EVAL6561-80 [STMICROELECTRONICS]

POWER FACTOR CORRECTOR; 功率因数校正
EVAL6561-80
型号: EVAL6561-80
厂家: ST    ST
描述:

POWER FACTOR CORRECTOR
功率因数校正

功率因数校正
文件: 总13页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6561  
POWER FACTOR CORRECTOR  
1 FEATURES  
Figure 1. Packages  
VERY PRECISE ADJUSTABLE OUTPUT  
OVERVOLTAGE PROTECTION  
MICRO POWER START-UP CURRENT (50µA  
TYP.)  
SO-8  
DIP-8  
VERY LOW OPERATING SUPPLY  
CURRENT(4mA TYP.)  
Table 1. Order Codes  
INTERNAL START-UP TIMER  
CURRENT SENSE FILTER ON CHIP  
DISABLE FUNCTION  
1% PRECISION (@ Tj = 25°C) INTERNAL  
REFERENCE VOLTAGE  
Part Number  
L6561  
Package  
DIP-8  
L6561D  
SO-8  
L6561D013TR  
Tape & Reel  
TRANSITION MODE OPERATION  
TOTEM POLE OUTPUT CURRENT: ±400mA  
DIP-8/SO-8 PACKAGES  
Realised in mixed BCD technology, the chip gives  
the following benefits:  
– micro power start up current  
– 1% precision internal reference voltage  
– (Tj = 25°C)  
– Soft Output Over Voltage Protection  
– no need for external low pass filter on the cur-  
rent sense  
– very low operating quiescent current minimis-  
es power dissipation  
2 DESCRIPTION  
L6561 is the improved version of the L6560 stan-  
dard Power Factor Corrector. Fully compatible  
with the standard version, it has a superior perfor-  
mant multiplier making the device capable of work-  
ing in wide input voltage range applications (from  
85V to 265V) with an excellent THD. Furthermore  
the start up current has been reduced at few tens  
of mA and a disable function has been implement-  
ed on the ZCD pin, guaranteeing lower current  
consumption in stand by mode.  
The totem pole output stage is capable of driving  
a Power MOS or IGBT with source and sink cur-  
rents of ±400mA. The device is operating in tran-  
sition mode and it is optimised for Electronic Lamp  
Ballast application, AC-DC adaptors and SMPS.  
Figure 2. Block Diagram  
COMP  
MULT  
3
CS  
2
4
1
INV  
-
40K  
2.5V  
MULTIPLIER  
+
5pF  
VOLTAGE  
REGULATOR  
OVER-VOLTAGE  
DETECTION  
-
+
VCC  
8
VCC  
INTERNAL  
SUPPLY 7V  
R
S
Q
20V  
R1  
7
GD  
+
-
UVLO  
DRIVER  
R2  
VREF2  
ZERO CURRENT  
DETECTOR  
2.1V  
1.6V  
+
-
STARTER  
DISABLE  
6
5
D97IN547E  
GND  
ZCD  
REV. 16  
1/13  
June 2004  
L6561  
Table 2. Absolute Maximum Ratings  
Symbol  
IVcc  
Pin  
8
Parameter  
Value  
30  
Unit  
mA  
mA  
V
Iq + IZ; (IGD = 0)  
Output Totem Pole Peak Current (2µs)  
IGD  
7
±700  
INV, COMP 1, 2, 3 Analog Inputs & Outputs  
MULT  
-0.3 to 7  
CS  
4
5
Current Sense Input  
Zero Current Detector  
-0.3 to 7  
V
ZCD  
50 (source)  
-10 (sink)  
mA  
mA  
Ptot  
Power Dissipation @Tamb = 50 °C  
(DIP-8)  
(SO-8)  
1
0.65  
W
W
Tj  
Junction Temperature Operating Range  
Storage Temperature  
-40 to 150  
-55 to 150  
°C  
°C  
Tstg  
Figure 3. Pin Connection (Top view)  
INV  
1
2
3
4
8
7
6
5
VCC  
COMP  
MULT  
CS  
GD  
GND  
ZCD  
DIP8  
Table 3. Thermal Data  
Symbol  
Parameter  
SO 8  
150  
MINIDIP  
Unit  
Rth j-amb Thermal Resistance Junction to ambient  
100  
°C/W  
Table 4. Pin Description  
N.  
Name  
Function  
1
INV  
Inverting input of the error amplifier. A resistive divider is connected between the output  
regulated voltage and this point, to provide voltage feedback.  
2
3
4
