MW6IC2015NBR1 [NXP]

1805MHz - 1990MHz RF/MICROWAVE NARROW BAND HIGH POWER AMPLIFIER, ROHS COMPLIANT, PLASTIC, CASE 1329-09, WB-16, TO-272, 16 PIN;
MW6IC2015NBR1
型号: MW6IC2015NBR1
厂家: NXP    NXP
描述:

1805MHz - 1990MHz RF/MICROWAVE NARROW BAND HIGH POWER AMPLIFIER, ROHS COMPLIANT, PLASTIC, CASE 1329-09, WB-16, TO-272, 16 PIN

高功率电源 放大器 射频 微波 功率放大器
文件: 总28页 (文件大小:1230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MW6IC2015N  
Rev. 3, 12/2008  
Freescale Semiconductor  
Technical Data  
RF LDMOS Wideband Integrated  
Power Amplifiers  
MW6IC2015NBR1  
MW6IC2015GNBR1  
The MW6IC2015N wideband integrated circuit is designed for base station  
applications. It uses Freescale’s newest High Voltage (26 to 32 Volts) LDMOS  
IC technology and integrates a multi-stage structure. Its wideband on-chip  
design makes it usable from 1805 to 1990 MHz. The linearity performances  
cover all modulation formats for cellular applications: GSM, GSM EDGE, PHS,  
TDMA, CDMA, W-CDMA and TD-SCDMA.  
1805-1990 MHz, 15 W, 26 V  
GSM/GSM EDGE, CDMA  
RF LDMOS WIDEBAND  
Final Application  
INTEGRATED POWER AMPLIFIERS  
Typical Two-Tone Performance: VDD = 26 Volts, IDQ1 = 100 mA, IDQ2  
170 mA, Pout = 15 Watts PEP, f = 1930 MHz  
Power Gain — 26 dB  
=
Power Added Efficiency — 28%  
IMD — -30 dBc  
CASE 1329-09  
TO-272 WB-16  
PLASTIC  
Driver Application  
Typical GSM EDGE Performance: VDD = 26 Volts, IDQ1 = 130 mA, IDQ2  
170 mA, Pout = 3 Watts Avg., Full Frequency Band (1805-1880 MHz or  
1930-1990 MHz)  
=
MW6IC2015NBR1  
Power Gain — 27 dB  
Power Added Efficiency — 19%  
Spectral Regrowth @ 400 kHz Offset = -69 dBc  
Spectral Regrowth @ 600 kHz Offset = -78 dBc  
EVM — 0.8% rms  
CASE 1329A-04  
TO-272 WB-16 GULL  
PLASTIC  
Capable of Handling 3:1 VSWR, @ 26 Vdc, 1990 MHz, 15 Watts CW  
Output Power  
Stable into a 3:1 VSWR. All Spurs Below -60 dBc @ 100 mW to 8 W CW  
MW6IC2015GNBR1  
Pout  
.
Features  
Characterized with Series Equivalent Large-Signal Impedance Parameters  
and Common Source Scattering Parameters  
On-Chip Matching (50 Ohm Input, DC Blocked, >5 Ohm Output)  
Integrated Quiescent Current Temperature Compensation with  
Enable/Disable Function (1)  
Integrated ESD Protection  
Designed for Lower Memory Effects and Wide Instantaneous Bandwidth Applications  
225°C Capable Plastic Package  
RoHS Compliant  
In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel  
GND  
V
NC  
NC  
NC  
1
2
3
4
5
16  
15  
GND  
NC  
DS1  
V
DS1  
RF  
V
/
out  
RF  
6
14  
RF  
RF /V  
out DS2  
in  
in  
DS2  
7
8
9
10  
NC  
V
V
GS1  
GS2  
NC  
V
V
GS1  
GS2  
Quiescent Current  
Temperature Compensation  
13  
12  
NC  
GND  
(1)  
GND  
11  
(Top View)  
Note: Exposed backside of the package is  
the source terminal for the transistors.  
Figure 1. Functional Block Diagram  
Figure 2. Pin Connections  
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control  
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.  
© Freescale Semiconductor, Inc., 2006-2008. All rights reserved.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
-0.5, +68  
-0.5, +6  
-65 to +150  
150  
Unit  
Vdc  
Vdc  
°C  
Drain-Source Voltage  
V
DSS  
Gate-Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
Input Power  
T
stg  
T
°C  
C
(1,2)  
T
225  
°C  
J
P
20  
dBm  
in  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
θ
JC  
°C/W  
Final Application  
(P = 15 W CW)  
out  
Stage 1, 26 Vdc, I  
Stage 2, 26 Vdc, I  
= 100 mA  
= 170 mA  
4.3  
1.2  
DQ1  
DQ2  
Driver Application  
(P = 3 W CW)  
out  
Stage 1, 26 Vdc, I  
Stage 2, 26 Vdc, I  
= 130 mA  
= 170 mA  
4.3  
1.3  
DQ1  
DQ2  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22-A114)  
Machine Model (per EIA/JESD22-A115)  
Charge Device Model (per JESD22-C101)  
