MQFL-28VE-3R3S-Y-ES [SYNQOR]

HIGH RELIABILITY DC-DC CONVERTER; 高可靠性DC-DC转换器
MQFL-28VE-3R3S-Y-ES
型号: MQFL-28VE-3R3S-Y-ES
厂家: SYNQOR WORLDWIDE HEADQUARTERS    SYNQOR WORLDWIDE HEADQUARTERS
描述:

HIGH RELIABILITY DC-DC CONVERTER
高可靠性DC-DC转换器

转换器 电源电路 DC-DC转换器
文件: 总19页 (文件大小:1257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MQFL-28VE-3R3S  
Single Output  
HI G H RELIABILITY DC-DC CONVER  
16-70V  
5.5-80V  
3.3V  
30A  
8815A 8% @ 30A  
Continuous Input  
Transient Input  
Output  
Output  
ficiecy  
FU L L PO W E R OP E R A T I O N : -55ºC T
®
The MilQor series of high-reliability DC/DC converters  
brings SynQor’s field proven high-efficiency synchronous  
rectifier technology to the Military/Aerospace industry.  
SynQor’s innovative QorSeal™ packaging approach  
ensures survivability in the most hostile environments.  
Compatible with the industry standard format, e  
converters operate at a fixed frequency, ha
no opto-isolators, and follow conservative component  
derating guidelines. They are designed anufactured  
to comply with a wide range of military stan
R  
O
MQFL-28V
C
ou
DC/DC  
28V  
3.3V  
in  
Meets all -704 and -1275B uner-voltage transs  
Design Process  
MQFL series converters are:  
• Designed for reliabilitr NAVSO-P3guidelines  
D
ESIGNED & MA N U F A C T U R E D IN T H E USA  
E A T U R IN G O R -REL S S E M B L Y  
EALH  
Q
S
I
A
• Designed with componated per:  
— MIL-HDB7A  
eatures  
— NAVSO A  
• Fixed switching frequency  
• No opto-isolators  
• Parallel operation with current share  
• Remote sense  
• Clock synchronization  
• Primary and secondary referenced enable  
Qucation Pr
MQFL seriers are qualified
• MIL-STD-810F  
— conistent wiRTCA/D
• SynQor’s Frst Article Quaificatio
• Continuous short circuit and overload protection  
• Input under-voltage lockout/over-voltage shutdown  
— consistt with MIL-STD-883F  
• SynQor’s Long-Term torage Survivabilalification  
• SynQor’s on-goinest  
Specification Compliance  
In-Line MacturProcess  
MQFL series converters (with MQME filter) are designed to meet:  
• MIL-HDBK-704-8 (A through F)  
• RTCA/DO-160E Section 16  
• MIL-STD-1275B  
• AS910ISO 001:2000 certified facility  
• Full compoaceability  
• Temperature c
• DEF-STAN 61-5 (part 6)/5  
• MIL-STD-461 (C, D, E)  
• RTCA/DO-160E Section 22  
• Constant accelera
• 24, 96, 160 hour burn-in  
• Three level temperature screening  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 1  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
BLOCK DIAGRAM  
BOOST  
REGULATION STAGE  
ISOLATION STA
CONVERTER  
SWITCHES  
AND  
7
+Vout  
CURRENT  
SENSE  
1
+Vin  
CONTROL  
2
INPUT  
RETURN  
RETUR
CASE  
GATE DRIVERS  
GARS  
3
STABILITY  
LIMI
12  
UVLO  
ENABLE 2  
4
ENABLE 1  
11  
P
SECOARY  
CONTROL  
SHARE  
5
SYNC OUT  
DATA COUPL
10  
+ SENSE  
6
SYNC IN  
9
SENSE  
R  
CONTROL  
POWER  
RANSFORMER  
TYPICONNEON DIAGR
1
12  
11  
10  
9
+VIN  
ENA 2  
open  
means  
on  
Externulk capac
2
3
4
5
6
IN RTN  
SHARE  
+ SNS  
STABILITY  
ENA 1  
+
-
MQFL  
TABILITY  
CSTABILITY  
+
Load  
28 Vdc  
- SNS  
open  
means  
on  
8
SYNC OUT  
SYNC IN  
OUT RTN  
+VOUT  
7
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 2  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
MQFL-28VE-3R3S ELECTRICAL CHARACTERISTICS  
Parameter  
Min. Typ. Max. Units Notes & Condition
Group A  
Subgroup  
Vin=28V dc ±5%, Iout=30A, CLe runnin10)  
boost-converter non-operatiorwise sp
ABSOLUTE MAXIMUM RATINGS  
Input Voltage  
Non-Operating  
100  
100  
-0.8  
-1.2  
V
V
V
V
Operating  
See Note 1  
See Note 2  
Reverse Bias (Tcase = 125ºC)  
Reverse Bias (Tcase = -55ºC)  
Isolation Voltage (I/O to case, I to O)  
Continuous  
-500  
-800  
-55  
500  
800  
135  
135  
300  
50  
V
V
°C  
°C  
°C  
V
Transient (≤100µs)  
Operating Case Temperature  
Storage Case Temperature  
Lead Temperature (20s)  
-65  
Voltage at ENA1, ENA2  
-1.2  
INPUT CHARACTERISTICS  
Operating Input Voltage Range  
"
16  
28  
28  
70  
80  
V
V
C
1, 2, 3  
4, 5, 6  
5.5  
Traee Under-ltage t Profil
Input Under-Voltage Lockout  
Turn-On Voltage Threshold  
Turn-Off Voltage Threshold  
Lockout Voltage Hysteresis  
Input Over-Voltage Shutdown  
Turn-Off Voltage Threshold  
Turn-On Voltage Threshold  
Shutdown Voltage Hysteresis  
Maximum Input Current  
See Note 3  
14.75 15.50
13.80 14.40 1
0.50  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1.10  
1.80  
See Note 15  
90.0  
8
3.0  
95.0  
0  
100.0  
90.0  
15.0  
V
V
A
mA  
mA  
mA  
mA  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
Vin = 16V; Iout = 30
No Load Input Current (operating)  
Disabled Input Current (ENA1)  
Disabled Input Current (ENA2)  
Input Terminal Current Ripple (pk-pk)  
OUTPUT CHARACTERISTICS  
Output Voltage Set Point (Tcase
Output Voltage Set Point Over Temp
Output Voltage Line Regulation  
Output Voltage Load Regula
Total Output Voltage Rang
Output Voltage Rippland Noo Peak  
Operating Output Range  
Operating Output Pge  
Output DC Current-Lition  
Short Circuit Output Cur
Back-Driurrent Limit wed  
Back-Dnt Limit whiled  
Maximum pacitance  
DYNAMIC CISTICS  
Output Voage Dd Transient  
For a PosStep hn Load Cu
For a Neg. tep Chane in Load C
Settling Tim(either case)  
Output Voltage evation Line nsient  
For a Pos. SteChange in Line Voltage  
For a Neg. Step Changn Line Voltage  
Settling Time (either
Turn-On Transient  
110  
2
25  
0  
V28V, 70V  
Vin = , 70V  
BandwidtHz – 10MHz; see Figure 14  
120  
3.27  
3.25  
3
3.3
3.30  
0
16  
3.30  
15  
3.33  
3.35  
20  
V
V
mV  
V  
W
A
Vout at sense le
1
2, 3  
"
" ; Vin 16V, 28V, 70V; Iout=30A  
" ; Vout (Iout=0A) - Vout @ (Iout=30A)  
"
