SA58643DP [NXP]

Single-Pole Double-Throw (SPDT) switch; 单刀双掷( SPDT )开关
SA58643DP
型号: SA58643DP
厂家: NXP    NXP
描述:

Single-Pole Double-Throw (SPDT) switch
单刀双掷( SPDT )开关

复用器 开关 复用器或开关 信号电路 光电二极管 输出元件 信息通信管理
文件: 总16页 (文件大小:172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SA58643  
Single-Pole Double-Throw (SPDT) switch  
Rev. 01 — 20 November 2006  
Product data sheet  
1. General description  
The SA58643 is a wideband RF switch fabricated in BiCMOS technology and  
incorporating on-chip CMOS/TTL compatible drivers. Its primary function is to switch  
signals in the frequency range DC to 1 GHz from one 50 channel to another. The switch  
is activated by a CMOS/TTL compatible signal applied to the enable channel 1 pin  
(ENCH1).  
The extremely low current consumption makes the SA58643 ideal for portable  
applications. The excellent isolation and low loss makes this a suitable replacement for  
PIN diodes.  
The SA58643 is available in an 8-pin TSSOP package.  
2. Features  
I Wideband (DC to 1 GHz)  
I Low through loss (1 dB typical at 200 MHz)  
I Unused input is terminated internally in 50 Ω  
I Excellent overload capability (1 dB gain compression point +18 dBm at 300 MHz)  
I Low DC power (170 µA from 5 V supply)  
I Fast switching (20 ns typical)  
I Good isolation (off channel isolation 60 dB at 100 MHz)  
I Low distortion (IP3 intercept +33 dBm)  
I Good 50 match (return loss 18 dB at 400 MHz)  
I Full ESD protection  
I Bidirectional operation  
3. Applications  
I Digital transceiver front-end switch  
I Antenna switch  
I Filter selection  
I Video switch  
I FSK transmitter  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
SA58643DP  
TSSOP8  
plastic thin shrink small outline package; 8 leads;  
body width 3 mm  
SOT505-1  
5. Block diagram  
output/input  
input/output  
output/input  
ENCH1  
002aab690  
Fig 1. Block diagram of SA58643  
6. Pinning information  
6.1 Pinning  
1
2
3
4
8
7
6
5
V
OUT1  
AC_GND  
GND  
DD  
ENCH1  
GND  
SA58643DP  
INPUT  
OUT2  
002aab689  
Fig 2. Pin configuration for TSSOP8  
6.2 Pin description  
Table 2.  
Pin description  
Symbol  
VDD  
Pin  
1
Description  
supply voltage  
ENCH1  
GND  
2
enable channel 1  
ground  
3, 6  
4
INPUT  
OUT2  
AC_GND  
OUT1  
input  
5
output  
7
AC ground  
output  
8
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
2 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
7. Equivalent circuit  
1
3
8
V
+5 V  
DD  
OUT1  
20 k  
CONTROL  
LOGIC  
50 Ω  
7
AC bypass  
50 Ω  
6
4
2
INPUT  
20 kΩ  
5
OUT2  
ENCH1  
(logic 0 level)  
002aab711  
Fig 3. Equivalent circuit  
8. Limiting values  
Table 3.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
Parameter  
Conditions  
Min  
0.5  
-
Max  
+5.5  
568  
Unit  
V
supply voltage  
power dissipation  
[1]  
P
Tamb = 25 °C  
mW  
(still air)  
Tj(max)  
maximum junction temperature  
-
-
150  
20  
°C  
PINPUT_OUT1_OUT2 power on pin INPUT or on  
pin OUT1 or on pin OUT2  
dBm  
Tstg  
storage temperature  
65  
+150  
°C  
[1] Maximum dissipation is determined by the operating ambient temperature and the thermal resistance,  
Rth(j-a): TSSOP8: Rth(j-a) = 220 K/W.  
9. Recommended operating conditions  
Table 4.  
Operating conditions  
Symbol Parameter  
Conditions  
Min  
3.0  
Typ  
Max  
5.5  
Unit  
V
VDD  
Tamb  
Tj  
supply voltage  
-
-
-
ambient temperature  
junction temperature  
SA grade  
SA grade  
40  
40  
+85  
+105  
°C  
°C  
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
3 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
10. Static characteristics  
Table 5.  
Static characteristics  
VDD = +5 V; Tamb = 25 °C; unless otherwise specified.  
Symbol  
IDD  
Parameter  
Conditions  
Min  
40  
Typ  
Max  
300  
1.4  
Unit  
µA  
V
supply current  
170  
[1]  
Vth  
threshold voltage  
TTL/CMOS logic  
1.1  
2.0  
3.0  
1  
1.25  