1A (Minimum)  
A (Minimum)  
III (Minimum)  
Table 4. Moisture Sensitivity Level  
Test Methodology  
Rating  
Package Peak Temperature  
Unit  
Per JESD 22-A113, IPC/JEDEC J-STD-020  
3
260  
°C  
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Functional Tests (In Freescale 1930-1990 MHz Test Fixture, 50 ohm system) V = 26 Vdc, I  
= 100 mA, I = 170 mA, P = 15 W  
DQ2 out  
DD  
DQ1  
PEP, f1 = 1930 MHz, f2 = 1930.1 MHz, Two-Tone CW  
Power Gain  
G
24  
26  
dB  
%
ps  
Power Added Efficiency  
Intermodulation Distortion  
Input Return Loss  
PAE  
IMD  
IRL  
26  
28  
-30  
-27  
dBc  
dB  
-10  
Typical Two-Tone Performances (In Freescale Test Fixture, 50 ohm system) V = 26 Vdc, I  
= 100 mA, I  
= 170 mA, P  
=
DD  
DQ1  
DQ2  
out  
15 W PEP, 1805-1880 MHz, Two-Tone CW, 100 kHz Tone Spacing  
Power Gain  
G
26  
28  
dB  
%
ps  
Power Added Efficiency  
PAE  
IMD  
IRL  
Intermodulation Distortion  
Input Return Loss  
-30  
-10  
dBc  
dB  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access  
MTTF calculators by product.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes - AN1955.  
(continued)  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
2
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted) (continued)  
C
Characteristic  
Symbol  
Min  
Typ  
= 100 mA, I = 170 mA, 1805-1880 MHz and  
DQ2  
Max  
Unit  
Typical Performances (In Freescale Test Fixture, 50 ohm system) V = 26 Vdc, I  
DD  
DQ1  
1930-1990 MHz  
Saturated Pulsed Output Power, CW  
(8 μsec(on), 1 msec(off))  
P
35  
3
W
%
sat  
Quiescent Current Accuracy over Temperature  
with 1.8 kΩ Gate Feed Resistors (-10 to 85°C)  
ΔI  
QT  
(1)  
Gain Flatness in 30 MHz Bandwidth @ P = 3 W CW  
G
0.3  
1
dB  
out  
F
Average Deviation from Linear Phase in 30 MHz Bandwidth  
Φ
°
@ P = 3 W CW  
out  
Average Group Delay @ P = 3 W CW Including Output Matching  
Delay  
2.7  
15  
ns  
out  
Part-to-Part Insertion Phase Variation @ P = 3 W CW,  
ΔΦ  
°
out  
Six Sigma Window  
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) V = 26 Vdc, I  
= 130 mA, I = 170 mA,  
DQ2  
DD  
DQ1  
P
= 3 W Avg., 1805-1990 MHz and 1930-1990 MHz EDGE Modulation  
out  
Power Gain  
G
27  
dB  
%
ps  
Power Added Efficiency  
PAE  
EVM  
SR1  
SR2  
19  
Error Vector Magnitude  
0.8  
-69  
-78  
%
Spectral Regrowth at 400 kHz Offset  
Spectral Regrowth at 600 kHz Offset  
dBc  
dBc  
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control  
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or  
AN1987.  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
3
V
DD2  
1
2
3
4
5
DUT  
16  
V
DD1  
C2  
C3  
NC 15  
Z8  
NC  
NC  
NC  
C1  
RF  
INPUT  
RF  
OUTPUT  
C7  
C9  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
14  
6
C11  
C6  
7
8
9
NC  
C8  
C10  
C12 C13  
V
Quiescent Current  
Temperature Compensation  
GG1  
R1  
Z9  
NC 13  
12  
10 NC  
11  
C14  
C15  
V
GG2  
R2  
C4  
C5  
Z1*  
Z2  
Z3  
Z4  
Z5  
1.68x 0.08Microstrip  
0.50x 0.08Microstrip  
0.15x 0.04Microstrip  
0.13x 0.35Microstrip  
0.10x 0.35Microstrip  
Z6*  
Z7  
Z8, Z9  
PCB  
0.61x 0.04Microstrip  
1.30x 0.04Microstrip  
1.18x 0.08Microstrip  
Taconic TLX8-0300, 0.030, ε = 2.55  
r
* Variable for tuning.  
Figure 3. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — 1930-1990 MHz  
Table 6. MW6IC2015NBR1(GNBR1) Test Circuit Component Designations and Values — 1930-1990 MHz  
Part  
C1, C14, C15  
Description  
2.2 μF Chip Capacitors  
Part Number  
Manufacturer  
TDK  
C3225X5R1H225MT  
ATC100B5R6CT500XT  
C5750X5R1H106MT  
ATC100B1R0BT500XT  
ATC100B2R2BT500XT  
ATC100B0R5BT500XT  
ATC100B0R2BT500XT  
ATC100B0R1BT500XT  
CRCW12061002FKEA  
CRCW120618R0FKEA  
C2, C4, C11  
C3, C5  
C6  
5.6 pF Chip Capacitors  
