output trace to digital data receiver to digital ground plane to  
analog ground plane.  
PLL  
VDD  
GND  
VIA TO SUPPLY  
VIA TO GND  
Place the PLL loop filter components as close to the ELPF pin as  
possible. Do not place any digital or other high frequency traces  
near these components. Use the values suggested in the data  
sheet with tolerances of 10ꢀ or less.  
10nF  
100nF  
Digital Outputs (Both Data and Clocks)  
Figure 38. Recommend Power Supply Decoupling  
Try to minimize the trace length that the digital outputs have to  
drive. Longer traces have higher capacitance, which requires  
more current, which causes more internal digital noise. Shorter  
traces reduce the possibility of reflections.  
It is particularly important to maintain low noise and good  
stability of PVDD. Careful attention must be paid to regulation,  
filtering, and decoupling. It is highly desirable to provide  
separate regulated supplies for each of the analog circuitry  
groups (AVDD, DVDD, DVDDIO, and PVDD).  
Adding a series resistor of a value between 30 Ω and 50 Ω can  
suppress reflections, reduce EMI, and reduce the current spikes  
inside the ADV7183A. If series resistors are used, place them as  
close to the ADV7183A pins as possible. However, try not to  
add vias or extra length to the output trace to get the resistors  
closer.  
Some graphic controllers use substantially different levels of  
power when active (during active picture time) and when idle  
(during horizontal and vertical sync periods). This can result in  
a measurable change in the voltage supplied to the analog  
supply regulator, which can, in turn, produce changes in the  
regulated analog supply voltage. This can be mitigated by  
regulating the analog supply, or at least PVDD, from a different,  
cleaner, power source (for example, from a 12 V supply).  
If possible, limit the capacitance that each of the digital outputs  
drives to less than 15 pF. This can easily be accomplished by  
keeping traces short and by connecting the outputs to only one  
device. Loading the outputs with excessive capacitance increases  
the current transients inside the ADV7183A, creating more  
digital noise on its power supplies.  
Rev. A | Page 100 of 104  
 
 
ADV7183A  
It is essential that the cutoff of this filter be less than 1 Hz to  
Digital Inputs  
ensure correct operation of the internal clamps within the part.  
These clamps ensure that the video stays within the 5 V range of  
the op amp used.  
The digital inputs on the ADV7183A were designed to work  
with 3.3 V signals, and are not tolerant of 5 V signals. Extra  
components are needed if 5 V logic signals are required to be  
applied to the decoder.  
0
–20  
Antialiasing Filters  
For inputs from some video sources that are not bandwidth  
limited, signals outside the video band can alias back into the  
video band during A/D conversion and appear as noise on the  
output video. The ADV7183A oversamples the analog inputs by  
a factor of 4. This 54 MHz sampling frequency reduces the  
requirement for an input filter; for optimal performance it is  
recommended that an antialiasing filter be employed. The  
recommended low cost circuit for implementing this buffer and  
filter circuit for all analog input signals is shown in Figure 41.  
–40  
–60  
–80  
–100  
The buffer is a simple emitter-follower using a single npn  
transistor. The antialiasing filter is implemented using passive  
components. The passive filter is a third-order Butterworth  
filter with a -3dB point of 9MHz. The frequency response of the  
passive filter is shown in Figure 40. The flat pass band up to  
6 MHz is essential. The attenuation of the signal at the output of  
the filter due to the voltage divider of R24 and R63 is compen-  
sated for in the ADV7183A part using the automatic gain  
control. The ac coupling capacitor at the input to the buffer  
creates a high-pass filter with the biasing resistors for the  
transistor. This filter has a cut-off of  
–120  
100kHz 300kHz 1MHz  
3MHz  
10MHz 30MHz 100MHz 300MHz 1GHz  
FREQUENCY  
Figure 40. Third-Order Butterworth Filter Response  
{2 × π × (R39||R89) × C93}–1 = 0.62 Hz  
Rev. A | Page 101 of 104  
 
ADV7183A  
APPENDIX C  
TYPICAL CIRCUIT CONNECTION  
Examples of how to connect the ADV7183A video decoder are shown in Figure 41 and Figure 42.  
AVDD_5V  
R43  
0  
BUFFER  
R39  
4.7kΩ  
C93  
100µF  
C
B
FILTER  
IN  
Q6  
R53  
56Ω  
L10  
12µH  
E
R38  
75Ω  
R89  
5.6kΩ  
OUT  
R24  
470Ω  
R63  
820Ω  
C95  
22pF  
C102  
10pF  
AGND  
Figure 41. ADI Recommended Antialiasing Circuit for All Input Channels  
Rev. A | Page 102 of 104  
 