VIH  
HIGH-level input voltage  
LOW-level input voltage  
LOW-level input current on pin ENCH1  
logic 1 level; enable channel 1  
logic 0 level; enable channel 2  
ENCH1 = 0.4 V  
-
VDD  
+0.8  
+1  
V
VIL  
-
V
IIL(ENCH1)  
0
0
µA  
µA  
IIH(ENCH1) HIGH-level input current on pin ENCH1  
ENCH1 = 2.4 V  
1  
+1  
[1] The ENCH1 input must be connected to a valid logic level for proper operation of the SA58643.  
11. Dynamic characteristics  
Table 6.  
VDD = +5 V; Tamb = 25 °C; unless otherwise specified.  
All measurements include the effects of the SA58643 evaluation board. Measurement system impedance is 50 .  
Dynamic characteristics  
Symbol Parameter  
Conditions  
DC to 100 MHz  
500 MHz  
Min  
Typ  
1
Max  
Unit  
dB  
2
|s21  
|
insertion power gain  
-
-
-
1.4  
2
-
dB  
900 MHz  
-
2.8  
-
dB  
2
[1]  
|s12  
|
isolation  
10 MHz  
70  
-
80  
60  
50  
30  
20  
12  
17  
13  
20  
5
dB  
100 MHz  
-
dB  
500 MHz  
-
-
dB  
900 MHz  
24  
-
-
dB  
2
2
|s22  
|
output return loss  
input return loss  
DC to 400 MHz  
900 MHz  
-
dB  
-
-
dB  
|s11  
|
DC to 400 MHz  
900 MHz  
-
-
dB  
-
-
dB  
td(off)  
tf(off)  
tr(on)  
turn-off delay time  
turn-off fall time  
turn-on rise time  
50 % TTL to (90 % to 10 %) RF  
90 % to 10 % RF  
10 % to 90 % RF  
switching transients  
DC to 1 GHz  
100 MHz  
-
-
ns  
-
-
ns  
-
5
-
ns  
Vtrt(p-p) peak-to-peak transient voltage  
-
165  
+18  
+33  
+52  
-
mV  
dBm  
dBm  
dBm  
PL(1dB)  
IP3  
output power at 1 dB gain compression  
third-order intercept point  
second-order intercept point  
noise figure  
-
-
-
-
IP2  
100 MHz  
-
-
NF  
Zo = 50 Ω  
100 MHz  
-
-
1.0  
2.0  
-
-
dB  
dB  
900 MHz  
[1] The placement of the AC bypass capacitor is critical to achieve these specifications. See Section 13 “Application information” for more  
details.  
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
4 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
12. Performance curves  
002aab697  
002aab698  
200  
0
I
DD  
S
(dB)  
21  
(µA)  
160  
120  
80  
40  
0
2  
4  
6  
8  
V
= 5 V  
4 V  
3 V  
DD  
T
= +85 °C  
+25 °C  
40 °C  
amb  
2
3
4
3.0  
4.0  
5.0  
6.0  
10  
10  
10  
10  
V
(V)  
f (MHz)  
DD  
Tamb = +25 °C  
Fig 4. Supply current versus VDD and temperature  
Fig 5. Loss versus frequency and VDD  
002aab774  
002aab699  
0.8  
0
S
(dB)  
21  
S
(dB)  
21  
2  
1.2  
4  
6  
8  
CH2  
V
= 5 V  
4 V  
3 V  
DD  
1.6  
2.0  
CH1  
3
2
3
2
4
10  
10  
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
Tamb = +25 °C  
Tamb = +25 °C; VDD = 5 V  
Fig 6. Loss versus frequency and VDD  
Fig 7. Loss matching versus frequency;  
CH1 versus CH2  
002aab700  
002aab701  
0
0
S
S
21  
21  
(dB)  
(dB)  
2  
20  
40  
60  
80  
T
= +85 °C  
+25 °C  
40 °C  
amb  
V
= 5 V  
4 V  
DD  
4  
6  
8  
3 V  
2
3
4
2
3
4
10  
10  
10  
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDD = 5 V  
Tamb = +25 °C  
Fig 8. Loss versus frequency and temperature  
Fig 9. Isolation versus frequency and VDD  
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
5 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
002aab702  
002aab703  
0
0
S
S
11  
21  
(dB)  
(dB)  
20  
V
= 5 V  
4 V  
3 V  
DD  
10  
20  
30  
40  
60  
80  
CH2  
CH1  
2
3
4
2
3
4
10  
10  
10  
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
Tamb = +25 °C; VDD = 5 V  
Tamb = +25 °C  
Fig 10. Isolation matching versus frequency;  
CH1 versus CH2  
Fig 11. Input match ON-channel versus frequency and  
VDD  
002aab704  
002aab705  
0
0
S
S
22  
22  
(dB)  
(dB)  
10  
10  
CH1: 3 V  
CH1: 5 V  
CH2: 5 V  
20  
30  
20  
30  
2
3
4
2
3
4
10  
10  
10  
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
Tamb = +25 °C; VDD = 5 V  
Tamb = +25 °C  
Fig 12. Output match ON-channel versus frequency  
Fig 13. OFF-channel match versus frequency and VDD  
002aab706  
002aab707  
0
20  
L(1dB)  