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
See Note 5  
22  
3.37  
0  
Bandwdth = 10MHz; CL=11µF  
0
0
31  
3
3
34  
35  
10  
0  
See Note 4  
Vout ≤ 1.2V  
39  
50  
10,00
mA  
µF  
See Note 6  
00  
-250  
250  
00  
mV  
mV  
µs  
Total Iout step = 15A‹-›30A, 3A‹-›15A; CL=11µF  
4, 5, 6  
4, 5, 6  
4, 5, 6  
400  
250  
"
See Note 7  
Vin step = 16V‹-›50V; CL=11µF; see Note 8  
0  
350  
350  
500  
mV  
mV  
µs  
"
"
4, 5, 6  
4, 5, 6  
See Note 5  
250  
See Note 7  
Output Voltage Rise Tim
Output Voltagrshoot  
Turn-On Delay, Vin  
6
0
5.5  
3.0  
1.5  
10  
2
8.0  
6.0  
3.0  
ms  
%
ms  
ms  
ms  
Vout = 0.3V-›3.0V  
4, 5, 6  
See Note 5  
4, 5, 6  
4, 5, 6  
4, 5, 6  
ENA1, ENA2 = 5V; see Notes 9 & 12  
ENA2 = 5V; see Note 12  
ENA1 = 5V; see Note 12  
Turn-On ay, RiNA1  
Turn-ORisinNA2  
EFFICIENC
Iout = 30A (16
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
88  
89  
88  
88  
87  
87  
85  
14  
14  
%
%
%
%
%
%
%
W
W
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
Iout = 15A (16Vin
Iout = 30A (28Vin)  
Iout = 15A (28Vin)  
Iout = 30A (40Vin)  
Iout = 15A (40Vin)  
Iout = 30A (70Vin)  
Load Fault Power Dissipation  
Short Circuit Power Dissipation  
32  
34  
Iout at current limit inception point; See Note 4  
Vout ≤ 1.2V  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 3  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
MQFL-28VE-3R3S ELECTRICAL CHARACTERISTICS (Contin
Parameter  
Min. Typ. Max. Units Notes & Condition
Group A  
Subgroup  
Vin=28V dc ±5%, Iout=30A, Crunning 10)  
boost-converter non-operatiol wise spe
ISOLATION CHARACTERISTICS  
Isolation Voltage  
Input RTN to Output RTN  
Any Input Pin to Case  
Dielectric strengt
500  
500  
500  
100  
100  
V
V
1
1
1
1
1
1
Any Output Pin to Case  
Isolation Resistance (in rtn to out rtn)  
Isolation Resistance (any pin to case)  
Isolation Capacitance (in rtn to out rtn)  
FEATURE CHARACTERISTICS  
Switching Frequency (free running)  
Synchronization Input  
V
MΩ  
MΩ  
nF  
44  
500  
550  
600  
kHz  
Frequency Range  
500  
2.0  
-0.5  
20  
600  
10  
0.8  
80  
kHz  
V
V
%
1, 2, 3  
1, 2, 3  
2, 3  
Logic Level High  
Logic Level Low  
Duty Cycle  
See Note 5  
Synchronization Output  
Pull Down Current  
Duty Cycle  
20  
25  
mA  
VSYNC OUT = 0.8V  
utput connected to SYNother nit  
See Note 5  
See Note 5  
Enable Control (ENA1 and ENA2)  
Off-State Voltage  
Module Off Pulldown Current  
On-State Voltage  
Module On Pin Leakage Current  
Pull-Up Voltage  
0.8  
V
µA  
V
A  
1, 2, 3  
See Note 5  
1, 2, 3  
See Note 5  
1, 2, 3  
80  
2
Current draired to ensure is off  
20  
4.5  
Imax drafrom wed with moule still on  
See Figure
3.2  
BOOST-CONVERTER OPERATION  
Input Voltage Arming Value  
Switching Frequency  
Input Terminal Current Ripple (RMS)  
Total Converter Efficiency  
Iout = 15A (10Vin)  
17.5  
600  
18.0  
670  
0.9  
V
kHz  
A
1, 2, 3  
1, 2, 3  
Vin = = 30A  
85  
87  
86  
%
%
1, 2, 3  
1, 2, 3  
1, 2, 3  
Iout = 15A (16Vin)  
Iout = 30A (16Vin)  
RELIABILITY CHARACTERISTICS  
Calculated MTBF (MIL-STD)  
GB @ Tcase = 70ºC  
2200  
39
TBD  
s.  
AIF @ Tcase = 70
1
3
Demonstrated MT
10
WEIGHT CHARACCS  
Device Weight  
79  
g
Electrical Characteristics
1. Conveill undergo inoltage shutdo
2. Deraower to 50% ted power at TcasºC (see gure 5).  
3. High or input volte must perfor aboto be ed on by the lockout or shutdown circuitry.  
4. Current limit defined as the re the ooltae has dropped to 90% of its nominal value.  
5. Parametr not tuaranteed o the lpecified.  
6. Load current transitime ≥ 10µ
7. Settling timmeasurefrom start of nt to twhere the output voltage has returned to ±50mV of its final value.  
8. Line voltage tansition time ≥ 00µs.  
9. Input voltage time ≤ 250µ
10. Operating thconverter at a synhronizatioencabove the free running frequency will cause the converter’s efficiency to be slightly reduced  
and it may also cause a slt reduction in the maoutput current/power available. For more information consult the factory.  
11. SHARE pin outputs r failure waning pulsduring a fault condition. See Current Share section of the Control Features description.  
12. After a disable or fault module is inhibited from restarting for 300ms. See Shut Down section of the Control Features description.  
13. Only the ES and HB gradcts are teted at three temperatures. The C grade products are tested at one temperature. Please refer to the  
Construction and nmentaScreenng Options table for details.  
14. These derating apply fS- and HB- grade products. The C- grade product has a maximum case temperature of 100ºC.  
15. Input OVoltagtdown teun at no load, full load is beyond derating condition and could cause damage at 125ºC.  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 4  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
Under-Voltage Transient Profile  
Boost-Converter is armed when
exceeds this value  
V
ARM (~18 V)  
Boost-Converter Operational Area  
dV 0.1V  
VIN  
dt  
µs  
5.5 V  
0
1.5  
15  
Time (s)  
Under-Voltage Transient Profile showinthe boost-coner is guaranteeto be operational. The boost-converter must  
first be armed by havinVRM. A new under-vge tracan ocur after a delay equal to four times the duration  
of the previous ent if ost-converter is rea
Note
This Under-Vansient Profile igned tply with appropiate margins) with all initial-engagement surges, start-  
ing or craking votransienand uer-voltage ges specified in:  
• MI-STD-704-8 (throu
• RTCA/DO-160E  
• MIL-STD-5B  
• DEF-STAN part 6)/5 (operational portions)  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 5  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
TBD  
TBD  