10 μF Chip Capacitors  
1 pF Chip Capacitor  
ATC  
TDK  
ATC  
C7, C8  
C9, C10  
C12  
2.2 pF Chip Capacitors  
0.5 pF Chip Capacitors  
0.2 pF Chip Capacitor  
0.1 pF Chip Capacitor  
10 kΩ, 1/4 W Chip Resistor  
18 Ω, 1/4 W Chip Resistor  
ATC  
ATC  
ATC  
C13  
ATC  
R1  
Vishay  
Vishay  
R2  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
4
V
DD1  
C3  
C2  
V
DD2  
MW6IC2015, Rev. 0  
C1  
C9  
C7  
C8  
C11  
C10  
C6  
C12 C13  
C14  
R1  
V
GG1  
R2  
C15  
C4  
C5  
V
GG2  
Figure 4. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout — 1930-1990 MHz  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS — 1930-1990 MHz  
40  
0
35  
−10  
−20  
−30  
−40  
−50  
−60  
PAE  
30  
25  
20  
15  
10  
G
ps  
IRL  
IMD  
V
= 26 Vdc, P = 7.5 W (Avg.)  
out  
DD  
I
DQ1  
100 kHz Tone Spacing  
= 100 mA, I  
= 170 mA  
DQ2  
1900  
1920 1940  
1960  
1980  
2000  
f, FREQUENCY (MHz)  
Figure 5. Two-Tone Wideband Performance  
@ Pout = 7.5 Watts Avg.  
30  
25  
20  
0
G
ps  
−10  
−20  
−30  
IRL  
15  
10  
IMD  
PAE  
−40  
−50  
−60  
V
= 26 Vdc, P = 1.5 W (Avg.)  
out  
5
0
DD  
I
DQ1  
100 kHz Tone Spacing  
= 100 mA, I  
= 170 mA  
DQ2  
1900  
1920  
1940  
1960  
1980  
2000  
f, FREQUENCY (MHz)  
Figure 6. Two-Tone Wideband Performance  
@ Pout = 1.5 Watts Avg.  
−10  
31  
30  
29  
28  
27  
26  
25  
I
I
= 130 mA  
= 170 mA  
I
I
= 100 mA  
= 210 mA  
DQ1  
DQ1  
V
= 26 Vdc  
= 100 mA, I  
3rd Order  
DD  
DQ2  
DQ2  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
I
= 170 mA  
f = 1960 MHz, 100 kHz Tone Spacing  
DQ1  
DQ2  
I
= 100 mA  
= 170 mA  
DQ1  
I
DQ2  
5th Order  
I
I
= 100 mA  
= 130 mA  
DQ1  
I
I
= 70 mA  
= 170 mA  
DQ1  
DQ2  
DQ2  
7th Order  
V
= 26 Vdc  
DD  
Center Frequency = 1960 MHz  
100 kHz Tone Spacing  
24  
23  
0.1  
1
10  
30  
0.1  
1
10  
30  
P
, OUTPUT POWER (WATTS) AVG.  
out  
P
, OUTPUT POWER (WATTS) PEP  
out  
Figure 7. Two-Tone Power Gain versus  
Output Power  
Figure 8. Intermodulation Distortion Products  
versus Output Power  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
6
TYPICAL CHARACTERISTICS — 1930-1990 MHz  
48  
−30  
−40  
−50  
Ideal  
P3dB = 44.8 dBm (30 W)  
46  
3rd Order  
5th Order  
P1dB = 44 dBm (25 W)  
44  
Actual  
42  
−60  
−70  
−80  
7th Order  
V
= 26 Vdc  
DD  
V
= 26 Vdc, P = 75 W (PEP)  
out  
DD  
I
= 100 mA, I = 170 mA  
DQ2  
40  
38  
DQ1  
I
DQ1  
Two−Tone Measurements  
(f1 + f2)/2 = Center Frequency of 1960 MHz  
= 100 mA, I  
= 170 mA  
DQ2  
Pulsed CW, 8 μsec(on), 1 msec(off)  
f = 1960 MHz  
0.1  
1
10  
100  
10  
15  
20  
25  
30  
P , INPUT POWER (dBm)  
in  
TWO−TONE SPACING (MHz)  
Figure 10. Pulsed CW Output Power versus  
Input Power  
Figure 9. Intermodulation Distortion Products  
versus Tone Spacing  
35  
−25  
−30  
V
= 26 Vdc  
= 100 mA, I  
DD  
I
= 170 mA  
f1 = 1955 MHz, f2 = 1965 MHz  
DQ1  
DQ2  
30  
G
−35  
−40  
−45  
−50  
25  
20  
ps  
2−Carrier W−CDMA  
10 MHz Carrier Spacing  
3.84 MHz Channel Bandwidth  
PAR = 8.5 dB @ 0.01%  
15 Probability (CCDF)  
10  
IM3  
5
−55  
−60  
ACPR  
1
PAE  
0
10  
30  
0.1  
P
, OUTPUT POWER (WATTS) AVG.  
out  
Figure 11. 2-Carrier W-CDMA ACPR, IM3, Power  
Gain and Power Added Efficiency  
versus Output Power  
50  
40  
30  
20  
30  
28  
26  
24  
22  
20  
18  
32  
30  
28  
26  
24  
22  
T
= −30_C  
26 V  
C
25_C  
−30_C  
25_C  
30 V  
28 V  
85_C  
V
= 26 Vdc  
= 100 mA  
= 170 mA  
DD  
DQ1  
DQ2  
I
I
G
ps  
V
= 20 V  
DD  
PAE  
f = 1960 MHz  
85_C  
I
I
= 100 mA  
= 170 mA  
DQ1  
10  
0
DQ2  
f = 1840 MHz  
0
5
10  
15  
20  
25  
30  
0.1  
1
10  
30  
P
, OUTPUT POWER (WATTS) CW  
out  
P
, OUTPUT POWER (WATTS) CW  
out  
Figure 13. Power Gain versus Output Power  
Figure 12. Power Gain and Power Added  
