MW6S010 [FREESCALE]

RF Power Field Effect Transistor; 射频功率场效应晶体管
MW6S010
型号: MW6S010
厂家: Freescale    Freescale
描述:

RF Power Field Effect Transistor
射频功率场效应晶体管

晶体 晶体管 功率场效应晶体管 射频
文件: 总16页 (文件大小:541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MW6S010  
Rev. 1, 5/2005  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistor  
N-Channel Enhancement-Mode Lateral MOSFETs  
Designed for Class A or Class AB base station applications with frequencies  
up to 1500 MHz. Suitable for analog and digital modulation and multicarrier  
amplifier applications.  
MW6S010NR1  
MW6S010GNR1  
MW6S010MR1  
MW6S010GMR1  
Typical Two-Tone Performance @ 960 MHz, VDD = 28 Volts, IDQ  
125 mA, Pout = 10 Watts PEP  
Power Gain — 18 dB  
=
Drain Efficiency — 32%  
IMD — -37 dBc  
Capable of Handling 10:1 VSWR, @ 28 Vdc, 960 MHz, 10 Watts CW  
Output Power  
450-1500 MHz, 10 W, 28 V  
LATERAL N-CHANNEL  
BROADBAND RF POWER MOSFETs  
Characterized with Series Equivalent Large-Signal Impedance Parameters  
On-Chip RF Feedback for Broadband Stability  
Qualified Up to a Maximum of 32 VDD Operation  
Integrated ESD Protection  
N Suffix Indicates Lead-Free Terminations  
200°C Capable Plastic Package  
In Tape and Reel. R1 Suffix = 500 Units per 24 mm, 13 inch Reel.  
CASE 1265-08, STYLE 1  
TO-270-2  
PLASTIC  
MW6S010NR1(MR1)  
CASE 1265A-02, STYLE 1  
TO-270-2 GULL  
PLASTIC  
MW6S010GNR1(GMR1)  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Vdc  
Vdc  
Drain-Source Voltage  
Gate-Source Voltage  
V
-0.5, +68  
-0.5, +12  
DSS  
V
GS  
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
61.4  
0.35  
W
W/°C  
C
D
Storage Temperature Range  
Operating Junction Temperature  
T
- 65 to +175  
200  
°C  
°C  
stg  
T
J
Table 2. Thermal Characteristics  
(1.2)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
θ
JC  
°C/W  
Case Temperature 80°C, 10 W PEP  
2.85  
1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access  
the MTTF calculators by product.  
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes - AN1955.  
NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and  
packaging MOS devices should be observed.  
Freescale Semiconductor, Inc., 2005. All rights reserved.  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
1A  
Human Body Model (per JESD22-A114)  
Machine Model (per EIA/JESD22-A115)  
Charge Device Model (per JESD22-C101)  
A
III  
Table 4. Moisture Sensitivity Level  
Test Methodology  
Rating  
Package Peak Temperature  
Unit  
Per JESD 22-A113, IPC/JEDEC J-STD-020  
1
260  
°C  
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Off Characteristics  
Zero Gate Voltage Drain Leakage Current  
I
I
I
10  
1
µAdc  
µAdc  
µAdc  
DSS  
DSS  
GSS  
(V = 68 Vdc, V = 0 Vdc)  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 28 Vdc, V = 0 Vdc)  
DS  
GS  
Gate-Source Leakage Current  