5 V  
4 V  
P
S
22  
(dBm)  
(dB)  
16  
12  
8
T
= +85 °C  
+25 °C  
40 °C  
amb  
3 V  
10  
20  
30  
4
0
2
3
4
2
3
4
10  
10  
10  
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDD = 5 V  
Tamb = +25 °C  
Fig 14. OFF-channel match versus frequency and  
temperature  
Fig 15. PL(1dB) versus frequency and VDD  
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
6 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
002aab708  
002aab709  
60  
5
4
3
2
1
0
intercept point  
NF  
(dB)  
(dBm)  
50  
IP2  
40  
V
= 5 V  
4 V  
3 V  
DD  
IP3  
30  
20  
10  
0
2
3
4
3.0  
4.0  
5.0  
6.0  
10  
10  
10  
10  
V
(V)  
f (MHz)  
DD  
Tamb = +25 °C  
Tamb = +25 °C; Zo = 50 Ω  
Fig 16. Intercept points versus VDD  
Fig 17. Noise Figure versus frequency and VDD  
1 V  
ENCH1 (pin 2)  
OUT1 (pin 8)  
50 mV  
10 nS  
002aab710  
fi = 100 MHz at 6 dBm; VDD = 5 V  
Fig 18. Switching speed  
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
7 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
13. Application information  
13.1 Evaluation demo board  
The typical applications schematic and printed-circuit board layout of the SA58643  
evaluation board is shown in Figure 19. The layout of the board is simple, but a few  
cautions need to be observed. The input and output traces should be 50 . The  
placement of the AC bypass capacitor is extremely critical if a symmetric isolation  
between the two channels is desired. The trace from pin 7 (AC_GND) should be drawn  
back towards the package and then be routed downwards. The capacitor should be  
placed straight down as close to the device as practical. For better isolation between the  
two channels at higher frequencies, it is also advisable to run the two output/input traces  
at an angle. This also minimizes any inductive coupling between the two traces. The  
power supply bypass capacitor should be placed close to the device. Figure 5 shows the  
frequency response of the SA58643. The loss matching between the two channels is  
excellent to 1.2 GHz as shown in Figure 7.  
V
DD  
+5 V  
DP package  
0.1 µF  
0.01 µF  
OUT1  
OUT2  
1
2
3
4
8
7
6
5
ENCH1  
GND  
AC_GND  
SA58643  
0.01 µF  
GND  
INPUT  
0.01 µF  
0.01 µF  
002aab691  
a. Evaluation board schematic  
top view  
bottom view  
C2  
C2  
ENCH1  
ENCH1  
C3  
C3  
C1  
OUT1  
Analog GND  
C5  
C1  
OUT1  
U1  
U1  
Analog GND  
C5  
C6  
C6  
OUT2  
C4  
OUT2  
C4  
SA58643 TSSOP8  
#30007-A50  
SA58643 TSSOP8  
#30007-A50  
B
B
A
A
Test Line  
Test Line  
002aab692  
b. SA58643 board layout  
Fig 19. Evaluation board and layout  
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
8 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
The SA58643DP evaluation demo board (see Figure 19b. SA58643 board layout)  
provides a stable RF layout. The demo circuit (see Figure 19a. Evaluation board  
schematic) is constructed on 2-layer, 1-ounce copper, FR4 PCB material. The overall  
thickness is 0.062 inches and has a dielectric constant, εr of 4.6. The transmission lines  
are modeled for coplanar waveguide with both top and bottom ground. The 50 Ω  
transmission line width is 1.388 mm, the gap from transmission line to top ground plane is  
0.254 mm, and the dielectric thickness is 1.499 mm. To facilitate grounding, and support  
low inductance ground returns, the top and bottom grounds are connected by  
through-hole vias that are equal in diameter to the thickness of the PCB.  
The top view in Figure 19b shows the placement of the circuit components. The RF input  
(pin 4) is connected via a 50 transmission line to a SMA connector. Symmetrical 50 Ω  
transmission lines connect OUT1 and OUT2 (pins 5 and 8) to SMA connectors at  
Outputs 1 and 2. A 50 through-transmission line is provided as a calibration standard.  
The outputs are selected via the DC logic level on ENCH1 (pin 2). Logic 1 level enables  