Efficiency versus CW Output Power  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
7
TYPICAL CHARACTERISTICS — 1930-1990 MHz  
28  
27  
26  
25  
24  
−10  
−15  
−20  
−25  
−30  
32  
30  
28  
26  
24  
22  
S21  
T
= −30_C  
C
25_C  
85_C  
V
P
= 26 Vdc  
DD  
out  
= 35 dBm CW  
= 100 mA  
= 170 mA  
V
= 26 Vdc, P = 7.5 W (Avg.)  
out  
DD  
I
I
DQ1  
DQ2  
I
= 100 mA, I  
= 170 mA  
Two−Tone Measurements, Center Frequency = 1960 MHz  
DQ1  
DQ2  
S11  
1850  
1900  
1950  
2000  
2050  
2100  
1880  
1900  
1920  
1940  
1960  
1980  
2000  
2020  
f, FREQUENCY (MHz)  
f, FREQUENCY (MHz)  
Figure 15. Power Gain versus Frequency  
Figure 14. Broadband Frequency Response  
50  
40  
30  
−50  
−55  
−60  
−65  
−70  
−75  
−80  
−85  
10  
25_C  
25_C  
V
= 26 Vdc  
= 100 mA  
= 170 mA  
V
I
= 26 Vdc, I = 100 mA  
= 170 mA, f = 1960 MHz  
DD  
DQ1  
DQ2  
T
= −30_C  
85_C  
DD  
DQ1  
C
I
I
DQ2  
T
= −30_C  
C
8
6
EDGE Modulation  
f = 1960 MHz  
EDGE Modulation  
SR @ 400 kHz  
85_C  
EVM  
PAE  
20  
10  
0
4
2
0
−30_C  
SR @ 600 kHz  
85_C  
25_C  
0.1  
1
10  
30  
1
10  
30  
P
, OUTPUT POWER (WATTS) AVG.  
out  
P
, OUTPUT POWER (WATTS) AVG.  
out  
Figure 17. Spectral Regrowth at 400 and 600 kHz  
versus Output Power  
Figure 16. EVM and Power Added Efficiency  
versus Output Power  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
8
TYPICAL CHARACTERISTICS  
9
8
7
10  
10  
10  
1st Stage  
2nd Stage  
6
5
10  
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
This above graph displays calculated MTTF in hours when the device  
is operated at V = 26 Vdc, P = 15 W PEP, and PAE = 28%.  
DD  
out  
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 18. MTTF versus Junction Temperature  
GSM TEST SIGNAL  
−10  
−20  
−30  
Reference Power  
VBW = 30 kHz  
Sweep Time = 70 ms  
RBW = 30 kHz  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
400 kHz  
400 kHz  
600 kHz  
600 kHz  
−110  
Center 1.96 GHz  
200 kHz  
Span 2 MHz  
Figure 19. EDGE Spectrum  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
9
f = 1930 MHz  
f = 1990 MHz  
Z
load  
Z = 25 Ω  
o
f = 1930 MHz  
f = 1990 MHz  
Z
source  
V
= 26 Vdc, I  
= 100 mA, I = 170 mA, P = 15 W CW  
DQ2 out  
DD  
DQ1  
f
Z
Z
load  
W
source  
W
MHz  
1930  
1950  
1970  
1990  
23.37 - j21.93  
22.77 - j22.53  
22.19 - j22.20  
22.64 - j21.84  
1.62 + j0.26  
1.59 + j0.04  
1.57 - j0.16  
1.54 - j0.36  
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
Z
=
Test circuit impedance as measured  
from drain to ground.  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 20. Series Equivalent Source and Load Impedance — 1930-1990 MHz  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
10  
V
DD2  
1
2
3
4
5
DUT  
16  
V
DD1  
C2  
C3  
NC 15  
Z9  
NC  
NC  
NC  
C1  
RF  
INPUT  
RF  
OUTPUT  
C7  
C9  
Z1  
V
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Z8  
14  
6
C11  
C6  
7
8
9
NC  
C8  
C10  
C16  
C12 C13  
Quiescent Current  
Temperature Compensation  
R1  
GG1  
Z10  
NC 13  
12  
10 NC  
11  
C14  
C15  
V
GG2  
R2  
C4  
C5  
Z1*  
1.64x 0.08Microstrip  
0.54x 0.08Microstrip  
0.15x 0.04Microstrip  
0.13x 0.35Microstrip  
0.10x 0.35Microstrip  
0.26x 0.04Microstrip  
Z7*  
Z8  
Z9, Z10  
PCB  
0.41x 0.04Microstrip  
1.18x 0.04Microstrip  
1.18x 0.08Microstrip  
Z2  
Z3  
Z4  
Z5  
Z6*  
Taconic TLX8-0300, 0.030, ε = 2.55  
r
* Variable for tuning.  
Figure 21. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — 1805-1880 MHz  
Table 7. MW6IC2015NBR1(GNBR1) Test Circuit Component Designations and Values — 1805-1880 MHz  
Part  
C1, C14, C15  
Description  
2.2 μF Chip Capacitors  
Part Number  
Manufacturer  
TDK  
C3225X5R1H225MT  
ATC100B5R6CT500XT  
C5750X5R1H106MT  
ATC100A1R5BT500XT  
