ML7033GA [OKI]

Dual-Channel Line Card CODEC; 双通道线路卡CODEC
ML7033GA
型号: ML7033GA
厂家: OKI ELECTRONIC COMPONETS    OKI ELECTRONIC COMPONETS
描述:

Dual-Channel Line Card CODEC
双通道线路卡CODEC

电信集成电路 PC
文件: 总51页 (文件大小:442K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEDL7033-02  
This version:  
Dec. 2001  
1
Previous version: Jul. 2001  
Semiconductor  
ML7033  
Dual-Channel Line Card CODEC  
GENERAL DESCRIPTION  
The ML7033 is a 2-channel PCM CODEC CMOS IC designed for Central Office (CO) and Customer Premise  
Equipment (CPE) environments. The ML7033 device contains 2-channel analog-to-digital (A/D) and digital-to-  
analog (D/A) converters with multiplexed PCM input and output. The ML7033 is designed for single-rail, low  
power applications. The high integration of the ML7033 reduces the number of external components and overall  
board size. The ML7033 is best suited for line card applications and provides an easy interface to subscriber line  
interface circuits (SLIC’s), in particular the Intersil RSLICTM series.  
FEATURES  
Seamlessly interfaces with Intersil RSLICTM series devices  
Single 5 volt power supply (4.75 V to 5.25 V)  
-Σ ADC and DAC  
PCM format: µ-law/A-law (ITU-T G.711 compliant), 14-bit linear (2’s complement)  
Optional wideband filter for V.90 data modem applications  
Low power consumption  
- 2-channel operating mode: 115 mW (typical) 180 mW (max)  
- 1-channel operating mode: 80 mW (typical)  
115 mW (max)  
- Power-down mode:  
Power-on reset  
0.1 mW (typical)  
0.25 mW (max); PDN pin = logic “0”  
Dual programmable tone generators (300 Hz to 3400 Hz; 10 Hz intervals; 0.1 dB intervals)  
- Call progress tone, DTMF tone  
Ringing tone generator (15 Hz to 50 Hz; 1Hz intervals; 0.1 dB intervals)  
Pulse metering tone generator (12 kHz, 16 kHz; gain level selectable)  
Call ID tone generator (ITU-T V.23, Bell 202)  
Analog and digital loop back test modes  
Time-slot assignment  
Serial MCU interface  
Master clock: 2.048 MHz/4.096 MHz selectable  
Serial PCM transmission data rate: 256 kbps to 4096 kbps  
Adjustable transmit/receive gain (1 dB intervals)  
Built-in reference voltage generator  
Differential or single-ended analog output selectable  
Package: 64-pin plastic QFP (QFP64-P-1414-0.80-BK) (Ordering Part number: ML7033GA)  
1/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
BLOCK DIAGRAM  
PDN  
RESET  
MCK  
TEST  
CIDATA1  
CIDATA2  
DIO  
DEN  
EXCK  
INT  
F2_1  
F1_1  
F0_1  
E0_1  
SWC1  
BSEL1  
DET1  
ALM1  
F2_2  
F1_2  
F0_2  
E0_2  
SWC2  
BSEL2  
DET2  
ALM2  
2/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
PIN CONFIGURATION (TOP VIEW)  
1
2
3
4
5
6
7
8
N.C  
AIN1N  
GSX1  
AOUT1P  
AOUT1N  
TOUT1  
AG  
N.C  
48  
47 RESET  
RSYNC  
XSYNC  
PCMOUT  
46  
45  
44  
43  
42  
41  
PCMOSY  
PCMIN  
DG  
SG  
SGC  
AG  
9
40 BCLK  
39 MCK  
38 VDDD  
37 DIO  
10  
11  
12  
13  
14  
15  
16  
TOUT2  
AOUT2N  
AOUT2P  
GSX2  
AIN2N  
N.C  
36  
35  
34  
33  
DEN  
EXCK  
INT  
N.C  
64-Pin Plastic QFP  
3/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
PIN DESCRIPTIONS  
Pin  
1
2
3
4
5
6
7
8
Symbol  
N.C  
Type  
I
Description  
(Leave unconnected)  
AIN1N  
GSX1  
AOUT1P  
AOUT1N  
TOUT1  
AG  
SG  
SGC  
AG  
TOUT2  
AOUT2N  
AOUT2P  
GSX2  
AIN2N  
N.C  
N.C  
AIN2P  
VDDA  
CH1 Transmit Op-amp Input Negative  
CH1 Transmit Op-amp Output  
CH1 Receive Output Positive  
CH1 Receive Output Negative  
CH1 Tone Output  
O
O
O
O
O
O
O
O
O
O
I
I
O
I
Analog Ground  
Signal Ground for External Circuit  
Signal Ground for Internal Circuit  
Analog Ground  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
CH2 Tone Output  
CH2 Receive Output Negative  
CH2 Receive Output Positive  
CH2 Transmit Op-amp Output  
CH2 Transmit Op-amp Input Negative  
(Leave unconnected)  
(Leave unconnected)  
CH2 Transmit Op-amp Input Positive  
Power Supply for Internal Analog Circuit  
Power Supply for Internal Digital Circuit  
Output for SLIC2 Battery Select  
Input from SLIC2 Thermal Shut Down Alarm Detector  
Input from SLIC2 Switch Hook, Ground Key or Ring Trip Detector  
Output for SLIC2 Detector Mode Selection  
Mode Control Output to SLIC2 F0  
Mode Control Output to SLIC2 F1  
Mode Control Output to SLIC2 F2  
Output for SLIC2 Uncommitted Switch Control  
Digital Ground  
VDDD  
BSEL2  
ALM2  
DET2  
E0_2  
F0_2  
I
O
O
O
O
O
I
F1_2  
F2_2  
SWC2  
DG  
CIDATA1  
CIDATA2  
N.C  
N.C  
INT  
EXCK  
DEN  
Call ID Data Input for CH1  
Call ID Data Input for CH2  
(Leave unconnected)  
(Leave unconnected)  
I
O
I
Interrupt Output (from SLIC status)  
MCU Interface Data Clock Input  
MCU Interface Data Enable Input  
MCU Interface Control Data Input/Output  
I
DIO  
I/O  
4/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
Pin  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Symbol  
VDDD  
MCK  
BCLK  
DG  
PCMIN  
PCMOSY  
PCMOUT  
XSYNC  
RSYNC  
RESET  
N.C  
N.C  
PDN  
TEST  
DG  
BSEL1  
ALM1  
DET1  
E0_1  
F0_1  
F1_1  
F2_1  
SWC1  
VDDD  
Type  
I
I
I
O
O
I
I
I
Description  
Power Supply for Internal Digital Circuit  
Master Clock (2.048/4.096 MHz)  
PCM Data Shift Clock  
Digital Ground  
PCM Data Input  
PCM Data Output Indicator for Time-Slot Assignment  
PCM Data Output  
Transmit Synchronizing Clock Input  
Receive Synchronizing Clock Input  
Reset for Control Register  
(Leave unconnected)  
(Leave unconnected)  
Power-down Control  
LSI Manufacturer’s Test Input (keep logic “0”)  
Digital Ground  
Output for SLIC1 Battery Select  
Input from SLIC1 Thermal Shut Down Alarm Detector  
Input from SLIC1 Switch Hook, Ground Key or Ring Trip Detector  
Output for SLIC1 Detector Mode Selection  
Mode Control Output to SLIC1 F0  
I
I
O
I
I
O
O
O
O
O
I
Mode Control Output to SLIC1 F1  
Mode Control Output to SLIC1 F2  
Output for SLIC1 Uncommitted Switch Control  
Power Supply for Internal Digital Circuit  
Power Supply for Internal Analog Circuit  
CH1 Transmit Op-amp Input Positive  
(Leave unconnected)  
VDDA  
AIN1P  
N.C  
Note: In this datasheet, “1” and “2” in names for pins which respectively exist for CH1 and CH2 are often  
substituted by “n” (in a small letter).  
Ex) GSX1, GSX2  
AOUT1N, AOUT2N  
DET1, DET2  
GSXn  
AOUTnN  
DETn  
5/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
Control Register Assignment  
Address  
Register  
Data  
R/W  
B0  
A4 A3 A2 A1 A0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
Filter2  
SEL  
CH2TG CH1TG  
ON  
Filter1  
SEL  
MCK  
SEL  
CR0  
CR1  
0
0
0
0
0
0
0
0
0
1
R/W  
R/W  
SHORT  
LIN  
ALAW MODE1 MODE0  
CID  
CID  
CID  
ON  
FMT  
CH2ON CH1ON  
PMG2  
FRQ  
TSAE  
DET2  
TIM3  
PMG2  
LV1  
TSAC  
DET2  
TIM2  
PMG2  
LV0  
TSA5  
DET2  
TIM1  
PMG2  
PMG1  
FRQ  
TSA3  
DET1  
TIM3  
PMG1  
LV1  
TSA2  
DET1  
TIM2  
PMG1  
LV0  
TSA1  
DET1  
TIM1  
PMG1  
R/W  
W
CR2  
CR3  
CR4  
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
TOUT2  
TOUT1  
TSA4  
DET2  
TIM0  
TSA0  
DET1  
TIM0  
R/W  
CR5  
CR6  
0
0
0
0
1
1
0
1
1
0
LV1R3 LV1R2 LV1R1 LV1R0 LV1X3 LV1X2 LV1X1 LV1X0 R/W  
F2_1  
F1_1  
F0_1  
SWC1 BSEL1  
E0_1  
DET1* ALM1*  
R/W  
AOUT1 CH1TG2  
CH1TG2 CH1TG2 CH1TG2 CH1TG2 CH1TG2  
CH1TG2  
TOUT1  
CR7  
CR8  
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
0
0
1
1
1
0
1
0
1
R/W  
SEL  
TX  
LV3  
LV2  
LV1  
LV0  
_8  
CH1TG2 CH1TG2 CH1TG2 CH1TG2 CH1TG2 CH1TG2 CH1TG2 CH1TG2  
R/W  
R/W  
R/W  
R/W  
_7  
CH1TG1 CH1TG1 CH1TG1 CH1TG1 CH1TG1 CH1TG1 CH1TG1 CH1TG1  
LV6 LV5 LV4 LV3 LV2 LV1 LV0 _8  
CH1TG1 CH1TG1 CH1TG1 CH1TG1 CH1TG1 CH1TG1 CH1TG1 CH1TG1  
_7 _6 _5 _4 _3 _2 _1 _0  
CH2 CH2TG1 CH2TG1 CH2TG1 CH1 CH1TG1 CH1TG1 CH1TG1  
RING TRP2 TRP1 TRP0 RI NG TRP2 TRP1 TRP0  
_6  
_5  
_4  
_3  
_2  
_1  
_0  
CR9  
CR10  
CR11  
CR12  
CR13  
0
0
1
1
1
1
0
0
0
1
LV2R3 LV2R2 LV2R1 LV2R0 LV2X3 LV2X2 LV2X1 LV2X0 R/W  
F2_2  
AOUT2 CH2TG CH2TG CH2TG2 CH2TG2 CH2TG2 CH2TG2 CH2TG2  
SEL TX TOUT2 LV3 LV2 LV1 LV0 _8  
CH2TG2 CH2TG2 CH2TG2 CH2TG2 CH2TG2 CH2TG2 CH2TG2 CH2TG2  
F1_2  
F0_2  
SWC2 BSEL2  
E0_2  
DET2* ALM2*  
R/W  
CR14  
CR15  
CR16  
CR17  
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
R/W  
R/W  
R/W  
R/W  
_7  
CH2TG1 CH2TG1 CH2TG1 CH2TG1 CH2TG1 CH2TG1 CH2TG1 CH2TG1  
LV6 LV5 LV4 LV3 LV2 LV1 LV0 _8  
_6  
_5  
_4  
_3  
_2  
_1  
_0  
CH2TG1 CH2TG1 CH2TG1 CH2TG1 CH2TG1 CH2TG1 CH2TG1 CH2TG1  
_7  
_6  
_5  
_4  
_3  
_2  
_1  
_0  
CH2  
CH2  
CH1  
CH1  
CR18  
CR19  
1
1
0
0
0
0
1
1
0
1
TEST3 TEST2 TEST1 TEST0 R/W  
LOOP1 LOOP0 LOOP1 LOOP0  
TEST11 TEST10 TEST9 TEST8 TEST7 TEST6 TEST5 TEST4 R/W  
*: Read only bit  
Note: In this datasheet, numbers in names for control register bits are often substituted by “n” (in a small letter). In  
the case, the “n” does not always refer to a channel number.  
Ex) MODE0, MODE1  
MODEn  
CH1TG2_7, CH1TG2_6 CH1TG2_n  
PMG2FRQ, PMG1FRQ PMGnFRQ  
6/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Power Supply Voltage  
Analog Input Voltage  
Digital Input Voltage  
Storage Temperature  
Symbol  
VDD  
VAIN  
VDIN  
TSTG  
Condition  
VDDD, VDDA  
Rating  
–0.3 to +7.0  
–0.3 to VDD+0.3  
–0.3 to VDD+0.3  
–55 to +150  
Unit  
V
V
V
°C  
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Power Supply Voltage  
Operating Temperature  
High Level Input Voltage  
Low Level Input Voltage  
Symbol  
VDD  
TOP  
VIH  
VIL  
Condition  
Voltage to be fixed; VDDD, VDDA  
Min.  
Typ.  
5.0  
Max.  
Unit  
V
°C  
V
4.75  
–40  
2.2  
0
5.25  
+85  
VDD  
0.8  
All digital input pins  
V
MCK = 2.048 MHz  
–0.01% 2048 +0.01% kHz  
–0.01% 4096 +0.01% kHz  
MCKSEL (CR0-B5) bit = “0”  
MCK Frequency  
FMCK  
MCK = 4.096 MHz  
MCKSEL (CR0-B5) bit = “1”  
BCLK Frequency  
Sync Pulse Frequency  
Clock Duty Ratio  
Digital Input Rise Time  
Digital Input Fall Time  
MCK to BCLK Phase Difference  
FBCLK  
FSYNC  
DCLK  
tIR  
tIF  
tMB  
tXS  
tSX  
tRS  
tSR  
BCLK  
XSYNC, RSYNC  
MCK,BCLK  
256  
–0.01%  
40  
8
4096  
+0.01% kHz  
kHz  
50  
60  
50  
50  
50  
%
ns  
ns  
ns  
ns  
ns  
ns  
ns  
50  
50  
50  
50  
All digital input pins  
MCK, BCLK  
BCLK to XSYNC  
XSYNC to BCLK  
BCLK to RSYNC  
RSYNC to BCLK  
Transmit Sync Pulse Setting Time  
Receive Sync Pulse Setting Time  
XSYNC, RSYNC  
125 µs –  
1 BCLK  
210  
µs  
SHORT (CR0-B4) bit = “0”  
1BCLK  
Sync Pulse Width  
tWS  
XSYNC, RSYNC  
SHORT (CR0-B4) bit = “0”  
1BCLK  
ns  
PCMOUT Set-up Time  
PCMOUT Hold Time  
tDS  
tDH  
RDL  
CDL1  
CDL2  
CSG  
PCMOUT  
PCMOUT  
Pull-up Resistor, PCMOUT  
PCMOUT  
50  
50  
0.5  
0.1  
50  
50  
ns  
ns  
kΩ  
pF  
pF  
µF  
Digital Output Load  
Other output pins  
SGC to AG  
