EVAL6208N [STMICROELECTRONICS]

DMOS DRIVER FOR BIPOLAR STEPPER MOTOR; DMOS驱动程序双极步进电机
EVAL6208N
型号: EVAL6208N
厂家: ST    ST
描述:

DMOS DRIVER FOR BIPOLAR STEPPER MOTOR
DMOS驱动程序双极步进电机

电机 驱动
文件: 总27页 (文件大小:469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6208  
DMOS DRIVER FOR BIPOLAR STEPPER MOTOR  
OPERATING SUPPLY VOLTAGE FROM 8 TO 52V  
5.6A OUTPUT PEAK CURRENT (2.8A RMS)  
0.3TYP. VALUE @ T = 25°C  
R  
DS(ON)  
j
OPERATING FREQUENCY UP TO 100KHz  
NON DISSIPATIVE OVERCURRENT  
PROTECTION  
SO24  
(20+2+2)  
PowerSO36  
PowerDIP24  
(20+2+2)  
DUAL INDEPENDENT CONSTANT t  
PWM  
OFF  
CURRENT CONTROLLERS  
ORDERING NUMBERS:  
L6208N (PowerDIP24)  
L6208PD (PowerSO36)  
L6208D (SO24)  
FAST/SLOW DECAY MODE SELECTION  
FAST DECAY QUASI-SYNCHRONOUS  
RECTIFICATION  
DECODING LOGIC FOR STEPPER MOTOR  
FULL AND HALF STEP DRIVE  
CROSS CONDUCTION PROTECTION  
THERMAL SHUTDOWN  
UNDER VOLTAGE LOCKOUT  
bines isolated DMOS Power Transistors with CMOS  
and bipolar circuits on the same chip. The device in-  
cludes all the circuitry needed to drive a two-phase  
bipolar stepper motor including: a dual DMOS Full  
Bridge, the constant off time PWM Current Controller  
that performs the chopping regulation and the Phase  
Sequence Generator, that generates the stepping  
sequence. Available in PowerDIP24 (20+2+2),  
PowerSO36 and SO24 (20+2+2) packages, the  
L6208 features a non-dissipative overcurrent protec-  
tion on the high side Power MOSFETs and thermal  
shutdown.  
INTEGRATED FAST FREE WHEELING DIODES  
TYPICAL APPLICATIONS  
BIPOLAR STEPPER MOTOR  
DESCRIPTION  
The L6208 is a DMOS Fully Integrated Stepper Motor  
Driver with non-dissipative Overcurrent Protection,  
realized in MultiPower-BCD technology, which com-  
BLOCK DIAGRAM  
VBOOT  
VCP  
VBOOT  
VSA  
VBOOT  
VBOOT  
CHARGE  
PUMP  
OCDA  
OCDB  
OVER  
CURRENT  
DETECTION  
OUT1A  
OUT2A  
10V  
10V  
THERMAL  
PROTECTION  
EN  
GATE  
LOGIC  
CONTROL  
SENSEA  
HALF/FULL  
CLOCK  
PWM  
+
-
STEPPING  
SEQUENCE  
GENERATION  
ONE SHOT  
MONOSTABLE  
MASKING  
TIME  
VREFA  
RCA  
RESET  
SENSE  
COMPARATOR  
CW/CCW  
BRIDGE A  
VSB  
OVER  
OUT1B  
OUT2B  
SENSEB  
VREFB  
RCB  
CURRENT  
DETECTION  
VOLTAGE  
REGULATOR  
GATE  
LOGIC  
10V  
5V  
BRIDGE B  
D01IN1225  
September 2003  
1/27  
L6208  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Supply Voltage  
Test conditions  
Value  
60  
Unit  
V
V
S
V
=
=
V
V
= V  
S
SA  
SB  
V
OD  
Differential Voltage between  
V
V
= V = 60V;  
60  
V
SA  
SB  
S
VS , OUT1 , OUT2 , SENSE and  
= V  
= GND  
A
A
A
A
SENSEA  
SENSEB  
VS , OUT1 , OUT2 , SENSE  
B
B
B
B
V
Bootstrap Peak Voltage  
Input and Enable Voltage Range  
Voltage Range at pins V  
V
SA  
=
V
SB  
= V  
V + 10  
V
V
V
BOOT  
S
S
V ,V  
IN EN  
-0.3 to +7  
-0.3 to +7  
V
REFA  
,
REFA  
V
and V  
REFB  
REFB  
V
V
Voltage Range at pins RC and  
-0.3 to +7  
-1 to +4  
7.1  
V
V
A
RCA, RCB  
A
RC  
B
V
V
Voltage Range at pins SENSE  
A
and SENSE  
B
SENSEA,  
SENSEB  
I
Pulsed Supply Current (for each  
V pin), internally limited by the  
S
V
t
=
V
= V ;  
S(peak)  
SA  
SB S  
< 1ms  
PULSE  
overcurrent protection  
I
RMS Supply Current (for each  
V
SA  
=
V
SB  
= V  
S
2.8  
A
S
V pin)  
S
T
, T  
stg OP  
Storage and Operating  
Temperature Range  
-40 to 150  
°C  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Supply Voltage  
Test Conditions  
MIN  
MAX  
Unit  
V
V
S
V
=
=
V
V
= V  
S
8
52  
52  
SA  
SB  
V
OD  
Differential Voltage Between  
V
V
= V ;  
V
SA  
SB  
S
VS , OUT1 , OUT2 , SENSE and  
= V  
A
A
A
A
SENSEA  
SENSEB  
VS , OUT1 , OUT2 , SENSE  
B
B
B
B
V
,
Voltage Range at pins V  
-0.1  
5
V
REFA  
REFA  
V
and V  
REFB  
REFB  
V
V
Voltage Range at pins SENSE  
(pulsed t < t )  
(DC)  
-6  
-1  
6
1
V
V
SENSEA,  
A
W
rr  
and SENSE  
SENSEB  
B
I
RMS Output Current  
2.8  
+125  
100  
A
OUT  
T
Operating Junction Temperature  
Switching Frequency  
-25  
°C  
j
f
KHz  
sw  
2/27  
L6208  
THERMAL DATA  
Symbol  
Description  
PowerDIP24  
SO24  
14  
PowerSO36  
Unit  
°C/W  
°C/W  
°C/W  
R
Maximum Thermal Resistance Junction-Pins  
Maximum Thermal Resistance Junction-Case  
18  
-
-
1
-
th-j-pins  
th-j-case  
th-j-amb1  
R
-
(1)  
(2)  
(3)  
(4)  
R
R
R
R
43  
51  
Maximum Thermal Resistance Junction-Ambient  
Maximum Thermal Resistance Junction-Ambient  
Maximum Thermal Resistance Junction-Ambient  
Maximum Thermal Resistance Junction-Ambient  
-
-
-
-
35  
15  
62  
°C/W  
°C/W  
°C/W  
th-j-amb1  
th-j-amb1  
th-j-amb2  
58  
77  
2
(1)  
(2)  
(3)  
Mounted on a multi-layer FR4 PCB with a dissipating copper surface on the bottom side of 6cm (with a thickness of 35µm).  
2
Mounted on a multi-layer FR4 PCB with a dissipating copper surface on the top side of 6cm (with a thickness of 35µm).  
Mounted on a multi-layer FR4 PCB with a dissipating copper surface on the top side of 6cm (with a thickness of 35µm), 16 via holes  
2
and a ground layer.  
(4)  
Mounted on a multi-layer FR4 PCB without any heat sinking surface on the board.  
PIN CONNECTIONS (Top View)  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
GND  
N.C.  
GND  
2
N.C.  
CLOCK  
CW/CCW  
SENSEA  
RCA  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VREFA  
RESET  
VCP  
3
N.C.  
N.C.  
2
4
VSA  
VSB  
3
5
OUT2A  
N.C.  
OUT2B  
N.C.  
4
OUT2A  
VSA  
6
OUT1A  
GND  
5
7
VCP  
VBOOT  
EN  
8
RESET  
VREFA  
CLOCK  
CW/CCW  
SENSEA  
RCA  
6
GND  
9
CONTROL  
HALF/FULL  
VREFB  
SENSEB  
RCB  
GND  
7
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
OUT1B  
RCB  
8
VSB  
9
OUT2B  
VBOOT  
EN  
SENSEB  
VREFB  
HALF/FULL  
10  
11  
12  
N.C.  
N.C.  
CONTROL  
OUT1A  
N.C.  
OUT1B  
N.C.  
D99IN1083  
N.C.  
N.C.  
GND  
GND  
D99IN1084  