Figure 1: Efficiency at nominal output voltage vs. load current for  
minimum, nominal, and maximum input voltage at Tcase=25°C.  
Figure 2cy at nominaoutput e and 6ated power vs.  
case temperature for input ve of 16nd 40
TBD  
TBD  
Figure 3: Power dissipnominutput voltagvs. load curre
for minimum, nominal, anum iput voltagase=25°C.  
Figure 4: Power dissipation at nominal output voltage and 60% rated  
wer vs. case temperature for input voltage of 16V, 28V, and 40V.  
TBD  
TBD  
Figure 6: Output voltage vs. load current showing typical current  
limit curves.  
Figure 5: Output Curre/ Output Power derating curve as a  
function of Tcase and the Maximum desired power MOSFET junction  
temperature at Vin = 28V (see Note 14).  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 6  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
TBD  
TBD  
Figure 7: Turn-on transient at full resistive load and zero output  
capacitance initiated by ENA1. Input voltage pre-applied. Ch 1:  
Vout (1V/div). Ch 2: ENA1 (5V/div).  
Figure n transient at full resoad and F output  
capacitance ted by ENAnput vre-appl. Ch 1:  
t (1V/div). Ch 2: ENA1 (.  
TBD  
TBD  
Figure 10: Turn-on transient at full resistive load and zero output  
pacitance initiated by Vin. ENA1 and ENA2 both previously high.  
Ch 1: Vout (1V/div). Ch 2: Vin (10V/div).  
Figure 9: Turn-on tranull resie load and ro output  
capacitane initiated by Eut voltage pre-d. Ch 1:  
Vout (1h 2: ENA2 (
TBD  
TBD  
Figure 11: Output voltaresponse to step-change in load current  
50%-100%-50% of Iout (max). Load cap: 1µF ceramic cap and  
10µF, 100mΩ ESR tantalum cap. Ch 1: Vout (200mV/div). Ch 2: Iout  
(20A/div).  
Figure 12: Output voltage response to step-change in load current 0%-  
50%-0% of Iout (max). Load cap: 1µF ceramic cap and 10µF, 100mΩ  
ESR tantalum cap. Ch 1: Vout (200mV/div). Ch 2: Iout (20A/div).  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 7  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
See Fig. 16  
See F
iC  
MQME  
M
Conver  
VOUT  
TBD  
VSOUR
F,  
ce
E
capacitor  
capacitor  
Figure et-up diagram showisurements for  
Input Terminipple Curreigure 1Output ltage Ripple  
ure 16).  
Figure 13: Output voltage response to step-change in input voltage  
(16V - 50V - 16V). Load cap: 10µF, 100mΩ ESR tantalum cap anµF  
ceramic cap. Ch 1: Vout (200mV/div). Ch 2: Vin (20V/div).  
TBD  
TBD  
Figure 15: Input termint rippic, at full rad output curre
and nominal input voltage nQoMQ filter e (50mA/div).  
BandwiHz. See Fig
Figure 16: Output voltage ripple, Vout, at nominal input voltage and  
ed load current (20mV/div). Load capacitance: 1μF ceramic capacitor  
and 10μF tantalum capacitor. Bandwidth: 10MHz. See Figure 14.  
TBD  
TBD  
Figure 17: Rise of outpuvoltage after the removal of a short circuit  
across the output terminals. Ch 1: Vout (1V/div). Ch 2: Iout  
(20A/div).  
Figure 18: SYNC OUT vs. time, driving SYNC IN of a second SynQor  
MQFL converter. Ch1: SYNC OUT: (1V/div).  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 8  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
TBD  
TBD  
Figure itude of incremental rd transon  
(FT = vout/minimumminal, ximum ut voltage at  
ll rated power.  
Figure 19: Magnitude of incremental output impedance  
(Zout = vout/iout) for minimum, nominal, and maximum input  
voltage at full rated power.  
TBD  
TBD  
Figure 22: Magnitude of incremental input impedance (Zin = vin/iin)  
r minimum, nominal, and maximum input voltage at full rated power.  
Figure 21: Magnitude ontal rerse transmion (RT =  
iin/iout) fminimum, nommaximum inge at full  
rated p
TBD  
TBD  
Figure 24: High frequency conducted emissions of MQFL-28-05S,  
5Vout module at 120W output with MQFL-28-P filter, as measured  
with Method CE102. Limit line shown is the ‘Basic Curvefor all  
applications with a 28V source.  
Figure 23: High frequenconducted emissions of standalone  
MQFL-28-05S, 5Vout module at 120W output, as measured with Method  
CE102. Limit line shown is the ‘Basic Curvefor all applications with a  
28V source.  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 9  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
The MQFL converter’s control circnot implement an output  
over-voltage limit or an overmperadown.  
BASIC OPERATION AND FEATURES  
The MQFL DC/DC converter uses a two-stage power conversion  
topology. The first, or regulation, stage is a buck-converter that  
keeps the output voltage constant over variations in line, load,  
and temperature. The second, or isolation, stage uses transform-  
ers to provide the functions of input/output isolation and voltage  
transformation to achieve the output voltage required.  
The following sections dese use operation of addi-  
tional control featurerovideMQFonverter.  
UNDER-VTAGE TRANIENTS  
The MQFL-28VE DC/DC nverters inrporate a special  
“boost-crter” stt perits the coliver full  
power through transiene its input voltage falls as  
5.. Normally, the booonverter is non-operational, and e  
cor’s input voage is passed diro its pre-regulation  
stathe Block Diagram). Wen an oltage transient  
occurost-coverter becomperationd it steps-up  
the input to a value reater 16V so t the nominal  
output voltage can be su.  
In the MQFL-28VE series of converters the regulation stage is  
preceeded by a boost-converter that permits these converters  
to operate through various Military and Aircraft under-voltage  
transients. Further discussion of this feature can be found later in  
these notes.  
Both the regulation and the isolation stages switch at a fixed  
frequency for predictable EMI performance. The isolation ge  
