SA58632BS [NXP]

2 x 2.2 W BTL audio amplifier; 2× 2.2 W¯¯ BTL音频放大器
SA58632BS
型号: SA58632BS
厂家: NXP    NXP
描述:

2 x 2.2 W BTL audio amplifier
2× 2.2 W¯¯ BTL音频放大器

音频放大器
文件: 总26页 (文件大小:185K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SA58632  
2 × 2.2 W BTL audio amplifier  
Rev. 01 — 27 June 2006  
Product data sheet  
1. General description  
The SA58632 is a two-channel audio amplifier in an HVQFN20 package. It provides  
power output of 2.2 W per channel with an 8 load at 9 V supply. The internal circuit is  
comprised of two BTL (Bridge-Tied Load) amplifiers with a complementary PNP-NPN  
output stage and standby/mute logic. The SA58632 is housed in a 20-pin HVQFN  
package, which has an exposed die attach paddle enabling reduced thermal resistance  
and increased power dissipation.  
2. Features  
I Low junction-to-ambient thermal resistance using exposed die attach paddle  
I Gain can be fixed with external resistors from 6 dB to 30 dB  
I Standby mode controlled by CMOS-compatible levels  
I Low standby current < 10 µA  
I No switch-on/switch-off plops  
I High power supply ripple rejection: 50 dB minimum  
I ElectroStatic Discharge (ESD) protection  
I Output short circuit to ground protection  
I Thermal shutdown protection  
3. Applications  
I Professional and amateur mobile radio  
I Portable consumer products: toys and games  
I Personal computer remote speakers  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
4. Quick reference data  
Table 1.  
Quick reference data  
VCC = 6 V; Tamb = 25 °C; RL = 8 ; VMODE = 0 V; measured in test circuit Figure 3; unless otherwise  
specified.  
Symbol Parameter  
Conditions  
operating  
Min  
2.2  
-
Typ  
9
Max  
18  
22  
10  
-
Unit  
V
VCC  
Iq  
supply voltage  
quiescent current  
standby current  
output power  
[1]  
RL = ∞ Ω  
15  
-
mA  
µA  
W
Istb  
Po  
VMODE = VCC  
THD+N = 10 %  
THD+N = 0.5 %  
-
1.2  
0.9  
-
1.5  
1.1  
2.2  
-
W
THD+N = 10 %;  
VCC = 9 V  
-
W
THD+N  
PSRR  
total harmonic  
distortion-plus-noise  
Po = 0.5 W  
-
0.15  
0.3  
%
[2]  
[3]  
power supply rejection ratio  
50  
40  
-
-
-
-
dB  
dB  
[1] With a load connected at the outputs the quiescent current will increase, the maximum of this increase  
being equal to the DC output offset voltage divided by RL.  
[2] Supply voltage ripple rejection is measured at the output with a source impedance of Rs = 0 at the input.  
The ripple voltage is a sine wave with a frequency of 1 kHz and an amplitude of 100 mV (RMS), which is  
applied to the positive supply rail.  
[3] Supply voltage ripple rejection is measured at the output, with a source impedance of Rs = 0 at the input.  
The ripple voltage is a sine wave with a frequency between 100 Hz and 20 kHz and an amplitude of  
100 mV (RMS), which is applied to the positive supply rail.  
5. Ordering information  
Table 2.  
Ordering information  
Type number Package  
Name  
Description  
Version  
SA58632BS HVQFN20 plastic thermal enhanced very thin quad flat package;  
SOT910-1  
no leads; 20 terminals; body 6 × 5 × 0.85 mm  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
2 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
6. Block diagram  
V
V
CCR  
CCL  
17  
10  
SA58632  
16  
15  
14  
INL−  
INL+  
OUTL−  
R
V
CCL  
R
20 kΩ  
1
OUTL+  
20 kΩ  
STANDBY/MUTE LOGIC  
11  
12  
13  
INR−  
INR+  
OUTR−  
R
V
CCR  
R
20 kΩ  
6
OUTR+  
3
SVR  
20 kΩ  
2
4
MODE  
BTL/SE  
STANDBY/MUTE LOGIC  
5
8
9
19  
18  
20  
7
n.c.  
GND GND GND GND LGND RGND  
002aac078  
Fig 1. Block diagram of SA58632  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
3 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
7. Pinning information  
7.1 Pinning  
terminal 1  
index area  
OUTL+  
MODE  
SVR  
1
2
3
4
5
6
16 OUTL−  
15 INL−  
14 INL+  
13 INR+  
12 INR−  
11 OUTR−  
SA58632BS  
BTL/SE  
n.c.  
OUTR+  
002aac079  
Transparent top view  
Fig 2. Pin configuration for HVQFN20  
7.2 Pin description  
Table 3.  
Symbol  
Pin description  
Pin  
Description  
OUTL+  
MODE  
SVR  
1
positive loudspeaker terminal, left channel  