Bypass Capacitor for SGC  
7/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
ELECTRICAL CHARACTERISTICS  
DC and Digital Interface Characteristics  
(VDD = 4.75 to 5.25 V, Ta = –40 to +85°C)  
Parameter  
Symbol  
IDD1  
IDD2  
Condition  
2CH Operating Mode, No Signal  
1CH Operating Mode, No Signal  
Min.  
Typ.  
23.0  
16.0  
Max.  
35.0  
22.0  
Unit  
mA  
mA  
Power Supply Current  
Power-down Mode  
PDN pin = logic “0”  
All Digital Input Pins  
VI = VDD  
All Digital Input Pins  
VI = 0 V  
IDD4  
IIH  
25.0  
0.1  
50.0  
5.0  
µA  
µA  
µA  
High Level Input Leakage Current  
Low Level Input Leakage Current  
Digital Output Low Voltage  
IIL  
–5.0  
–0.1  
VOL1  
VOL2  
VOH  
IO  
PCMOUT, Pull-up = 0.5 kΩ  
Other output pins, IOL = –0.4 mA  
IOH = 0.4 mA  
PCMOUT High Impedance State  
0
0
2.5  
0.2  
0.2  
5
0.4  
0.4  
10  
V
V
V
µA  
pF  
Digital Output High Voltage  
Digital Output Leakage Current  
Input Capacitance  
CIN  
Analog Interface Characteristics  
(VDD = 4.75 to 5.25 V, Ta = –40 to +85°C)  
Parameter  
SG, SGC Output Voltage  
Symbol  
VSG  
Condition  
SGC to AG 0.1 µF  
SGC to AG 0.1 µF  
Rise time to 90% of max. level  
SG  
Min.  
Typ.  
2.4  
Max.  
Unit  
V
SG, SGC Rise Time  
tSGC  
10  
ms  
SG Output Load Resistance  
RLSG  
10  
kΩ  
Transmit Analog Interface Characteristics  
(VDD = 4.75 to 5.25 V, Ta = –40 to +85°C)  
Parameter  
Input Resistance  
Output Load Resistance  
Output Load Capacitance  
Output Amplitude  
Symbol  
RINX  
RLGX  
CLGX  
VOGX  
Condition  
AINnN, AINnP  
GSXn  
Min.  
20  
Typ.  
10  
Max.  
Unit  
MΩ  
kΩ  
(to SGC)  
*1  
30  
pF  
2.226 Vpp  
Offset Voltage  
VOSGX  
Gain = 1  
–50  
50  
mV  
*1 –3.0 dBm (600) = 0 dBm0  
8/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
Receive Analog Interface Characteristics  
(VDD = 4.75 to 5.25 V, Ta = –40 to +85°C)  
Parameter  
Symbol  
RLAO  
Condition  
AOUTnN, AOUTnP  
(to SGC)  
Min.  
Typ. Max. Unit  
20  
kΩ  
Output Load Resistance  
TOUTn  
(to SGC)  
AOUTnN, AOUTnP, TOUTn  
AOUTnN, AOUTnP, TOUTn  
RLAO = 20 k(to SGC)  
RLTO  
CLAO  
VOAO  
10  
kΩ  
Output Load Capacitance  
Output Amplitude  
50  
pF  
3.4* Vpp  
AOUTnN, AOUTnP, TOUTn  
Offset Voltage  
VOSAO  
–100  
100  
mV  
R
LAO = 20 k(to SGC)  
*
0.658 dBm (600) = 0 dBm0  
9/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
AC Characteristics  
(VDD = 4.75 to 5.25 V, Ta = –40 to +85°C)  
Condition  
Level  
(dBm0)  
Parameter  
Symbol  
Min.  
Typ.  
Max. Unit  
Freq.  
(Hz)  
Loss T1  
Loss T2  
Loss T3  
Loss T4  
Loss T5  
Loss T6  
Loss R1  
Loss R2  
Loss R3  
Loss R4  
Loss R5  
SDT1  
SDT2  
SDT3  
SDT4  
SDT5  
SDR1  
SDR2  
SDR3  
SDR4  
60  
300  
25  
–0.15  
45  
0.15  
Reference  
0.02  
0.1  
0.20  
GSXn to  
1020  
3000  
3300  
3400  
100  
1020  
3000  
3300  
3400  
Transmit  
Frequency Response  
PCMOUT  
0
0
dB  
–0.15  
–0.15  
0
0.20  
(Attenuation)  
0.80  
0.80  
0.2  
0.6  
–0.15  
0.04  
Reference  
0.07  
0.2  
PCMIN to  
AOUTn  
(Attenuation)  
Receive  
Frequency Response  
–0.15  
–0.15  
0
36  
36  
36  
30  
25  
36  
36  
36  
30  
25  
0.2  
0.8  
0.8  
dB  
dB  
dB  
dB  
dB  
0.6  
43  
40  
38  
32  
29  
42  
39  
3
0
–30  
–40  
–45  
3
Transmit  
Signal to Distortion  
Ratio  
GSXn to  
PCMOUT  
1020  
1020  
1020  
1020  
*1  
0
Receive  
Signal to Distortion  
Ratio  
PCMIN to  
AOUTn  
–30  
–40  
–45  
3
–10  
–40  
–50  
–55  
3
–10  
–40  
–50  
–55  
39  
33  
30  
0.2  
*1  
SDR5  
GTT1  
GTT2  
GTT3  
GTT4  
GTT5  
GTR1  
GTR2  
–0.2  
0.02  
Reference  
0.06  
0.4  
0.4  
0
Reference  
–0.02  
–0.1  
–0.2  
Transmit  
Gain Tracking  
GSXn to  
PCMOUT  
–0.2  
–0.6  
–1.2  
–0.2  
0.2  
0.6  
1.2  
0.2  
Receive  
Gain Tracking  
PCMIN to  
AOUTn  
GTR3  
GTR4  
GTR5  
–0.2  
–0.6  
–1.2  
0.2  
0.6  
1.2  
*1 C-message filter used  
10/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
AC Characteristics (Continued)  
(VDD = 4.75 to 5.25 V, Ta = –40 to +85°C)  
Condition  
Parameter  
Symbol  
NIDLET  
Min.  
Typ.  
9
Max. Unit  
Freq.  
(Hz)  
Level  
(dBm0)  
Analog input = SGC*1  
15  
AINn to PCMOUT  
Gain = 1 -law)  
Idle Channel Noise  
dBm0  
10  
PCMIN = ‘FF’h (µ-law)  
PCMIN = ‘D5’h (A-law)  
PCMIN = all ‘0’ (linear)*1  
NIDLER  
0
4
PCMIN to AOUTn  
GSXn to PCMOUT  
0.511 0.548 0.587  
0.806 0.835 0.864  
VDD = 5 V, Ta = 25°C  
Absolute Level  
(Initial Difference)  
AVT/AVR  
Vrms  
PCMIN to AOUTn  
(Single-ended)  
1020  
1020  
VDD = 5 V, Ta = 25°C  
Absolute Level  
AVTT  
AVRT  
–0.3  
–0.3  
0.3  
0.3  
VDD = 4.75 to 5.25 V  
Ta = –40 to 85°C  
(Deviation of  
dB  
ms  
Temperature and Power)  
A to A Mode  
Absolute Delay  
TD  
0
0
0.58  
0.6  
BCLK = 2048 kHz  
TGD T1  
TGD T2  
TGD T3  
TGD T4  
TGD T5  
TGD R1  
TGD R2  
TGD R3  
TGD R4  
TGD R5  
CRT  
500  
600  
1000  
2600  
2800  
500  
75  
75  
75  
0.26  
0.16  
0.02  
0.05  
0.07  
0.00  
0.00  
0.00  
0.09  
0.12  
83  
0.75  
0.35  
0.125  
0.125  
0.75  
0.75  
0.35  
0.125  
0.125  
0.75  
Transmit Group Delay  
*2  
ms  
600  
Receive Group Delay  
1000  
2600  
2800  
0
0
*2  
ms  
dB  
Trans to Receive  
Receive to Trans  
Channel to Channel  
Cross Talk  
Attenuation  
CRR  
CRCH  
1020  
80  
78  
4.6 to  
72k  
Discrimination  
DIS  
0
0
0
0 to 4 kHz  
4.6 to 1000 kHz  
0 to 4 kHz  
30  
32  
dB  
dB  
300 to  
Out of Band Spurious  
OBS  
–37.5  
–35  
3.4K  
SFDT  
SFDR  
IMDT  
IMDR  
40  
50  
40  
50  
–50  
–48  
–50  
–54  
44  
55  
45  
56  
–40  
–40  
–40  
–40  
Signal Frequency  
Distortion  
1020  
dBm0  
fa = 470  
fb = 320  
PSRT1 0 to 4k  
PSRT2 4 to 50k  
PSRR1 0 to 4k  
PSRR2 4 to 50k  
Intermodulation Distortion  
–4  
2 fa – fb  
*3  
dBm0  
dB  
Power Supply Noise  
Rejection Ratio  
100  
mVrms  
*1 C-message filter used  
*2 Minimum value of the group delay distortion  
*3 Under idle channel noise  
11/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
AC Characteristics (Continued)  
(VDD = 4.75 to 5.25 V, Ta = –40 to +85°C)  
Parameter  
Symbol  
tSD  
tXD1  
tXD2  
tXD3  
tXD4  
Condition  
PCMOUT  
Pull-up resister = 0.5 kΩ  
CL = 50 pF and 1 LSTTL  
Min.  
Typ.  
Max.  
100  
100  
100  
100  
100  
Unit  
ns  
Digital Output Delay Time  
PCMOSY, CL = 50 pF  
ns  
ms  
ms  
PCMOUT Operation Delay  
Time  
AOUTn/TOUTn Signal Output  
Delay Time  
Time to operation  
after Power-down release  
Time to baseband signal output  
after power-on  
tDDO  
4
tDAO  
4
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
t11  
fEXCK  
t20  
t21  
t22  
t23  
t24  
50  
50  
50  
50  
100  
50  
50  
50  
50  
0.5  
20  
50  
50  
10  
200  
200  
200  
225  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
µs  
ns  
ns  
ms  
Serial Port I/O Setting Time  
CLOAD = 50 pF  
EXCK Clock Frequency  
EXCK  
SLIC Interface Delay Time  
12/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
TIMING DIAGRAM  
Transmit Timing - 8-bit PCM Mode with LIN (CR0-B3) bit = “0”  
Long Frame Sync Mode with SHORT (CR0-B4) bit = “0”  
MCK  
tMB  
3
BCLK  
1
2
4
5
6
7
8
tXS  
tSX  
XSYNC  
PCMOUT  
PCMOSY  
tWS  
tXD2  
D4  
tXD1  
tXD3  
tSD  
MSD  
D2  
D3  
D5  
D6  
D7  
D8  
tXD4  
Short Frame Sync Mode with SHORT (CR0-B4) bit = “1”  
MCK  
tMB  
3
BCLK  
1
2
4
5
6
7
8
tSX  
tXS  
XSYNC  
PCMOUT  
PCMOSY  
tXD2  
D3  
tWS  
tXD3  
tXD1  
MSD  
D2  
D4  
D5  
D6  
D7  
D8  
tXD4  
Figure 1 Transmit Side Timing Diagram  
Receive Timing - 8-bit PCM Mode with LIN (CR0-B3) bit = “0”  
Long Frame Sync Mode with SHORT (CR0-B4) bit = “0”  
MCK  
tMB  
1
2
3
4
5
6
7
8
BCLK  
tRS  
tSR  
RSYNC  
PCMIN  
tW S  
tDS  
tDH  
MSD  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
Short Frame Sync Mode with SHORT (CR0-B4) bit = “1”  
MCK  
tMB  
1
2
3
4
5
6
7
8
BCLK  
tSR  
tRS  
RSYNC  
PCMIN  
tW S  
tDS  
tDH  
MSD  
D2  
D3  
D4  
D5  
D6  
D7  
Figure 2 Receive Side Timing Diagram  
Note: The above timings are also valid in 14-bit linear PCM Mode with the LIN (CR0-B3) bit = “1”,  
except that the number of data bits on the PCMIN and PCMOUT signals changes from 8 to 14.  
13/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
PCM Interface Bit Configuration  
8-bit PCM Mode with LIN (CR0-B3) bit =”0” & Long Frame Sync Mode with SHORT (CR0-B4) bit = “0”  
1
9
17  
25  
1
BCLK  
RSYNC  
PCMIN  
PCMOUT  
CH1 PCM DATA  
CH2 PCM DATA  
PCMOSY  
14-bit Linear PCM Mode with LIN (CR0-B3) bit = ”1” & Long Frame Sync Mode with SHORT (CR0-B4) bit = “0”  
1
9
17  
25  
1
BCLK  
RSYNC  
PCMIN  
PCMOUT  
CH1 Linear DATA  
CH2 Linear DATA  
PCMOSY  
8-bit PCM Mode with LIN (CR0-B3) bit = “0” & Short Frame Sync Mode with SHORT (CR0-B4) bit = “1”  
1
9
17  
25  
1
BCLK  
RSYNC  
PCMIN  
PCMOUT  
CH1 PCM DATA  
CH2 PCM DATA  
PCMOSY  
14-bit Linear PCM Mode with LIN (CR0-B3) bit = “1” & Short Frame Sync Mode with SHORT (CR0-B4) bit = “1”  
1
9
17  
25  
1
BCLK  
RSYNC  
PCMIN  
PCMOUT  
CH1 Linear DATA  
CH2 Linear DATA  
PCMOSY  
Figure 3 PCM Interface Bit Configuration  
14/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
SGC, PCMOUT, and AOUT Output Timing  
Figure 4 SGC, PCMOUT, and AOUT Output Timing  
15/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
MCU Serial Interface  
DEN  
t2  
t5  
t10  
15  
EXCK  
1
2
3
4
5
6
13  
14  
t9  
t6  
t7  
t1  
t3  
t4  
DIO  
W
A4  
A4  
A3  
A3  
A2  
A2  
A1  
t8  
A0  
A0  
B1  
B1  
B0  
B0  
(Write)  
t11  
DIO  
R
A1  
(Read)  
Figure 5 MCU Serial Interface  
SLIC Interface  
DEN  
15  
t20  
16  
13  
14  
EXCK  
SLIC_I/F *5  
E0_n  
t21  
*5 SLIC_I/F = F2_n pin, F1_n pin, F0_n, SWCn pin, BSELn pin  
Figure 6 SLIC Interface 1 (to SLIC)  
ALMn  
DETn  
pin,or  
Either  
pin or  
ALMn, DETn  
DEN pin (CR6 and CR13)  
t23  
t23  
t22  
INT  
INT  
ALMn  
)
(from  
(from  
DETn  
)
t24  
Figure 7 SLIC Interface 2 (from SLIC)  
* The INT pin driven to a logic “1” in either of the following cases;  
(1) (PDN pin = logic “1”) Any of the ALMn or DETn pins (maximum 4 pins concerned) in a logic “0”  
state go to logic “1”.  
(2) (PDN pin = logic “0”) All of the ALMn or DETn pins (maximum 4 pins concerned) in a logic “0” state  
go to logic “1”.  
(3) Both SLIC 1 control (CR6) and SLIC 2 control (CR13) are read by the MCU.  
16/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
FUNCTIONAL DESCRIPTION  
Pin Functional Description  
AIN1N, AIN1P, AIN2N, AIN2P, GSX1, GSX2  
The AINnN and AINnP pins are the transmit path analog inputs for Channel-n, where n equals channel 1 or  
channel 2. The AINnN pin is the inverting input, and the AINnP pin is the non-inverting input for the op-amp.  