switches at one half the frequency of the regulation stage,
to the push-pull nature of this stage it creates a ripple at double i
switching frequency. As a result, both the input and the output of  
the converter have a fundamental ripple frequenof about 550  
kHz in the free-running mode.  
ortant to note that thst-converter stage must first  
become “armed” ore it can becperational. This “arming”  
occurs when the cer’s input vole exceeds approximately  
8V. The bot-conthen becomes operational whenever  
the input voltage dropw the arming voltage, and it will  
remairational as lonthe input voltage remains within  
the regiwn in the Uder-Voltage Transient Profile Page.  
If the input vdrops below this transient profile, the boost-  
onverter stage uaranteed to continue operating (it may,  
but it will protect itlf from excessive stresses). Once the boost-  
converter stops operating, the converter’s input voltage will be  
reconnected dectly to the input of the pre-regulator stage. The  
tput voltge will therefore collapse unless the input voltage is  
or greater.  
Rectification of the isolation stage’s output is accomph  
synchronous rectifiers. These devices, ich are MOSFEs
very low resistance, dissipate far less enrgy than wuld Schotky  
diodes. This is the primary reasowhy the MQFL converters have  
such high efficiency, particularoutput voltages
Besides improving efficiency, the srectifiers perm
operation down to zero current. Thero longer a nee
for a minimum load, as is r converters that use des for  
rectification. The ronours actually permit a ve  
load current to flonto the erter’s output terminals
load is a source of song teenergy. TMQFL conv
ers employ a “back-drivt limt” to keep egative output  
termint small.  
Note: the boost-converter will not become re-armed for the  
next transient unless the input voltage once again exceeds  
approximately 18V.  
The transient profile shown on the Under-Voltage Transient Profile  
page is designed to comply (with appropriate margins) with all  
initial-engagement surges, starting or cranking voltage transients,  
and under-voltage surges specified in:  
There is a cot on both the inpoutput of the  
MQFL conerter rmines the onducstate of twer  
switches. These circucommuniith eer acrss the  
isolation barrir through a magneticapled e. No opto-  
isolators are us.  
• MIL-STD-704-8 (A through F)  
• RTCA/DO-160E  
• MIL-STD-1275B  
A separate bias supplovides power to bohe input and out-  
put control circuits. Aother things, this bias supply permits  
the converter to operate nitely ino a short circuit and to  
avoid a hiccup even a tough start-up condition.  
• DEF-STAN 61-5 (Part 6)/5 (operational portions)  
Any input voltage transient that fits within the Under-Voltage  
Transient Profile can be repeated after a delay that is at least four  
times longer than the duration of the previous transient.  
An input voltagockout feature with hysteresis is provided,  
as well as input over-voltage shutdown. There is also  
an output curmit that is nearly constant as the load  
impedance decreo a short circuit (i.e., there is not fold-  
back or fold-forward racteristic to the output current under this  
condition). When a load fault is removed, the output voltage rises  
exponentially to its nominal value without an overshoot.  
During the time when the boost-converter stage is operational, the  
converter’s efficiency is reduced and the input ripple current is  
increased. The lower the input voltage, the more these parameters  
are affected.  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 10  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
Usually the converter has an EMI filter upstream of it, and the  
source voltage is connected to the input of this EMI filter. When,  
during compliance testing, the source voltage goes low during  
an under-voltage transient, the input to the converter will go even  
lower. This is because the inductance of the EMI filter (as well  
as the parasitic source inductance) will cause an oscillatory ring  
with the bulk capacitor. With the bulk capacitor that is present  
in an MQME-28 filter, the peak of this under-voltage ring may  
be approximately 2 volts if the source voltage drops to 6V (it  
will be smaller than this at a higher transient source voltage  
due to the lower current drawn by the converter). As a result, it  
is necessary to add extra bulk capacitor across the converter’s  
input pins if the source voltage is going to drop to 6V, as it does  
for MIL-STD-704(A) or MIL-STD 1275B. It is recommended that a  
100µF/0.25W ESR capacitor be connected across the input pins  
of the converter be used as a starting point. For MIL-STD-704(B-F),  
where the source voltage drops to only 7V, a 47µF
capacitor would be a good starting point. The exact amoun
capacitance required depends on the application (source induc-  
tance, load power, rate of fall of the source voltage, etc). Please  
consult the factory if further assistance is requir
when the converter is inhibited the ENA1 pin, the bias  
supply is also turned off, wreas tly remains on when  
the converter is inhibited the Ein. A higher input  
standby current therefore reshe lattese.  
Both enable pins are internally high so that an open  
connection on th pinwill enabe convertr. Figure A  
shows the eqcirclooking io either enable pins. It is  
TTL compatible.  
5.6V  
2K  
1N4148  
PIN
or PIN 1
ENABLE  
TO ENABLE  
CIRCUITRY  
25
2N3904  
PIN 2  
(or PIN 8)  
N RT
Because input system stability is harder to maintain ut  
voltage gets lower, the MQFL-28VE sericonverterare
to give external access to the voltage noe between the boost-n-  