ATC100B2R7BT500XT  
ATC100B0R8BT500XT  
ATC100B0R1BT500XT  
ATC100B1R0BT500XT  
CRCW12061002FKEA  
CRCW120618R0FKEA  
C2, C4, C11  
C3, C5  
C6  
5.6 pF Chip Capacitors  
10 μF Chip Capacitors  
1.5 pF Chip Capacitor  
2.7 pF Chip Capacitors  
0.8 pF Chip Capacitors  
0.1 pF Chip Capacitor  
1 pF Chip Capacitor  
ATC  
TDK  
ATC  
C7, C8  
C9, C10, C12  
C13  
ATC  
ATC  
ATC  
C16  
ATC  
R1  
10 kΩ, 1/4 W Chip Resistor  
18 Ω, 1/4 W Chip Resistor  
Vishay  
Vishay  
R2  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
11  
V
DD1  
C3  
C2  
V
DD2  
MW6IC2015, Rev. 0  
C1  
C9  
C7  
C8  
C11  
C10  
C6  
C16  
C12 C13  
C14  
R1  
V
GG1  
R2  
C15  
C4  
C5  
V
GG2  
Figure 22. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout — 1805-1880 MHz  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
12  
TYPICAL CHARACTERISTICS — 1805-1880 MHz  
32  
31  
0
IRL  
−10  
−20  
−30  
−40  
−50  
−60  
30  
29  
28  
27  
26  
PAE  
IMD  
G
ps  
V
= 26 Vdc, P = 7.5 W (Avg.)  
out  
DD  
I
DQ1  
100 kHz Tone Spacing  
= 100 mA, I  
= 170 mA  
DQ2  
1800  
1820 1840  
1860  
1880  
1900  
f, FREQUENCY (MHz)  
Figure 23. Two-Tone Wideband Performance  
@ Pout = 7.5 Watts Avg.  
30  
26  
22  
18  
14  
10  
0
G
ps  
−12  
−24  
−36  
IRL  
V
= 26 Vdc, P = 1.5 W (Avg.)  
out  
DD  
I
DQ1  
100 kHz Tone Spacing  
= 100 mA, I  
= 170 mA  
DQ2  
IMD  
−48  
−60  
PAE  
1800  
1820  
1840  
1860  
1880  
f, FREQUENCY (MHz)  
Figure 24. Two-Tone Wideband Performance  
@ Pout = 1.5 Watts Avg.  
−10  
32  
31  
30  
29  
28  
27  
I
I
= 130 mA  
= 170 mA  
I
I
= 100 mA  
= 210 mA  
DQ1  
DQ1  
V
= 26 Vdc  
= 100 mA, I  
DD  
3rd Order  
DQ2  
DQ2  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
I
= 170 mA  
f = 1840 MHz, 100 kHz Tone Spacing  
DQ1  
DQ2  
I
I
= 100 mA  
= 170 mA  
DQ1  
5th Order  
DQ2  
I
I
= 100 mA  
= 130 mA  
DQ1  
I
I
= 70 mA  
= 170 mA  
DQ2  
DQ1  
DQ2  
7th Order  
26  
V
= 26 Vdc  
DD  
Center Frequency = 1840 MHz  
100 kHz Tone Spacing  
25  
24  
0.1  
1
, OUTPUT POWER (WATTS) PEP  
10  
30  
0.1  
1
10  
30  
P
, OUTPUT POWER (WATTS) PEP  
P
out  
out  
Figure 25. Two-Tone Power Gain versus  
Output Power  
Figure 26. Intermodulation Distortion  
Products versus Output Power  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
13  
TYPICAL CHARACTERISTICS — 1805-1880 MHz  
−30  
48  
Ideal  
P3dB = 44.7 dBm (30 W)  
46  
3rd Order  
5th Order  
−40  
−50  
P1dB = 44 dBm (25 W)  
44  
Actual  
V
= 26 Vdc, P = 7.5 W (Avg.), I  
= 100 mA  
DD  
out  
DQ1  
= 170 mA, Two−Tone Measurements  
42  
40  
38  
I
DQ2  
(f1 + f2)/2 = Center Frequency of 1840 MHz  
7th Order  
V
= 26 Vdc  
= 100 mA, I  
DD  
−60  
−70  
I
= 170 mA  
DQ1  
DQ2  
Pulsed CW, 8 μsec(on), 1 msec(off)  
f = 1840 MHz  
0.1  
1
10  
100  
10  
15  
20  
25  
30  
P , INPUT POWER (dBm)  
in  
TWO−TONE SPACING (MHz)  
Figure 28. Pulsed CW Output Power versus  
Input Power  
Figure 27. Intermodulation Distortion Products  
versus Tone Spacing  
40  
−20  
−25  
−30  
V
= 26 Vdc  
= 100 mA, I  
DD  
35  
30  
I
= 170 mA  
f1 = 1835 MHz, f2 = 1845 MHz  
DQ1  
DQ2  
G
2−Carrier W−CDMA  
ps  
−35  
−40  
−45  
25  
20  
15  
10  
10 MHz Carrier Spacing  
3.84 MHz Channel Bandwidth  
PAR = 8.5 dB @ 0.01%  
Probability (CCDF)  
−50  
−55  
−60  
IM3  
5
0
ACPR  
PAE  
0.1  
1
10  
30  
P
, OUTPUT POWER (WATTS) AVG.  
out  
Figure 29. 2-Carrier W-CDMA ACPR, IM3, Power  
Gain and Power Added Efficiency  
versus Output Power  
50  
30  
32  
30  
28  
26  
24  
22  
−30_C  
30 V  
28 V  
T
= −30_C  
25_C  
C
28  
40  
25_C  
26  
85_C  
30  
26 V  
24 V  
24  
PAE  
V
= 20 V  
DD  
20  
22  
20  
18  
G
ps  
85_C  
I
I
= 100 mA  
= 170 mA  
DQ1  
10  
0
DQ2  
V
= 26 Vdc, I = 100 mA  
DQ1  
= 170 mA, f = 1840 MHz  
DD  