ADV7183A  
FERITE BEAD  
33µF  
DVDDIO  
(3.3V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
10µF  
0.1µF  
0.01µF  
DGND  
FERITE BEAD  
DGND  
DGND  
DGND  
PVDD  
(1.8V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33µF  
10µF  
0.1µF  
0.01µF  
AGND  
AGND  
AGND  
AGND  
FERITE BEAD  
AVDD  
(3.3V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33µF  
10µF  
0.1µF  
0.01µF  
AGND  
AGND  
AGND  
AGND  
FERITE BEAD  
DVDD  
(1.8V)  
POWER SUPPLY  
DECOUPLING FOR  
EACH POWER PIN  
33µF  
10µF  
0.1µF  
0.01µF  
AGND DGND  
DGND  
DGND  
DGND  
DGND  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
S-VIDEO  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
AIN1  
AIN7  
AIN2  
AIN8  
AIN3  
AIN9  
AIN4  
AIN10  
AIN5  
AIN11  
AIN6  
AIN12  
Y
Pr  
MULTI  
FORMAT  
PIXEL  
ADV7183A  
Pb  
P9  
PORT  
P10  
P11  
P12  
P13  
P14  
P15  
P15–P8 8-BIT ITU-R BT.656 PIXEL DATA @ 27MHz  
P7–P0 Cb AND Cr 16-BIT ITU-R BT.656 PIXEL DATA @ 13.5MHz  
P15–P8 Y 16-BIT ITU-R BT.656 PIXEL DATA @ 13.5MHz  
CBVS  
AGND  
AGND  
CAP Y1  
CAP Y2  
+
0.1µF  
0.1µF  
10µF  
0.1µF  
0.1µF  
1nF  
1nF  
LLC1  
LLC2  
27MHz OUTPUT CLOCK  
13.5MHz OUTPUT CLOCK  
AGND  
CAP C1  
CAP C2  
+
10µF  
AGND  
OE  
OUTPUT ENABLE I/P  
CML  
+
10µF  
0.1µF  
10µF  
REFOUT  
+
0.1µF  
SFL  
HS  
SFL O/P  
HS O/P  
AGND  
33pF  
XTAL  
27MHz  
DVDDIO  
VS  
VS O/P  
XTAL1  
FIELD  
FIELD O/P  
DGND  
2
SELECT I C  
ADDRESS  
33pF  
DGND  
DVSS  
ALSB  
DVDDIO DVDDIO  
ELPF  
1.7kΩ  
10nF  
2kΩ  
2kΩ  
100Ω  
100Ω  
SCLK  
SDA  
82nF  
MPU INTERFACE  
CONTROL LINES  
PVDD  
DVDDIO  
4.7kΩ  
RESET  
RESET  
AGND  
AGND  
DGND  
100nF  
DGND  
DGND  
Figure 42. Typical Connection Diagram  
Rev. A | Page 103 of 104  
ADV7183A  
OUTLINE DIMENSIONS  
16.00  
BSC SQ  
0.75  
0.60  
0.45  
1.60  
MAX  
80  
61  
60  
1
SEATING  
PLANE  
PIN 1  
14.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
10°  
6°  
2°  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
VIEW A  
20  
41  
3.5°  
0°  
40  
21  
0.15  
0.05  
SEATING  
PLANE  
0.10 MAX  
COPLANARITY  
0.65  
BSC  
0.38  
0.32  
0.22  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BEC  
Figure 43. 80-Lead Low Profile Quad Flat Package [LQFP]  
(ST-80-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADV7183AKST  
ADV7183ABST  
EVAL-ADV7183AEBM  
Temperature Range  
–25°C to +70°C  
–40°C to +85°C  
Package Description  
Package Option  
ST-80-2  
ST-80-2  
Low Profile Quad Flat Package (LQFP)  
Low Profile Quad Flat Package (LQFP)  
Evaluation Board  
Note: The ADV7183A is a Pb-free environmentally friendly product. It is manufactured using the most up-to-date materials and  
processes. The coating on the leads of each device is 100ꢀ pure Sn electroplate. The device is suitable for Pb-free applications, and can  
withstand surface-mount soldering at up to 255°C ( 5°C).  
In addition, it is backward-compatible with conventional SnPb soldering processes. This means the electroplated Sn coating can be  
soldered with Sn/Pb solder pastes at conventional reflow temperatures of 220°C to 235°C.  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04821–0–6/04(A)  
Rev. A | Page 104 of 104  

相关型号:

EVAL-ADV7184EB

Multiformat SDTV Video Decoder with Fast Switch Overlay Support
ADI

EVAL-ADV7189BEB

Multiformat SDTV Video Decoder
ADI

EVAL-ADV7189EBM

Multiformat SDTV Video Decoder
ADI

EVAL-ADV7280AEBZ

10-Bit, 4 x Oversampled SDTV Video Decoder with Deinterlacer
ADI

EVAL-ADV7280AMEBZ

10-Bit, 4 x Oversampled SDTV Video Decoder with Deinterlacer
ADI

EVAL-ADV7281MAEBZ

10-Bit, 4 Oversampled SDTV Video Decoder with Differential Inputs
ADI

EVAL-ADV7281MEBZ

10-Bit, 4 Oversampled SDTV Video Decoder with Differential Inputs
ADI

EVAL-ADV7282AEBZ

10-Bit, 4x Oversampled SDTV Video Decoder with Differential Inputs
ADI

EVAL-ADV7282AMEBZ

10-Bit, 4x Oversampled SDTV Video Decoder with Differential Inputs
ADI

EVAL-ADV7282MEBZ

10-Bit, 4 Oversampled SDTV Video Decoder with Differential Inputs and Deinterlacer
ADI

EVAL-ADV7320EB

Multiformat 216 MHz Video Encoder with Six NSV 12-Bit DACs
ADI

EVAL-ADV7321EB

Multiformat 216 MHz Video Encoder with Six NSV 12-Bit DACs
ADI