COMP Output of error amplifier. A feedback compensation network is placed between this pin and the  
INV pin.  
MULT  
Input of the multiplier stage. A resistive divider connects to this pin the rectified mains. A voltage  
signal, proportional to the rectified mains, appears on this pin.  
CS  
Input to the comparator of the control loop. The current is sensed by a resistor and the resulting  
voltage is applied to this pin.  
5
6
7
ZCD  
GND  
GD  
Zero current detection input. If it is connected to GND, the device is disabled.  
Current return for driver and control circuits.  
Gate driver output. A push pull output stage is able to drive the Power MOS with peak current of  
400mA (source and sink).  
8
VCC  
Supply voltage of driver and control circuits.  
(1) Parameter guaranteed by design, not tested in production.  
2/13  
L6561  
Table 5. Electrical Characteristics  
(VCC = 14.5V; Tamb = -25°C to 125°C;unless otherwise specified)  
Symbol Pin  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
SUPPLY VOLTAGE SECTION  
VCC  
VCC ON  
VCC OFF  
Hys  
8
8
8
8
Operating Range  
Turn-on Threshold  
Turn-off Threshold  
Hysteresis  
after turn-on  
11  
11  
18  
13  
V
V
V
V
12  
9.5  
2.5  
8.7  
2.2  
10.3  
2.8  
SUPPLY CURRENT SECTION  
ISTART-U  
Iq  
8
8
8
Start-up Current  
before turn-on (VCC =11V)  
20  
50  
2.6  
4
90  
4
µA  
mA  
mA  
mA  
mA  
µA  
V
Quiescent Current  
Operating Supply Current  
ICC  
CL = 1nF @ 70KHz  
5.5  
2.1  
2.1  
90  
22  
in OVP condition Vpin1 = 2.7V  
1.4  
1.4  
50  
20  
Iq  
8
8
8
Quiescent Current  
Zener Voltage  
V
V
PIN5 150mV, VCC > VCC off  
PIN5 150mV, VCC < VCC off  
20  
18  
VZ  
ICC = 25mA  
ERROR AMPLIFIER SECTION  
VINV  
1
Voltage Feedback Input  
Threshold  
Tamb = 25°C  
2.465  
2.44  
2.5  
2.535  
2.56  
5
V
V
12V < VCC < 18V  
VCC = 12 to 18V  
Line Regulation  
Input Bias Current  
Voltage Gain  
2
-0.1  
80  
mV  
µA  
dB  
MHz  
mA  
mA  
V
IINV  
GV  
1
-1  
Open loop  
60  
GB  
Gain Bandwidth  
Source Current  
Sink Current  
1
ICOMP  
2
2
VCOMP = 4V, VINV = 2.4V  
VCOMP = 4V, VINV = 2.6V  
ISOURCE = 0.5mA  
-2  
-4  
-8  
2.5  
4.5  
5.8  
2.25  
VCOMP  
Upper Clamp Voltage  
Lower Clamp Voltage  
ISink = 0.5mA  
V
MULTIPLIER SECTION  
VMULT  
3
Linear Operating Voltage  
Output Max. Slope  
0 to 3 0 to 3.5  
V
VMULT = from 0V to 0.5V  
1.65  
1.9  
VCS  
-----------------  
Vmult  
V
COMP = Upper Clamp Voltage  
K
Gain  
V
MULT = 1V VCOMP = 4V  
0.45  
1.6  
0.6  
1.7  
0.75  
1.8  
1/V  
V
CURRENT SENSE COMPARATOR  
VCS  
4
Current Sense Reference  
Clamp  
VMULT = 2.5V  
COMP = Upper Clamp Voltage  
V
ICS  
4
4
4
Input Bias Current  
Delay to Output  
VOS = 0  
-0.05  
200  
0
-1  
450  
15  
µA  
ns  
td (H-L)  
Current Sense Offset  
mV  
ZERO CURRENT DETECTOR  
VZCD  
5
Input Threshold Voltage Rising (1)  
2.1  
V
Edge  
Hysteresis  
(1)  
0.3  
4.5  
4.7  
0.5  
5.1  
5.2  
0.7  
5.9  
6.1  
V
V
V
VZCD  
VZCD  
5
5
Upper Clamp Voltage  
Upper Clamp Voltage  
IZCD = 20µA  
IZCD = 3mA  
3/13  
L6561  
Table 5. Electrical Characteristics (continued)  
(VCC = 14.5V; Tamb = -25°C to 125°C;unless otherwise specified)  
Symbol Pin  
Parameter  
Lower Clamp Voltage  
Sink Bias Current  
Test Condition  
IZCD = -3mA  
Min.  
Typ.  
0.65  
2
Max.  
Unit  
V
VZCD  
IZCD  
IZCD  
IZCD  