The GSXn pin functions as the transmit path level adjustment for Channel-n and is connected to the output of the  
op-amp. It is used to adjust the output level as shown in Figure 8 below.  
When the AINnN or AINInP pins are not in use, connect the AINnN pin to the GSXn pin and the AINnP pin to  
the SGC pin. During power-down mode, the GSXn output is in a high impedance state.  
In the case of the analog input 2.226 Vpp at the GSXn pin, the digital output will be +3.00 dBm0.  
GSX1  
CH1 Gain  
Gain = R2/R1 10  
R1: Variable  
R2  
AIN1N  
AIN1P  
CH1  
Analog  
Input  
R2 > 20 kΩ  
C1 R1  
C1 > 1/(2 × 3.14 × 30 × R1)  
SGC  
CH2 Gain  
Gain = R4/R3 10  
R3: Variable  
GSX2  
R4  
AIN2N  
AIN1P  
R4 > 20 kΩ  
CH2  
C2 > 1/(2 × 3.14 × 30 × R3)  
Analog  
Input  
C2 R3  
SGC  
Figure 8 Example of Analog Input Setting Schematic  
AOUT1P, AOUT1N, AOUT2P, AOUT2N  
The AOUTnN and AOUTnP pins are the receive path analog outputs from Channel-n, where n equals channel 1  
or channel 2. These pins can drive a load of 20 kor more. When the AOUTnSEL register bit (CR7-B7/CR14-  
B7) is cleared (0), the AOUTnP pin is a single-ended output from Channel-n and the AOUTnN pin is at high  
impedance. When the AOUTnSEL bit is set (1), the AOUTnN and AOUTnP pins are differentials outputs from  
the corresponding channel.  
The output signal from each of these pins has an amplitude of 3.4 Vpp above and below the signal ground  
voltage (SG). Hence, when the maximum PCM code (+3.00 dBm0) is input to the PCMIN pin, the maximum  
amplitude between the AOUTnN pin and the AOUTnP pin will be 6.8 Vpp.  
While the device is in power-down mode, or the corresponding channel (1 or 2) is in power saving mode, the  
related outputs are high impedance. Refer to Table 5 for more information.  
17/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
TOUT1, TOUT2  
TOUTn is the tone analog output for the corresponding channel. The output signal has an amplitude of 2.5 Vpp  
above and below the signal ground voltage (SG). While the device is in power-down mode, or the corresponding  
channel is in power-save mode, the related outputs are high impedance.  
VDDA, VDDD  
+5 V power supply for analog and digital circuits. The VDDA pin is the power pin for the analog circuits. The  
V
DDD pin is the power pin for the digital circuits. If these signals are connected together externally, The VDDA pin  
must be connected to the VDDD pin in the shortest distance on the printed circuit board. Internal to the ML7033,  
the VDDA plane is separate from the VDDD plane.  
To minimize power supply noise, a 0.1 µF bypass capacitor (with excellent high frequency characteristics) and a  
10 µF electrolytic capacitor should be connected between the VDDA pin and the AG pin. In addition, the same  
capacitive network should also be connected between the VDDD pin and the DG pin. If the AG and DG pins are  
connected together externally, only one capacitive network is required.  
AG, DG  
The AG pin is a ground for the analog circuits. The DG pin is a ground for the digital circuits.  
The analog ground and the digital ground are separated internally within the device. The AG pin and DG pins  
must be connected in the shortest distance on the printed circuit board, and then to system ground with a low  
impedance.  
SGC  
The SGC pin used is to internally generate the signal ground voltage level by connecting a bypass capacitor. The  
output impedance is approximately 50 k. Connect a 0.1 µF bypass capacitor with excellent high frequency  
characteristics between the SGC pin and the AG pin. During power-down mode, the SGC output is at the voltage  
level of the AG pin.  
SG  
The SG pin is the signal ground level output for the system circuits. The output voltage is 2.4 V, the as same as  
the SGC pin in a normal operating state. During power-down mode, this output is high impedance.  
MCK  
Master clock input. Input either 2.048 or 4.096 MHz clock. After turning on the power, the appropriate value  
must be written into the MCKSEL bit (CR0-B5) depending upon the desired master clock frequency.  
If the supplied master clock frequency and the value of the MCKSEL bit (CR0-B5) do not match, the power-  
down control circuit and the MCU interface circuit will continue to operate properly. Access to the control  
registers can also occur. However, other circuits may not operate properly.  
As for the power-on sequence, please refer to “Power-On Sequence” in the later page.  
18/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
BCLK  
Shift clock signal input for the PCMIN and the PCMOUT signals. The clock frequency, equal to the data rate, is  
256 kHz to 4096 kHz. This signal must be generated from the same clock source as the master clock and  
synchronized in phase with the master clock. Please refer to Figures 1 and 2 for more information about the  
phase difference between MCK and BCLK.  
RSYNC  
Receive synchronizing clock input. The PCMIN signals are received in synchronization with this clock. The 8  
kHz input clock is generated from the identical clock source as MCK and must be synchronized in phase with  
the master clock.  
XSYNC  
Transmit synchronizing clock input. The PCMOUT signals are transmitted in synchronization with this clock.  
The 8 kHz input clock is generated from the identical clock source as MCK and must be synchronized in phase  
with the master clock.  
PCMIN  
Serial PCM data input. The serial PCM data input on the PCMIN pin is converted to analog signals and output  
from the AOUTnP pin (or from the AOUTnN pin and the AOUTnP pin) in synchronization with the RSYNC  
clock and the BCLK clock.  
When in Long Frame Sync Mode (CR0-B4 = “0”), the first bit of the serial PCM data (MSD of channel 1) is  
identified at the rising edge of the RSYNC clock.  
When in Short Frame Sync Mode (CR0-B4 = “1”), the first bit of the serial PCM data (MSD of channel 1) is  
identified at the falling edge of the RSYNC clock.  
PCMOUT  
Serial PCM data output. Channel 1 data is output in sequential order, from most significant data (MSD) to least  
significant data (LSD). Data is synchronized with the rising edge of BCLK.  
When in Long Frame Sync Mode (CR0-B4 = “0”), the first bit of PCM data may be output at the rising edge of  
the XSYNC signal, depending on the timing between BCLK and XSYNC.  
When in Short Frame Sync Mode (CR0-B4 = “1”), the first bit of PCM data may be output at the falling edge of  
the XSYNC signal, depending on the timing between BCLK and XSYNC.  
This pin is in a high impedance state during power-down. A pull-up resistor must be connected to this pin since  
it is an open drain output.  
PCMOSY  
PCMOSY is asserted to a logic 0 when PCM data is valid on the PCMOUT pin. This includes both normal mode  
and power-save mode.  
When PCM data is not being output from the PCMOUT pin (including during power-down mode), this pin goes  
a logic “1”.  
This signal is used to control the TRI-STATE Enable of a backplane line-driver.  
19/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
Table 1 PCM Codes in 8-bit PCM Mode with the LIN (CR0-B3) bit = “0”  
PCMIN/PCMOUT  
ALAW (CR0-B2) bit = “0” (µ-law ) ALAW (CR0-B2) bit = “1” (A-law )  
MSD D2 D3 D4 D5 D6 D7 D8 MSD D2 D3 D4 D5 D6 D7 D8  
INPUT/OUTPUT  
Level  
+Full scale  
+0  
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
0
0
0
1
1
0
1
0
0
1
0
1
1
0
1
0
0
1
0
1
1
0
1
0
0
1
0
1
1
0
–0  
–Full scale  
Table 2 PCM Codes in 14-bit Linear PCM Mode with the LIN (CR0-B3) bit = “1”  
PCMIN/PCMOUT  
MSD D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14  
INPUT/OUTPUT  
Level  
+Full scale  
0
0
0
1
1
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
1
0
1
0
+1  
0
–1  
–Full scale  
PDN  
Power-down control signal. When PDN is a asserted (logic “0”), both the channel 1 and channel 2 circuits enter  
the power-down state. However, even in power-down mode, the state of the control registers is maintained.  
Reads and writes to the registers are also possible, and the state of the INT pin also changes in accordance with  
inputs from the SLIC devices. This pin is deasserted (logic “1”) by external logic during normal operation.  
This power-down function is available even in power saving mode by the MODEn (CR0-B1/CR0-B0) bit.  
RESET  
An input to reset control registers. By asserting the RESET pin (applying a logic “0”), all control registers are  
initialized. During a normal operation mode, set this pin logic “1”.  
Table 3 State of PCMOUT in 8-bit PCM Mode with LIN (CR0-B3) bit = 0”  
PDN pin  
MODE1 bit  
0/1  
MODE0 bit  
0/1  
ALAW bit  
CH2 PCM Data  
Hi-Z *1  
CH1 PCM Data  
Hi-Z *1  
1 1 1 1 1 1 1 1  
1 1 0 1 0 1 0 1  
Operate  
0
0/1  
0
1
0
1
0
1
0
1
1 1 1 1 1 1 1 1  
1 1 0 1 0 1 0 1  
1 1 1 1 1 1 1 1  
1 1 0 1 0 1 0 1  
Operate  
1
1
1
1
0
0
1
1
0
1
0
1
Operate  
1 1 1 1 1 1 1 1  
1 1 0 1 0 1 0 1  
Operate  
Operate  
Operate  
Operate  
Operate  
20/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
Table 4 State of PCMOUT in 14-bit Linear PCM Mode with LIN (CR0-B3) bit = “1”  
PDN pin  
MODE1 bit  
MODE0 bit  
ALAW bit  
CH2 PCM Data  
Hi-Z *1  
CH1 PCM Data  
Hi-Z *1  
0
1
1
1
1
0/1  
0
0
1
1
0/1  
0
1
0
1
ALL “0”  
ALL “0”  
Operate  
Operate  
ALL “0”  
Operate  
ALL “0”  
0/1  
Operate  
Table 5 State of Analog Output Pins  
PDN MODE1 MODE0 GSX1  
GSX2  
pin  
Hi-Z  
AOUT1  
pin  
Hi-Z  
AOUT2  
pin  
Hi-Z  
SG  
pin  
Hi-Z  
SGC  
pin  
MCU  
pin  
0
bit  
0/1  
0
bit  
0/1  
0
pin  
Hi-Z  
Interface  
AG level *2 Operate  
AG level *2 Operate  
1
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
1
1
1
0
1
1
1
0
1
Operate  
Hi-Z  
Hi-Z  
Operate  
Operate  
Hi-Z  
Hi-Z  
Operate  
Operate  
Operate  
Operate  
Operate  
Operate  
Operate  
Operate Operate  
Operate Operate Operate Operate Operate  
*1 The data will be ‘H’ by an external pull-up resistor.  
*2 Output impedance = about 50 kΩ  
F2_1, F1_1, F0_1, F2_2, F1_2, F0_2  
The F2_n, F1_n and F0_n pins are data outputs used when the SLIC connected to the corresponding channel is  
an Intersil RSLICTM series device. The output levels from the F2_n, the F1_n and F0_n pins are determined by  
the F2_n, F1_n, and F0_n register bits (CR6-B7 to B5 and CR13-B7 to B5). By inputting these outputs directly  
into the corresponding input pin of the SLIC device, the SLIC operating mode selection is possible.  
Even in the power-down state with the PDN pin is asserted, these pins remain functional.  
E0_1, E0_2  
The E0_n pins are the detector mode selection data outputs. These pins are used when the SLIC connected to the  