verter and the pre-regulator stagesThis acess, at the STABILITY”  
pin (pin 3), permits the user to a stablizing bulk pacitor  
with series resistance to this noe voltage at this nod
stays above 16V, the amount of carequired is muc
less than would be requon the convernput pins where  
the voltage might drop as 5.5V. It is recommendhat a  
22µF capacitor wn ESR t 1W be connected en  
the STABILITY pin INPUT RN pin (pin 2). Witho
special connection to rnal ne of the coverter, a 300
stabilizing bulk capacitd have been ed across the  
converut pins.  
Figure alent circuit lking into either the ENA1 or ENA2  
pins with ress corresponding return pin.  
SHUT DOWN: The MQFL converter will shut down in response  
to only four conditions: ENA1 input low, ENA2 input low, VIN  
input below uner-voltage lockout threshold, or VIN input above  
er-voltagshutdown threshold. Following a shutdown event,  
is a tartup inhibit delay which will prevent the converter  
from starting for approximately 300ms. After the 300ms delay  
elapses, if the enable inputs are high and the input voltage is  
ithin the operating range, the converter will restart. If the VIN  
input is brought down to nearly 0V and back into the operating  
range, there is no startup inhibit, and the output voltage will rise  
according to the “Turn-On Delay, Rising Vin” specification.  
Another advahe STABILITY pt it provo-  
age source that se 16V wn the er-voltage ent  
occurs. This voltage urce migheful r circitry in  
the system.  
REMOTE SENSE: The purpose of the remote sense pins is to  
correct for the voltage drop along the conductors that connect the  
converter’s output to the load. To achieve this goal, a separate  
conductor should be used to connect the +SENSE pin (pin 10)  
directly to the positive terminal of the load, as shown in the  
connection diagram. Similarly, the –SENSE pin (pin 9) should be  
connected through a separate conductor to the return terminal of  
the load.  
CONTROL FEAURES  
ENABLE: The MQFL cor has two enable pins. Both must  
have a logic hivel for nverteto be enabled. A logic  
low on either pin hibit therter.  
NOTE: Even if remote sensing of the load voltage is not desired,  
the +SENSE and the -SENSE pins must be connected to +Vout  
(pin 7) and OUTPUT RETURN (pin 8), respectively, to get proper  
regulation of the converter’s output. If they are left open, the  
converter will have an output voltage that is approximately 200mV  
higher than its specified value. If only the +SENSE pin is left  
open, the output voltage will be approximately 25mV too high.  
The ENA1 n 4) s referenced with respect to the converter’s  
input return (pThe ENA2 pin (pin 12) is referenced with  
respect to the cor’s output return (pin 8). This permits the  
converter to be inhibrom either the input or the output side.  
Regardless of which pin is used to inhibit the converter, the  
regulation and the isolation stages are turned off. However,  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 11  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
Inside the converter, +SENSE is connected to +Vout with a resistor  
value from 100W to 301W, depending on output voltage, and  
–SENSE is connected to OUTPUT RETURN with a 10W resistor  
Figure B shows the equivalent cking into the SYNC IN  
pin. Figure C shows the equalent coking into the SYNC  
OUT pin.  
5V  
It is also important to note that when remote sense is used, the  
voltage across the converter’s output terminals (pins 7 and 8)  
will be higher than the converter’s nominal output voltage due  
to resistive drops along the connecting wires. This higher volt-  
age at the terminals produces a greater voltage stress on the  
converter’s internal components and may cause the converter to  
fail to deliver the desired output voltage at the low end of the  
input voltage range at the higher end of the load current and  
temperature range. Please consult the factory for details.  
5K  
TO SYNC  
PIN 6  
CUITRY  
SYN
IN RTN  
5K  
PI
SYNCHRONIZATION: The MQFL converter’s regulation and  
isolation stage switching frequencies can be synchronized to an  
external frequency source that is in the 500 kHz to 60
range. The boost-converter stage is free-running at a
kHz while it is operational, and is not affected by synchroniza-  
tion signals. A pulse train at the desired frequency should be  
applied to the SYNC IN pin (pin 6) with respto the INPUT  
RETURN (pin 2). This pulse train should have le in the  
20% to 80% range. Its low value should be belobe  
guaranteed to be interpreted as a logic low, anits hi
should be above 2.0V to be guaranted to be intrpreted a  
logic high. The transition time between te two states should be  
less than 300ns.  
Figurvalent circuit lookinthe SYNpin with  
respect to TN (inputurn) p
5V  
SYNC OUT  
ROM SYNC  
CIRCUITRY  
PIN 5  
IN RTN  
PIN 2  
EN COLLECTOR  
UTPUT  
If the MQFL converter is not to be sd, the SYNC IN p
should be left open circuit. The converteen operate in i
free-running mode at a fy of approximtely 550 z.  
Figure C: Equivalent circuit looking into SYNC OUT pin with  
respect to the IRTN (input return) pin.  
ENT SHARE: When several MQFL converters are placed  
in parallel to achieve either a higher total load power or N+1  
redundancy, their SHARE pins (pin 11) should be connected  
gether. The voltage on this common SHARE node represents the  
average current delivered by all of the paralleled converters. Each  
converter monitors this average value and adjusts itself so that its  
output current closely matches that of the average.  
If, due to a faulYNC Is held in either a low  
or logic high state uouslyMQFL converter will r