operating mode select (standby, mute, operating)  
half supply voltage, decoupling ripple rejection  
BTL loudspeaker or SE headphone operation  
not connected  
2
3
BTL/SE  
n.c.  
4
5
OUTR+  
RGND  
GND  
6
positive loudspeaker terminal, right channel  
7
ground, right channel  
ground[1]  
8, 9, 18, 19  
VCCR  
10  
11  
12  
13  
14  
15  
16  
17  
20  
supply voltage; right channel  
OUTR−  
INR−  
negative loudspeaker terminal, right channel  
negative input, right channel  
INR+  
positive input, right channel  
INL+  
positive input, left channel  
INL−  
negative input, left channel  
OUTL−  
VCCL  
negative output terminal, left channel  
supply voltage, left channel  
LGND  
ground, left channel  
[1] Pins 8, 9, 18 and 19 are connected to the lead frame and also to the substrate. They may be kept floating.  
When connected to the ground plane, the PCB can be used as heatsink.  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
4 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
8. Functional description  
The SA58632 is a two-channel BTL audio amplifier capable of delivering 2 × 1.5 W output  
power to an 8 load at THD+N = 10 % using a 6 V power supply. It is also capable of  
delivering 2 × 2.2 W output power to an 8 load at THD+N = 10 % using a 9 V power  
supply. Using the MODE pin, the device can be switched to standby and mute condition.  
The device is protected by an internal thermal shutdown protection mechanism. The gain  
can be set within a range of 6 dB to 30 dB by external feedback resistors.  
8.1 Power amplifier  
The power amplifier is a Bridge-Tied Load (BTL) amplifier with a complementary  
PNP-NPN output stage. The voltage loss on the positive supply line is the saturation  
voltage of a PNP power transistor, on the negative side the saturation voltage of an NPN  
power transistor. The total voltage loss is < 1 V. With a supply voltage of 6 V and an 8 Ω  
loudspeaker, an output power of 1.5 W can be delivered to the load, and with a 9 V supply  
voltage and an 8 loudspeaker an output power of 2.2 W can be delivered.  
8.2 Mode select pin (MODE)  
The device is in Standby mode (with a very low current consumption) if the voltage at the  
MODE pin is greater than VCC 0.5 V, or if this pin is floating. At a MODE voltage in the  
range between 1.5 V and VCC 1.5 V the amplifier is in a mute condition. The mute  
condition is useful to suppress plop noise at the output, caused by charging of the input  
capacitor. The device is in Active mode if the MODE pin is grounded or less than 0.5 V  
(see Figure 6).  
8.3 BTL/SE output configuration  
To invoke the BTL configuration (see Figure 3), the BTL/SE pin is taken to logic HIGH or  
not connected. The output differentially drives the speakers, so there is no need for  
coupling capacitors. The headphone can be connected to the amplifier negative outputs  
using a coupling capacitor for each channel. The headphone common ground is  
connected to the amplifier ground.  
To invoke the Single-Ended (SE) configuration (see Figure 15), the BTL/SE pin is taken to  
logic LOW or connected to ground. The positive outputs are muted with a DC level of  
0.5VCC. Using a coupling capacitor for each channel, speakers can be connected to the  
amplifier negative outputs. The speaker common ground is connected to the amplifier  
ground. Headphones can be connected to the negative outputs without using output  
coupling capacitors. The headphone common ground pin is connected to one of the  
amplifier positive output pins.  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
5 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
9. Limiting values  
Table 4.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
0.3  
0.3  
-
Max  
+18  
Unit  
V
VCC  
VI  
supply voltage  
operating  
input voltage  
VCC + 0.3  
1
V
IORM  
Tstg  
Tamb  
VP(sc)  
Ptot  
repetitive peak output current  
storage temperature  
ambient temperature  
short-circuit supply voltage  
total power dissipation  
A
non-operating  
operating  
55  
40  
-
+150  
+85  
°C  
°C  
V