corresponding channel is an Intersil RSLICTM series device. Though the output level from the E0_n pin is  
determined by the E0_n bit (CR6-B2/CR13-B2), the output level changes in 20 µs (= hold timer) in the power-  
on mode with the PDN pin = logic “1” and in 200 ns in the power-down mode with the PDN pin = logic “0”  
after the change of E0_n bit (CR6-B2 /CR13-B2). Refer to Figure 6 for information.  
What event is actually detected by the SLIC is determined by the combination of the F2_n, F1_n, F0_n and E0_n  
pins. Refer to Table 6 for more information. By connecting the output directly into the corresponding input pin  
of the SLIC device, detector mode selection in the SLIC is possible. Even in the power-down state with the PDN  
pin = logic “0”, this pin remains functional. However, the hold timer is ignored in this state.  
21/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
Table 6 SLIC Device Operation Mode and Detector Mode  
Operating Mode  
Low Power Standby  
Forward Active  
Unbalanced Ringing  
Reverse Active  
Ringing  
Forward Loop Back  
Tip Open  
Power Denial  
F2_n F1_n F0_n E0_n = 1  
E0_n = 0  
GKD  
GKD  
RTD  
GKD  
RTD  
GKD  
GKD  
n/a  
Description  
Standby mode  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
SHD  
SHD  
RTD  
SHD  
RTD  
SHD  
SHD  
n/a  
Forward battery loop feed  
Unbalanced ringing mode  
Reverse battery loop feed  
Balanced ringing mode  
Test mode  
For PBX type application  
Device shutdown  
SHD: Switch Hook Detection RTD: Ring Trip Detection GKD:Ground Key Detection  
BSEL1, BSEL2  
The BSELn pin is the battery mode selection data output. This pin is used when the SLIC connected to the  
corresponding channel is an Intersil RSLICTM series SLIC device. A logic “0” on this pin selects the low battery  
mode, and the logic “1” selects the high battery mode within the SLIC device. The output levels from the BSELn  
pins are determined by the BSELn register bits (CR6-B3/CR13-B3).  
By connecting these outputs directly to the corresponding SLIC device input pins, battery mode selection of the  
SLIC is possible. This pin remains functional even in power-down mode.  
SWC1, SWC2  
The SWCn pin is the uncommitted switch control data output. This pin is used when the SLIC connected to the  
corresponding channel is an Intersil RSLICTM series SLIC device. By connecting this pin directly to the  
corresponding input pin of the SLIC device, the uncommitted switch control can be made. The uncommitted  
switch is located between the SW+ pin and the SW- pin. A logic “0” on this pin enables the SLIC internal switch  
on, and a logic “1” disables the switch.  
The output levels from the SWC1 and SWC2 pins are determined by the SWCn register bits (CR6-B4/CR13-  
B4). This pin remains functional even in power-down mode with the PDN pin is a logic “0”.  
DET1, DET2  
The DETn pins are the SLIC’s detection signal (switch hook, ring trip or ground key detection) inputs. These  
pins are used when the SLIC connected to the corresponding channel is an Intersil RSLICTM series device. A  
logic “0” on this pin clears the corresponding DETn register bit (CR6-B1/CR13-B1). A logic ‘1’ on this pin  
input sets the register bit.  
The Intersil RSLICTM series SLIC device is equipped with a function to switch the output on its DET pin from a  
logic “1” state to a logic “0” state when it detects an assigned event of either off-hook, ring trip or ground key.  
Therefore, by connecting these pins to the corresponding pins on the SLIC device and reading the DETn register  
bit (CR6-B1/CR13-B1), the occurrence of an assigned event can be detected.  
22/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
The event detected by the SLIC is determined by the F2_n, F1_n, and F0_n register bits (CR6-B7 to B5/CR13-  
B7 to B5), and the E0_n register bits (CR6-B2 /CR13-B2). To avoid the unintended detection of these conditions  
due to glitches on the DETn signal of the SLIC, the ML7033 is equipped with a debounce timer to hold the DET  
register bit (CR6-B1/CR13-B1) and the output of the INT pin for a set period, even when an input to the DETn  
pin changes from a logic “1” to a logic “0”. For more information on the debounce timer, refer to the  
DETnTIM3 through DETnTIM0 register bit descriptions (CR4-B7 to B0).  
This pin remains functional in power-down mode (PDN pin low). However, while in the power-down state, the  
debounce timer is disabled.  
When this pin is not used, it should be tied to VDDD  
.
ALM1, ALM2  
The ALMn pins are the thermal shut down alarm signals. These pins are used when the SLIC connected to the  
corresponding channel is an Intersil RSLICTM series device. A logic “0” on the ALMn input pin clears the  
corresponding ALM register bit (CR6-B0/CR13-B0). A logic “1” on this pin sets the bit.  
The Intersil RSLICTM series device is equipped with a function that allows it to automatically enter power-down  
mode and toggle its ALMn pin from a logic “1” to a logic “0” state when the SLIC die temperature exceeds a  
safe operating temperature. Hence, by connecting the corresponding pin of the SLIC device to the ALM1 and  
ALM2 pins and reading the ALM register bit (CR6-B0/CR13-B0), it is possible to know whether the concerned  
SLIC device is operating normally, or is in a thermal shutdown state.  
This pin remains functional in power-down mode. However, while in the power-down state, the debounce timer  
is disabled.  
When this pin is not used, it should be tied to VDDD  
.
INT  
The ML7033 asserts the INT interrupt pin when either the DETn pin or the ALMn pin are asserted by the SLIC  
device when the device is an Intersil RSLICTM series SLIC device. The Intersil RSLICTM series device is  
equipped with detector and thermal shut down alarm functions to notify a change of SLIC state by driving a  
logic 0 onto the output pins connected to DETn and ALMn. Refer to the DETn and ALMn pin descriptions  
above. By monitoring the state of the INT pin and reading the DETn (CR6-B0/CR13-B0) and ALMn (CR6-  
B0/CR13-B0) register bits, it is possible to know that a change of a state occurred within the SLIC device.  
The INT pin transitions from a logic “1” to a logic “0” in the following cases;  
(1) (PDN pin = logic “0”) Any of the ALMn or DETn pins in the logic “1” state transition to the logic “0”  
state.  
(2) (PDN pin = logic “1”) Any of the ALMn or DETn pins transition from the logic “1” state to the logic “0”  
state when all the four pins (ALM1, ALM2, DET1, and DET2) have been in the logic “1” state.  
Note that the debounce timer with the DETn pin is not valid while in power-down mode (PDN pin = logic “0”).  
23/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
The INT pin is released to the logic “1” state in either of the following cases;  
(1) (PDN pin = logic “1”) Any one of the ALMn or DETn pins in the logic “0” state transition to the logic “1”  
state.  
(2) (PDN pin = logic “0”) All of the ALMn or DETn pins in the logic “0” state transition to the logic “1”  
state.  
(3) Both SLIC 1 control (CR6 register) and SLIC 2 control (CR13 register) are read by the MCU.  
Note that the debounce timer, which works when the DETn pin changes from a logic “1” state to a to logic “0”  
state, does not work when the pin changes from logic “0” to logic “1”.  
DEN, EXCK, DIO  
Serial control ports for the MCU interface. These pins are used by an external MCU to access the internal control  
registers of the ML7033. The DEN pin is the data enable input. The EXCK pin is the data shift clock input. The  
DIO pin is the address and data input/output. Figure 9 shows the MCU interface input/output timing diagram.  
Note that EXCK must be a continuous clock of at least 15 pulses or more.  
DEN  
EXCK  
DIO (I)  
W
R
A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0  
Write timing  
DEN  
EXCK  
Output  
Input  
DIO (O)  
A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0  
Read timing  
Figure 9 MCU Interface Timing Diagram  
CIDATA1, CIDATA2  
The CIDATA1 and CDATA2 data inputs are used for Caller ID generation. While in a Caller ID tone generation  
mode with the CIDCHnON register bit set, (CR1-B1/CR1-B0), signals on the CIDATAn pins are modulated in  
either the ITU-T V.23 or Bell 202 schemes. The scheme is determined by the CIDFMT register bit (CR1-B2),  
and output from the analog output pin(s).  
The analog output pins for modulated Caller ID data can be selected by the CHnTG2TX (CR7-B6/CR14-B6),  
the CHnTGTOUTn (CR7-B5/CR14-B5), and the AOUTnSEL (CR7-B7/CR14-B7) register bits.  
The output level for the modulated Caller ID data can be tuned by the CHnTG1LVn (CR9-B7 to B1/CR16-B7 to  
B1) register bits.  
TEST  
The TEST input is used for testing purposes only during the manufacturing process and has no function once the  
testing process is completed. This pin is not used during normal operation of the device and should be kept at a  
logic “0” state.  
24/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
Power-On Sequence  
While in the power-on state, the following chart is recommended.  
<NOTE>  
POWER OFF  
As the ML7033 is equipped with a power-on  
reset function, initialization of the control  
registers automatically occurs as the power is  
turned on, even with the RESET pin = logic “1”.  
However, if any of input pins are not in a high  
impedance state, the power-on reset may not  
function properly.  
Power supply on  
<Recommendation>  
PDN pin = logic “0”, RESET pin= “0”  
Keep the input to the RESET pin in the logic “0”  
state for 100ns or longer before changing to a  
logic “1”.  
RESET pin = “0” to “1”  
(or Power-on Reset Function)  
Control Register Setting  
(CH1/CH2)  
Even during power-down mode with the PDN  
pin = logic “0”, the SLIC interface registers  
(CR6, CR13) and the INT pin are working. Data  
set in other registers becomes valid after the  
PDN pin is driven to a logic “1” state.  
PDN pin = “1”  
Normal Operation  
Figure 10 Power-on Sequence Flow Chart  
25/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
Control Registers Functional Description  
CR0 (Basic operating mode)  
B7  
B6  
B5  
B4  
B3  
LIN  
0
B2  
ALAW  
0
B1  
MODE1  
0
B0  
MODE0  
0
CR0  
FILTER1SEL FILTER2SEL MCKSEL SHORT  
default  
0
0
0
0
B7  
… Transmit and receive filter select for CH1  
0 : ITU-T G.714 filter 1 : wideband filter for V.90 data modem application  
B6  
… Transmit and receive filter select for CH2  
0 : ITU-T G.714 filter  