1
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
On Characteristics  
Gate Threshold Voltage  
(V = 10 Vdc, I = 100 µAdc)  
V
V
1.5  
2.3  
3.1  
3
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 28 Vdc, I = 125 mAdc)  
DS  
D
Drain-Source On-Voltage  
(V = 10 Vdc, I = 0.3 Adc)  
V
0.27  
0.35  
GS  
D
Dynamic Characteristics  
Input Capacitance  
(V = 28 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
23  
10  
pF  
pF  
pF  
iss  
GS  
Output Capacitance  
(V = 28 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Reverse Transfer Capacitance  
C
rss  
0.32  
(V = 28 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
GS  
Functional Tests (In Freescale Test Fixture, 50 ohm system) V = 28 Vdc, I  
= 125 mA, P = 10 W PEP, f = 960 MHz,  
out  
DD  
DQ  
Two-Tone Test, 100 kHz Tone Spacing  
Power Gain  
G
17.5  
31  
18  
32  
20.5  
dB  
%
ps  
Drain Efficiency  
η
D
Intermodulation Distortion  
IMD  
IRL  
-37  
-18  
-33  
-10  
dBc  
dB  
Input Return Loss  
Typical Performances (In Freescale 450 MHz Demo Board, 50 οhm system) V = 28 Vdc, I  
= 150 mA, P = 10 W PEP,  
out  
DD  
DQ  
420 MHz<Frequency<470 MHz, Two-Tone Test, 100 kHz Tone Spacing  
Power Gain  
G
20  
33  
dB  
%
ps  
Drain Efficiency  
η
D
Intermodulation Distortion  
Input Return Loss  
IMD  
IRL  
-40  
-10  
dBc  
dB  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
RF Device Data  
Freescale Semiconductor  
2
C11  
C12  
B1  
V
V
BIAS  
SUPPLY  
+
+
+
+
+
C18  
C19  
C2  
C4  
C6  
C7  
C3  
C15  
C16  
C10  
C13  
Z5  
L1  
RF  
OUTPUT  
DUT  
R1  
Z6  
Z7  
RF  
INPUT  
Z1  
Z2  
Z3  
Z4  
C20  
C14  
C17  
C1  
C5  
C8  
C9  
Z1  
Z2  
Z3  
Z4  
0.073x 0.223Microstrip  
0.112x 0.070Microstrip  
0.213x 0.500Microstrip  
0.313x 1.503Microstrip  
Z5  
Z6  
Z7  
0.313x 0.902Microstrip  
0.073x 1.080Microstrip  
0.073x 0.314Microstrip  
PCB  
Rogers ULTRALAM 2000, 0.031, ε = 2.55  
r
Figure 1. MW6S010NR1(GNR1/MR1/GMR1) Test Circuit Schematic — 900 MHz  
Table 6. MW6S010NR1(GNR1/MR1/GMR1) Test Circuit Component Designations and Values — 900 MHz  
Part  
Description  
Part Number  
2743019447  
Manufacturer  
Fair-Rite  
B1  
Ferrite Bead  
C1, C6, C11, C20  
C2, C18, C19  
C3, C16  
47 pF Chip Capacitors  
100B470JP500X  
T491D226K035AS  
13668221  
ATC  
22 µF, 35 V Tantalum Capacitors  
220 µF, 63 V Electrolytic Capacitors, Radial  
0.1 µF Chip Capacitors  
Kemet  
Phillips  
Kemet  
Johanson  
ATC  
C4, C15  
CDR33BX104AKWS  
272915L  
C5, C8, C17  
C7, C12  
0.8-8.0 pF Variable Capacitors, Gigatrim  
24 pF Chip Capacitors  
100B240JP500X  
100B6R8JP500X  
100B7R5JP500X  
A04T-5  
C9, C10, C13  
C14  
6.8 pF Chip Capacitors  
ATC  
7.5 pF Chip Capacitor  
ATC  
L1  
12.5 nH Inductor  
Coilcraft  
Vishay-Dale  
R1  
1 kChip Resistor  
CRCW12061001F100  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