to its free-running fre
The Mverter also a SYNC OUT n 5). Tis  
output cato drive e SYNC Iins of ay as t
(10) other MQers. The pulse troming oYNC  
OUT has a duty cy50% anfrequcy that mats the  
switching frequency of the converh whicassociated.  
This frequencis either the ee-runnquencthere is no  
synchronizatiosignal at the SYNC IN r the synchroniza-  
tion frequency if there .  
Since the SHARE pin is monitored with respect to the OUTPUT  
RETURN (pin 8) by each converter, it is important to connect all of  
the converters’ OUTPUT RETURN pins together through a low DC  
and AC impedance. When this is done correctly, the converters  
will deliver their appropriate fraction of the total load current to  
within +/- 10% at full rated load.  
The SYNC OUT signal ilable only when the voltage at the  
STABILITY pin (pin 3) is approimately 12V and when  
the converter is hibited gh the ENA1 pin. An inhibit  
through thNA2 will not tthe SYNC OUT signal off.  
Whether or not converters are paralleled, the voltage at the  
SHARE pin could be used to monitor the approximate average  
current delivered by the converter(s). A nominal voltage of 1.0V  
represents zero current and a nominal voltage of 2.2V represents  
the maximum rated current, with a linear relationship in between.  
The internal source resistance of a converter’s SHARE pin signal is  
2.5 kW. During an input voltage fault or primary disable event, the  
SHARE pin outputs a power failure warning pulse. The SHARE pin  
will go to 3V for approximately 14ms as the output voltage falls.  
NOTE: An Mconverter that has its SYNC IN pin driven by  
the SYNC OUT f a second MQFL converter will have its  
start of its switchine delayed approximately 180 degrees  
relative to that of the cond converter.  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 12  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
NOTE: Converters operating from separate input filters with  
reverse polarity protection (such as the MQME-28-T filter) with  
their outputs connected in parallel may exhibit hiccup operation  
at light loads. Consult factory for details.  
100,000  
10,000  
1,0
100  
OUTPUT VOLTAGE TRIM: If desired, it is possible to increase  
the MQFL converter’s output voltage above its nominal value. To  
do this, use the +SENSE pin (pin 10) for this trim function instead  
of for its normal remote sense function, as shown in Figure D.  
In this case, a resistor connects the +SENSE pin to the –SENSE  
pin (which should still be connected to the output return, either  
remotely or locally). The value of the trim resistor should be chosen  
according to the following equation or from Figure E:  
.00  
0.0
0.12  
0.18  
0.3
0.36  
Vnom  
IncreaVout (V)  
Rtrim = 100 x  
[
Vout – Vnom – 0.025  
]
where:  
Figure E: Output Voltagraph  
Vnom = the converter’s nominal output voltage,  
Vout = the desired output voltage (greater than Vnom), and  
Rtrim is in Ohms.  
INPUNDER-OLTAGE LUT: The MQFL converter  
has an under-voltckout feature nsures the converter will  
be off if the put is too lowThis lockout only appears  
when the boost-converot operating. The threshold of input  
voltage t which the convill turn on is higher that the thresh-  
old at t will turn off. addition, the MQFL converter will  
not respontate of the input voltage unless it has remained  
in that state fohan about 200µs. This hysteresis and the  
deay ensure proper eration when the source impedance is high  
or in a noisy environment.  
As the output voltage is trimmed up, it producer voltage  
stress on the converter’s internal components and mthe  
converter to fail to deliver the desired output volage a
end of the input voltage range at the gher end of the load r-  
rent and temperature range. Please consut the factorfor details.  
Factory trimmed converters are lable brequest.  
INPUT OVER-VOLTAGE SHUTDOWN: The MQFL converter  
o has an over-voltage feature that ensures the converter will be  
e input voltage is too high. It also has a hysteresis and time  
delay to ensure proper operation.  
1
12  
+VIN  
ENA 2  
2
3
4
5
6
11  
Exteal bulk c
RSTABITY  
IN RTN  
SHARE  
10  
STABILITY  
ENA 1  
+SNS  
+
28 Vdc  
RTRIM  
MQFL  
9
-SNS  
8
open  
means  
on  
SYNC OUT  
SYNC IN  
OUT RTN  
Load  
7
+VOUT  
BILITY  
+
Figure D: Typical connection for output voltage trimming.  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 13  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
The Mil-HDBK-1547A componeing guideline calls for  
a maximum component temerature ºC. Power Derating  
Curve figure; therefore haower dcurve that ensures  
this limit is maintained. It hn Synextensive experi-  
ence that reliable loerm coperan can be achieved  
with a maximum component temof 125ºC. In extreme  
cases, a maxitemprature of 1is permible, but not  
recommended g-term opration where high reliability is  
required. Deratins for thehigher teature limits are  
also includin Figumaxmum case twhich  
the onverter should be ed is 135ºC.  
BACK-DRIVE CURRENT LIMIT: Converters that use MOSFETs as  
synchronous rectifiers are capable of drawing a negative current  
from the load if the load is a source of short- or long-term energy.  
This negative current is referred to as a “back-drive current”.  
Conditions where back-drive current might occur include paral-  
leled converters that do not employ current sharing, or where the  
current share feature does not adequately ensure sharing during  
the startup or shutdown transitions. It can also occur when con-  
verters having different output voltages are connected together  
through either explicit or parasitic diodes that, while normally  