f = 1840 MHz  
I
DQ2  
0
5
10  
15  
20  
25  
0.1  
1
10  
30  
P
, OUTPUT POWER (WATTS) CW  
out  
P
, OUTPUT POWER (WATTS) CW  
out  
Figure 30. Power Gain and Power Added  
Efficiency versus CW Output Power  
Figure 31. Power Gain versus Output Power  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
14  
TYPICAL CHARACTERISTICS — 1805-1880 MHz  
27  
26  
25  
24  
−5  
34  
32  
30  
28  
S11  
S21  
T
= −30_C  
25_C  
C
−10  
−15  
−20  
−25  
−30  
−35  
−40  
23  
22  
21  
20  
26  
24  
22  
85_C  
V
I
= 26 Vdc, P = 7.5 W (Avg.)  
out  
= 100 mA, I  
DD  
V
= 26 Vdc, P = 35 dBm CW  
out  
DD  
= 170 mA  
Two−Tone Measurements, Center Frequency = 1840 MHz  
DQ1  
DQ2  
I
= 100 mA, I  
= 170 mA  
DQ1  
DQ2  
1600  
1700  
1800  
1900  
2000  
2100  
2200  
1780  
1800  
1820  
1840  
1860  
1880  
1900  
1920  
f, FREQUENCY (MHz)  
f, FREQUENCY (MHz)  
Figure 33. Power Gain versus Frequency  
Figure 32. Broadband Frequency Response  
50  
10  
−50  
−55  
−60  
−30_C  
V
I
= 26 Vdc  
= 100 mA  
= 170 mA  
V
I
= 26 Vdc  
T
= 85_C  
DD  
DD  
T
= 25_C  
C
C
= 100 mA, I = 170 mA  
DQ2  
DQ1  
DQ2  
DQ1  
40  
30  
8
6
I
f = 1840 MHz, EDGE Modulation  
f = 1840 MHz  
EDGE Modulation  
25_C  
−30_C  
−30_C  
25_C  
−65  
−70  
SR @ 400 kHz  
85_C  
PAE  
20  
10  
0
4
2
0
−75  
EVM  
SR @ 600 kHz  
−80  
−85  
85_C  
1
10  
, OUTPUT POWER (WATTS) AVG.  
30  
0.1  
1
10  
30  
P
P
, OUTPUT POWER (WATTS) AVG.  
out  
out  
Figure 34. EVM and Power Added Efficiency  
versus Output Power  
Figure 35. Spectral Regrowth at 400 and 600 kHz  
versus Output Power  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
15  
Z = 50 Ω  
o
f = 1800 MHz  
f = 1880 MHz  
Z
load  
f = 1880 MHz  
Z
source  
f = 1800 MHz  
V
= 26 Vdc, I  
= 130 mA, I = 170 mA, P = 3 W Avg.  
DQ2 out  
DD  
DQ1  
f
Z
Z
load  
W
source  
W
MHz  
1800  
1820  
1840  
1860  
1880  
24.32 - j26.99  
23.96 - j25.93  
23.86 - j25.63  
23.01 - j24.23  
23.55 - j23.33  
1.94 - j1.29  
1.88 - j1.42  
1.83 - j1.54  
1.79 - j1.64  
1.74 - j1.75  
Z
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
=
Test circuit impedance as measured  
from drain to ground.  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 36. Series Equivalent Source and Load Impedance — 1805-1880 MHz  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
16  
TD-SCDMA CHARACTERIZATION  
V
DD2  
1
2
3
4
5
NC  
DUT  
16  
NC  
V
DD1  
C2  
C3  
NC 15  
Z9  
NC  
NC  
NC  
C1  
RF  
INPUT  
RF  
OUTPUT  
C7  
C8  
C9  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Z8  
14  
6
C10  
C6  
7
8
NC  
NC  
C11  
Quiescent Current  
Temperature  
Compensation  
9
Z10  
R1  
NC 13  
NC 12  
10  
11  
V
GG  
C12  
C13  
C14  
R2  
C4  
C5  
Z1  
Z2  
Z3  
Z4  
Z5  
0.772x 0.056Microstrip  
0.409x 0.056Microstrip  
0.138x 0.237Microstrip  
0.148x 0.237Microstrip  
0.064x 0.237Microstrip  
Z6  
Z7  
Z8  
Z9, Z10  
PCB  
0.060x 0.237Microstrip  
0.539x 0.056Microstrip  
0.190x 0.056Microstrip  
1.066x 0.078Microstrip  
Taconic TLX8, 0.020, ε = 2.55  
r
Figure 37. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — TD-SCDMA  
Table 8. MW6IC2015NBR1(GNBR1) Test Circuit Component Designations and Values — TD-SCDMA  
Part  
C1, C3, C5, C14  
C2, C4, C10  
C6  
Description  
2.2 μF Chip Capacitors  
Part Number  
C3225X5R1H225MT  
08051J5R6CBS  
08051J1R0BBS  
08051J2R7CBS  
08051J0R5BBS  
C1206CK104K5RC  
3224W  
Manufacturer  
TDK  
5.6 pF Chip Capacitors  
AVX  
1 pF Chip Capacitor  
AVX  
C7, C8  
2.7 pF Chip Capacitors  
AVX  
C9, C11  
0.5 pF Chip Capacitors  
AVX  
C12, C13  
R1, R2  
100 nF Chip Capacitors  
Kemet  
Bourns  
5 kΩ Potentiometer CMS Cermet Multi-turn  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
17  
V
V
DD2  
DD1  
C3  
C2  
C1  