RF Device Data  
Freescale Semiconductor  
3
C3  
C18  
C7  
C4  
C16  
C15  
C10  
C6  
B1  
C2  
C11  
C13  
C19  
C12  
L1  
R1  
C20  
C9  
C1  
C17  
C14  
C5  
C8  
MW6S010N  
Figure 2. MW6S010NR1(GNR1/MR1/GMR1) Test Circuit Component Layout — 900 MHz  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
RF Device Data  
Freescale Semiconductor  
4
TYPICAL CHARACTERISTICS — 900 MHz  
−8  
48  
44  
40  
η
D
−10  
−12  
−14  
−16  
IRL  
36  
32  
28  
24  
20  
16  
V
= 28 Vdc, P = 10 W (Avg.)  
out  
= 125 mA, 100 kHz Tone Spacing  
DD  
I
DQ  
−18  
−20  
−22  
IMD  
G
ps  
−24  
−26  
910  
920  
930  
940  
950  
960  
970  
f, FREQUENCY (MHz)  
Figure 3. Two-Tone Wideband Performance  
@ Pout = 10 Watts  
20  
19  
10  
I
= 190 mA  
125 mA  
DQ  
V
= 28 Vdc, I = 125 mA  
DD DQ  
3rd Order  
5th Order  
f = 945 MHz, TwoTone Measurements  
100 kHz Tone Spacing  
20  
30  
40  
50  
18  
17  
90 mA  
7th Order  
V
= 28 Vdc, f = 945 MHz  
16  
15  
DD  
60  
−70  
TwoTone Measurements  
100 kHz Tone Spacing  
0.1  
1
10  
100  
0.1  
1
10  
100  
P
, OUTPUT POWER (WATTS) AVG.  
out  
P
, OUTPUT POWER (WATTS) AVG.  
out  
Figure 4. Two-Tone Power Gain versus  
Output Power  
Figure 5. Intermodulation Distortion Products  
versus Output Power  
15  
48  
46  
44  
42  
V
I
= 28 Vdc, P = 10 W (Avg.)  
out  
= 125 mA, TwoTone Measurements  
DD  
Ideal  
20  
25  
30  
35  
40  
45  
50  
−55  
DQ  
P3dB = 43.14 dBm (20.61 W)  
Center Frequency = 945 MHz  
P1dB = 42.23 dBm (16.71 W)  
3rd Order  
5th Order  
Actual  
V
= 28 Vdc, I = 125 mA  
DQ  
DD  
40  
38  
Pulsed CW, 8 µsec(on), 1 msec(off)  
Center Frequency = 945 MHz  
7th Order  
19  
21  
23  
25  
27  
29  
0.1  
1
10  
100  
TWOTONE SPACING (MHz)  
P , INPUT POWER (dBm)  
in  
Figure 6. Intermodulation Distortion Products  
versus Tone Spacing  
Figure 7. Pulse CW Output Power versus  
Input Power  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS — 900 MHz  
50  
40  
30  
20  
−10  
−20  
−30  
−40  
V
= 28 Vdc  
= 125 mA  
DD  
I
DQ  
f = 945 MHz  
G
ps  
η
D
10  
0
−50  
−60  
ACPR  
0.1  
1
10  
P
, OUTPUT POWER (WATTS) AVG.  
out  
Figure 8. Single-Carrier CDMA ACPR, Power  
Gain and Power Added Efficiency  
versus Output Power  
20  
19  
50  
40  
30  
20  
−30_C  
25_C  
T = −30_C  
C
85_C  
G
ps  
η
D
25_C  
85_C  
18  
17  
16  
15  
V
= 28 Vdc  
= 125 mA  
10  
0
DD  
I
DQ  
f = 945 MHz  
0.1  
1
10  
100  
P
, OUTPUT POWER (WATTS) CW  
out  
Figure 9. Power Gain and Power Added  
Efficiency versus Output Power  
24  
5
19  
I
= 125 mA  
f = 945 MHz  
DQ  
20  
16  
12  
8
0
S21  
18  
17  
−5  
−10  
−15  
16  
15  
S11  
V
P
= 28 Vdc  
= 10 W CW  
DD  
out  
28 V  
32 V  
4
0
−20  
−25  
20 V  
24 V  
16 V  
I
= 125 mA  
DQ  
V
= 12 V  
2
DD  
0
4
6
8
10  
12  
14  
16  
500  
600  