VDIS  
IZCD  
5
5
5
5
5
5
0.3  
1
1V VZCD 4.5V  
µA  
Source Current Capability  
Sink Current Capability  
Disable threshold  
-3  
3
-10  
10  
mA  
mA  
mV  
µA  
150  
-100  
200  
250  
-300  
Restart Current After Disable  
VZCD < Vdis; VCC > VCCOFF  
-200  
OUTPUT SECTION  
VGD  
7
Dropout Voltage  
IGDsource = 200mA  
GDsource = 20mA  
IGDsink = 200mA  
GDsink = 20mA  
1.2  
0.7  
2
1
V
V
I
1.5  
0.3  
100  
100  
-
V
I
V
tr  
tf  
7
7
7
Output Voltage Rise Time  
Output Voltage Fall Time  
IGD Sink Current  
CL = 1nF  
40  
40  
10  
ns  
ns  
mA  
CL = 1nF  
IGD off  
VCC =3.5V VGD = 1V  
5
OUTPUT OVERVOLTAGE SECTION  
IOVP  
2
OVP Triggering Current  
Static OVP Threshold  
35  
40  
45  
µA  
2.1  
2.25  
2.4  
V
RESTART TIMER  
tSTART  
Start Timer  
70  
150  
400  
µs  
3 OVER VOLTAGE PROTECTION OVP  
The output voltage is expected to be kept by the operation of the PFC circuit close to its nominal value.  
This is set by the ratio of the two external resistors R1 and R2 (see fig. 5), taking into consideration that  
the non inverting input of the error amplifier is biased inside the L6561 at 2.5V.  
In steady state conditions, the current through R1 and R2 is:  
V
2.5  
2.5V  
R2  
out  
I
= ------------------------- = I  
= ------------  
R2  
R1sc  
R1  
and, if the external compensation network is made only with a capacitor Ccomp, the current through Ccomp  
equals zero.When the output voltage increases abruptly the current through R1 becomes:  
V
+ V  
2.5  
out  
outsc  
I
= ---------------------------------------------------- = I  
+ I  
R1sc R1  
R1  
R1  
Since the current through R2 does not change, IR1 must flow through the capacitor Ccomp and enter the  
error amplifier.  
This current is monitored inside the L6561 and when reaches about 37µA the output voltage of the multi-  
plier is forced to decrease, thus reducing the energy drawn from the mains. If the current exceeds 40µA,  
the OVP protection is triggered (Dynamic OVP), and the external power transistor is switched off until the  
current falls approximately below 10µA.  
However, if the overvoltage persists, an internal comparator (Static OVP) confirms the OVP condition  
keeping the external power switch turned off (see fig. 4).Finally, the overvoltage that triggers the OVP  
function is:  
Vout = R1 · 40µA.  
Typical values for R1, R2 and C are shown in the application circuits. The overvoltage can be set indepen-  
4/13  
L6561  
dently from the average output voltage. The precision in setting the overvoltage threshold is 7% of the ov-  
ervoltage value (for instance V = 60V ± 4.2V).  
3.1 Disable function  
The zero current detector (ZCD) pin can be used for device disabling as well. By grounding the ZCD volt-  
age the device is disabled reducing the supply current consumption at 1.4mA typical (@ 14.5V supply volt-  
age).  
Releasing the ZCD pin the internal start-up timer will restart the device.  
Figure 4.  
OVER VOLTAGE  
V
OUT nominal  
40µA  
10µA  
I
SC  
E/A OUTPUT  
2.25V  
DYNAMIC OVP  
STATIC OVP  
D97IN592A  
Figure 5. Overvoltage Protection Circuit  
Ccomp.  
+Vo  
R1  
I  
1
2
-
E/A  
X
PWM  
DRIVER  
+
R2  
2.5V  
-
+
2.25V  
I  
40µA  
D97IN591  
5/13  
L6561  
Figure 6. Typical Application Circuit (80W, 110VAC)  
D1 BYT03-400  