MW6IC2015NB, Rev. 1  
C7 C9  
C8  
C11  
C6  
C10  
C12  
C13  
C4  
C14  
C5  
R1  
R2  
V
GG  
Figure 38. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout — TD-SCDMA  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
18  
TYPICAL CHARACTERISTICS  
−20  
−25  
−30  
−35  
4
3−Carrier TD−SCDMA  
= 28 V  
3.5  
3
V
= V  
DD1  
DD2  
= 150 mA, I  
I
DQ1  
f = 2017.5 MHz  
= 160 mA  
DQ2  
PAE  
2.5  
−40  
−45  
−50  
2
Adj−U  
1.5  
Adj−L  
1
Alt−L  
Alt−U  
−55  
−60  
0.5  
0
15  
17  
19  
21  
23  
25  
27  
P
, OUTPUT POWER (dBm) AVG.  
out  
Figure 39. 3-Carrier TD-SCDMA ACPR, ALT and  
Power Added Efficiency versus Output Power  
−20  
−25  
−30  
−35  
4
6−Carrier TD−SCDMA  
= 28 V  
3.5  
3
V
= V  
DD1  
DD2  
= 150 mA, I  
I
DQ1  
f = 2017.5 MHz  
= 160 mA  
DQ2  
PAE  
2.5  
−40  
−45  
−50  
2
Alt−L  
Adj−L  
Alt−U  
1.5  
1
Adj−U  
−55  
−60  
0.5  
0
15  
17  
19  
21  
23  
25  
27  
P
, OUTPUT POWER (dBm) AVG.  
out  
Figure 40. 6-Carrier TD-SCDMA ACPR, ALT and  
Power Added Efficiency versus Output Power  
TD-SCDMA TEST SIGNAL  
−30  
−40  
−50  
−30  
1.28 MHz  
Channel BW  
1.28 MHz  
Channel BW  
VBW = 300 kHz  
Sweep Time = 200 ms  
RBW = 30 kHz  
−40  
−50  
VBW = 300 kHz  
Sweep Time = 200 ms  
RBW = 30 kHz  
−60  
−70  
−60  
−70  
+ALT2 in  
1.28 MHz BW  
+3.2 MHz Offset  
−ALT2 in  
1.28 MHz BW  
−3.2 MHz Offset  
−ALT2 in  
1.28 MHz BW  
−3.2 MHz Offset  
+ALT2 in  
1.28 MHz BW  
+3.2 MHz Offset  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−100  
−110  
−120  
−130  
+ALT1 in  
1.28 MHz BW  
+1.6 MHz Offset  
−ALT1 in  
1.28 MHz BW  
−1.6 MHz Offset  
−ALT1 in  
1.28 MHz BW  
−1.6 MHz Offset  
+ALT1 in  
1.28 MHz BW  
+1.6 MHz Offset  
Center 2.0175 GHz  
1.5 MHz  
f, FREQUENCY (MHz)  
Span 15 MHz  
Center 2.0175 GHz  
2.5 MHz  
f, FREQUENCY (MHz)  
Span 25 MHz  
Figure 41. 3-Carrier TD-SCDMA Spectrum  
Figure 42. 6-Carrier TD-SCDMA Spectrum  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
19  
Z = 50 Ω  
o
Z
Z
load  
source  
f = 2070 MHz  
f = 2070 MHz  
f = 1950 MHz  
f = 1950 MHz  
V
= 28 Vdc, I  
= 150 mA, I  
= 160 mA  
DD  
DQ1  
DQ2  
f
Z
Z
load  
W
source  
W
MHz  
1950  
1960  
1970  
1980  
1990  
2000  
2010  
2020  
2030  
2040  
2050  
2060  
2070  
25.25 + j0.19  
25.16 + j0.34  
25.07 + j0.49  
24.98 + j0.64  
24.89 + j0.79  
24.80 + j0.94  
24.71 + j1.09  
24.63 + j1.25  
24.54 + j1.40  
24.45 + j1.56  
24.37 + j1.71  
24.28 + j1.87  
24.20 + j2.03  
1.78 + j0.33  
1.75 + j0.43  
1.72 + j0.54  
1.68 + j0.67  
1.65 + j0.78  
1.63 + j0.89  
1.62 + j1.00  
1.61 + j1.09  
1.58 + j1.19  
1.55 + j1.31  
1.50 + j1.43  
1.48 + j1.62  
1.46 + j1.65  
Z
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
=
Test circuit impedance as measured  
from drain to ground.  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 43. Series Equivalent Input and Load Impedance — TD-SCDMA  
MW6IC2015NBR1 MW6IC2015GNBR1  
20  
RF Device Data  
Freescale Semiconductor  
PACKAGE DIMENSIONS  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
21  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
22  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
23  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
24  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
25  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
26  
PRODUCT DOCUMENTATION  
Refer to the following documents to aid your design process.  
Application Notes  
AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family  
AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family  
AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
2
Feb. 2007  
Added “and TD-SCDMA” to data sheet description paragraph, p. 1.  
Updated verbiage on Typical Performances table, p. 2  
Corrected V  