700  
800  
900  
1000  
1100  
1200  
f, FREQUENCY (MHz)  
P
, OUTPUT POWER (WATTS) CW  
out  
Figure 10. Power Gain versus Output Power  
Figure 11. Broadband Frequency Response  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
RF Device Data  
Freescale Semiconductor  
6
TYPICAL CHARACTERISTICS  
8
7
6
5
10  
10  
10  
10  
90 100 110 120 130 140 150 160 170 180 190 200 210  
T , JUNCTION TEMPERATURE (°C)  
J
2
This above graph displays calculated MTTF in hours x ampere  
drain current. Life tests at elevated temperatures have correlated to  
better than 10% of the theoretical prediction for metal failure. Divide  
2
MTTF factor by I for MTTF in a particular application.  
D
Figure 12. MTTF Factor versus Junction Temperature  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
RF Device Data  
Freescale Semiconductor  
7
Z = 25 Ω  
o
f = 980 MHz  
f = 980 MHz  
Z
source  
Z
load  
f = 800 MHz  
f = 800 MHz  
V
= 28 Vdc, I = 125 mA, P = 10 W PEP  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
800  
820  
840  
860  
880  
900  
920  
940  
960  
980  
3.1 + j1.9  
2.8 + j1.7  
10.1 + j2.3  
8.3 + j2.5  
8.2 + j3.3  
9.8 + j4.8  
10.6 + j5.6  
9.5 + j5.5  
10.1 + j5.9  
11.0 + j6.4  
11.8 + j6.6  
12.1 + j7.1  
2.7 + j2.2  
3.1 + j3.4  
3.3 + j3.8  
2.9 + j3.7  
2.8 + j4.4  
3.0 + j4.7  
3.2 + j4.9  
3.6 + j5.2  
Z
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
=
Test circuit impedance as measured  
from drain to ground.  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 13. Series Equivalent Source and Load Impedance — 900 MHz  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
RF Device Data  
Freescale Semiconductor  
8
T1  
R1  
V
BIAS  
+
C1  
R2  
B1  
B2  
R5  
V
SUPPLY  
+
+
C13  
C14  
C15  
C2  
C3  
C4  
R3  
T2  
R4  
R6  
L1  
RF  
OUTPUT  
DUT  
Z6  
Z7  
Z8  
RF  
INPUT  
Z1  
Z2  
Z3  
Z4  
Z5  
C10  
C12  
C11  
C9  
C6  
C5  
C7  
C8  
Z1  
Z2  
Z3  
0.540x 0.080Microstrip  
0.365x 0.080Microstrip  
0.225x 0.080Microstrip  
0.440x 0.080Microstrip  
Z5  
Z6  
Z8  
0.475x 0.330Microstrip  
0.475x 0.325Microstrip  
1.250x 0.080Microstrip  
Z4, Z7  
PCB  
Rogers ULTRALAM 2000, 0.030, ε = 2.55  
r
Figure 14. MW6S010NR1(GNR1/MR1/GMR1) Test Circuit Schematic — 450 MHz  
Table 7. MW6S010NR1(GNR1/MR1/GMR1) Test Circuit Component Designations and Values — 450 MHz  
Part  
Description  
Part Number  
2743019447  
Manufacturer  
Fair-Rite  
B1, B2  
C1  
Ferrite Bead  
1 µF, 35 V Tantalum Capacitor  
22 µF, 35 V Tantalum Capacitors  
0.1 µF Chip Capacitors  
330 pF Chip Capacitors  
4.3 pF Chip Capacitor  
T491C105K050AS  
T491X226K035AS  
C1210C104K5RACTR  
700A331JP150X  
100B4R3JP500X  
27291SL  
Kemet  
C2, C15  
C3, C14  
Kemet  
Kemet  
C4, C9, C10, C13  
ATC  
C5  
ATC  
C6, C11  
0.6-8.0 pF Variable Capacitors  
4.7 pF Chip Capacitors  
39 µH Chip Inductor  