+
T
C6  
Vo=240V  
Po=80W  
R7 (*)  
950K  
R3 (*)  
240K  
R2  
D3 1N4150  
100  
10nF  
R1  
D2  
1N5248B  
C3 680nF  
BRIDGE  
68K  
4 x 1N4007  
+
-
C1  
1µF  
250V  
R9 (*)  
950K  
FUSE 4A/250V  
5
2
1
8
R5  
10  
MOS  
STP7NA40  
C5  
100µF  
315V  
7
4
L6561  
Vac  
(85V to 135V)  
3
6
R10  
10K  
C2  
22µF  
25V  
C7  
10nF  
NTC  
R6 (*)  
0.31  
1W  
R8  
10K  
1%  
-
D97IN549B  
(*) R3 = 2 x 120KΩ  
R6 = 0.619/2  
R7 = 2 x 475K, 1%  
R9 = 2 x 475KΩ  
TRANSFORMER  
T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A7)  
primary 90T of Litz wire 10 x 0.2mm  
secondary 11T of #27 AWG (0.15mm)  
gap 1.8mm for a total primary inductance of 0.7mH  
Figure 7. Typical Application Circuit (120W, 220VAC)  
D1 BYT13-600  
+
T
C6  
Vo=400V  
Po=120W  
R3 (*)  
440K  
R2  
D3 1N4150  
R7 (*)  
998K  
100  
10nF  
R1  
D2  
1N5248B  
C3 1µF  
BRIDGE  
68K  
4 x 1N4007  
+
-
C1  
560nF  
400V  
FUSE 2A/250V  
R9 (*)  
1.82M  
5
2
1
8
R5  
10  
MOS  
STP5NA50  
C5  
56µF  
450V  
7
4
L6561  
Vac  
(175V to 265V)  
3
6
C2  
22µF  
25V  
R10  
10K  
C7  
10nF  
NTC  
R6 (*)  
0.41  
1W  
R8  
6.34K  
1%  
-
D97IN550B  
(*) R3 = 2 x 220KΩ  
R6 = 0.82/2  
R7 = 2 x 499K, 1%  
R9 = 2 x 909KΩ  
TRANSFORMER  
T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A8)  
primary 90T of Litz wire 10 x 0.2mm  
secondary 7T of #27 AWG (0.15mm)  
gap 1.25mm for a total primary inductance of 0.8mH  
Figure 8. Typical Application Circuit (80W, Wide-range Mains)  
D1 BYT13-600  
+
T
C6  
Vo=400V  
Po=80W  
R3 (*)  
240K  
R2  
D3 1N4150  
R7 (*)  
998K  
100  
12nF  
R1  
D2  
1N5248B  
C3 1µF  
BRIDGE  
68K  
4 x 1N4007  
+
-
C1  
1µF  
400V  
FUSE 4A/250V  
R9 (*)  
1.24M  
5
2
1
8
R5  
10  
MOS  
STP8NA50  
C5  
47µF  
450V  
7
4
L6561  
Vac  
(85V to 265V)  
3
6
C2  
22µF  
25V  
C7  
10nF  
R10  
10K  
NTC  
R6 (*)  
0.41  
1W  
R8  
6.34K  
1%  
-
D97IN553B  
TRANSFORMER  
(*) R3 = 2 x 120KΩ  
R6 = 0.82/2  
R7 = 2 x 499K, 1%  
R9 = 2 x 620KΩ  
T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A8)  
primary 90T of Litz wire 10 x 0.2mm  
secondary 7T of #27 AWG (0.15mm)  
gap 1.25mm for a total primary inductance of 0.8mH  
6/13  
L6561  
Figure 9. Demo Board (EVAL6561-80) Electrical Schematic  
NTC  
2.5  
D1  
STTH1L06  
T
R4  
R5  
D8  
1N4150  
Vo=400V  
Po=80W  
C5 12 nF  
180 k 180 k  
R11  
R14  
100  
750 k  
R50 12 k  
C3 470 nF  
D2  
R1  
R12  
750 k  
750 k  
1N5248B  
R6  
68 k  
BRIDGE  
W04M  
C1  
1 µF  
400V  
C23  
1 µF  
+
-
FUSE  
4A/250V  
R2  
750 k  
5
2
1
8
3
R7  
33  
C6  
47 µF  
MOS  
7
L6561  
STP8NM50  
Vac  
(85V to 265V)  
450V  
4
6
C2  
10nF  
C29  
22 µF  
25V  
R3  
10 k  
R16  
91 k  
R15  
220  
C4  
100 nF  
D3 1N4148  
R9  
R10  
0.41  
R13  
0.41  
9.53 k  
C7  
10 µF  
35 V  
1W  
1W  
-
THD REDUCER (optional)  
Boost Inductor Spec (ITACOIL E2543/E)  
E25x13x7 core, 3C85 ferrite  
1.5 mm gap for 0.7 mH primary inductance  
Primary: 105 turns 20x0.1 mm  
Secondary: 11 turns 0.1mm  
Figure 10. EVAL6561-80: PCB and Component Layout (Top view, real size 57x108mm)  
Table 6. EVAL6561-80: Evaluation Results.  
w/o THD reducer  
with THD reducer  
Vin (Vac)  
Vo (Vdc)  
Pin (W)  
Vo (Vdc)  
Po (W)  
η (%)  
PF  
THD (%)  
3.7  
PF  
THD (%)  
2.9  
85  
87.2  
85.2  
84.2  
83.5  
83.1  
82.9  
400.1  