PowerDIP24/SO24  
(5)  
PowerSO36  
(5)  
The slug is internally connected to pins 1,18,19 and 36 (GND pins).  
3/27  
L6208  
PIN DESCRIPTION  
PACKAGE  
SO24/  
PowerDIP24  
PowerSO36  
Name  
Type  
Function  
PIN #  
PIN #  
1
10  
CLOCK  
Logic Input  
Logic Input  
Step Clock input. The state machine makes one step on  
each rising edge.  
2
11  
CW/CCW  
Selects the direction of the rotation. HIGH logic level sets  
clockwise direction, whereas LOW logic level sets  
counterclockwise direction.  
If not used, it has to be connected to GND or +5V.  
3
4
12  
13  
SENSE  
Power Supply Bridge A Source Pin. This pin must be connected to Power  
Ground through a sensing power resistor.  
A
RC  
RC Pin  
RC Network Pin. A parallel RC network connected  
between this pin and ground sets the Current Controller  
OFF-Time of the Bridge A.  
A
5
15  
OUT1  
Power Output Bridge A Output 1.  
A
6, 7,  
1, 18,  
GND  
GND Ground terminals. In PowerDIP24 and SO24 packages,  
18, 19  
19, 36  
these pins are also used for heat dissipation toward the  
PCB. On PowerSO36 package the slug is connected to  
these pins.  
8
9
22  
24  
OUT1  
Power Output Bridge B Output 1.  
B
RC  
RC Pin RC Network Pin. A parallel RC network connected  
B
between this pin and ground sets the Current Controller  
OFF-Time of the Bridge B.  
10  
11  
12  
25  
26  
27  
SENSE  
Power Supply Bridge B Source Pin. This pin must be connected to Power  
Ground through a sensing power resistor.  
B
VREF  
Analog Input Bridge B Current Controller Reference Voltage.  
Do not leave this pin open or connected to GND.  
B
HALF/FULL  
CONTROL  
EN  
Logic Input  
Step Mode Selector. HIGH logic level sets HALF STEP  
Mode, LOW logic level sets FULL STEP Mode.  
If not used, it has to be connected to GND or +5V.  
13  
14  
28  
29  
Logic Input  
Decay Mode Selector. HIGH logic level sets SLOW DECAY  
Mode. LOW logic level sets FAST DECAY Mode.  
If not used, it has to be connected to GND or +5V.  
(6)  
Chip Enable. LOW logic level switches OFF all Power  
MOSFETs of both Bridge A and Bridge B. This pin is also  
connected to the collector of the Overcurrent and Thermal  
Protection to implement over current protection.  
If not used, it has to be connected to +5V through a  
resistor.  
Logic Input  
15  
30  
VBOOT  
Supply  
Voltage  
Bootstrap Voltage needed for driving the upper Power  
MOSFETs of both Bridge A and Bridge B.  
16  
17  
32  
33  
OUT2  
Power Output Bridge B Output 2.  
B
VS  
Power Supply Bridge B Power Supply Voltage. It must be connected to  
B
the Supply Voltage together with pin VS  
A
20  
4
VS  
Power Supply Bridge A Power Supply Voltage. It must be connected to  
the Supply Voltage together with pin VS  
A
B
4/27  
L6208  
PIN DESCRIPTION (continued)  
PACKAGE  
SO24/  
PowerDIP24  
PowerSO36  
Name  
Type  
Function  
PIN #  
21  
PIN #  
5
7
8
OUT2  
VCP  
Power Output Bridge A Output 2.  
A
22  
Output  
Charge Pump Oscillator Output.  
23  
RESET  
Logic Input  
Reset Pin. LOW logic level restores the Home State  
(State 1) on the Phase Sequence Generator State  
Machine.  
If not used, it has to be connected to +5V.  
24  
9
VREF  
Analog Input Bridge A Current Controller Reference Voltage.  
Do not leave this pin open or connected to GND.  
A
(6)  
Also connected at the output drain of the Over current and Thermal protection MOSFET. Therefore, it has to be driven putting in series  
a resistor with a value in the range of 2.2K- 180K, recommended 100KΩ.  
ELECTRICAL CHARACTERISTICS  
(T = 25°C, V = 48V, unless otherwise specified)  
amb  
Symbol  
s
Parameter  
Turn-on Threshold  
Test Conditions  
Min  
6.6  
5.6  
Typ  
7
Max  
7.4  
6.4  
10  
Unit  
V
V
Sth(ON)  
V
Turn-off Threshold  
6
V
Sth(OFF)  
I
S
Quiescent Supply Current  
All Bridges OFF;  
T = -25°C to 125°C  
5
mA  
(7)  
j
T
Thermal Shutdown Temperature  
165  
°C  
j(OFF)  
Output DMOS Transistors  
High-Side Switch ON Resistance T = 25 °C  
R
DS(ON)  
0.34  
0.53  
0.4  
j
(7)  
(7)  
0.59  
T =125 °C  
j
Low-Side Switch ON Resistance T = 25 °C  
0.28  
0.47  
0.34  
0.53  
j
T =125 °C  
j
I
Leakage Current  
EN = Low; OUT = V  
2
mA  
mA  
DSS  
S
EN = Low; OUT = GND  
-0.15  
Source Drain Diodes  
V
Forward ON Voltage  
I
= 2.8A, EN = LOW  
1.15  
300  
200  
1.3  
V
SD  
SD  
t
Reverse Recovery Time  
Forward Recovery Time  
I = 2.8A  
f
ns  
ns  
rr  
t
fr  
Logic Inputs (EN, CONTROL, HALF/FULL, CLOCK, RESET, CW/CCW)  
V
Low level logic input voltage  
High level logic input voltage  
-0.3  
2
0.8  
7
V
V
IL  
V
IH  
5/27  
L6208  
ELECTRICAL CHARACTERISTICS (continued)  
(T  
amb  
= 25°C, V = 48V, unless otherwise specified)  
s
Symbol  
Parameter  
Test Conditions  
GND Logic Input Voltage  
7V Logic Input Voltage  
Min  
Typ  
Max  
Unit  
µA  
µA  
V
I
IL  
Low Level Logic Input Current  
High Level Logic Input Current  
Turn-on Input Threshold  
Turn-off Input Threshold  
Input Threshold Hysteresis  
-10  
I
IH  
10  
V
th(ON)  
1.8  
1.3  
0.5  
2.0  
V
V
0.8  
V
th(OFF)  
th(HYS)  
0.25  
V
Switching Characteristics  
t
Enable to Output Turn-on Delay  
I
I
=2.8A, Resistive Load  
=2.8A, Resistive Load  
100  
300  
250  
550  
400  
800  
ns  
ns  
D(ON)EN  
LOAD  
(8)  
Time  
t
Enable to Output Turn-off Delay  
D(OFF)EN  
LOAD  
(8)  
Time  
(8)  
t
t
I
I
I
=2.8A, Resistive Load  
=2.8A, Resistive Load  
=2.8A, Resistive Load  
40  
40  
250  
250  
ns  
ns  
µs  
µs  
µs  
RISE  
FALL  
LOAD  
LOAD  
LOAD  
Output Rise Time  
(8)  
Output Fall Time  
(9)  
t
2
DCLK  
Clock to Output Delay Time  
(10)  
t
1
1
CLK(min)L  
Minimum Clock Time  
(10)  
t
CLK(min)  
H
Minimum Clock Time  
f
Clock Frequency  
100  
1
KHz  
µs  
CLK  
(11)  
t
S(MIN)  
H(MIN)  
R(MIN)  