Output1 (that is, connects it to the common RF input); Logic 0 enables Output2. The  
positive supply, VDD (pin 1) and AC_GND (pin 7) are decoupled using 100 nF,  
0805 ceramic chip capacitors to ground.  
13.2 Application examples  
The SA58643 is a very versatile part and can be used in many applications. Figure 20  
shows a block diagram of a typical digital RF transceiver front-end. In this application the  
SA58643 replaces the duplexer which is typically very bulky and lossy. Due to the low  
power consumption of the device, it is ideally suited for handheld applications such as in  
CT2 cordless telephones. The SA58643 can also be used to generate Amplitude Shift  
Keying (ASK) or On-Off Keying (OOK), and Frequency Shift Keying (FSK) signals for  
digital RF communications systems. Block diagrams for these applications are shown in  
Figure 21 and Figure 22, respectively.  
For applications that require a higher isolation at 1 GHz than obtained from a single  
SA58643, several SA58643s can be cascaded as shown in Figure 23. The cascaded  
configuration will have a higher loss, but greater than 35 dB of isolation at 1 GHz and  
greater than 65 dB at 500 MHz can be obtained from this configuration. The isolation and  
matching of the two channels over frequency is shown in Figure 9 and Figure 10,  
respectively. By modifying the enable control, an RF multiplexer/demultiplexer or antenna  
selector can be constructed. The simplicity of the SA58643 coupled with its ease of use  
and high performance lends itself to many innovative applications.  
The SA58643 switch terminates the OFF channel in 50 . The 50 resistor is internal  
and is in series with the external AC bypass capacitor. Matching to impedances other than  
50 can be achieved by adding a resistor in series with the AC bypass capacitor (that is,  
25 additional to match to a 75 environment).  
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
9 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
5200  
602A  
IF OUT  
KEYPAD  
AND  
DISPLAY  
MICRO-  
CONTROLLER  
SA58643  
TX/RX  
5200  
VCO  
modulation  
002aab693  
Fig 20. A typical TDMA/digital RF transceiver system front-end  
f
1
ASK output  
oscillator  
FSK output  
SA58643  
SA58643  
50 Ω  
f
enable  
2
enable  
CH1  
CH1  
TTL data  
TTL data  
002aab694  
002aab695  
Fig 21. Amplitude Shift Keying (ASK)  
generator  
Fig 22. Frequency Shift Keying (FSK)  
generator  
OUT1/IN1  
SA58643  
IN/OUT  
SA58643  
SA58643  
OUT2/IN2  
002aab696  
enable  
Fig 23. Cascaded configuration  
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
10 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
14. Package outline  
TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm  
SOT505-1  
D
E
A
X
c
y
H
v
M
A
E
Z
5
8
A
(A )  
2
A
3
A
1
pin 1 index  
θ
L
p
L
1
4
detail X  
e
w M  
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
A
A
A
b
c
D
E
e
H
E
L
L
p
UNIT  
v
w
y
Z
θ
1
2
3
p
max.  
0.15  
0.05  
0.95  
0.80  
0.45  
0.25  
0.28  
0.15  
3.1  
2.9  
3.1  
2.9  
5.1  
4.7  
0.7  
0.4  
0.70  
0.35  
6°  
0°  
mm  
1.1  
0.65  
0.25  
0.94  
0.1  
0.1  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-04-09  
03-02-18  
SOT505-1  
Fig 24. Package outline SOT505-1 (TSSOP8)  
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
11 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
15. Soldering  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
15.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
15.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus PbSn soldering  
15.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
12 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
15.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 25) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 7 and 8  
Table 7.  
SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