1 : wideband filter for V.90 data modem application  
B5  
B4  
… MCK frequency select  
0 : 2.048 MHz 1 : 4.096 MHz  
… Frame synchronizing scheme select 0 : Long frame SYNC 1 : Short frame SYNC  
Refer to Figure 3.  
B3  
… PCM companding law select  
0 : 8-bit PCM mode  
1 : 14-bit linear PCM (2’s complement) mode  
“1” is selected, a setting with the ALAW (CR0-B2) bit is ignored.  
B2  
… PCM companding law select 0 : µ-law 1 : A-law  
When the LIN (CR0-B3) is “1”, a setting with this bit is ignored.  
… Power saving control  
B1, B0  
0 : Power saving mode 1 : Normal operation  
The MODE1 (CR0-B1) bit is for channel 2, and the MODE0 (CR0-B0) bit is for channel 1.  
In power saving mode, power for the corresponding channel is turned off except for the last  
output stage of the PCMOUT pin. The power saving mode differs from the power-down  
mode controlled by the PDN pin in the following aspects;  
-
-
Possible to control a state for an individual channel independently  
The last stage of the PCMOUT pin is operational, and outputs ‘positive zero’ PCM code  
in the 8-bit PCM mode or ‘zero’ PCM code in the 14-bit Linear PCM mode during the  
assigned time slot.  
-
Debounce timer and hold timer are valid.  
As in power-down mode, the power saving mode does not initialize control registers and  
read and write of control registers are possible in the power saving mode. The power-down  
mode setting by the PDN pin takes precedence over the power saving mode.  
Table 7 Mode Settings for CH1 and CH2  
Power of Channel  
MODE1 MODE0  
PDN  
RESET  
Register  
bit  
0*1  
0*1  
0/1  
0
bit  
0*1  
0*1  
0/1  
0
pin  
pin  
CH2  
OFF  
OFF*2  
OFF  
OFF*2  
OFF*2  
ON  
CH1  
OFF  
OFF*2  
OFF  
OFF*2  
ON  
0
1
0
1
1
1
1
0
0
1
1
1
1
1
Initialized to default  
Initialized to default  
Read/Write possible  
Read/Write possible  
Read/Write possible  
Read/Write possible  
Read/Write possible  
0
1
1
0
OFF*2  
ON  
1
1
ON  
*1 forced to be default by the RESET pin = logic “0”.  
*2 The last output stage is powered.  
26/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR1 (Tone generator and Call ID tone control)  
B7  
B6  
B5  
B4  
0
B3  
0
B2  
CIDFMT  
0
B1  
CID  
CH2ON  
B0  
CID  
CH1ON  
CH2TG  
ON  
CH1TG  
ON  
CR1  
default  
0
0
0
0
0
B7  
B6  
… State control for a tone generator on CHl  
… State control for a tone generator on CH2  
0 : disabled  
0 : disabled  
1 : enabled  
1 : enabled  
B5, B4, B3  
… Reserved (The default alternation is prohibited.)  
When a write action is executed for CR1, set these bits to “0”.  
B2  
… Caller ID generator modulation scheme select  
0 : ITU-T V.23 scheme (1: 1300 Hz, 0: 2100 Hz)  
1 : Bell 202 format (1: 1200 Hz, 0: 2200 Hz)  
B1  
B0  
… State control for Caller ID generator on CH2  
0 : OFF  
1 : ON  
Regardless of how the CH2TGON bit (CR1-B7) is set, signals input into the CIDATA2 pin  
are modulated and output as Caller ID tones. When this bit is set, the level setting by the  
CH2TG1LVn (CR16-B7 to B1) bits is valid, but the CH2TG1_n (CR16-B0/CR17-B7 to  
B0) bits, CH2RING (CR11-B7) bit, and CH2TG1TRPn (CR11-B6 to B4) bits are invalid.  
… State control for Caller ID generator on CH1  
0 : OFF  
1 : ON  
Regardless of how the CH1TGON bit (CR1-B6) is set, signals input into the CIDATA1 pin  
are modulated and output as Caller ID tones. When this bit is set, the level set by the  
CH1TG1LVn (CR9-B7 to B1) bits is valid, but the CH1TG1_n (CR9-B0/CR11-B7 to B0)  
bits, the CH1RING (CR11-B3) bit, and the CH1TG1TRPn (CR11-B2 to B0) bits are  
invalid.  
27/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR2 (Pulse metering tone generator control)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
PMG2  
FRQ  
PMG2  
LV1  
PMG2  
LV0  
PMG2  
TOUT2  
PMG1  
FRQ  
PMG1  
LV1  
PMG1  
LV0  
PMG1  
TOUT1  
CR2  
default  
0
0
0
0
0
0
0
0
B7  
B6, B5  
… Pulse metering tone frequency select for CH2  
0 : 12 kHz  
1 : 16 kHz  
… Pulse metering tone level setting for CH2  
(B6, B5) (0, 0) = OFF  
(0, 1) = 0.5 Vpp  
(1, 0) = 1.0 Vpp  
(1, 1) = 1.5 Vpp  
The level of the pulse metering tone, as shown in Figure 11, reaches the assigned level in  
10 ms and gradually fades out over 10 ms.  
The ramp-up and ramp-down times also apply when a tone is cancelled by writing (0,0)  
into these register bits. Once the register bits are set, the tone begins to fade out and  
completely fades out after 10 ms. In addition, subsequent writes to these bits are prohibited  
for 10 ms.  
Ramp down time=10ms  
Ramp up time=10ms  
Figure 11 Pulse Metering Tone Waveform  
B4  
… Pulse metering tone output pin select for CH2  
0 : AOUT2 pin (added to voice signals)  
1 : TOUT2 pin  
B3  
… Pulse metering tone frequency select for CH2  
0 : 12 kHz  
1 : 16 kHz  
B2, B1  
… Pulse metering tone level setting for CH1  
(B2, B1) (0,0) = OFF  
(0, 1) = 0.5 Vpp  
(1, 0) = 1.0 Vpp  
(1, 1) = 1.5 Vpp  
The level of the pulse metering tone, as shown in Figure 11, reaches the assigned level in  
10 ms and gradually fades over 10 ms.  
The ramp-up and ramp-down times also apply when a tone is cancelled by writing (0,0)  
into these register bits. In this case the tone fades out after 10 ms. In addition, subsequent  
writes to these bits are prohibited for 10 ms.  
B0  
… Pulse metering tone frequency select for CH1  
0 : 12 kHz  
1 : 16 kHz  
28/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR3 (Time slot assignment control)  
B7  
TSAE  
0
B6  
TSAC  
0
B5  
TSA5  
0
B4  
TSA4  
0
B3  
TSA3  
0
B2  
TSA2  
0
B1  
TSA1  
0
B0  
TSA0  
0
CR3  
default  
* CR3 is a write only register.  
B7  
… Time slot assignment customization enable  
0 : Default time slot assignment 1 : Customized time slot assignment  
The default time slot assignment is CH1 for Slot 0 and CH2 for Slot 2.  
B6  
… Time slot assignment channel select 0 : CH1 1 : CH2  
This bit is used to specify the channel for which the accompanied TSAn  
(CR3-B5 to B0) bits are going to assign a time slot. Hence, when a customized time slot  
assignment is enabled, CR3 should be written twice; once for CH1 and another for CH2.  
B5 to B0  
… Assigned time slot select  
Each time slot consists of 8 BCLK cycles. The number of time slots available for time slot  
assignment depends upon the applied BCLK frequency, and can be calculated in the  
following equations;  
Number of time slots available for time slot assignment  
= (BCLK frequency)/(SYNC frequency)/8  
= (BCLK frequency)/64k  
For instance, when the BCLK frequency is 4096 kHz, time slots that can be assigned are  
from 0 (000000) to 63 (111111). The specification of a time slot beyond 63 is prohibited.  
Note that in 14-bit linear PCM (2’s complement) mode, specified when the LIN bit (CR0-  
B3) is set, only even numbered time slots (0, 2, 4, … 62) can be assigned.  
In any mode, the assigned time slot for a channel is common both for transmit and receive,  
and different time slots cannot be assigned for transmit and receive. When the TSAE bit  
(CR3-B7) is cleared, the time slot assignment specified by these bits is ignored, and the  
default time slots are assigned (CH1 for Time Slot 0 and CH2 for Time Slot 2). Figure 12  
shows an example of how CH1 is assigned for Time Slot 0 (000000) and CH2 is assigned  
for Time Slot 3 (000011) in 8-bit PCM mode.  
1
9
17  
25  
33  
BCLK  
XSYNC  
PCMOUT/  
PCMIN  
CH1 PCM DATA  
CH2 PCM DATA  
PCMOSY  
Slot 0  
Slot 1  
Slot 2  
Slot 3  
Figure 12 Example of Time Slot Assignment: CH1 = Slot 0, CH2 = Slot 3  
29/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR4 (Debounced timer setting)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DET2  
TIM3  
DET2  
TIM2  
DET2  
TIM1  
DET2  
TIM0  
DET1  
TIM3  
DET1  
TIM2  
DET1  
TIM1  
DET1  
TIM0  
CR4  
default  
0
0
0
0
0
0
0
0
B7 to B4  
B3 to B0  
… Debounce timer setting for CH2  
… Debounce timer setting for CH1  
To avoid the unintended detection of glitches on the DETn signal, the ML7033 is equipped with  
a debounce timer to hold the DETn (CR6-B1/CR13-B1) bit and the INT output state for a set  
period, even when the state of the DETn pin changes from logic “1” to logic “0”. Bits B7 to B4  
determine the debounce timer setting for CH2. Bits B3 to B0 determine the debounce timer  
setting CH1.  
The debounce timer is operational only in the power-on state when the PDN pin = logic “1”,  
and remains operational in the power-saving mode with the MODEn (CR0-B1, B0) bits = “0” as  
long as the device is in the power-on state.  
The debounce timer holding time ranges from 0 ms to 225 ms at 15 ms intervals for each  
individual channel. The values written into B7 to B4 (channel 2) or B3 to B0 (channel 1)  
determine the holding time for each channel.  
The timer value is calculated by the equation of [Decimal(B7,B6,B5,B4) * 15] or  
[Decimal(B3,B2,B1,B0) * 15]. Refer to Table 8.  
Table 8 Debounce Timer Setting  
B7/B3  
B6/B2  
B5/B1  
B4/B0  
Timer (ms)  
0
0
0
0
0
:
0
0
0
0
1
:
0
0
1
1
0
:
0
1
0
1
0
:
0
15  
30  
45  
60  
:
0
1
1
:
1
0
0
:
1
0
0
:
1
0
1
:
105  
120  
135  
:
1
1
1
1
225  
30/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR5 (CH1 transmit/receive level control)  
B7  
LV1R3  
0
B6  
LV1R2  
0
B5  
LV1R1  
0
B4  
LV1R0  
0
B3  
LV1X3  
0
B2  
LV1X2  
0
B1  
LV1X1  
0
B0  
LV1X0  
0
CR5  
default  
B7 to B4  
B3 to B0  
… Level setting for CH1 on its receive side  
The LV1R3 to LV1R0 bits determine the level for the CH1 receive side as shown in Table  
9.  
… Level setting for CH1 on its transmit side  
The LV1X3 to LV1X0 bits determine the level for the CH1 transmit side as shown in Table  
9.  
Table 9 Receive and Transmit Level Setting  
LV1R3/LV1X3  
LV1R2/ LV1X2 LV1R1/LV1X1 LV1R0/LV1X0  
Level (dBm0)  
0.0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
–1.0  
–2.0  
–3.0  
–4.0  
–5.0  
–6.0  
–7.0  
–8.0  
–9.0  
–10.0  
–11.0  
–12.0  
–13.0  
–14.0  
OFF  
31/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR6 (SLIC 1 control)  
B7  
B6  
F1_1  
0
B5  
F0_1  
0
B4  
SWC1  
0
B3  
BSEL1  
0
B2  
E0_1  
0
B1  
DET1  
B0  
ALM1  
CR6  
default  
F2_1  
0
* CR6-B1 and B0 are read-only bits. Though either of “0” or “1” will do for these registers when a byte-wide write action is  
made, the written values are ignored.  
* The INT pin which stays at logic “0” will be released to logic “1” when both of this control register (CR6) and SLIC 2  
control register (CR13) are read.  
B7 to B5  
… Operation mode setting for SLIC1  
The F2_1 to F0_1 bits determine the output level for the Fn_1 pins. For more details, refer  