Minimum Set-up Time  
(11)  
t
t
1
1
1
µs  
µs  
µs  
Minimum Hold Time  
(11)  
Minimum Reset Time  
t
Minimum Reset to Clock Delay  
RCLK(MIN  
)
(11)  
Time  
t
f
Dead Time Protection  
0.5  
3.5  
1
µs  
DT  
CP  
(7)  
0.6  
1
MHz  
Charge Pump Frequency  
T = -25°C to 125°C  
j
PWM Comparator and Monostable  
Source Current at pins RC and  
I
I
V
V
= V  
RCB  
= 2.5V  
= 0.5V  
5.5  
±5  
mA  
mV  
RCA, RCB  
A
RCA  
RC  
B
V
offset  
Offset Voltage on Sense  
Comparator  
V
REFA, REFB  
(12)  
t
500  
1
ns  
µs  
PROP  
Turn OFF Propagation Delay  
t
Internal Blanking Time on  
SENSE pins  
BLANK  
t
Minimum On Time  
1.5  
2
µs  
ON(MIN)  
6/27  
L6208  
ELECTRICAL CHARACTERISTICS (continued)  
(T = 25°C, V = 48V, unless otherwise specified)  
amb  
Symbol  
s
Parameter  
Test Conditions  
= 20KΩ; C = 1nF  
Min  
Typ  
13  
Max  
Unit  
µs  
t
PWM Recirculation Time  
R
R
OFF  
OFF  
OFF  
= 100KΩ; C  
= 1nF  
61  
µs  
OFF  
OFF  
I
Input Bias Current at pins VREF  
10  
µA  
BIAS  
A
and VREF  
B
Over Current Protection  
(7)  
I
Input Supply Overcurrent  
Protection Threshold  
4
5.6  
7.1  
60  
A
SOVER  
T = -25°C to 125°C  
j
R
Open Drain ON Resistance  
OCD Turn-on Delay Time (13)  
OCD Turn-off Delay Time (13)  
I = 4mA  
40  
OPDR  
t
I = 4mA; C < 100pF  
200  
100  
ns  
ns  
OCD(ON)  
EN  
t
I = 4mA; C < 100pF  
EN  
OCD(OFF)  
(7)  
(8)  
(9)  
Tested at 25°C in a restricted range and guaranteed by characterization.  
See Fig. 1.  
See Fig. 2.  
(10) See Fig. 3.  
(11) See Fig. 4.  
(12) Measured applying a voltage of 1V to pin SENSE and a voltage drop from 2V to 0V to pin VREF.  
(13) See Fig. 5.  
Figure 1. Switching Characteristic Definition  
EN  
V
th(ON)  
V
th(OFF)  
t
I
OUT  
90%  
10%  
t
D01IN1316  
t
t
RISE  
FALL  
t
t
D(ON)EN  
D(OFF)EN  
7/27  
L6208  
Figure 2. Clock to Output Delay Time  
CLOCK  
Vth(ON)  
t
IOUT  
t
D01IN1317  
tDCLK  
Figure 3. Minimum Timing Definition; Clock Input  
CLOCK  
Vth(ON)  
Vth(OFF)  
Vth(OFF)  
tCLK(MIN)L  
tCLK(MIN)H  
D01IN1318  
Figure 4. Minimum Timing Definition; Logic Inputs  
CLOCK  
V
th(ON)  
LOGIC INPUTS  
t
t
H(MIN)  
S(MIN)  
RESET  
V
th(ON)  
V
th(OFF)  
D01IN1319  
t
t
RCLK(MIN)  
R(MIN)  
8/27  
L6208  
Figure 5. Overcurrent Detection Timing Definition  
IOUT  
ISOVER  
ON  
BRIDGE  
OFF  
VEN  
90%  
10%  
D02IN1399  
tOCD(ON)  
tOCD(OFF)  
CIRCUIT DESCRIPTION  
POWER STAGES and CHARGE PUMP  
The L6208 integrates two independent Power MOS Full Bridges. Each Power MOS has an RDS(ON) = 0.3  
(typ-  
ical value @ 25°C), with intrinsic fast freewheeling diode. Switching patterns are generated by the PWM Current  
Controller and the Phase Sequence Generator (see below). Cross conduction protection is achieved using a  
dead time (tDT = 1  
a bridge.  
µs typical value) between the switch off and switch on of two Power MOSFETSs in one leg of  
Pins VS and VS MUST be connected together to the supply voltage V . The device operates with a supply  
A
B
S
voltage in the range from 8V to 52V. It has to be noticed that the RDS(ON) increases of some percents when the  
supply voltage is in the range from 8V to 12V (see Fig. 34 and 35).  
Using N-Channel Power MOS for the upper transistors in the bridge requires a gate drive voltage above the  
power supply voltage. The bootstrapped supply voltage VBOOT is obtained through an internal Oscillator and few  
external components to realize a charge pump circuit as shown in Figure 6. The oscillator output (VCP) is a  
square wave at 600KHz (typical) with 10V amplitude. Recommended values/part numbers for the charge pump  
circuit are shown in Table 1.  
Table 1. Charge Pump External Components Values  
C
C
R
220nF  
10nF  
BOOT  
P
P
100Ω  
D1  
D2  
1N4148  
1N4148  
9/27  
L6208  
Figure 6. Charge Pump Circuit  
VS  
D1  
D2  
CBOOT  
RP  
CP  
D01IN1328  
VCP  
VBOOT  
VSA VSB  
LOGIC INPUTS  
Pins CONTROL, HALF/FULL, CLOCK, RESET and CW/CCW are TTL/CMOS and uC compatible logic inputs.  
The internal structure is shown in Fig. 7. Typical value for turn-on and turn-off thresholds are respectively  
Vth(ON)= 1.8V and Vth(OFF)= 1.3V.  
Pin EN (Enable) has identical input structure with the exception that the drain of the Overcurrent and thermal  
protection MOSFET is also connected to this pin. Due to this connection some care needs to be taken in driving  
this pin. The EN input may be driven in one of two configurations as shown in Fig. 8 or 9. If driven by an open  
drain (collector) structure, a pull-up resistor R and a capacitor C are connected as shown in Fig. 8. If the  
EN  
EN  
driver is a standard Push-Pull structure the resistor REN and the capacitor CEN are connected as shown in Fig.  
9. The resistor REN should be chosen in the range from 2.2K to 180K . Recommended values for REN and  
EN are respectively 100K and 5.6nF. More information on selecting the values is found in the Overcurrent  
Protection section.  
C
Figure 7. Logic Inputs Internal Structure  
5V  
ESD  
PROTECTION  
D01IN1329  
Figure 8. EN Pin Open Collector Driving  
5V  
5V  
REN  
EN  
OPEN  
COLLECTOR  
OUTPUT  
CEN  
ESD  
PROTECTION  
D01IN1330  
Figure 9. EN Pin Push-Pull Driving  
5V  
REN  
EN  
PUSH-PULL  
OUTPUT  
CEN  
ESD  
PROTECTION  
D01IN1331  
10/27  
L6208  
PWM CURRENT CONTROL  
The L6208 includes a constant off time PWM current controller for each of the two bridges. The current control  
circuit senses the bridge current by sensing the voltage drop across an external sense resistor connected be-  
tween the source of the two lower power MOS transistors and ground, as shown in Figure 10. As the current in  
the motor builds up the voltage across the sense resistor increases proportionally. When the voltage drop  