10  
HVQFN20  
-
2.2  
W
10. Thermal characteristics  
Table 5.  
Thermal characteristics  
Symbol Parameter  
Conditions  
Typ  
Unit  
Rth(j-a)  
thermal resistance from junction to ambient  
in free air  
80  
22  
3
K/W  
K/W  
K/W  
64.5 mm2 (10 square inch) heat spreader  
[1]  
Rth(j-sp)  
thermal resistance from junction to solder  
point  
[1] Thermal resistance is 22 K/W with DAP soldered to 64.5 mm2 (10 square inch), 1 ounce copper heat spreader.  
11. Static characteristics  
Table 6.  
Static characteristics  
VCC = 6 V; Tamb = 25 °C; RL = 8 ; VMODE = 0 V; measured in test circuit Figure 3; unless otherwise specified.  
Symbol  
VCC  
Parameter  
Conditions  
operating  
Min  
Typ  
Max  
18  
Unit  
V
supply voltage  
2.2  
9
[1]  
[2]  
Iq  
quiescent current  
standby current  
RL = ∞ Ω  
-
15  
22  
mA  
µA  
V
Istb  
VMODE = VCC  
-
-
10  
VO  
output voltage  
-
2.2  
-
VO(offset)  
IIB  
differential output voltage offset  
input bias current  
-
-
-
-
-
-
-
-
-
-
-
50  
mV  
nA  
nA  
V
pins INL+, INR+  
pins INL, INR−  
operating  
-
500  
500  
0.5  
-
VMODE  
voltage on pin MODE  
0
mute  
1.5  
VCC 1.5  
V
standby  
V
-
CC 0.5  
VCC  
20  
V
IMODE  
VI(SE)  
VI(BTL)  
II(SE)  
current on pin MODE  
0 V < VMODE < VCC  
single-ended (SE)  
BTL  
µA  
V
input voltage on pin BTL/SE  
input voltage on pin BTL/SE  
input current on pin BTL/SE  
0
2
-
0.6  
VCC  
100  
V
VI(SE) = 0 V; pin connected  
to ground in SE mode  
µA  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
6 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
[1] With a load connected at the outputs the quiescent current will increase, the maximum of this increase being equal to the DC output  
offset voltage divided by RL.  
[2] The DC output voltage with respect to ground is approximately 0.5 × VCC  
.
12. Dynamic characteristics  
Table 7.  
Dynamic characteristics  
VCC = 6 V; Tamb = 25 °C; RL = 8 ; f = 1 kHz; VMODE = 0 V; measured in test circuit Figure 3; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
1.2  
0.9  
-
Typ  
1.5  
1.1  
2.2  
Max  
Unit  
W
Po  
output power  
THD+N = 10 %  
THD+N = 0.5 %  
-
-
-
W
THD+N = 10 %; VCC = 9 V;  
application demo board  
W
THD+N  
total harmonic  
Po = 0.5 W  
-
0.15  
0.3  
%
distortion-plus-noise  
[1]  
Gv(cl)  
Zi  
closed-loop voltage gain  
differential input impedance  
noise output voltage  
6
-
30  
dB  
kΩ  
µV  
dB  
dB  
µV  
dB  
-
100  
-
[2]  
[3]  
[4]  
[5]  
Vn(o)  
PSRR  
-
-
-
-
-
-
100  
power supply rejection ratio  
50  
40  
-
-
-
VO(mute)  
mute output voltage  
channel separation  
mute condition  
200  
-
αcs  
40  
[1] Gain of the amplifier is 2 × (R2 / R1) in test circuit of Figure 3.  
[2] The noise output voltage is measured at the output in a frequency range from 20 Hz to 20 kHz (unweighted), with a source impedance  
of Rs = 0 at the input.  
[3] Supply voltage ripple rejection is measured at the output with a source impedance of Rs = 0 at the input. The ripple voltage is a  
sine wave with a frequency of 1 kHz and an amplitude of 100 mV (RMS), which is applied to the positive supply rail.  
[4] Supply voltage ripple rejection is measured at the output, with a source impedance of Rs = 0 at the input. The ripple voltage is a  
sine wave with a frequency between 100 Hz and 20 kHz and an amplitude of 100 mV (RMS), which is applied to the positive supply rail.  
[5] Output voltage in mute position is measured with an input voltage of 1 V (RMS) in a bandwidth of 20 kHz, which includes noise.  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
7 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
13. Application information  
13.1 BTL application  
Tamb = 25 °C, VCC = 9 V, f = 1 kHz, RL = 8 , Gv = 20 dB, audio band-pass 22 Hz to  
22 kHz. The BTL diagram is shown in Figure 3.  
V
R2  
CC  
50 kΩ  
100 nF  
100 µF  
1 µF  
R1  
INL−  
17  
10  
15  
14  
10 kΩ  
OUTL−  
16  
1
INL+  
V
IL  
C3  
47 µF  
R
L
OUTL+  
OUTR−  
R4  
50 kΩ  
SA58632  
1 µF  
R3  
10 kΩ  
INR−  
INR+  
12  
13  
3
OUTR−  
11  
6
V
IR  
SVR  
R
L
MODE  
BTL/SE  