Johanson  
ATC  
C7, C8, C12  
100B4R7JP500X  
ISC-1210  
L1  
Vishay-Dale  
Vishay-Dale  
Vishay-Dale  
Vishay-Dale  
Vishay-Dale  
Bourns  
R1  
R2  
R3  
R4  
R5  
R6  
T1  
T2  
10 Chip Resistor (0805)  
1 kChip Resistor (0805)  
1.2 kChip Resistor (0805)  
2.2 kChip Resistor (0805)  
5 kPotentiometer  
CRCW080510R0F100  
CRCW08051001F100  
CRCW08051201F100  
CRCW08052201F100  
1224W  
1 kChip Resistor (1206)  
5 Volt Regulator, Micro 8  
NPN Transistor  
CRCW12061001F100  
LP2951  
Vishay-Dale  
On Semiconductor  
On Semiconductor  
BC847ALT1  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
RF Device Data  
Freescale Semiconductor  
9
R2 R1  
C1  
R5  
C4  
T1  
R3  
C15  
B1  
B2  
T2  
R4  
C3  
C14  
C2  
C13  
C5  
C6  
C12  
C11  
L1  
C10  
C9  
R6  
C7  
C8  
MW6S010N 450 MHz  
Figure 15. MW6S010NR1(GNR1/MR1/GMR1) Test Circuit Component Layout — 450 MHz  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
RF Device Data  
Freescale Semiconductor  
10  
TYPICAL CHARACTERISTICS — 450 MHz  
20.4  
20.2  
20  
37  
34  
G
ps  
31  
28  
19.8  
η
D
V
= 28 Vdc, P = 3 W (Avg.), I = 150 mA  
out DQ  
DD  
25  
19.6  
19.4  
19.2  
19  
2−Carrier W−CDMA, 10 MHz Carrier Spacing,  
3.84 MHz Channel Bandwidth, PAR = 8.5 dB  
@ 0.01% Probability (CCDF)  
−6  
−40  
−9  
−45  
−50  
−55  
ACPR  
IRL  
−12  
−15  
−18  
−21  
18.8  
18.6  
18.4  
ALT1  
−60  
−65  
400 410 420 430 440 450 460 470 480 490 500  
f, FREQUENCY (MHz)  
Figure 16. 2-Carrier W-CDMA Broadband Performance @ Pout = 3 Watts Avg.  
19  
18.8  
18.5  
18.3  
55  
50  
G
ps  
45  
40  
η
D
V
= 28 Vdc, P = 7.5 W (Avg.), I = 150 mA  
out DQ  
DD  
35  
18  
17.8  
17.5  
17.3  
2−Carrier W−CDMA, 10 MHz Carrier Spacing,  
3.84 MHz Channel Bandwidth, PAR = 8.5 dB  
@ 0.01% Probability (CCDF)  
−4  
−30  
−6  
−35  
−40  
−45  
ACPR  
−8  
IRL  
−10  
−12  
−14  
17  
16.8  
16.5  
ALT1  
−50  
−55  
400 410 420 430 440 450 460 470 480 490 500  
f, FREQUENCY (MHz)  
Figure 17. 2-Carrier W-CDMA Broadband Performance @ Pout = 7.5 Watts Avg.  
30  
0
10  
V
= 28 Vdc, I = 150 mA,  
DQ  
DD  
20  
30  
40  
50  
60  
f = 450 MHz, N−CDMA IS−95 Pilot,  
Sync, Paging, Traffic Codes 8  
Through 13  
25  
20  
15  
−5  
S11  
S21  
ACPR  
−10  
ALT1  
ALT2  
−15  
−20  
−25  
V
P
= 28 Vdc  
= 10 W  
= 150 mA  
DD  
out  
10  
5
70  
−80  
I
DQ  
0.1  
1
10  
50 100 150 200 250 300 350 400 450 500 550 600 650  
P
, OUTPUT POWER (WATTS) AVG.  
out  
f, FREQUENCY (MHz)  
Figure 18. Broadband Frequency Response  
Figure 19. Single-Carrier N-CDMA ACPR, ALT1  
and ALT2 versus Output Power  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
RF Device Data  
Freescale Semiconductor  
11  
Z = 25 Ω  
o
f = 500 MHz  
Z
source  
f = 500 MHz  
Z
load  
f = 400 MHz  
f = 400 MHz  
V
= 28 Vdc, I = 150 mA, P = 10 W PEP  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