across the sense resistor becomes greater than the voltage at the reference input (VREFA or VREFB) the sense  
comparator triggers the monostable switching the bridge off. The power MOS remain off for the time set by the  
monostable and the motor current recirculates as defined by the selected decay mode, described in the next  
section. When the monostable times out the bridge will again turn on. Since the internal dead time, used to pre-  
vent cross conduction in the bridge, delays the turn on of the power MOS, the effective off time is the sum of the  
monostable time plus the dead time.  
Figure 10. PWM Current Controller Simplified Schematic  
VSA (or B  
)
TO GATE LOGIC  
BLANKING TIME  
MONOSTABLE  
1µs  
FROM THE  
LOW-SIDE  
GATE DRIVERS  
5mA  
2H  
1H  
MONOSTABLE  
SET  
2 PHASE  
STEPPER MOTOR  
S
R
BLANKER  
I
OUT  
Q
(0)  
(1)  
OUT2  
A(or B)  
DRIVERS  
DRIVERS  
+
+
-
DEAD TIME  
DEAD TIME  
+
5V  
OUT1  
A(or B)  
2.5V  
SENSE  
COMPARATOR  
2L  
1L  
+
-
COMPARATOR  
OUTPUT  
RC  
A(or B)  
VREF  
A(or B)  
SENSE  
A(or B)  
COFF  
ROFF  
R
SENSE  
D01IN1332  
Figure 11 shows the typical operating waveforms of the output current, the voltage drop across the sensing re-  
sistor, the RC pin voltage and the status of the bridge. More details regarding the Synchronous Rectification and  
the output stage configuration are included in the next section.  
Immediately after the Power MOS turns on, a high peak current flows through the sensing resistor due to the  
reverse recovery of the freewheeling diodes. The L6208 provides a 1  
µs Blanking Time tBLANK that inhibits the  
comparator output so that this current spike cannot prematurely re-trigger the monostable.  
11/27  
L6208  
Figure 11. Output Current Regulation Waveforms  
I
OUT  
V
REF  
R
SENSE  
t
t
t
OFF  
OFF  
ON  
1µs t  
1µs t  
BLANK  
V
BLANK  
SENSE  
V
REF  
Slow Decay  
Slow Decay  
0
t
t
V
RCRISE  
RCRISE  
RC  
5V  
2.5V  
t
t
RCFALL  
RCFALL  
1µs t  
1µs t  
DT  
DT  
ON  
SYNCHRONOUS OR QUASI  
SYNCHRONOUS RECTIFICATION  
OFF  
B
C
D
A
B
C
D
D01IN1334  
Figure 12 shows the magnitude of the Off Time t  
calculated from the equations:  
versus C  
and R  
values. It can be approximately  
OFF  
OFF  
OFF  
t
t
= 0.6 · R  
· C  
RCFALL  
OFF OFF  
= t  
+ t = 0.6 · R  
· C  
+ t  
OFF  
RCFALL  
DT  
OFF  
OFF  
DT  
where R  
and C  
are the external component values and t is the internally generated Dead Time with:  
OFF DT  
OFF  
20KΩ ≤  
0.47nF  
= 1µs (typical value)  
R
100K  
100nF  
OFF  
OFF  
C
t
DT  
Therefore:  
t
t
= 6.6µs  
OFF(MIN)  
= 6ms  
OFF(MAX)  
These values allow a sufficient range of t  
to implement the drive circuit for most motors.  
OFF  
The capacitor value chosen for C  
also affects the Rise Time t  
of the voltage at the pin RCOFF. The  
OFF  
RCRISE  
Rise Time t  
will only be an issue if the capacitor is not completely charged before the next time the  
RCRISE  
monostable is triggered. Therefore, the on time t , which depends by motors and supply parameters, has to  
ON  
be bigger than t  
for allowing a good current regulation by the PWM stage. Furthermore, the on time t  
RCRISE  
ON  
can not be smaller than the minimum on time t  
.
ON(MIN)  
12/27  
L6208  
t
t
> t  
> t  
= 1.5µs (typ. value)  
ON(MIN)  
ON  
ON  
t  
RCRISE  
DT  
t
= 600 · C  
RCRISE  
OFF  
Figure 13 shows the lower limit for the on time t for having a good PWM current regulation capacity. It has to  
ON  
be said that tON is always bigger than t  
because the device imposes this condition, but it can be smaller  
ON(MIN)  
than t  
- t . In this last case the device continues to work but the off time t  
is not more constant.  
RCRISE DT  
OFF  
So, small C  
value gives more flexibility for the applications (allows smaller on time and, therefore, higher  
OFF  
switching frequency), but, the smaller is the value for C  
performance.  
, the more influential will be the noises on the circuit  
OFF  
Figure 12. t  
versus C and R  
OFF OFF  
OFF  
4
.
1 10  
= 100kΩ  
Roff  
3
.
1 10  
= 47kΩ  
Roff  
= 20kΩ  
Roff  
100  
10  
1
0.1  
1
10  
100  
Coff [nF]  
Figure 13. Area where t  
can vary maintaining the PWM regulation.  
ON  
100  
10  
1.5µs (typ. value)  
1
0.1  
1
10  
100  
Coff [nF]  
13/27  
L6208  
DECAY MODES  
The CONTROL input is used to select the behavior of the bridge during the off time. When the CONTROL pin  
is low, the Fast Decay mode is selected and both transistors in the bridge are switched off during the off time.  
When the CONTROL pin is high, the Slow Decay mode is selected and only the low side transistor of the bridge  
is switched off during the off time.  
Figure 14 shows the operation of the bridge in the Fast Decay mode. At the start of the off time, both of the  
power MOS are switched off and the current recirculates through the two opposite free wheeling diodes. The  
current decays with a high di/dt since the voltage across the coil is essentially the power supply voltage. After  
the dead time, the lower power MOS in parallel with the conducting diode is turned on in synchronous rectifica-  
tion mode. In applications where the motor current is low it is possible that the current can decay completely to  
zero during the off time. At this point if both of the power MOS were operating in the synchronous rectification  
mode it would then be possible for the current to build in the opposite direction. To prevent this only the lower  
power MOS is operated in synchronous rectification mode. This operation is called Quasi-Synchronous Recti-  
fication Mode. When the monostable times out, the power MOS are turned on again after some delay set by the  
dead time to prevent cross conduction.  