to Table 6. When each bit is cleared (“0”), the corresponding Fn_1 pin outputs a logic “0”.  
When each bit is set (“1”), the corresponding Fn_1 pin outputs a logic “1”.  
B4  
… Uncommitted switch control for SLIC1  
0 : switch on  
1 : switch off  
This bit determines the output level for the SWC1 pin. When this bit is cleared, the SWC1  
pin outputs a logic “0”. When this bit is set, the pin outputs a logic “1”.  
When the SLIC connected to CH1 is the Intersil RSLICTM series, the SLIC’s internal  
uncommitted switch, located between the SW+ pin and the SW- pin, can be controlled by  
inputting the output from the SWC1 pin directly into the corresponding input pin of the  
SLIC device.  
B3  
B2  
… Battery mode select for SLIC1  
0 : low battery mode  
1 : high battery mode  
This bit determines the output level for the BSEL1 pin. When this bit is cleared, the BSEL1  
pin outputs a logic “0”. When this bit is set, the pin outputs a logic “1”.  
When the SLIC connected to CH1 is from the Intersil RSLICTM series, the SLIC’s battery  
mode selection is possible by inputting the output from the BSEL1 pin directly into the  
corresponding input pin of the SLIC device.  
… Detector mode selection for SLIC1  
This bit determines the output level for the E0_1 pin. When this bit is cleared, the E0_1 pin  
outputs a logic “0”. When this bit is set, the pin outputs a logic “1”.  
When a SLIC connected to CH1 is Intersil RSLICTM series, the SLIC’s detector mode  
selection is possible by connecting the E0_1 pin directly to the corresponding input pin of  
the SLIC device. The event detected by the SLIC is determined by the combination of the  
F2_1, the F1_1, the F0_1 and the E0_1 pins as shown in Table 6.  
The output level of the E0_1 pin changes 20µs later (hold timer) in the power-on mode with  
the PDN pin = logic “1”, and 200ns later in the power-down mode with the PDN pin =  
logic “0” than a change of this bit value. Refer to Figure 6.  
32/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
B1  
… Event detection indicator for SLIC1 (Read-only bit)  
0 : detected 1 : not detected  
By reading the state of this bit, the input level to the DET1 pin can be known. If this bit is  
cleared it indicates that the DET1 pin is in the logic “0” state. If this bit is set it indicates  
that the DET1 pin is in the logic “1” state.  
When the SLIC connected to channel 1 is from the Intersil RSLICTM series, the DET1 pin  
can be connected directly to the corresponding output pin of the SLIC device. This allows  
an assigned event such as off-hook, ring trip, or ground key to be detected. The event  
detected by the SLIC detects is determined by the F2_1, F1_1, F0_1 (CR6-B7 to B5), and  
E0_1 (CR6-B2) bits.  
When the debounce timer is enabled by setting the DET1TIM3 through DET1TIM0 bits  
(CR4-B3 to B0), the DET1 (CR6-B1) bit is held unchanged for a set period, even when the  
DET1 input pin changes from logic “1” to logic “0”.  
B0  
… Thermal Shutdown Alarm indicator for SLIC1 (Read-only bit) 0 : detect  
1 : not  
detect  
By reading this bit, the input level to the ALM1 pin can be known. When this bit is cleared,  
the ALM1 pin is a logic “0”. When this bit is set, the pin is a logic “1”.  
When the SLIC connected to channel 1 is from the Intersil RSLICTM series, the ALM1 pin  
can be connected directly to the corresponding output pin of the SLIC device. This allows  
the user to know whether the SLIC1 is in the normal operating state, or in the thermal  
shutdown state.  
33/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR7 (CH1 Tone generator 2 control 1)  
B7  
AOUT1 SEL  
0
B6  
B5  
B4  
CH1TG2  
LV3  
B3  
CH1TG2  
LV2  
B2  
CH1TG2  
LV1  
B1  
CH1TG2  
LV0  
B0  
CH1TG2 _8  
0
CH1TG 2  
TX  
CH1TG 2  
TOUT1  
CR7  
default  
0
0
0
0
0
0
CR8 (CH1 Tone generator 2 control 2)  
B7 B6 B5  
B4  
B3  
B2  
B1  
B0  
CR8  
CH1TG2 _7 CH1TG2 _6 CH1TG2 _5 CH1TG2 _4 CH1TG2 _3 CH1TG2 _2 CH1TG2 _1 CH1TG2 _0  
CR7-B7  
… AOUT1P, AOUT1N output select  
0 : Single-ended output with the AOUT1P pin with the AOUT1N pin at high impedance  
1 : Differential output with the AOUT1P and the AOUT1N pins  
B6  
… CH1 tone generator output select  
0 : to Rx side  
1 : to Tx side  
B5  
… CH1 tone generator Rx side output pin select  
0 : AOUT1 pin  
1 : TOUT1 pin  
B4 to B1  
… CH1 Tone Generator 2 (TG2) output level setting  
This 4-bit field defines the output level for TG2 on CH1 as shown in Table 10.  
Table 10 TG2 Level Setting  
B4  
(TG2LV3)  
B3  
(TG2LV2)  
B2  
(TG2LV1)  
B1  
(TG2LV0)  
Level  
(dBm0)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
OFF  
–12.0  
–11.0  
–10.0  
–9.0  
–8.0  
–7.0  
–6.0  
–5.0  
–4.0  
–3.0  
–2.0  
–1.0  
0.0  
+1.0  
+2.0  
34/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR7-B0, CR8-B7 to B0  
CH1 Tone Generator 2 (TG2) Frequency Select  
These bits define the output frequency from TG2 on CH1. The frequency is between 300  
and 3400Hz at 10Hz intervals. The values written to these bits determine the frequency as  
shown in the following equation. Refer to Table 11.  
Binary data for CR7-B0, CR8-B7 to B0  
= (Output Frequency [Hz])/10  
Below is an example of how these bits are programmed when the intended frequency is  
1500Hz;  
Ex) (Output Frequency [Hz])/10 = 1500/10 = 150d = 10010110b  
Bits to set in CR7-B0, CR8-B7 to B0 = (0,1,0,0,1,0,1,1,0)  
Note that the operations are not guaranteed when these bits define a frequency out of a band  
between 300 and 3400 Hz.  
Table 11 Tone Generator Frequency Setting  
CR7  
CR8  
Frequency  
(Hz)  
decimal  
hex  
B0  
0
0
0
:
B7  
0
0
0
:
B6  
0
0
0
:
B5  
0
0
1
:
B4  
1
1
0
:
B3  
1
1
0
:
B2  
1
1
0
:
B1  
1
1
0
:
B0  
0
1
0
:
300  
310  
320  
:
30  
31  
32  
:
01Eh  
01Fh  
020h  
:
400  
410  
:
40  
41  
:
028h  
029h  
:
0
0
:
0
0
:
0
0
:
1
1
:
0
0
:
1
1
:
0
0
:
0
0
:
0
1
:
1000  
1010  
:
100  
101  
:
064h  
065h  
:
0
0
:
0
0
:
1
1
:
1
1
:
0
0
:
0
0
:
1
1
:
0
0
:
0
1
:
2000  
:
200  
:
0C8h  
:
0
:
1
:
1
:
0
:
0
:
1
:
0
:
0
:
0
:
3000  
:
300  
:
12Ch  
:
1
:
0
:
0
:
1
:
0
:
1
:
1
:
0
:
0
:
3390  
3400  
339  
340  
153h  
154h  
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
1
0
35/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR9 (CH1 tone generator 1 control1)  
B7  
B6  
B5  
B4  
CH1TG1  
LV3  
B3  
CH1TG1  
LV2  
B2  
CH1TG1  
LV1  
B1  
CH1TG1  
LV0  
B0  
CH1TG1 _8  
0
CH1TG1  
LV6  
CH1TG1  
LV5  
CH1TG1  
LV4  
CR9  
default  
0
0
0
0
0
0
0
CR10 (CH1 tone generator 1 control2)  
B7 B6 B5  
B4  
B3  
B2  
B1  
B0  
CR10  
CH1TG1 _7 CH1TG1 _6 CH1TG1 _5 CH1TG1 _4 CH1TG1 _3 CH1TG1 _2 CH1TG1 _1 CH1TG1 _0  
default  
0
0
0
0
0
0
0
0
CR9-B7 to B1 … CH1 Tone Generator 1 (TG1) Output Level Setting  
This 7-bit field defines the output level of TG1 on CH1. The output level can be turned  
OFF or ON. When turned on, the level is between –12.1 dBm0 and +0.5 dBm0 at 0.1 dBm0  
intervals as shown in Table 12.  
The value written to this field is calculated based on the desired output level as shown in  
the following equation.  
Binary data for CR9- B7 to B1  
= [(Output Level [dBm0]) + 12.2]*10  
The following is an example of how to program this field when the intended output level is  
–5.8 dBm0;  
Ex) [(Output Level [dBm0]) + 12.2]*10 = (-5.8 + 12.2)*10 = 64d = 1000000b  
Bits to set in CR9-B7 to B1 = (1,0,0,0,0,0,0)  
Table 12 Tone Generator 1 Level Setting  
B7  
TG1LV6  
B6  
TG1LV5  
B5  
TG1LV4  
B4  
TG1LV3  
B3  
TG1LV2  
B2  
TG1LV1  
B1  
TG1LV0  
Level  
(dBm0)  
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
1
:
0
0
1
1
0
:
0
1
0
1
0
:
OFF  
–12.1  
–12.0  
–11.9  
–11.8  
:
0
1
1
:
1
0
0
:
1
0
0
:
1
0
0
:
1
0
0
:
1
0
0
:
1
0
1
:
–5.9  
–5.8  
–5.7  
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
0
0
1
0
1
0
1
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
(= 1.25 Vop)  
1
1
1
1
1
1
1
36/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR9-B0, CR10-B7 to B0 …CH1 Tone Generator 1 Output Frequency Select  
When the CH1RING (CR11-B3) bit is cleared (“0”), these 9 bits determine the output  
frequency of tone generator 1 on channel 1 to a value between 300 and 3400 Hz at 10Hz  
intervals. A sample list of frequencies is shown in Table 13. The value programmed into  
this field is calculated based on the desired frequency using the following equation.  
Binary data for CR9-B0, CR10-B7 to B0  
= (Output Frequency [Hz])/10  
The following is an example of how to program this field when the intended frequency is  
1500 Hz;  
Ex) (Output Frequency [Hz])/10 = 1500/10 = 150d = 10010110b  
Bits to set in CR9-B0, CR10-B7 to B0 = (0,1,0,0,1,0,1,1,0)  
Note that the operations are not guaranteed when these bits define a frequency out of a band  
between 300 and 3400 Hz.  
Table 13 Tone Generator Frequency Setting (CH1RING bit = 0)  
CR9  
CR10  
B4  
1
1
0
:
Frequency  
(Hz)  
decimal  
hex  
B0  
0
0
0
:
B7  
0
0
0
:
B6  
0
0
0
:
B5  
0
0
1
:
B3  
1
1
0
:
B2  
1
1
0
:
B1  
1
1
0
:
B0  
0
1
0
:
300  
310  
320  
:
30  
31  
32  
:
01Eh  
01Fh  
020h  
:
400  
410  
:
40  
41  
:
028h  
029h  
:
0
0
:
0
0
:
0
0
:
1
1
:
0
0
:
1
1
:
0
0
:
0
0
:
0
1
:
1000  
1010  
:
100  
101  
:
064h  
065h  
:
0
0
:
0
0
:
1
1
:
1
1
:
0
0
:
0
0
:
1
1
:
0
0
:
0
1
:
2000  
:
200  
:
0C8h  
:
0
:
1
:
1
:
0
:
0
:
1
:
0
:
0
:
0
:
3000  
:
300  
:
12Ch  
:
1
:
0
:
0
:
1
:
0
:
1
:
1
:
0
:
0
:
3390  
3400  
339  
340  
153h  
154h  
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
1
0
37/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
When the CH1RING (CR11-B3) bit is set (“1”), the CH1TG1_8 (CR9-B0) bit and the  
CH1TG1_7 to CH1TG1_6 (CR10-B7 to B6) bits are ignored and the CH1TG1_5 to  
CH1TG1_0 (CR10-B5 to B0) bits are used to define the ringing tone frequency.  
When the CH1RING (CR11-B3) bit is set, the frequency can be set to a value between 15  
Hz and 50 Hz at 1 Hz intervals. The value programmed into this field is calculated based on  
the desired frequency using the following equation. A partial list of frequencies is shown in  
Table 14.  
Binary data for CR10-B5 to B0  
= (Output Frequency [Hz])  
The following is an example of how to program this field when the intended frequency is  
20Hz;  
Ex) Output Frequency [Hz] = 20d = 010100b  
Bits to set in CR10-B5 to B0 = (0,1,0,1,0,0)  
Note that the operations are not guaranteed when these bits define a frequency out of a band  
between 15 and 50Hz.  
Table 14 Tone Generator Frequency Setting (CH1RING bit = “1”)  
CR9  
B0  
:
CR10  
B4  
Frequency  
(Hz)  
decimal  
hex  
B7  
:
B6  
:
B5  
0
0
0
0
0
0
:
B3  
1