and V  
callouts, Figs. 3 and 21, Test Circuit Schematic, p. 4, 11, Figs. 4 and 22, Test  
SUPPLY  
BIAS  
Circuit Component Layout, p. 5, 12  
Updated Part Numbers in Tables 6 and 7, Component Designations and Values, to RoHS compliant part  
numbers, p. 4, 11  
Adjusted scale for Figs. 7 and 25, Two-Tone Power Gain versus Output Power, Figs. 8 and 26,  
Intermodulation Distortion Products versus Output Power, Figs. 11 and 29, 2-Carrier W-CDMA ACPR, IM3,  
Power Gain and Power Added Efficiency versus Output Power, Figs. 12 and 30, Power Gain and Power  
Added Efficiency versus CW Output Power, Figs. 16 and 34, EVM and Power Added Efficiency versus  
Output Power, Figs. 17 and 35, Spectral Regrowth at 400 and 600 kHz versus Output Power, to better  
match the device’s capabilities, p. 6-8, 13-15  
2
Replaced Figure 18, MTTF versus Junction Temperature with updated graph. Removed Amps and listed  
operating characteristics and location of MTTF calculator for device, p. 9  
Corrected Series Impedance data table test conditions, Figs. 20 and 36, p. 10, 16  
Added TD-SCDMA test circuit schematic, component designations and values, component layout, typical  
characteristic curves, test signal and series impedance, p. 17-20.  
Added Product Documentation and Revision History, p. 27  
3
Dec. 2008  
Modified data sheet to reflect RF Test Reduction described in Product and Process Change Notification  
number, PCN13232, p. 1, 2  
Changed 220°C to 225°C in Capable Plastic Package bullet, p. 1  
Added Footnote 1 to Quiescent Current Temperature bullet under Features section and to callout in Fig. 1,  
Functional Block Diagram, p. 1  
Changed Storage Temperature Range in Max Ratings table from -65 to +200 to -65 to +150 for  
standardization across products, p. 2  
Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2  
Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related  
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 2  
Updated Part Numbers in Tables 6, 7, and 8 Component Designations and Values, to latest RoHS compliant  
part numbers, p. 4, 11, 17  
Removed lower voltage tests from Figs. 13 and 31, Power Gain versus Output Power, due to fixed tuned  
fixture limitations, p. 7, 14  
Adjust scale for Fig. 27, Intermodulation Distortion Products versus Tone Spacing, to show wider dynamic  
range, p. 14  
Replaced Case Outline 1329A-03 with 1329A-04, Issue F, p. 1, 24-26. Added pin numbers 1 through 17.  
Corrected mm dimension L for gull-wing foot from 4.90-5.06 Min-Max to 0.46-0.61 Min-Max. Corrected L1  
mm dimension from .025 BSC to 0.25 BSC. Added JEDEC Standard Package Number.  
Replaced Case Outline 1329-09, Issue L, with 1329-09, Issue M, p. 21-23. Added pin numbers 1 through  
17.  
MW6IC2015NBR1 MW6IC2015GNBR1  
RF Device Data  
Freescale Semiconductor  
27  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2006-2008. All rights reserved.  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MW6IC2015N  
Rev. 3, 12/2008  

相关型号:

MW6IC2015NBR1_08

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

MW6IC2240GNBR1

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

MW6IC2240N

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

MW6IC2240NBR1

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

MW6IC2420NBR1

RF LDMOS Integrated Power Amplifier
FREESCALE

MW6IC2420NBR1_08

RF LDMOS Integrated Power Amplifier
FREESCALE

MW6S004NT1

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET
FREESCALE

MW6S004NT1_07

RF Power Field Effect Transistor
FREESCALE

MW6S010

RF Power Field Effect Transistor
FREESCALE

MW6S010GMR1

RF Power Field Effect Transistor
FREESCALE

MW6S010GNR1

RF Power Field Effect Transistor
FREESCALE

MW6S010MR1

RF Power Field Effect Transistor
FREESCALE