400.1  
400.1  
400.1  
400.1  
400.1  
14  
14  
14  
14  
14  
14  
80.7  
80.7  
80.7  
80.7  
80.7  
80.7  
92.8  
94.7  
95.8  
96.6  
97.1  
97.3  
0.999  
0.996  
0.989  
0.976  
0.940  
0.890  
0.999  
0.996  
0.989  
0.976  
0.941  
0.893  
110  
135  
175  
220  
265  
5.0  
3.2  
6.2  
3.7  
8.3  
4.3  
10.7  
13.7  
5.6  
8.1  
7/13  
L6561  
Figure 11. OVP Current Threshold vs.  
Temperature  
Figure 13. Supply Current vs. Supply  
Voltage  
D97IN548A  
D94IN047A  
I
CC  
I
OVP  
(mA)  
(µA)  
10  
5
41  
1
0.5  
0.1  
0.05  
0.01  
0.005  
0
40  
39  
38  
C
= 1nF  
L
f = 70KHz  
= 25˚C  
T
A
0
5
10  
15  
20  
V
(V)  
CC  
-50 -25  
0
25 50 75 100 125 T (˚C)  
Figure 14. Voltage Feedback Input Threshold  
vs. Temperature  
Figure 12. Undervoltage Lockout Threshold  
vs. Temperature  
D94IN048A  
V
(V)  
REF  
V
D94IN044A  
CC-ON  
(V)  
13  
2.50  
12  
11  
V
CC-OFF  
2.48  
2.46  
(V)  
10  
9
-25  
0
25  
50  
75  
100  
125  
T (˚C)  
-50  
0
50  
100  
T (˚C)  
8/13  
L6561  
Figure 15. Output Saturation Voltage vs. Sink  
Current  
Figure 17. Multiplier Characteristics  
Family  
V
V
(pin2)  
(V)  
PIN7  
(V)  
V
(pin4)  
COMP  
D94IN046  
D97IN555A  
CS  
upper voltage  
clamp  
(V)  
V
= 14.5V  
1.6  
CC  
SINK  
3.5  
5.0  
2.0  
1.5  
1.0  
0.5  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4.0  
3.2  
3.0  
2.8  
2.6  
0
100  
200  
300  
400  
I
(mA)  
GD  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
V
(pin3) (V)  
MULT  
Figure 16. Output Saturation Voltage vs.  
Source Current  
V
PIN7  
(V)  
D94IN053  
V
= 14.5V  
CC  
V
CC  
V
CC  
V
CC  
V
CC  
-0.5  
-1.0  
-1.5  
-2.0  
0
SOURCE  
0
100  
200  
300  
400  
I
(mA)  
GD  
9/13  
L6561  
Figure 18. DIP-8 Mechanical Data & Package Dimensions  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN.  
TYP. MAX. MIN.  
3.32  
TYP. MAX.  
0.131  
A
a1  
B
0.51  
1.15  
0.020  
1.65 0.045  
0.55 0.014  
0.304 0.008  
10.92  
0.065  
0.022  
b
0.356  
0.204  
b1  
D
E
0.012  
0.430  
7.95  
9.75 0.313  
2.54  
0.384  
e
0.100  
e3  
e4  
F
7.62  
0.300  
7.62  
0.300  
6.6  
0.260  
I
5.08  
0.200  
L
3.18  
3.81 0.125  
1.52  
0.150  
DIP-8  
Z
0.060  
10/13  
L6561  
Figure 19. SO-8 Mechanical Data & Package Dimensions  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN.  
TYP. MAX.  
0.069  
A
A1  
A2  
B
1.35  
0.10  
1.10  
0.33  
0.19  
4.80  
1.75 0.053  
0.25 0.004  
1.65 0.043  
0.51 0.013  
0.25 0.007  
5.00 0.189  
0.010  
0.065  
0.020  
C
0.010  
(1)  
D
0.197  
E
e
3.80  
4.00  
0.15  
0.157  
0.050  
1.27  
H
5.80  
0.25  
0.40  
6.20 0.228  
0.50 0.010  
1.27 0.016  
0˚ (min.), 8˚ (max.)  
0.10  
0.244  
h
0.020  
L
0.050  
k
ddd  
0.004  
Note: (1) Dimensions D does not include mold flash, protru-  
sions or gate burrs.  
SO-8  
Mold flash, potrusions or gate burrs shall not exceed  
0.15mm (.006inch) in total (both side).  
0016023 C  
11/13  
L6561  
Table 7. Revision History  
Date  
Revision  
Description of Changes  
January 2004  
June 2004  
15  
16  
First Issue  
Modified the Style-look in compliance with the “Corporate Technical  
Publications Design Guide”.  
Changed input of the power amplifier connected to Multiplier (Fig. 2).  
12/13  
L6561  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
13/13  