OUTR+  
2
4
20  
7
GND  
002aac080  
R2  
Gain left = 2 ×  
------  
R1  
R4  
------  
R3  
Gain right = 2 ×  
Pins 8, 9, 18 and 19 connected to ground.  
Fig 3. Application diagram of SA58632 BTL differential output configuration  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
8 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
14. Test information  
14.1 Static characterization  
The quiescent current has been measured without any load impedance (Figure 4).  
Figure 6 shows three areas: operating, mute and standby. It shows that the DC switching  
levels of the mute and standby respectively depends on the supply voltage level.  
002aac081  
002aac089  
30  
10  
(V)  
V
O
I
q
1
(mA)  
1  
10  
10  
10  
10  
10  
10  
20  
2  
3  
4  
5  
6  
(1) (2) (3)  
10  
0
1  
2
0
4
8
12  
16  
V
20  
(V)  
10  
1
10  
10  
V
(V)  
MODE  
CC  
RL = ∞ Ω  
Band-pass = 22 Hz to 22 kHz.  
(1) VCC = 3 V.  
(2) VCC = 5 V.  
(3) VCC = 12 V.  
Fig 4. Iq versus VCC  
Fig 5. VO versus VMODE  
002aac090  
16  
V
MODE  
(V)  
12  
8
standby  
mute  
4
operating  
0
0
4
8
12  
16  
V
(V)  
CC  
Fig 6. VMODE versus VCC  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
9 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
14.2 BTL dynamic characterization  
The total harmonic distortion-plus-noise (THD+N) as a function of frequency (Figure 7)  
was measured with a low-pass filter of 80 kHz. The value of capacitor C2 influences the  
behavior of PSRR at low frequencies; increasing the value of C2 increases the  
performance of PSRR.  
002aac083  
002aac084  
10  
THD+N  
60  
α
cs  
(dB)  
(1)  
(2)  
(%)  
70  
1
(1)  
(2)  
80  
90  
(3)  
1  
10  
2  
10  
100  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
Po = 0.5 W; Gv = 20 dB.  
VCC = 6 V; VO = 2 V; RL = 8 .  
(1) Gv = 30 dB.  
(1) VCC = 6 V; RL = 8 .  
(2) VCC = 7.5 V; RL = 16 .  
(2) Gv = 20 dB.  
(3) Gv = 6 dB.  
Fig 7. THD+N versus frequency  
Fig 8. Channel separation versus frequency  
002aac085  
20  
PSRR  
(dB)  
(1)  
(2)  
40  
60  
80  
(3)  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
VCC = 6 V; Rs = 0 ; Vripple = 100 mV.  
(1) Gv = 30 dB.  
(2) Gv = 20 dB.  
(3) Gv = 6 dB.  
Fig 9. PSRR versus frequency  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
10 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
14.3 Thermal behavior  
The measured thermal performance of the HVQFN20 package is highly dependent on the  
configuration and size of the heat spreader on the application demo board. Data may not  
be comparable between different semiconductors manufacturers because the application  
demo boards and test methods are not standardized. Also, the thermal performance of  
packages for a specific application may be different than presented here, because of the  
configuration of the copper heat spreader of the application boards may be significantly  
different.  
Philips Semiconductors uses FR-4 type application boards with 1 ounce copper traces  
with solder coating.  
The demo board (see Figure 23) has a 1 ounce copper heat spreader that runs under the  
IC and provides a mounting pad to solder to the die attach paddle of the HVQFN20  
package. The heat spreader is symmetrical and provides a heat spreader on both top and  
bottom of the PCB. The heat spreader on top and bottom side of the demo board is  
connected through 2 mm diameter plated through holes. Directly under the DAP (Die  
Attach Paddle), the top and bottom side of the PCB are connected by four vias. The total  
top and bottom heat spreader area is 64.5 mm2 (10 in2).  
The junction to ambient thermal resistance, Rth(j-a) = 22 K/W for the HVQFN20 package  
when the exposed die attach paddle is soldered to 5 square inch area of 1 ounce copper  
heat spreader on the demo PCB. The maximum sine wave power dissipation for  
Tamb = 25 °C is:  
150 25  
= 5.7 W  
--------------------  
22  
Thus, for Tamb = 60 °C the maximum total power dissipation is:  
150 60  
= 4.1 W  
--------------------  
22  
The power dissipation versus ambient temperature curve (Figure 10) shows the power  