400  
420  
440  
460  
480  
500  
9.0 + j3.8  
8.8 + j5.4  
15.0 + j1.4  
14.3 + j3.3  
15.0 + j4.7  
16.3 + j7.3  
16.4 + j11.1  
16.9 + j12.7  
9.6 + j6.6  
10.6 + j9.5  
10.7 + j12.6  
11.5 + j13.9  
Z
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
load  
=
Test circuit impedance as measured  
from drain to ground.  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 20. Series Equivalent Source and Load Impedance — 450 MHz  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
RF Device Data  
Freescale Semiconductor  
12  
NOTES  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
13  
RF Device Data  
Freescale Semiconductor  
PACKAGE DIMENSIONS  
E1  
B
2X  
D3  
2X  
E4  
PIN ONE ID  
M
aaa  
D A  
NOTES:  
D
M
1. CONTROLLING DIMENSION: INCH.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M−1994.  
2X  
b1  
D1  
aaa  
D A  
3. DATUM PLANE H− IS LOCATED AT TOP OF LEAD  
AND IS COINCIDENT WITH THE LEAD WHERE  
THE LEAD EXITS THE PLASTIC BODY AT THE  
TOP OF THE PARTING LINE.  
4. DIMENSIONS D1" AND E1" DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE PROTRUSION  
IS .006 PER SIDE. DIMENSIONS D1" AND E1" DO  
INCLUDE MOLD MISMATCH AND ARE DETER−  
MINED AT DATUM PLANE H−.  
5. DIMENSION b1 DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE .005 TOTAL IN EXCESS  
OF THE b1 DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
E
A
E5  
E3  
6. DATUMS A− AND −B− TO BE DETERMINED AT  
DATUM PLANE H−.  
7. DIMENSION A2 APPLIES WITHIN ZONE J" ONLY.  
8. DIMENSIONS D" AND E2" DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE PROTRUSION  
IS .003 PER SIDE. DIMENSIONS D" AND E2" DO  
INCLUDE MOLD MISMATCH AND ARE DETER−  
MINED AT DATUM PLANE D−.  
EXPOSED  
HEATSINK AREA  
PIN 1  
PIN 2  
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.98  
0.99  
1.02  
10.57  
9.60  
7.37  
0.41  
11.07  
6.04  
1.68  
3.81  
1.47  
5.87  
MAX  
2.08  
1.09  
1.07  
10.77  
9.70  
8.13  
0.61  
11.28  
6.15  
1.88  
4.57  
1.68  
5.97  
A
A1  
A2  
D
.078  
.039  
.040  
.416  
.378  
.290  
.016  
.436  
.238  
.066  
.150  
.058  
.231  
.082  
.043  
.042  
.424  
.382  
.320  
.024  
.444  
.242  
.074  
.180  
.066  
.235  
D2  
D1  
D2  
D3  
E
E1  
E2  
E3  
E4  
E5  
F
PIN 3  
BOTTOM VIEW  
.025 BSC  
0.64 BSC  
b1  
c1  
aaa  
.193  
.007  
.199  
.011  
4.90  
0.18  
5.06  
0.28  
F
.004  
0.10  
ZONE J  
DATUM  
PLANE  
c1  
H
STYLE 1:  
PIN 1. DRAIN  
2. GATE  
3. SOURCE  
A
A1  
2X  
E2  
E5  
A2  
D
NOTE 7  
CASE 1265-08  
ISSUE G  
TO-270-2  
PLASTIC  
MW6S010NR1(MR1)  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
RF Device Data  
Freescale Semiconductor  
14  
E1  
B
2X  
D3  
2X  
E4  
PIN ONE ID  
GAGE  
L1  
PLANE  
M
aaa  
C A  
L
e
A1  
D
M
2X  
b1  
D1  
DETAIL Y  
aaa  
C A  
NOTES:  