Figure 15 shows the operation of the bridge in the Slow Decay mode. At the start of the off time, the lower power  
MOS is switched off and the current recirculates around the upper half of the bridge. Since the voltage across  
the coil is low, the current decays slowly. After the dead time the upper power MOS is operated in the synchro-  
nous rectification mode. When the monostable times out, the lower power MOS is turned on again after some  
delay set by the dead time to prevent cross conduction.  
Figure 14. Fast Decay Mode Output Stage Configurations  
A) ON TIME  
B) 1µs DEAD TIME  
C) QUASI-SYNCHRONOUS  
RECTIFICATION  
D) 1µs SLOW DECAY  
D01IN1335  
Figure 15. Slow Decay Mode Output Stage Configurations  
A) ON TIME  
B) 1µs DEAD TIME  
C) SYNCHRONOUS  
RECTIFICATION  
D) 1µs DEAD TIME  
D01IN1336  
STEPPING SEQUENCE GENERATION  
The phase sequence generator is a state machine that provides the phase and enable inputs for the two bridges  
to drive a stepper motor in either full step or half step. Two full step modes are possible, the Normal Drive Mode  
where both phases are energized each step and the Wave Drive Mode where only one phase is energized at a  
14/27  
L6208  
time. The drive mode is selected by the HALF/FULL input and the current state of the sequence generator as  
described below. A rising edge of the CLOCK input advances the state machine to the next state. The direction  
of rotation is set by the CW/CCW input. The RESET input resets the state machine to state.  
HALF STEP MODE  
A HIGH logic level on the HALF/FULL input selects Half Step Mode. Figure 16 shows the motor current wave-  
forms and the state diagram for the Phase Sequencer Generator. At Start-Up or after a RESET the Phase Se-  
quencer is at state 1. After each clock pulse the state changes following the sequence 1,2,3,4,5,6,7,8,… if CW/  
CCW is high (Clockwise movement) or 1,8,7,6,5,4,3,2,… if CW/CCW is low (Counterclockwise movement).  
NORMAL DRIVE MODE (Full-step two-phase-on)  
A LOW level on the HALF/FULL input selects the Full Step mode. When the low level is applied when the state  
machine is at an ODD numbered state the Normal Drive Mode is selected. Figure Fig. 17 shows the motor cur-  
rent waveform state diagram for the state machine of the Phase Sequencer Generator. The Normal Drive Mode  
can easily be selected by holding the HALF/FULL input low and applying a RESET. AT start -up or after a RE-  
SET the State Machine is in state1. While the HALF/FULL input is kept low, state changes following the se-  
quence 1,3,5,7,… if CW/CCW is high (Clockwise movement) or 1,7,5,3,… if CW/CCW is low (Counterclockwise  
movement).  
WAVE DRIVE MODE (Full-step one-phase-on)  
A LOW level on the pin HALF/FULL input selects the Full Step mode. When the low level is applied when the  
state machine is at an EVEN numbered state the Wave Drive Mode is selected. Figure 18 shows the motor cur-  
rent waveform and the state diagram for the state machine of the Phase Sequence Generator. To enter the  
Wave Drive Mode the state machine must be in an EVEN numbered state. The most direct method to select the  
Wave Drive Mode is to first apply a RESET, then while keeping the HALF/FULL input high apply one pulse to  
the clock input then take the HALF/FULL input low. This sequence first forces the state machine to sate 1. The  
clock pulse, with the HALF/FULL input high advances the state machine from state 1 to either state 2 or 8 de-  
pending on the CW/CCW input. Starting from this point, after each clock pulse (rising edge) will advance the  
state machine following the sequence 2,4,6,8,… if CW/CCW is high (Clockwise movement) or 8,6,4,2,… if CW/  
CCW is low (Counterclockwise movement).  
Figure 16. Half Step Mode  
IOUTA  
3
2
1
4
8
5
6
7
IOUTB  
Start Up or Reset  
CLOCK  
1
2
3
4
5
6
7
8
D01IN1320  
Figure 17. Normal Drive Mode  
IOUTA  
3
2
1
4
8
5
6
7
IOUTB  
CLOCK  
Start Up or Reset  
1
3
5
7
1
3
5
7
D01IN1322  
15/27  
L6208  
Figure 18. Wave Drive Mode  
I
I
OUTA  
OUTB  
3
2
1
4
8
5
6
7
CLOCK  
2
4
6
8
2
4
6
8
Start Up or Reset  
D01IN1321  
NON-DISSIPATIVE OVERCURRENT PROTECTION  
The L6208 integrates an Overcurrent Detection Circuit (OCD). This circuit provides protection against a short  
circuit to ground or between two phases of the bridge. With this internal over current detection, the external cur-  
rent sense resistor normally used and its associated power dissipation are eliminated. Figure 19 shows a sim-  
plified schematic of the overcurrent detection circuit.  
To implement the over current detection, a sensing element that delivers a small but precise fraction of the out-  
put current is implemented with each high side power MOS. Since this current is a small fraction of the output  
current there is very little additional power dissipation. This current is compared with an internal reference cur-  
rent I  
. When the output current reaches the detection threshold (typically 5.6A) the OCD comparator signals  
REF  
a fault condition. When a fault condition is detected, the EN pin is pulled below the turn off threshold (1.3V typ-  
ical) by an internal open drain MOS with a pull down capability of 4mA. By using an external R-C on the EN pin,  
the off time before recovering normal operation can be easily programmed by means of the accurate thresholds  
of the logic inputs.  
Figure 19. Overcurrent Protection Simplified Schematic  
OUT1A VSA OUT2A  
POWER SENSE  
1 cell  
HIGH SIDE DMOSs OF  
THE BRIDGE A  
I1A  
I2A  
POWER SENSE  
1 cell  
POWER DMOS  
n cells  
POWER DMOS  
n cells  
TO GATE  
LOGIC  
+
µC or LOGIC  
I1A / n  
I2A / n  
OCD  
COMPARATOR  
VDD  
(I1A+I2A) / n  
IREF  
REN  
.
.
EN  
INTERNAL  
OPEN-DRAIN  
CEN  
RDS(ON)  
40TYP.  