相关型号:

EVAL6563-400W

L6563 400 W FOT-controlled PFC pre-regulator
STMICROELECTR

EVAL6563-80W

L6563 80W High performanceTM PFC with active tracking boost function
STMICROELECTR

EVAL6569

THE L6569 A NEW HIGH VOLTAGE IC DRIVER FOR ELECTRONIC LAMP BALLAST
PANASONIC

EVAL6902D

L6902D 1A Constant current battery charger evaluation board
STMICROELECTR

EVAL6920D

EVAL6920D 1A high efficiency synchronous Rectifier step up converter
STMICROELECTR

EVAL6924D

EVAL6924D Battery charger system with integrated Power Switch for Li-ION/Li-POLYMER
STMICROELECTR

EVALAD5933EB

Evaluation Board for the 1 MSPS 12-Bit Impedance Converter Network Analyzer
ADI

EVALCOMMBOARD

Main interface to the controlling PC a standard 12Mbps based on a ST72F651AR6 USB microcontroller
STMICROELECTR

EVALCONTROLBRD2

1.75 MSPS, 4 mW 10-Bit-12-Bit Parallel ADCs
ADI

EVALCONTROLBRD23

1.75 MSPS, 4 mW 10-Bit/12-Bit Parallel ADCs
ADI

EVALDVBS2

Multistandard advance demodulator STB0899 Digital TV satellite set-top boxes
STMICROELECTR

EVALHVLED805

4.2 W off-line LED driver with primary side regulation
STMICROELECTR