derating profiles with ambient temperature for three sizes of heat spreaders. For a more  
modest heat spreader using 5 square inch area on the top or bottom side of the PCB, the  
Rth(j-a) is 31 K/W. When the package is not soldered to a heat spreader, the Rth(j-a)  
increases to 60 K/W.  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
11 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
002aac283  
6
4
2
0
(1)  
(2)  
P
(W)  
(3)  
0
40  
80  
120  
160  
(°C)  
T
amb  
(1) 64.5 mm2 heat spreader top and bottom (1 ounce copper).  
(2) 32.3 mm2 heat spreader top or bottom (1 ounce copper).  
(3) No heat spreader.  
Fig 10. Power dissipation versus ambient temperature  
The characteristics curves (Figure 11a and Figure 11b, Figure 12, Figure 13a and  
Figure 13b, and Figure 14) show the room temperature performance for SA58632 using  
the demo PCB shown in Figure 23. For example, Figure 11 “Power dissipation versus  
output power” (a and b) show the performance as a function of load resistance and supply  
voltage. Worst case power dissipation is shown in Figure 12. Figure 13a shows that the  
part delivers typically 2.8 W per channel for THD+N = 10 % using 8 load at 9 V supply,  
while Figure 13b shows that the part delivers 3.3 W per channel at 12 V supply and 16 Ω  
load, THD+N = 10 %.  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
12 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
002aac288  
002aac289  
3
3
2
1
0
(4)  
P
(W)  
P
(W)  
(3)  
2
(2)  
(3)  
(2)  
1
(1)  
(1)  
0
0
1
2
3
0
1
2
3
4
P
(W)  
P (W)  
o
o
(1) VCC = 6 V.  
(2) VCC = 7.5 V.  
(3) VCC = 9 V.  
(1) VCC = 6 V.  
(2) VCC = 7.5 V.  
(3) VCC = 9 V.  
(4) VCC = 12 V.  
a. RL = 8 ; f = 1 kHz; Gv = 20 dB  
b. RL = 16 ; f = 1 kHz; Gv = 20 dB  
Fig 11. Power dissipation versus output power  
002aac287  
4
P
o
(W)  
3
2
1
0
(1)  
(2)  
(3)  
0
4
8
12  
V
(V)  
CC  
(1) RL = 4 .  
(2) RL = 8 .  
(3) RL = 16 .  
Fig 12. Worst case power dissipation versus VCC  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
13 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
002aac284  
002aac285  
2
2
10  
10  
THD+N  
(%)  
THD+N  
(%)  
(1) (2) (3) (4)  
10  
10  
1
(1)  
(2)  
(3)  
1
2  
2  
10  
10  
3  
3  
10  
10  
2  
3  
2  
10  
1
10  
10  
10  
1
10  
P
(W)  
P (W)  
o
o
(1) VCC = 6 V.  
(2) VCC = 7.5 V.  
(3) VCC = 9 V.  
(1) VCC = 6 V.  
(2) VCC = 7.5 V.  
(3) VCC = 9 V.  
(4) VCC = 12 V.  
a. RL = 8 ; f = 1 kHz; Gv = 20 dB  
b. RL = 16 ; f = 1 kHz; Gv = 20 dB  
Fig 13. THD+N versus output power  
002aac286  
4
P
o
(W)  
(3)  
3
(2)  
2
1
0
(1)  
0
4
8
12  
V
(V)  
CC  
THD+N = 10 %; f = 1 kHz; Gv = 20 dB.  
(1) RL = 4 .  
(2) RL = 8 .  
(3) RL = 16 .  
Fig 14. Output power versus VCC  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
14 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
14.4 Single-ended application  
Tamb = 25 °C; VCC = 7.5 V; f = 1 kHz; RL = 8 ; Gv = 20 dB; audio band-pass 20 Hz to  
20 kHz.  
The single-ended application diagram is shown in Figure 15.  
V
R2  
CC  
100 kΩ  
100 nF  
100 µF  
1 µF  
R1  
INL−  
17  
10  
15  
14  
C4  
10 kΩ  
OUTL−  
16  
1
INL+  
V
470 µF  
IL  
C3  
47 µF  
R
L
= 8 Ω  
OUTL+  
OUTR−  
R4  
100 kΩ  
SA58632  
1 µF  
R3  
10 kΩ  
INR−  
INR+  
12  
13  
3
C5  
OUTR−  
11  
6
V
470 µF  
IR  
SVR  
R
L
= 8 Ω  
MODE  
BTL/SE  
OUTR+  
2
4
20  
7
GND  
002aac091  
R2  
------  
R1  
Gain left =  
R4  
Gain right =  
------  
R3  
Pins 8, 9, 18 and 19 connected to ground.  
Fig 15. SE application circuit configuration  
If the BTL/SE pin is to ground, the positive outputs (OUTL+, OUTR+) will be in mute  
condition with a DC level of 0.5VCC. When a headphone is used (RL > 25 ) the SE  
headphone application can be used without coupling capacitors by placing the load  
between negative output and one of the positive outputs (for example, pin 1) as the  
common pin.  
Increasing the value of the tantalum or electrolytic capacitor C3 will result in a better  
channel separation. Because the positive output is not designed for high output current  