0
0
0
0
0
:
B2  
1
0
0
0
0
1
:
B1  
1
0
0
1
1
0
:
B0  
1
0
1
0
1
0
:
15  
16  
17  
18  
19  
20  
:
15  
16  
17  
18  
19  
20  
:
0Fh  
10h  
11h  
12h  
13h  
14h  
:
0
1
1
1
1
1
:
48  
49  
50  
48  
49  
50  
30h  
31h  
32h  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
1
0
38/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR11 (Ringing_ON and Trapezoid crest factors control)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
CH2  
RING  
CH2TG1  
TRP2  
CH2TG1  
TRP1  
CH2TG1  
TRP0  
CH1  
RING  
CH1TG1  
TRP2  
CH1TG1  
TRP1  
CH1TG1  
TRP0  
CR11  
default  
0
0
0
0
0
0
0
0
B7  
… CH2 Tone Generator 1 (TG1) function select  
0 : CH2TG1 works as a non-ringing tone generator (300 to 3400 Hz)  
1 : CH2TG1 works as a ringing tone generator (15 to 50 Hz)  
The frequency and level of CH2TG1 are set by CR16 to CR17.  
B6 to B4  
… CH2 ringing tone waveform setting  
This 3-bit field determines the type of ringing tone waveform for TG1 on CH2. A  
sinusoidal waveform, or a trapezoidal waveform with a crest factor between 1.225 V and  
1.375 V at 0.025 V intervals, can be selected as shown in Table 15. For a definition of  
‘crest factor’, refer to Figure 13. These bits are valid when the CH2RING (CR11-B7) bit is  
set.  
B3  
… CH1 TG1 function select  
0 : CH1TG1 works as a non-ringing tone generator (300 to 3400 Hz)  
1 : CH1TG1 works as a ringing tone generator (15 to 50 Hz)  
The frequency and level of CH1TG1 are set by CR9 to CR10.  
B2 to B0  
… CH1 ringing tone waveform setting  
This 3-bit field determines the type of ringing tone waveform for TG1 on CH1. A  
sinusoidal waveform, or a trapezoidal waveform with a crest factor between 1.225 V and  
1.375 V at 0.025 V intervals, can be selected as shown in Table 15. For a definition of  
‘crest factor’, refer to Figure 13. These bits are valid when the CH1RING (CR11-B3) bit is  
set.  
Vp  
a
a
CrestFactor =1/ 14a /3  
1
Figure 13 Ringing Tone Waveform  
Table 15 Crest Factor Setting  
B6/B2  
TG1 TRP2  
B5/B1  
TG1 TRP1  
B4/B0  
TG1 TRP0  
Crest Factor  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
OFF  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
39/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR12 (CH2 transmit/receive level control)  
B7  
LV2R3  
0
B6  
LV2R2  
0
B5  
LV2R1  
0
B4  
LV2R0  
0
B3  
LV2X3  
0
B2  
LV2X2  
0
B1  
LV2X1  
0
B0  
LV2X0  
0
CR12  
default  
B7 to B4  
B3 to B0  
… Level setting for CH2 on its receive side  
This 4-bit field determines the level setting for the CH2 receive side. The settings range  
from 0 to –14 dBm0 as shown in Table 16.  
… Level setting for CH2 on its transmit side  
This 4-bit field determines the level setting for the CH2 transmit side. The settings range  
from 0 to –14 dBm0 as shown in Table 16.  
Table 16 Receive and Transmit Level Setting  
LV2R3/ LV2X3 LV2R2/ LV2X2 LV2R1/ LV2X1 LV2R0/ LV2X0  
Level (dBm0)  
0.0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
–1.0  
–2.0  
–3.0  
–4.0  
–5.0  
–6.0  
–7.0  
–8.0  
–9.0  
–10.0  
–11.0  
–12.0  
–13.0  
–14.0  
OFF  
40/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR13 (SLIC 2 control)  
B7  
B6  
F1_2  
0
B5  
F0_2  
0
B4  
SWC2  
0
B3  
BSEL2  
0
B2  
E0_2  
0
B1  
DET2  
-
B0  
ALM2  
-
CR13  
default  
F2_2  
0
* CR13-B1 and B0 are read-only bits. Though either of “0” or “1” will do for these registers when a byte-wide write action is  
made, the written values are ignored.  
* The INT pin which stays at logic “0” will be released to logic “1” when both of this control register (CR13) and SLIC 1  
control register (CR6) are read.  
B7 to B5  
… Operation mode setting for SLIC2  
This 3-bit field determines the output level of the Fn_2 pins. For more detail, refer to Table  
6. When any of these bits are cleared, the corresponding Fn_2 pin outputs a logic “0”.  
When any of these bits are set, the corresponding Fn_2 pin outputs a logic “1”.  
B4  
… Uncommitted switch control for SLIC2  
0 : switch on  
1 : switch off  
This bit determines the output level of the SWC2 pin. When this bit is cleared, the SWC2  
pin outputs a logic “0”. When this bit is set, the SWC2 pin outputs a logic “1”.  
When the SLIC connected to channel 2 is an Intersil RSLICTM series device, the internal  
uncommitted switch of the SLIC, located between the SW+ and the SW- pins, can be  
controlled by connecting the SWC2 pin directly to the corresponding input pin of the SLIC  
device.  
B3  
B2  
… Battery mode select for SLIC2  
0 : low battery mode  
1 : high battery mode  
This bit determines the output level for the BSEL2 pin. When this bit is cleared, the BSEL2  
pin outputs a logic “0”. When this bit is set, the BSEL2 pin outputs a logic “1”.  
When the SLIC connected to CH2 is an Intersil RSLICTM series device, the battery mode  
selection of the SLIC is possible by connecting the BSEL2 pin directly to the corresponding  
input pin of the SLIC device.  
… Detector mode selection for SLIC2  
This bit determines the output level of the E0_2 pin. When this bit is cleared, the E0_2 pin  
outputs a logic “0”. When this bit is set, the E0_2 pin outputs a logic “1”.  
When the SLIC connected to channel 2 is an Intersil RSLICTM series device, the detector  
mode selection of the SLIC is possible by connecting the E0_2 pin directly to the  
corresponding input pin of the SLIC device. The event detected by the SLIC is determined  
by the F2_2, F1_2, F0_2 and E0_2 output pins as shown in Table 6.  
The output level from the E0_2 pin changes 20 µs later (hold timer) in the power-on mode  
with the PDN pin = logic “1”, and 200 ns later in the power-down mode with the PDN pin  
= logic “0” than a change of this bit value. Refer to Figure 6 for more information.  
41/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
B1  
… Event detection indicator for SLIC2 (Read-only bit)  
0 : detected 1 : not detected  
By reading the state of this bit, the input level to the DET2 pin can be determined.  
If this bit is cleared, the DET2 pin is a logic “0”. If this bit is set, the DET2 pin is a logic  
“1”.  
When the SLIC connected to channel 2 is an Intersil RSLICTM series device, an assigned  
event of off-hook, ring trip or ground key can be detected by connecting the DET2 pin of  
the ML7033 directly to the corresponding output pin of the SLIC device.  
The event detected by the the SLIC is determined by the F2_2, F1_2, F0_2 (CR13-B7 to  
B5), and E0_2 (CR13-B2) bits.  
When a debounce timer is enabled by a setting with the DET2TIM3 through DET2TIM0  
bits (CR4-B7 to B4), the DET2 (CR13-B1) bit is held unchanged for a set period, even  
when the DET2 pin changes from a logic “1” to a logic “0”.  
B0  
… Thermal Shutdown Alarm indicator for SLIC2 (Read-only bit) 0 : detect  
By reading the state of this bit, the input level to the ALM2 pin can be determined.  
1 : not  
detect  
If this bit is cleared, the ALM2 pin is a logic “0”. If this bit is set, the ALM2 pin is a logic  
“1”.  
When the SLIC connected to channel 2 is an Intersil RSLICTM series device, connecting the  
ALM2 pin directly to the corresponding output pin of the SLIC device allows the ML7033  
to know whether the SLIC is in the normal operating mode, or in a thermal shutdown state.  
42/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR14 (CH2 tone generator 2 control1)  
B7  
B6  
B5  
B4  
CH2TG2  
LV3  
B3  
CH2TG2  
LV2  
B2  
CH2TG2  
LV1  
B1  
CH2TG2  
LV0  
B0  
CH2TG2 _8  
0
CH2TG2  
TOUT2  
CR14  
AOUT2 SEL CH2TG2 TX  
default  
0
0
0
0
0
0
0
CR15 (CH2 tone generator 2 control2)  
B7 B6 B5  
B4  
B3  
B2  
B1  
B0  
CR15  
CH2TG2 _7 CH2TG2 _6 CH2TG2 _5 CH2TG2 _4 CH2TG2 _3 CH2TG2 _2 CH2TG2 _1 CH2TG2 _0  
default  
0
0
0
0
0
0
0
0
CR14-B7  
… AOUT2P, AOUT2N output select  
0 : Single-ended output with the AOUT2P pin with the AOUT2N pin at high impedance.  
1 : Differential output with the AOUT2P and the AOUT2N pins.  
B6  
… CH2 tone generator output select  
… CH2 tone generator Rx side output pin select  
… CH2 TG2 output level setting  
0 : to Rx side  
1 : to Tx side  
B5  
0 : AOUT2 pin  
1 : TOUT2 pin  
B4 to B1  
This 4-bit field determines the output level of TG2 on CH2. The output level ranges from –  
12 to +2 dBmO as shown in Table 17.  
Table 17 Tone Generator 2 Level Setting  
B4  
TG2LV3  
B3  
TG2LV2  
B2  
TG2LV1  
B1  
TG2LV0  
Level  
(dBm0)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
OFF  
–12.0  
–11.0  
–10.0  
–9.0  
–8.0  
–7.0  
–6.0  
–5.0  
–4.0  
–3.0  
–2.0  
–1.0  
0.0  
+1.0  
+2.0  
43/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR14-B0, CR15-B7 to B0… CH2 TG2 frequency select  
These 9 bits define the output frequency for TG2 on CH2. The frequency range is between  
300 and 3400 Hz in 10 Hz intervals as shown in Table 18.  
The output frequency is calculated using the following formula:  
Binary data for CR14-B0, CR15-B7 to B0  
= (Output Frequency [Hz])/10  
The following example shows how to program the output frequency when the intended  
frequency is 1500 Hz;  
Ex) (Output Frequency [Hz]) / 10 = 1500/10 = 150d = 10010110b  
Bits to set in CR14-B0, CR15-B7 to B0 = (0,1,0,0,1,0,1,1,0)  
Note that the operations are not guaranteed when these bits define a frequency out of a band  
between 300 and 3400 Hz.  
Table 18 Tone Generator Frequency Setting  
CR14  
CR15  
B4  
1
1
0
:
Frequency  
(Hz)  
decimal  
hex  
B0  
0
0
0
:
B7  
0
0
0
:
B6  
0
0
0
:
B5  
0
0
1
:
B3  
1
1
0
:
B2  
1
1
0
:
B1  
1
1
0
:
B0  
0
1
0
:
300  
310  
320  
:
30  
31  
32  
:
01Eh  
01Fh  
020h  
:
400  
410  
:
40  
41  
:
028h  
029h  
:
0
0
:
0
0
:
0
0
:
1
1
:
0
0
:
1
1
:
0
0
:
0
0
:
0
1
:
1000  
1010  
:
100  
101  
:
064h  
065h  
:
0
0
:
0
0
:
1
1
:
1
1
:
0
0
:
0
0
:
1
1
:
0
0
:
0
1
:
2000  
:
200  
:
0C8h  
:
0
:
1
:
1
:
0
:
0
:
1
:
0
:
0
:
0
:
3000  
:
300  
:
12Ch  
:
1
:
0
:
0
:
1
:
0
:
1
:
1
:
0
:
0
:
3390  
3400  
339  
340  
153h  
154h  
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
1
0
44/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR16 (CH2 tone generator 1 control1)  
B7  
B6  
B5  
B4  
CH2TG1  
LV3  
B3  
CH2TG1  
LV2  
B2  
CH2TG1  
LV1  
B1  
CH2TG1  
LV0  
B0  
CH2TG1 _8  
0
CH2TG1  
LV6  
CH2TG1  
LV5  
CH2TG1  
LV4  
CR16  
default  
0
0
0
0
0
0
0
CR17 (CH2 tone generator 1 control2)  
B7 B6 B5  
B4  
B3  
B2  
B1  
B0  
CR17  
CH2TG1 _7 CH2TG1 _6 CH2TG1 _5 CH2TG1 _4 CH2TG1 _3 CH2TG1 _2 CH2TG1 _1 CH2TG1 _0  
default  
0
0
0
0
0
0
0
0
CR16-B7 to B1 … CH2 TG1 output level setting  
This 7-bit field defines the output level of tone generator 1 on channel 2. The output level  