OVER TEMPERATURE  
FROM THE  
BRIDGE B  
OCD  
COMPARATOR  
D01IN1337  
16/27  
L6208  
Figure 20 shows the Overcurrent Detection operation. The Disable Time t  
before recovering normal oper-  
DISABLE  
ation can be easily programmed by means of the accurate thresholds of the logic inputs. It is affected whether by  
and R values and its magnitude is reported in Figure 21. The Delay Time t before turning off the  
C
EN  
EN  
DELAY  
bridge when an overcurrent has been detected depends only by C value. Its magnitude is reported in Figure 22.  
EN  
C
EN  
is also used for providing immunity to pin EN against fast transient noises. Therefore the value of C  
EN  
should be chosen as big as possible according to the maximum tolerable Delay Time and the R value should  
EN  
be chosen according to the desired Disable Time.  
The resistor R should be chosen in the range from 2.2K  
to 180K  
. Recommended values for R and C  
EN EN  
EN  
are respectively 100K  
and 5.6nF that allow obtaining 200µs Disable Time.  
Figure 20. Overcurrent Protection Waveforms  
I
OUT  
I
SOVER  
V
EN  
V
DD  
V
th(ON)  
V
th(OFF)  
V
EN(LOW)  
ON  
OCD  
OFF  
ON  
BRIDGE  
OFF  
t
t
DELAY  
DISABLE  
t
t
t
t
t
OCD(ON)  
EN(FALL)  
OCD(OFF)  
EN(RISE)  
D(ON)EN  
D02IN1400  
t
D(OFF)EN  
17/27  
L6208  
Figure 21. t  
versus C and R (V = 5V).  
EN EN DD  
DISABLE  
R E N = 100 k  
R E N = 220 k  
3
.
R EN = 47 k  
R EN = 33 k  
1 10  
R EN = 10 k  
100  
10  
1
1
10  
100  
C E N [nF]  
Figure 22. t  
versus C (V = 5V).  
EN DD  
DELAY  
10  
1
0.1  
1
10  
100  
Cen [nF]  
THERMAL PROTECTION  
In addition to the Ovecurrent Protection, the L6208 integrates a Thermal Protection for preventing the device  
destruction in case of junction over temperature. It works sensing the die temperature by means of a sensible  
element integrated in the die. The device switch-off when the junction temperature reaches 165°C (typ. value)  
with 15°C hysteresis (typ. value).  
18/27  
L6208  
APPLICATION INFORMATION  
A typical Bipolar Stepper Motor Driver application using L6208 is shown in Fig. 23. Typical component values  
for the application are shown in Table 2. A high quality ceramic capacitor in the range of 100 to 200 nF should  
be placed between the power pins (VS and VS ) and ground near the L6208 to improve the high frequency  
A
B
filtering on the power supply and reduce high frequency transients generated by the switching. The capacitor  
connected from the EN input to ground sets the shut down time when an over current is detected (see Overcur-  
rent Protection). The two current sensing inputs (SENSE and SENSE ) should be connected to the sensing  
A
B
resistors with a trace length as short as possible in the layout. The sense resistors should be non-inductive re-  
sistors to minimize the di/dt transients across the resistor. To increase noise immunity, unused logic pins (except  
EN) are best connected to 5V (High Logic Level) or GND (Low Logic Level) (see pin description). It is recom-  
mended to keep Power Ground and Signal Ground separated on PCB.  
Table 2. Component Values for Typical Application  
C
C
C
C
C
C
C
C
100µF  
100nF  
1nF  
D
D
R
R
R
R
R
R
1N4148  
1N4148  
39KΩ  
39KΩ  
100KΩ  
100Ω  
1
1
2
2
A
A
1nF  
B
B
220nF  
10nF  
5.6nF  
68nF  
BOOT  
P
EN  
P
0.3Ω  
EN  
REF  
SENSEA  
SENSEB  
0.3Ω  
Figure 23. Typical Application  
VSA  
VSB  
+
VS  
8-52VDC  
20  
17  
VREFA  
VREFB  
24  
11  
VREF = 0-1V  
C1  
C2  
POWER  
GROUND  
-
CREF  
D1  
CP  
RP  
VCP  
RESET  
EN  
22  
23  
14  
RESET  
REN  
CEN  
D2  
CBOOT  
ENABLE  
VBOOT  
SENSEA  
SENSEB  
SIGNAL  
GROUND  
15  
3
RSENSEA  
RSENSEB  
CONTROL  
HALF/FULL  
CLOCK  
13  
12  
1
FAST/SLOW DECAY  
HALF/FULL  
CLOCK  
10  
OUT1A  
OUT2A  
5
21  
CW/CCW  
M
2
CW/CCW  
OUT1B  
OUT2B  
CA  
8
16  
18  
19  
6
RCA  
4
RA  
CB  
GND  
GND  
GND  
GND  
RCB  
7
9
RB  
D01IN1341  
19/27  
L6208  
Output Current Capability and IC Power Dissipation  
In Fig. 24, 25, 26 and 27 are shown the approximate relation between the output current and the IC power dis-  
sipation using PWM current control driving a two-phase stepper motor, for different driving sequences:  
– HALF STEP mode (Fig. 24) in which alternately one phase / two phases are energized.  
– NORMAL DRIVE (FULL-STEP TWO PHASE ON) mode (Fig. 25) in which two phases are energized  
during each step.  
– WAVE DRIVE (FULL-STEP ONE PHASE ON) mode (Fig. 26) in which only one phase is energized at  
each step.  
– MICROSTEPPING mode (Fig. 27), in which the current follows a sine-wave profile, provided through  
the V pins.  
ref  
For a given output current and driving sequence the power dissipated by the IC can be easily evaluated, in order  
to establish which package should be used and how large must be the on-board copper dissipating area to guar-  
antee a safe operating junction temperature (125°C maximum).  
Figure 24. IC Power Dissipation versus Output Current in HALF STEP Mode.  
HALF STEP  
IA  
IB  
10  
8
IOUT  
6
IOUT  
PD [W]  
4
Test Conditions:  
Supply Voltage= 24V  
No PWM  
2
0
0
0.5  
1
1.5  
IOUT [A]  
2
2.5  
3
f
SW = 30 kHz (slow decay)  
Figure 25. IC Power Dissipation versus Output Current in NORMAL Mode (full step two phase on).  
NORMAL DRIVE  
IA  
10  
8
IOUT  
IB  
6
IOUT  
PD [W]  
4
2
0
Test Conditions:  
Supply Voltage =24V  
No PWM  
fSW = 30kHz (slow decay)  
0
0.5  
1
1.5  
OUT [A]  
2
2.5  
3
I
20/27  
L6208  
Figure 26. IC Power Dissipation versus Output Current in WAVE Mode (full step one phase on).  
WAVE DRIVE  
10  
8
IA  
IOUT  
IB  
6
PD [W]  
IOUT  
4
2
0
Test Conditions:  
Supply Voltage = 24V  
No PWM  
f
SW = 30 kHz (slow decay)  
0
0.5  
1
1.5  
2
2.5  
3
I
OUT [A]  