(2 × IO) at the load impedance (< 16 ), the SE application with output capacitors  
connected to ground is advised. The capacitor value of C4/C5 in combination with the  
load impedance determines the low frequency behavior. The total harmonic  
distortion-plus-noise as a function of frequency was measured with a low-pass filter of  
80 kHz. The value of the capacitor C3 influences the behavior of the PSRR at low  
frequencies; increasing the value of C3 increases the performance of PSRR.  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
15 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
002aac290  
002aac291  
2
10  
10  
THD+N  
(%)  
THD+N  
(%)  
(1) (2) (3)  
10  
1
(1) (2)  
(3)  
1
1  
10  
1  
10  
2  
2  
10  
10  
2  
1  
2  
1  
10  
10  
1
10  
10  
10  
1
10  
P
(W)  
P (W)  
o
o
(1) VCC = 7.5 V.  
(2) VCC = 9 V.  
(3) VCC = 12 V.  
(1) VCC = 9 V.  
(2) VCC = 12 V.  
(3) VCC = 15 V.  
a. RL = 4 ; f = 1 kHz; Gv = 10 dB  
b. RL = 8 ; f = 1 kHz; Gv = 10 dB  
002aac292  
2
10  
THD+N  
(%)  
(1) (2) (3)  
10  
1
1  
10  
2  
10  
2  
1  
10  
10  
1
10  
P
(W)  
o
(1) VCC = 9 V.  
(2) VCC = 12 V.  
(3) VCC = 15 V.  
c. RL = 16 ; f = 1 kHz; Gv = 10 dB  
Fig 16. THD+N versus output power  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
16 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
002aac093  
002aac094  
10  
20  
α
(dB)  
cs  
THD+N  
(%)  
(1)  
(2)  
40  
1
60  
80  
1  
(1)  
(2)  
10  
10  
(3)  
(4)  
(5)  
(3)  
2
2  
100  
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
Po = 0.5 W; Gv = 20 dB.  
Vo = 1 V; Gv = 20 dB.  
(1) VCC = 7.5 V; RL = 4 .  
(2) VCC = 9 V; RL = 8 .  
(3) VCC = 12 V; RL = 16 .  
(1) VCC = 5 V; RL = 32 , to buffer.  
(2) VCC = 7.5 V; RL = 4 .  
(3) VCC = 9 V; RL = 8 .  
(4) VCC = 12 V; RL = 16 .  
(5) VCC = 5 V; RL = 32 .  
Fig 17. THD+N versus frequency  
Fig 18. Channel separation versus frequency  
002aac095  
002aac096  
20  
2.0  
P
o
PSRR  
(dB)  
(W)  
1.6  
40  
(1)  
(2)  
(3)  
1.2  
0.8  
0.4  
0
(1)  
(2)  
60  
(3)  
80  
2
3
4
5
10  
10  
10  
10  
10  
0
4
8
12  
16  
f (Hz)  
V
CC  
(V)  
Rs = 0 ; Vripple = 100 mV.  
(1) Gv = 24 dB.  
THD+N = 10 %.  
(1) RL = 4 .  
(2) Gv = 20 dB.  
(3) Gv = 0 dB.  
(2) RL = 8 .  
(3) RL = 16 .  
Fig 19. PSRR versus frequency  
Fig 20. Po versus VCC  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
17 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
002aac097  
(2)  
4
3
2
1
0
P
(W)  
(1)  
(3)  
0
4
8
12  
16  
V
CC  
(V)  
THD+N = 10 %.  
(1) RL = 4 .  
(2) RL = 8 .  
(3) RL = 16 .  
Fig 21. Worst case power dissipation versus VCC  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
18 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
002aac293  
002aac294  
3
3
2
1
0
P
(W)  
P
(W)  
(3)  
(3)  
2
(2)  
(2)  
(1)  
(1)  
1
0
0
0.4  
0.8  
1.2  
1.6  
0
0.8  
1.6  
2.4  
P
(W)  
P (W)  
o
o
(1) VCC = 7.5 V.  
(2) VCC = 9 V.  
(3) VCC = 12 V.  
(1) VCC = 9 V.  
(2) VCC = 12 V.  
(3) VCC = 15 V.  
a. RL = 4 ; f = 1 kHz; Gv = 10 dB  
b. RL = 8 ; f = 1 kHz; Gv = 10 dB  
002aac295  
1.6  
P
(W)  
(3)  
1.2  
0.8  
0.4  
0
(2)  
(1)  
0
0.4  
0.8  
1.2  
1.6  
P
(W)  
o
(1) VCC = 9 V.  
(2) VCC = 12 V.  
(3) VCC = 15 V.  
c. RL = 16 ; f = 1 kHz; Gv = 10 dB  
Fig 22. Power dissipation versus output power  
14.5 General remarks  
The frequency characteristics can be adapted by connecting a small capacitor across the  
feedback resistor. To improve the immunity of HF radiation in radio circuit applications, a  
small capacitor can be connected in parallel with the feedback resistor (56 k); this  
creates a low-pass filter.  
14.6 SA58632BS PCB demo  
The application demo board may be used for evaluation in either BTL or SE configuration  
as shown in the schematics in Figure 3 and Figure 15. The demo PCB is laid out for a  
64.5 mm2 (10 in2) heat spreader (total of top and bottom heat spreader area).  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
19 of 26  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
SA58632BS Rev5  
Audio Amplifier  
VCC  
100 µF  
GND  
OUTL−  
OUTL+  
10 kΩ  
10 kΩ  