350  
220  
< 2.5  
235  
220  
2.5  
220  
Table 8.  
Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 25.  
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
13 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 25. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
16. Abbreviations  
Table 9.  
Abbreviations  
Description  
Acronym  
ASK  
Amplitude Shift Keying  
BiCMOS  
CMOS  
DC  
Bipolar Complementary Metal Oxide Semiconductor  
Complementary Metal Oxide Semiconductor  
Direct Current  
ESD  
Electrostatic Discharge  
Frequency Shift Keying  
On-Off Keying  
FSK  
OOK  
PIN  
Positive Intrinsic Negative  
Radio Frequency  
RF  
SMA  
TTL  
Sub-Miniature A  
Transistor-Transistor Logic  
17. Revision history  
Table 10. Revision history  
Document ID  
Release date  
20061120  
Data sheet status  
Change notice  
Supersedes  
SA58643_1  
Product data sheet  
-
-
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
14 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of a NXP Semiconductors product can reasonably be expected to  
18.2 Definitions  
result in personal injury, death or severe property or environmental damage.  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
18.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
19. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
SA58643_1  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 01 — 20 November 2006  
15 of 16  
SA58643  
NXP Semiconductors  
Single-Pole Double-Throw (SPDT) switch  
20. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 2  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 2  
7
Equivalent circuit. . . . . . . . . . . . . . . . . . . . . . . . 3  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Recommended operating conditions. . . . . . . . 3  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 4  
Dynamic characteristics . . . . . . . . . . . . . . . . . . 4  
Performance curves . . . . . . . . . . . . . . . . . . . . . 5  
8
9
10  
11  
12  
13  
13.1  
13.2  
Application information. . . . . . . . . . . . . . . . . . . 8  
Evaluation demo board. . . . . . . . . . . . . . . . . . . 8  
Application examples . . . . . . . . . . . . . . . . . . . . 9  
14  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 11  
15  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Introduction to soldering . . . . . . . . . . . . . . . . . 12  
Wave and reflow soldering . . . . . . . . . . . . . . . 12  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 12  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 13  
15.1  
15.2  
15.3  
15.4  
16  
17  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 14  
18  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 15  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 15  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
18.1  
18.2  
18.3  
18.4  
19  
20  
Contact information. . . . . . . . . . . . . . . . . . . . . 15  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2006.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 20 November 2006  
Document identifier: SA58643_1  

相关型号:

SA58643DP,118

SA58643 - Single-Pole Double-Throw (SPDT) switch TSSOP 8-Pin
NXP

SA58646

UHF 900 MHz transceiver IC
NXP

SA58646BD

UHF 900 MHz transceiver IC
NXP

SA58670

2.1 W/channel stereo Class D audio amplifier
NXP

SA58670A

2.1 W/channel stereo class-D audio amplifier
NXP

SA58670ABS

2.1 W/channel stereo class-D audio amplifier
NXP

SA58670ABS,115

SA58670A - 2.1 W/channel stereo class-D audio amplifier QFN 20-Pin
NXP

SA58670ABS-G

IC,AUDIO AMPLIFIER,DUAL,LLCC,20PIN,PLASTIC
NXP

SA58670BS

2.1 W/channel stereo Class D audio amplifier
NXP

SA58670_08

2.1 W/channel stereo class-D audio amplifier
NXP

SA58671

1.2 W/channel stereo class-D audio amplifier
NXP

SA58671UK

1.2 W/channel stereo class-D audio amplifier
NXP