ranges from –12.1 to +0.5 dBm0 in 0.1 dBm0 intervals as shown in Table 19. A value of 0  
in this field disables the tone generator.  
The output level is calculated using the following formula.  
Binary data for CR16- B7 to B1  
= [(Output Level [dBm0]) + 12.2]*10  
The following example shows how to program this field when the intended output level is –  
5.8 dBm0;  
Ex) [(Output Level [dBm0]) + 12.2]*10 = (–5.8 + 12.2)*10 = 64d = 1000000b  
Bits to set in CR9-B7 to B1 = (1,0,0,0,0,0,0)  
Table 19 Tone Generator 1 Level Setting  
B7  
B6  
B5  
TG1LV4  
B4  
TG1LV3  
B3  
TG1LV2  
B2  
TG1LV1  
B1  
TG1LV0  
Level  
(dBm0)  
TG1LV6 TG1LV5  
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
1
:
0
0
1
1
0
:
0
1
0
1
0
:
OFF  
–12.1  
–12.0  
–11.9  
–11.8  
:
0
1
1
:
1
0
0
:
1
0
0
:
1
0
0
:
1
0
0
:
1
0
0
:
1
0
1
:
–5.9  
–5.8  
–5.7  
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
0
0
1
0
1
0
1
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
(= 1.25 Vop)  
1
1
1
1
1
1
1
45/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR16-B0, CR17-B7 to B0 … CH2 TG1 frequency select  
When the CH2RING (CR11-B7) bit is cleared, this 9-bit field is valid and determines the  
output frequency from tone generator 1 on channel 2. The frequency range is between 300  
and 3400 Hz at 10 Hz intervals as shown in Table 20.  
The output level is calculated using the following formula.  
Binary data for CR16-B0, CR17-B7 to B0  
= (Output Frequency [Hz])/10  
The following is an example of how to program this register field when the intended  
frequency is 1500 Hz;  
Ex) (Output Frequency [Hz]) / 10 = 1500/10 = 150d = 10010110b  
Bits to set in CR16-B0, CR17-B7 to B0 = (0,1,0,0,1,0,1,1,0)  
Note that the operations are not guaranteed when these bits define a frequency out of a band  
between 300 and 3400 Hz.  
Table 20 Tone Generator Frequency Setting (CH2RING bit = “0”)  
CR16  
CR17  
B4  
1
1
0
:
Frequency  
(Hz)  
decimal  
hex  
B0  
0
0
0
:
B7  
0
0
0
:
B6  
0
0
0
:
B5  
0
0
1
:
B3  
1
1
0
:
B2  
1
1
0
:
B1  
1
1
0
:
B0  
0
1
0
:
300  
310  
320  
:
30  
31  
32  
:
01Eh  
01Fh  
020h  
:
400  
410  
:
40  
41  
:
028h  
029h  
:
0
0
:
0
0
:
0
0
:
1
1
:
0
0
:
1
1
:
0
0
:
0
0
:
0
1
:
1000  
1010  
:
100  
101  
:
064h  
065h  
:
0
0
:
0
0
:
1
1
:
1
1
:
0
0
:
0
0
:
1
1
:
0
0
:
0
1
:
2000  
:
200  
:
0C8h  
:
0
:
1
:
1
:
0
:
0
:
1
:
0
:
0
:
0
:
3000  
:
300  
:
12Ch  
:
1
:
0
:
0
:
1
:
0
:
1
:
1
:
0
:
0
:
3390  
3400  
339  
340  
153h  
154h  
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
1
0
When the CH2RING (CR11-B7) bit is set, the setting of the CH2TG1_8 (CR16-B0) bit and  
the CH2TG1_7 to CH2TG1_6 (CR16-B7 to B6) bits are ignored, and the CH2TG1_5 to  
CH2TG1_0 (CR16-B5 to B0) field defines the ringing tone frequency.  
When the CH2RING (CR11-B7) bit is set, the frequency range is between 15 and 50 at 1  
Hz intervals as shown in Table 21.  
The output frequency is calculated using the following formula.  
Binary data for CR17-B5 to B0  
= (Output Frequency [Hz])  
46/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
The following example shows how to program this register field when the intended  
frequency is 20 Hz;  
Ex) Output Frequency [Hz] = 20d = 010100b  
Bits to set in CR17-B5 to B0 = (0,1,0,1,0,0)  
Note that the operations are not guaranteed when these bits define a frequency out of a band  
between 15 and 50 Hz.  
Table 21 Tone Generator Frequency Setting (CH2RING bit = “1”)  
CR16  
B0  
:
CR17  
B4  
Frequency  
(Hz)  
decimal  
hex  
B7  
:
B6  
:
B5  
0
0
0
0
0
0
:
B3  
1
0
0
0
0
0
:
B2  
1
0
0
0
0
1
:
B1  
1
0
0
1
1
0
:
B0  
1
0
1
0
1
0
:
15  
16  
17  
18  
19  
20  
:
15  
16  
17  
18  
19  
20  
:
0Fh  
10h  
11h  
12h  
13h  
14h  
:
0
1
1
1
1
1
:
48  
49  
50  
48  
49  
50  
30h  
31h  
32h  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
1
0
47/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR18 (Test control)  
B7  
B6  
CH2  
LOOP0  
B5  
CH1  
LOOP1  
B4  
CH1  
LOOP0  
B3  
TEST3  
0
B2  
TEST2  
0
B1  
TEST1  
0
B0  
TEST0  
0
CH2  
LOOP1  
CR18  
default  
B7, B6  
0
0
0
0
… CH2 loop-back test mode select  
(B7, B6):  
(0, 0) = Loop-back OFF  
(0, 1) = Loop-back OFF  
(1, 0) = Channel 2 digital loop-back test. PCM data output on the PCMOUT pin during  
normal operation is internally looped back through the Receive path via the  
PCMIN pin. In digital loop-back test mode, input data on PCMIN pin is ignored,  
but PCM data continues to be output on the PCMOUT pin.  
(1, 1) = Channel 2 analog loop-back test. Analog signals output on the AOUT2P pin (or the  
AOUT2P and AOUT2N pins) are internally looped back to the transmit path  
behind a built-in feedback amplifier located after the AIN2P, AIN2N and GSX2  
pins. In this mode, the AIN2P and AIN2N input pins are ignored. However, analog  
signals continue to be output on the AOUT2P pin (or the AOUT2P and the  
AOUT2N pins).  
A loop-back test is functional only if XSYNC and RSYNC are from the same clock source.  
B5, B4  
… CH1 loop-back test mode select  
(B5, B4):  
(0, 0) = Loop-back OFF  
(0, 1) = Loop-back OFF  
(1, 0) = Channel 1 digital loop-back test. PCM data is output on the PCMOUT pin in  
normal operation is internally looped back through the Receive path via the  
PCMIN pin. In loop-back test mode, input data on PCMIN pin is ignored. However,  
PCM data can be output on the PCMOUT pin.  
(1, 1) = Channel 1 analog loop-back test. Analog signals output on the AOUT1P pin (or  
from the AOUT1P and the AOUT1N pins) are internally looped back to the  
transmit path via a built-in feedback amplifier located after the AIN1P, AIN1N and  
GSX1 pins. In this mode, the AIN1P and AIN1N input pins are ignored. However,  
analog signals can be output from the AOUT1P pin (or from the AOUT1P and the  
AOUT1N pins).  
A loop-back test is functional if XSYNC and RSYNC are from the same clock source.  
B3 to B0  
… LSI test registers for an LSI manufacturer  
The default alternation is prohibited. When a write action is executed for CR18, set all of  
these bits to “0”.  
48/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
CR19 (LSI manufacturer’s test control)  
B7  
TEST11  
0
B6  
TEST10  
0
B5  
TEST9  
0
B4  
TEST8  
0
B3  
TEST7  
0
B2  
TEST6  
0
B1  
TEST5  
0
B0  
TEST4  
0
CR19  
default  
B7 to B0  
… LSI test registers for an LSI manufacturer  
For manufacturing use only. Both reads and writes to this register are prohibited.  
49/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
PACKAGE DIMENSIONS  
(Unit: mm)  
QFP64-P-1414-0.80-BK  
Mirror finish  
Package material  
Lead frame material  
Pin treatment  
Package weight (g)  
Rev. No./Last Revised  
Epoxy resin  
42 alloy  
Solder plating (J5µm)  
0.87 TYP.  
6/Feb. 23, 2001  
5
Notes for Mounting the Surface Mount Type Package  
The surface mount type packages are very susceptible to heat in reflow mounting and humidity  
absorbed in storage.  
Therefore, before you perform reflow mounting, contact Oki’s responsible sales person for the product  
name, package name, pin number, package code and desired mounting conditions (reflow method,  
temperature and times).  
50/51  
FEDL7033-02  
ML7033  
1
Semiconductor  
NOTICE  
1. The information contained herein can change without notice owing to product and/or technical  
improvements. Before using the product, please make sure that the information being referred to is up-to-  
date.  
2. The outline of action and examples for application circuits described herein have been chosen as an  
explanation for the standard action and performance of the product. When planning to use the product,  
please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.  
3. When designing your product, please use our product below the specified maximum ratings and within the  
specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating  
temperature.  
4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation  
resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or  
unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the  
specified maximum ratings or operation outside the specified operating range.  
5. Neither indemnity against nor license of a third party’s industrial and intellectual property right, etc. is  
granted by us in connection with the use of the product and/or the information and drawings contained  
herein. No responsibility is assumed by us for any infringement of a third party’s right which may result  
from the use thereof.  
6. The products listed in this document are intended for use in general electronics equipment for commercial  
applications (e.g., office automation, communication equipment, measurement equipment, consumer  
electronics, etc.). These products are not authorized for use in any system or application that requires  
special or enhanced quality and reliability characteristics nor in any system or application where the failure  
of such system or application may result in the loss or damage of property, or death or injury to humans.  
Such applications include, but are not limited to, traffic and automotive equipment, safety devices,  
aerospace equipment, nuclear power control, medical equipment, and life-support systems.  
7. Certain products in this document may need government approval before they can be exported to particular  
countries. The purchaser assumes the responsibility of determining the legality of export of these products  
and will take appropriate and necessary steps at their own expense for these.  
8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.  
Copyright 2001 Oki Electric Industry Co., Ltd.  
51/51  

相关型号:

ML7036-001GA

Telecom Circuit, 1-Func, PQFP56, 9 X 10 MM, 0.65 MM PITCH, PLASTIC, QFP-56
OKI

ML7037-003TB

Telecom Circuit, PQFP64, 10 X 10 MM, 0.50 MM PITCH, PLASTIC, TQFP-64
OKI

ML7041

single-channel full duplex CODEC LSI device which performs mutual transcoding between the analog voice band signals ranging from 300 to 3400 Hz and th
OKI

ML7041TB

single-channel full duplex CODEC LSI device which performs mutual transcoding between the analog voice band signals ranging from 300 to 3400 Hz and th
OKI

ML7048

3-Channel Single Rail CODEC
OKI

ML7048-01GA

3-Channel Single Rail CODEC
OKI

ML7050LA

Bluetooth RF Transceiver IC
OKI

ML70511LA

Bluetooth Baseband Controller IC
OKI

ML70512

Bluetooth Baseband Controller IC
OKI

ML70512HB

Bluetooth Baseband Controller IC
OKI

ML70512LA

Bluetooth Baseband Controller IC
OKI

ML7051LA

Bluetooth Baseband Controller IC
OKI