INL−  
GND VCC/2 VCC  
56 kΩ  
11 kΩ  
11 kΩ  
47 µF  
56 kΩ  
1 µF  
INR−  
OUTR+  
OUTR−  
001aae327  
Fig 23. SA58632BS PCB demo  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
15. Package outline  
HVQFN20: plastic thermal enhanced very thin quad flat package; no leads;  
20 terminals; body 6 x 5 x 0.85 mm  
SOT910-1  
D
B
A
terminal 1  
index area  
E
A
A
1
c
detail X  
e
1
1/2 e  
C
y
M
M
v
C A  
B
e
b
y
C
1
w
C
7
10  
L
6
11  
e
E
e
2
h
1/2 e  
1
16  
terminal 1  
index area  
20  
17  
X
D
h
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
1
b
c
D
D
h
E
E
e
e
1
e
2
L
v
w
y
y
1
h
max  
0.05  
0.00  
0.4  
0.3  
5.1  
4.9  
3.15  
2.85  
6.1  
5.9  
4.15  
3.85  
0.65  
0.40  
mm  
1
0.2  
0.8  
2.4  
4
0.1  
0.05 0.05  
0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
MO-220  
JEITA  
SOT910-1  
- - -  
- - -  
05-10-11  
Fig 24. Package outline SOT910-1 (HVQFN20)  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
21 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
16. Soldering  
16.1 Introduction to soldering surface mount packages  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
16.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow temperatures range from 215 °C to 260 °C depending on solder paste  
material. The peak top-surface temperature of the packages should be kept below:  
Table 8.  
SnPb eutectic process - package peak reflow temperatures (from J-STD-020C  
July 2004)  
Package thickness  
< 2.5 mm  
Volume mm3 < 350  
240 °C + 0/5 °C  
225 °C + 0/5 °C  
Volume mm3 350  
225 °C + 0/5 °C  
225 °C + 0/5 °C  
2.5 mm  
Table 9.  
Pb-free process - package peak reflow temperatures (from J-STD-020C July  
2004)  
Package thickness  
Volume mm3 < 350  
Volume mm3 350 to  
2000  
Volume mm3 > 2000  
< 1.6 mm  
260 °C + 0 °C  
260 °C + 0 °C  
250 °C + 0 °C  
260 °C + 0 °C  
250 °C + 0 °C  
245 °C + 0 °C  
260 °C + 0 °C  
245 °C + 0 °C  
245 °C + 0 °C  
1.6 mm to 2.5 mm  
2.5 mm  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
16.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
22 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
16.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
16.5 Package related soldering information  
Table 10. Suitability of surface mount IC packages for wave and reflow soldering methods  
Package[1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5][6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
23 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
17. Abbreviations  
Table 11. Abbreviations  
Acronym  
BTL  
Description  
Bridge-Tied Load  
CMOS  
DAP  
Complementary Metal Oxide Semiconductor  
Die Attach Paddle  
ESD  
ElectroStatic Discharge  
Negative-Positive-Negative  
Printed-Circuit Board  
NPN  
PCB  
PNP  
Positive-Negative-Positive  
Root Mean Squared  
RMS  
SE  
Single-Ended  
THD  
Total Harmonic Distortion  
18. Revision history  
Table 12. Revision history  
Document ID  
Release date  
20060627  
Data sheet status  
Change notice  
Supersedes  
SA58632_1  
Product data sheet  
-
-
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
24 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.semiconductors.philips.com.  
malfunction of a Philips Semiconductors product can reasonably be expected  
19.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. Philips Semiconductors accepts no liability for inclusion and/or use  
of Philips Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. Philips Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. Philips Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local Philips Semiconductors  
sales office. In case of any inconsistency or conflict with the short data sheet,  
the full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and and  
operation of the device at these or any other conditions above those given in  
the Characteristics sections of this document is not implied. Exposure to  
limiting values for extended periods may affect device reliability.  
Terms and conditions of sale — Philips Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.semiconductors.philips.com/profile/terms, including those  