Figure 27. IC Power Dissipation versus Output Current in MICROSTEPPING Mode.  
MICROSTEPPING  
IA  
IOUT  
10  
8
IOUT  
6
IB  
PD [W]  
4
2
0
Test Conditions:  
Supply Voltage = 24V  
0
0.5  
1
1.5  
2
2.5  
3
fSW = 30 kHz (slow decay)  
fSW = 50 kHz (slow decay)  
IOUT [A]  
Thermal Management  
In most applications the power dissipation in the IC is the main factor that sets the maximum current that can  
be delivered by the device in a safe operating condition. Therefore, it has to be taken into account very carefully.  
Besides the available space on the PCB, the right package should be chosen considering the power dissipation.  
Heat sinking can be achieved using copper on the PCB with proper area and thickness. Figures 28, 29 and 30  
show the Junction-to-Ambient Thermal Resistance values for the PowerSO36, PowerDIP24 and SO24 packag-  
es.  
For instance, using a PowerSO package with copper slug soldered on a 1.5mm copper thickness FR4 board  
2
with 6cm dissipating footprint (copper thickness of 35µm), the R  
is about 35°C/W. Fig. 31 shows mount-  
th(j-amb)  
ing methods for this package. Using a multi-layer board with vias to a ground plane, thermal impedance can be  
reduced down to 15°C/W.  
21/27  
L6208  
Figure 28. PowerSO36 Junction-Ambient Thermal Resistance versus On-Board Copper Area.  
ºC / W  
43  
38  
33  
W ithout Ground Layer  
28  
W ith Ground Layer  
W ith Ground Layer+16 via  
H oles  
23  
On-Board Copper Area  
18  
13  
1
2
3
4
5
6
7
8
9
10 11 12 13  
sq. cm  
Figure 29. PowerDIP24 Junction-Ambient Thermal Resistance versus On-Board Copper Area.  
ºC / W  
On-Board Copper Area  
49  
48  
Copper Are a is on Bottom  
S ide  
47  
46  
Copper Are a is on To p Side  
45  
44  
43  
42  
41  
40  
39  
1
2
3
4
5
6
7
8
9
10 11 12  
sq. cm  
Figure 30. SO24 Junction-Ambient Thermal Resistance versus On-Board Copper Area.  
ºC / W  
On-Board Copper Area  
68  
66  
64  
62  
60  
C o pp er Are a is on Top Sid e  
58  
56  
54  
52  
50  
48  
1
2
3
4
5
6
7
8
9
10 11 12  
sq. cm  
Figure 31. Mounting the PowerSO Package.  
Slug soldered  
to PCB with  
dissipating area  
Slug soldered  
Slug soldered to PCB with  
dissipating area plus ground layer  
contacted through via holes  
to PCB with  
dissipating area  
plus ground layer  
22/27  
L6208  
Figure 32. Typical Quiescent Current vs.  
Figure 35. Typical High-Side RDS(ON) vs.  
Supply Voltage  
Supply Voltage  
Iq [mA]  
[ ]  
RDS(ON)  
5.6  
0.380  
0.376  
0.372  
0.368  
0.364  
0.360  
0.356  
0.352  
0.348  
0.344  
0.340  
0.336  
f
= 1kHz  
T = 25°C  
j
sw  
T = 85°C  
j
5.4  
5.2  
5.0  
4.8  
4.6  
T = 25°C  
j
T = 125°C  
j
0
5
10  
15  
VS [V]  
20  
25  
30  
0
10  
20  
30  
40  
50  
60  
VS [V]  
Figure 33. Normalized Typical Quiescent  
Figure 36. Normalized R  
vs.Junction  
DS(ON)  
Current vs. Switching Frequency  
Iq / (Iq @ 1 kHz)  
Temperature (typical value)  
RDS(ON) / (RDS(ON) @ 25 °C)  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
Tj [°C]  
fSW [kHz]  
Figure 34. Typical Low-Side R  
Voltage  
vs. Supply  
Figure 37. Typical Drain-Source Diode Forward  
DS(ON)  
ON Characteristic  
RDS(ON)  
[
]
ISD [A]  
0.300  
3.0  
T = 25°C  
j
0.296  
0.292  
0.288  
0.284  
0.280  
0.276  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
T = 25°C  
j
700  
800  
900  
1000  
SD [mV]  
1100  
1200  
1300  
0
5
10  
15  
20  
25  
30  
V
V
S [V]  
23/27  
L6208  
mm  
inch  
DIM.  
MIN. TYP. MAX. MIN. TYP. MAX.  
OUTLINE AND  
MECHANICAL DATA  
A
a1  
a2  
a3  
b
3.60  
0.141  
0.012  
0.130  
0.004  
0.015  
0.012  
0.630  
0.385  
0.570  
0.10  
0.30 0.004  
3.30  
0
0.10  
0
0.22  
0.23  
0.38 0.008  
0.32 0.009  
16.00 0.622  
9.80 0.370  
14.50 0.547  
c
D (1) 15.80  
D1  
E
9.40  
13.90  
e
0.65  
0.0256  
0.435  
e3  
11.05  
E1 (1) 10.90  
E2  
11.10 0.429  
2.90  
0.437  
0.114  
0.244  
0.126  
0.004  
0.626  
0.043  
0.043  
E3  
E4  
G
H
5.80  
2.90  
0
6.20 0.228  
3.20 0.114  
0.10  
0
15.50  
15.90 0.610  
1.10  
h
L
0.80  
1.10 0.031  
10°(max.)  
8 °(max.)  
N
S
PowerSO36  
(1): "D" and "E1" do not include mold flash or protrusions  
- Mold flash or protrusions shall not exceed 0.15mm (0.006 inch)  
- Critical dimensions are "a3", "E" and "G".  
N
N
a2  
A
c
a1  
e
A
DETAIL B  
lead  
E
DETAIL A  
e3  
H
DETAIL A  
D
slug  
a3  
BOTTOM VIEW  
36  
19  
E3  
B
E1  
E2  
D1  
DETAIL B  
0.35  
Gage Plane  
- C -  
SEATING PLANE  
1
1
8
S
L
G
C
M
b
0.12  
A B  
PSO36MEC  
h x 45˚  
(COPLANARITY)  
24/27  
L6208  
mm  
MIN. TYP. MAX. MIN. TYP. MAX.  
4.320 0.170  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
A
A1  
A2  
B
0.380  
0.015  
3.300  
0.130  
0.410 0.460 0.510 0.016 0.018 0.020  
1.400 1.520 1.650 0.055 0.060 0.065  
0.200 0.250 0.300 0.008 0.010 0.012  
31.62 31.75 31.88 1.245 1.250 1.255  
B1  
c
D
E
7.620  
8.260 0.300  
0.325  
e
2.54  
0.100  
E1  
6.350 6.600 6.860 0.250 0.260 0.270  
0.300  
7.620  
e1  
L
3.180  
3.430 0.125  
0.135  
Powerdip 24  
M
0˚ min, 15˚ max.  
E1  
A2  
A
A1  
L
B
B1  
e
e1  
D
24  
1
13  
12  
c
M
SDIP24L  
25/27  
L6208  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN.  
2.35  
0.10  
0.33  
0.23  
15.20  
TYP. MAX. MIN.  
2.65 0.093  
0.30 0.004  
0.51 0.013  
0.32 0.009  
15.60 0.598  
TYP. MAX.  
0.104  
A
A1  
B
0.012  
0.200  
Weight: 0.60gr  
C
0.013  
(1)  
0.614  
D
E
e
7.40  
7.60 0.291  
1.27  
0.299  
0.050  
H
10.0  
0.25  
0.40  
10.65 0.394  
0;75 0.010  
1.27 0.016  
0˚ (min.), 8˚ (max.)  
0.10  
0.419  
h
0.030  
L
0.050  
k
ddd  
0.004  
SO24  
(1) “D” dimension does not include mold flash, protusions or gate  
burrs. Mold flash, protusions or gate burrs shall not exceed  
0.15mm per side.  
0070769 C  
26/27  
L6208  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
27/27  