off, become conductive during startup or shutdown. Finally, some  
loads, such as motors, can return energy to their power rail. Even  
a load capacitor is a source of back-drive energy for some period  
of time during a shutdown transient.  
Whe converter is mounted on a late, the plate will  
helke the coverter’s case ottom rm temperature.  
How oes so depends on thicknethe plate and  
on the thonductancof the ace lay(e.g. thermal  
grease, thermal pad, etceen the and thplate. Unless  
done very wel, it is tant not istake the plate’s  
tre for the maximum temperature. It is easy for  
them to be as ms 5-10ºC diffat full power and at high  
temperatures. It is ested that a ermocouple be attached  
irectly to the onverase through a small hole in the plate  
when investigating how e converter is getting. Care must  
also e to ensure that e is not a large thermal resistance  
between mocouple and the case due to whatever adhesive  
might be used the thermocouple in place.  
To avoid any problems that might arise due to back-drive c
the MQFL converters limit the negative current that the
can draw from its output terminals. The threshold for this back-  
drive current limit is placed sufficiently below zero so that the con-  
verter may operate properly down to zero loadt its absolute  
value (see the Electrical Characteristics page) mpared  
to the converter’s rated output current.  
THERMAL CONSIDERATIONS: Fige 5 shows he suggd  
Power Derating Curves for this convertr as a function of the  
case temperature, input voltage the mximum desed power  
MOSFET junction temperaturr components ithin the  
converter are cooler than the hotte
INPUT SYSTEM NSTABILITY: This condition can occur  
because any DC/DC converter appears incrementally as a  
negative resisnce load. A detailed application note titled  
nput Sysem Instability” is available on the SynQor website  
h proides an understanding of why this instability arises,  
anows the preferred solution for correcting it.  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 14  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
CONSTRUCTION AND ENVIRONMENTAL STRESS SCREENING OPTIONS  
ES-Grade  
(-55 ºC to +125 ºC)  
(Element Evalution)  
H
5 ºC to ºC)  
nt Evtion)  
Consistent with  
MIL-SꢁD-883F  
C-Grade  
(-40 ºC to +100 ºC)  
Screening  
Internal Visual  
Yes  
ꢀo  
Yes  
*
CB  
(-55 ºC t)  
Codition C  
5 ºC to +15C)  
ꢁemperature Cycle  
Method 1010  
Constant  
Acceleration  
Method 2001  
(Y1 Direction)  
Condition
(5000g)  
ꢀo  
500g  
Method 1015  
Load Cycled  
Burn-in  
• 10s period  
24 Hrs @ 25 ºC  
rs @ +15 ºC  
1rs @ +
• 2s @ 100% Load  
• 8s @ 0% Load  
Method 5005  
(Group A)  
Final Electrical ꢁest  
-45, +25, +10ºC  
FQo
5, +25, +ºC  
FQorSeal  
Mechanical Seal,  
ꢁhermal, and Coating  
Process  
Full QorSeal  
External Visual  
2009  
Yes  
Yes  
Construction Process  
QorSeal  
Q
QorSeal  
* Per IPC-A-6(Rev. D) Class 3  
MilQor converters and filtoffered in four variatiof conn technue and environmental stress screening options. The  
three highest gra, ES, aall use SynQor’s prry QorHi-Rel assembly process that includes a Parylene-C coating  
of the circuit, a hiormanrmal compound filler, nickel barrier gold plated aluminum case. Each successively higher  
grade has more strinchanil and eleccal testing, aas a longer burn-in cycle. The ES- and HB-Grades are also con-  
structed components e been procuough an elemaluation process that pre-qualifies each new batch of devices.  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 15  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
0.093  
[2.36]  
[6.35]  
+VIN  
ENA 2  
1
12  
IN RTN  
SHARE  
2
11  
1.50 [38.10]  
0.208]  
TYP. ON-CUM.  
STABILITY  
MQFL-28VE-3R3S-X-HB  
3
+SNS  
-SNS  
10 1.260  
DC/DC CONVERTER  
[32.00]  
ENA 1  
28Vin 3.3Vout @ 30A  
4
5
6
9
8
7
MADE IN USA  
OUT RTN  
+VOUT  
SYNC OUT  
SYNC IN  
0.040 [1.02]  
S/N 0000000 D/C 3205-301 CAGE 1WX10  
PIN  
2.50 [63.50]  
2.76 [70.10]  
3.00 [76.20]  
50 [1.27
059]  
.25]  
2.96 [75.2]  
8 [5.79]  
0.390 [9.9]  
CaX  
0.093  
[2.36]  
0.250 [6.35]  
+VIN  
ENA 2  
1
12  
11  
0.200 [5.08]  
TYP. NON-CUM.  
IN RTN  
STABILITY  
RE  
2
3
4
5
6
1.50 [38.10]  
MQFL-28
DC/DC CONVERTER  
28Vin 3.3Vout @ 30A  
+SNS  
-SNS  
10 1.260  
[32.00]  
ENA 1  
7
OU
SYNC OUT  
MADE IN USA  
0.040 [1.02]  
PIN  
S/N 005-301 CAGE 1WX10  
0.42  
[10.7]  
2.50 3.50]  
6 [70.10]  
00 [76.20]  
0.050 [1.27]  
0.220 [5.59]  
0.128 [3.25]  
2.80 [71.1]  
Case U  
0.390 [9.91]  
NOTES  
PIN DESIGNATIONS  
1)  
2)  
Pins 0.040” (1.02mm) d
Pin Function  
Pin Function  
Pins Material: r  
Finish: d oveel plate  
1
2
3
4
5
6
Positive input  
Input return  
Stability  
7
8
9
Positive output  
Output return  
- Sense  
3)  
All dimin inhes (mm) Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm)  
x.xxx +/-n. (x.xx +/-0.25mm)  
4)  
5)  
6)  
Weight: 2.8 og) typical  
Enable 1  
10 + Sense  
11 Share  
Workmanship: Mer exceeds IPC-A-610C Class III  
Print Labeling on Top Surface per Product Label Format Drawing  
Sync output  
Sync input  
12 Enable 2  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 16  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
0.300 [7.62]  
0.140 [3.56]  
1.15 [29.21]  
0.250 [6.35]  
TYP  
0.250 [6.35]  
1
2
3
4
5
6
+VIN  
12  
ENA 2  
5.08
TN-CUM.  
2.00  
[50.80]  
IN RTN  
STABILITY  
SHARE  
+SNS  
11  
10  
9
MQFL-28VE-3R3S-Y-HB  
DC/DC CONVERTER  
28Vin 3.3Vout @ 30A  
1.50  
[38.10]  
-SNS  
ENA 1  
OUT RTN  
+VOUT  
SYNC OUT  
SYNC IN  
MADE IN USA  
8
1.750  
[445]  
S/N 0000000 D/C 3205-301 CAGE 1WX10  
7
0.040 [1.02]  
0 [1.27]  
0 [5.59]  
1.750 [44.45]  