1. CONTROLLING DIMENSION: INCH.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M−1994.  
3. DATUM PLANE H− IS LOCATED AT TOP OF LEAD  
AND IS COINCIDENT WITH THE LEAD WHERE  
THE LEAD EXITS THE PLASTIC BODY AT THE  
TOP OF THE PARTING LINE.  
4. DIMENSIONS D1" AND E1" DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE PROTRUSION  
IS .006 PER SIDE. DIMENSIONS D1" AND E1" DO  
INCLUDE MOLD MISMATCH AND ARE DETER−  
MINED AT DATUM PLANE H−.  
E
A
M
bbb  
C B  
5. DIMENSION b1 DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE .005 TOTAL IN EXCESS  
OF THE b1 DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
DETAIL Y  
H
6. DATUMS A− AND −B− TO BE DETERMINED AT  
DATUM PLANE H−.  
A
A2  
7. DIMENSIONS D" AND E2" DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE PROTRUSION  
IS .003 PER SIDE. DIMENSIONS D" AND E2" DO  
INCLUDE MOLD MISMATCH AND ARE DETER−  
MINED AT DATUM PLANE D−.  
2X  
E2  
c1  
SEATING  
PLANE  
D
E5  
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.98  
0.02  
1.96  
10.57  
9.60  
7.37  
0.41  
8.03  
6.04  
1.68  
3.81  
1.47  
5.87  
4.90  
MAX  
2.08  
0.10  
2.24  
10.77  
9.70  
8.13  
0.61  
8.23  
6.15  
1.88  
4.57  
1.68  
5.97  
5.06  
A
A1  
A2  
D
.078  
.001  
.077  
.416  
.378  
.290  
.016  
.316  
.238  
.066  
.150  
.058  
.231  
.018  
.082  
.004  
.088  
.424  
.382  
.320  
.024  
.324  
.242  
.074  
.180  
.066  
.235  
.024  
E5  
E3  
EXPOSED  
D1  
D2  
D3  
E
HEATSINK AREA  
PIN 1  
PIN 2  
E1  
E2  
E3  
E4  
E5  
L
D2  
L1  
b1  
c1  
e
.01 BSC  
0.25 BSC  
.193  
.007  
.199  
.011  
4.90  
0.18  
5.06  
0.28  
°
°
°
°
8
2
8
2
aaa  
.004  
0.10  
PIN 3  
STYLE 1:  
PIN 1. DRAIN  
2. GATE  
3. SOURCE  
BOTTOM VIEW  
CASE 1265A-02  
ISSUE A  
TO-270-2 GULL  
PLASTIC  
MW6S010GNR1(GMR1)  
MW6S010NR1 MW6S010GNR1 MW6S010MR1 MW6S010GMR1  
RF Device Data  
Freescale Semiconductor  
15  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2005. All rights reserved.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MW6S010  
Rev. 1, 5/2005  

相关型号:

MW6S010GMR1

RF Power Field Effect Transistor
FREESCALE

MW6S010GNR1

RF Power Field Effect Transistor
FREESCALE

MW6S010MR1

RF Power Field Effect Transistor
FREESCALE

MW6S010NR1

RF Power Field Effect Transistor
FREESCALE

MW6S010NR1_09

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MW7IC008NT1

RF LDMOS Wideband Integrated Power Amplifier
FREESCALE

MW7IC008NT1_11

RF LDMOS Wideband Integrated Power Amplifier Stable into a 5:1 VSWR. All Spurs Below --60 dBc
FREESCALE

MW7IC18100GNR1

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

MW7IC18100NBR1

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

MW7IC18100NR1

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

MW7IC2020N

RF LDMOS Wideband Integrated
FREESCALE

MW7IC2020NT1

RF LDMOS Wideband Integrated
FREESCALE