相关型号:

EVAL6208Q

Stepper motor driver mounting the L6208Q
STMICROELECTR

EVAL6235Q

3-phase BLDC motor driver mounting the L6235Q
STMICROELECTR

EVAL6470H

dSPIN fully integrated microstepping motor driver with motion engine and SPI
STMICROELECTR

EVAL6474H

Stepper motor driver mounting the L6474
STMICROELECTR

EVAL6482H

High power microstepping motor driver with the L6482H
STMICROELECTR

EVAL6561-80

POWER FACTOR CORRECTOR
STMICROELECTR

EVAL6563-400W

L6563 400 W FOT-controlled PFC pre-regulator
STMICROELECTR

EVAL6563-80W

L6563 80W High performanceTM PFC with active tracking boost function
STMICROELECTR

EVAL6569

THE L6569 A NEW HIGH VOLTAGE IC DRIVER FOR ELECTRONIC LAMP BALLAST
PANASONIC

EVAL6902D

L6902D 1A Constant current battery charger evaluation board
STMICROELECTR

EVAL6920D

EVAL6920D 1A high efficiency synchronous Rectifier step up converter
STMICROELECTR

EVAL6924D

EVAL6924D Battery charger system with integrated Power Switch for Li-ION/Li-POLYMER
STMICROELECTR