pertaining to warranty, intellectual property rights infringement and limitation  
of liability, unless explicitly otherwise agreed to in writing by Philips  
19.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, Philips Semiconductors does not give any representations  
or warranties, expressed or implied, as to the accuracy or completeness of  
such information and shall have no liability for the consequences of use of  
such information.  
Semiconductors. In case of any inconsistency or conflict between information  
in this document and such terms and conditions, the latter will prevail.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
19.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — Philips Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
20. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
SA58632_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 27 June 2006  
25 of 26  
SA58632  
Philips Semiconductors  
2 × 2.2 W BTL audio amplifier  
21. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
8
Functional description . . . . . . . . . . . . . . . . . . . 5  
Power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Mode select pin (MODE) . . . . . . . . . . . . . . . . . 5  
BTL/SE output configuration. . . . . . . . . . . . . . . 5  
8.1  
8.2  
8.3  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal characteristics. . . . . . . . . . . . . . . . . . . 6  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 6  
Dynamic characteristics . . . . . . . . . . . . . . . . . . 7  
Application information. . . . . . . . . . . . . . . . . . . 8  
BTL application. . . . . . . . . . . . . . . . . . . . . . . . . 8  
10  
11  
12  
13  
13.1  
14  
Test information. . . . . . . . . . . . . . . . . . . . . . . . . 9  
Static characterization . . . . . . . . . . . . . . . . . . . 9  
BTL dynamic characterization . . . . . . . . . . . . 10  
Thermal behavior . . . . . . . . . . . . . . . . . . . . . . 11  
Single-ended application . . . . . . . . . . . . . . . . 15  
General remarks. . . . . . . . . . . . . . . . . . . . . . . 19  
SA58632BS PCB demo . . . . . . . . . . . . . . . . . 19  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
15  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 21  
16  
16.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 22  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 22  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 23  
Package related soldering information . . . . . . 23  
16.2  
16.3  
16.4  
16.5  
17  
18  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 24  
19  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 25  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 25  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
19.1  
19.2  
19.3  
19.4  
20  
21  
Contact information. . . . . . . . . . . . . . . . . . . . . 25  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© Koninklijke Philips Electronics N.V. 2006.  
All rights reserved.  
For more information, please visit: http://www.semiconductors.philips.com.  
For sales office addresses, email to: sales.addresses@www.semiconductors.philips.com.  
Date of release: 27 June 2006  
Document identifier: SA58632_1  

相关型号:

SA58632BS,118

SA58632 - 2 x 2.2 W BTL audio amplifier QFN 20-Pin
NXP

SA58635UK

IC AUDIO AMPLIFIER, PBGA16, 1.70 X 1.70 MM, 0.56 MM HEIGHT, WLCSP-16, Audio/Video Amplifier
NXP

SA58637

2 X 2.2 W BTL audio amplifier
NXP

SA58637BS

2 X 2.2 W BTL audio amplifier
NXP

SA58640

Low-voltage mixer FM IF system
NXP

SA58640DK

Low-voltage mixer FM IF system
NXP

SA58640DK,118

SA58640 - Low-voltage mixer FM IF system SSOP2 20-Pin
NXP

SA58641

High performance mixer FM IF system with high-speed RSSI
NXP

SA58641DK

High performance mixer FM IF system with high-speed RSSI
NXP

SA58641DK,118

SA58641 - High performance mixer FM IF system with high-speed RSSI SSOP2 20-Pin
NXP

SA58643

Single-Pole Double-Throw (SPDT) switch
NXP

SA58643DP

Single-Pole Double-Throw (SPDT) switch
NXP