2.50 [63.50]  
0.375 [9.52]  
2.96 [75.2]  
0.2
0.390 [9.91]  
e Y  
Ca
(variant oY)  
Case W  
(variant of Y)  
0.250 [6
0.250 [6.35]  
0.200 [5.08]  
00 [5.08]  
P. NON-CUM.  
TYP. NON-CUM.  
0.040 [1.02]  
PIN  
0.040 [1.2]  
P
0.420 [10.7]  
0.050 [1.27]  
0.220 [5.59]  
0.
0.05
0.3
2.80 [71.1]  
0.525 [13.33]  
0.390  
[9.91]  
0.390  
[9.91]  
0.523]  
2.80 [71.1]  
PIN DESIGNATIONS  
Pin Function Pin Function  
NOTES  
1)  
Pins 0.0” (1.diamet
2)  
Pins : Cop
1
2
3
4
5
6
Positive input  
Input return  
Stability  
Enable 1  
Sync output  
Sync input  
7
8
9
Positive output  
Output return  
- Sense  
Finish: Gr Nickel plate  
All dimensioches (mm) Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm)  
x.xxx +/-0.01xx +/-0.25mm)  
Weight: 2.8 oz (7typical  
Workmanship: Mees or exceeds IPC-A-610C Class III  
Print Labeling on Top Surface per Product Label Format Drawing  
3)  
4)  
5)  
6)  
10 + Sense  
11 Share  
12 Enable 2  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 17  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
MilQor Converter FAMILY MATRIX  
The tables below show the array of MQFL converters available. When ordering SynQor crs, plesure that you use  
the complete part number according to the table in the last page. Contact the factory for otheement
Single Output  
Dual Output  
28V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
6V  
7.5V  
9V  
(
15V  
5S)  
V  
(05D)  
±12V  
(12D)  
±15V  
15D)  
Full Size  
(1R5S) (1R8S) (2R5S) (3R3S) (05S)  
(06S) (7R5S) (09S)  
28S
MQFL-28  
16-40Vin Cont.  
24A  
Total  
A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
30A  
30A  
30A  
30A  
24A  
24A  
20A  
20A  
20A  
20A  
17A  
17A  
20A  
16A  
16A  
1A  
A  
A  
11
13A  
10A  
10A  
8A  
4A  
4A  
16-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
MQFL-28E  
16-70Vin Cont.  
16-80Vin 1s Trans.*  
Absolute Max Vin =100V  
T
10A  
otal  
8A  
Total  
MQFL-28V  
16-40Vin Cont.  
5.5-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
0A  
Tot
6.5A  
Total  
6.5A  
6
3.3A  
3
4A  
MQFL-28VE  
16-70Vin Cont.  
5.5-80Vin 1s Trans.*  
Absolute Max Vin = 100V  
20A  
Total  
8A  
Total  
6.5A  
Total  
8A  
MQFL-270  
155-400Vin Cont.  
155-475Vin 0.1s Trans.*  
Absolute Max Vin = 550V  
24A  
Total  
10A  
Total  
8A  
Total  
A  
Output  
Dual Output †  
8V  
1.5V  
1.8V  
2V  
3.3V  
5
7.5V  
9
15V  
(15S)  
±5V  
(05D)  
±12V  
(12D)  
±15V  
(15D)  
Half Size  
(1R5S) (1R8S) (2R5) (3R3S) 05S)  
(06S) (7R5S) (09S)  
(28S)  
MQHL-28 (50W)  
16-40Vin Cont.  
16-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
10A  
Total  
4A  
Total  
3.3A  
Total  
20A  
0A  
A  
20A  
15A  
1
10A  
8A  
8A  
6.6A  
A  
5.5A  
5.5A  
A  
4A  
3A  
3.3A  
1.8A  
1.8A  
MQHL-28E (50W)  
16-70Vin Cont.  
16-80Vin 1s Trans.*  
Absolute Max Vin =100V  
10A  
Total  
4A  
Total  
3.3A  
Total  
MQHR-28 (25W
16-40Vin Cont.  
16-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
5A  
Total  
2A  
Total  
1.65A  
Total  
10A  
10
0A  
10A  
10A  
7.5A  
7.5
5A  
4
3.3A  
3.3A  
2.75A  
2.75A  
2A  
2A  
1.65A  
1.65A  
0.9A  
0.9A  
MQHR(25W)  
16-70V
16-80Vin
Absolute Max
5A  
Total  
2A  
Total  
1.65A  
Total  
Check witfactobility.  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 18  
MQFL-28VE-3R3S  
Curren
30A  
ꢁechnical Specification  
PART NUMBERING SYSTEM  
The part numbering system for SynQor’s MilQor DC-DC converters follows the format shown he tabw.  
Output Voltage(s)  
Input  
Model  
ꢀame  
Package Outline/  
Pin Configuon  
Scg  
Gra
Voltage  
Range  
Single  
Output  
Dual  
Output  
1R5S  
1R8S  
2R5S  
3R3S  
05S  
06S  
7R5S  
09S  
28  
28E  
28V  
28VE  
Y
W
Z
H
MQFL  
MQHL  
MQHR  
05D  
12D  
1
270  
12S  
15S  
28
Exampe:  
MQFL-28VE-3RES  
APPLICATION NOTES  
A variety of application notes and techhite papers cadownloaded ipdf format from the SynQor website.  
PATENTS  
SynQolds the followtents, one or of which mighply to this product:  
5,999,4
6,927,987  
22,742  
09  
6,545,80  
7,072,1
6,509  
7,085
,594,159  
7,119,524  
6,731,520  
7,269,034  
6,894,468  
7,272,021  
6,896,526  
7,272,023  
Contact SynQor further information:  
Ph:  
949-0600  
Warranty  
SynQor offers a two (2) year limited warranty. Complete warranty  
information is listed on our website or is available upon request from  
SynQor.  
Toll F888-9596  
:  
978-849-0602  
E:  
We
mqnbofae@synqor.com  
www.synqor.com  
Information furnished by SynQor is believed to be accurate and reliable.  
However, no responsibility is assumed by SynQor for its use, nor for any  
infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any  
patent or patent rights of SynQor.  
Addres155 Swanson Road  
Boxborough, MA 01719  
USA  
Product # MQFL-28VE-3R3S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-0005108 Rev. 1  
04/23/09  
Page 19  

相关型号:

MQFL-28VE-7R5S

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR

MQFL-28VE-7R5S-W-C

DC-DC Regulated Power Supply Module, MODULE-12
SYNQOR

MQFL-28VE-7R5S-Y-ES

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR

MQFP

Metric Quad Flat Pack
STATSCHIP

MQFP

Metric Plastic Quad Flatpack Packages
INTERSIL

MQFP

Amkor’s MQFP IC package portfolio provides
AMKOR

MQFP-D

Heat Spreader Metric Quad Flat Pack
STATSCHIP

MQFP-ED

Exposed Drop-in Heat Slug Metric Quad Flat Pack
STATSCHIP

MQFPPOWERQUAD2

Exceptional thermal and electrical performance by design include the following
AMKOR

MQG101-2098

Voltage Controlled Oscillator, 2058MHz Min, 2138MHz Max
MURATA

MQG101-2120

Voltage Controlled Oscillator, 2090MHz Min, 2150MHz Max
MURATA

MQG101-2145

Voltage Controlled Oscillator, 2122MHz Min, 2167MHz Max
MURATA