SA58635UK [NXP]

IC AUDIO AMPLIFIER, PBGA16, 1.70 X 1.70 MM, 0.56 MM HEIGHT, WLCSP-16, Audio/Video Amplifier;
SA58635UK
型号: SA58635UK
厂家: NXP    NXP
描述:

IC AUDIO AMPLIFIER, PBGA16, 1.70 X 1.70 MM, 0.56 MM HEIGHT, WLCSP-16, Audio/Video Amplifier

放大器 商用集成电路
文件: 总30页 (文件大小:258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SA58635  
2 × 25 mW class-G stereo headphone driver with I2C-bus  
volume control  
Rev. 01 — 26 March 2010  
Product data sheet  
1. General description  
The SA58635 is a stereo, class-G headphone driver with I2C-bus volume control. The  
I2C-bus control allows maximum flexibility with digital volume control, independent  
channel enable and mute control.  
The output of the SA58635 is referenced around true ground zero. It is designed to  
operate at the low supply current of 1.5 mA making it battery friendly. A unique power  
management technique provides class-G power efficiency by using a buck converter to  
step down the battery supply from a typical lithium ion battery (4.8 V to 2.3 V). Efficiency is  
further increased by allowing the output amplifier/driver to operate at multiple voltage rails  
based on the output/input swing.  
The SA58635 delivers 2 × 25 mW minimum into 16 Ω and 32 Ω loads. The SA58635  
provides thermal shutdown and self limiting current protection.  
The SA58635 is a high fidelity HP driver amplifier with a S/N of 100 dB minimum. An  
excellent PSRR of more than 100 dB, differential input circuit topology allows for  
maximum noise immunity in the noisy mobile phone environment.  
The SA58635 is available in a 16-bump WLCSP (Wafer Level Chip-Size Package) making  
it ideal choice for cellular handsets and portable media players.  
2. Features  
„ Power supply range: 2.3 V to 5.5 V  
„ High efficiency employing class-G dynamic power management  
„ 2 × 25 mW into 16 Ω or 32 Ω at THD+N = 1 %  
„ Very low THD+N at 0.02 % at VO of 0.7Vo(RMS) and RL of 47 Ω  
„ Integrated charge pump to eliminate DC blocking capacitors, reduce cost and PCB  
space while improving low frequency audio fidelity  
„ Excellent PSRR: > 100 dB  
„ S/N performance of 100 dB minimum  
„ Low supply current: 1.5 mA typical  
„ Low shutdown current: 5 μA maximum  
„ I2C-bus interface for 59 dB to ±4 dB volume control, independent channel enable,  
mute and software shutdown  
„ Self limiting current with thermal protection and ground loop noise suppression  
„ Pop-and-click suppression  
„ Available in 1.7 mm × 1.7 mm 16-bump WLCSP  
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
3. Applications  
„ Wireless and cellular handsets  
„ Portable media players  
„ Portable DVD player  
„ Notebook PC  
„ High fidelity applications  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
wafer level chip-size package; 16 balls; 1.7 × 1.7 × 0.56 mm  
Version  
SA58635UK  
WLCSP16  
SA58635UK  
5. Block diagram  
SW  
HPVDD  
AVDD  
BUCK  
CONVERTER  
THERMAL/SHORT-CIRCUIT  
PROTECTION  
SA58635  
INLP  
OUTL  
INLN  
CLASS-G CONTROL  
SGND  
OUTR  
INRP  
INRN  
SCL  
SDA  
2
HPVSS  
CHARGE  
PUMP  
VOLUME  
CONTROL  
I C-BUS  
INTERFACE  
002aad931  
CPN  
CPP  
AGND  
Fig 1. Block diagram of SA58635  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
2 of 30  
 
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
6. Pinning information  
6.1 Pinning  
SA58635UK  
ball A1  
index area  
1
2
3
4
A
B
C
D
1
2
3
4
A
B
C
D
SW  
AVDD  
OUTL  
INLN  
AGND  
CPN  
CPP  
HPVSS  
SCL  
HPVDD  
SGND  
OUTR  
INLP  
INRP  
SDA  
INRN  
002aaf273  
002aad933  
Transparent top view  
Transparent top view  
Fig 2. Pin configuration for WLCSP16  
Fig 3. Ball mapping for WLCSP16  
6.2 Pin description  
Table 2.  
Symbol  
Pin description  
Pin Description  
SW  
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
C1  
C2  
C3  
C4  
D1  
D2  
D3  
D4  
buck converter switching mode  
analog supply; same as battery  
headphone left channel output  
left channel negative differential input  
analog supply ground  
AVDD  
OUTL  
INLN  
AGND  
CPP  
charge pump positive capacitor  
buck converter output voltage  
left channel positive differential input  
charge pump negative capacitor  
charge pump negative output voltage  
ground sense; connect to headphone jack ground  
right channel positive differential input  
I2C-bus serial data  
HPVDD  
INLP  
CPN  
HPVSS  
SGND  
INRP  
SDA  
SCL  
I2C-bus serial clock  
OUTR  
INRN  
headphone right channel output  
right channel negative differential input  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
3 of 30  
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
7. Functional description  
Refer to Figure 1 “Block diagram of SA58635”.  
7.1 Device address  
Following a START condition, the bus master must output the address of the slave it is  
accessing.  
The SA58635 responds to two slave addresses: 1100 000xb for standard accesses and  
the General Call writes (0000 0000b) for software reset. The last bit of the address byte  
defines the operation to be performed. When set to logic 1 a read is selected, while a  
logic 0 selects a write operation.  
When a reset of the I2C-bus needs to be performed by the master, the master will write to  
the General Call address followed by a write of the reset command (0000 0110b). When a  
General Call reset command is sent by the master, the SA58635 will respond with an  
acknowledge and execute a reset to the digital logic. This will return the register set and  
the volume controls to the Power-On Reset (POR) values.  
7.2 Control register  
Following the successful acknowledgement of the slave address, the bus master will send  
a byte to the SA58635, which will be stored in the Control register.  
The lowest 3 bits are used as a pointer to determine which register will be accessed  
(D[2:0]). The remaining bits are not used and are ignored.  
7.3 Register definitions  
Table 3.  
Register summary  
Register  
number  
(hex)  
Name  
Type  
Function  
00  
01  
-
-
Reserved; this address is empty and will be NACKed.  
MODE1  
read/write  
Contains the left and right channel amplifier enable bits,  
thermal status and the software shutdown bit.  
02  
03  
04  
05  
06  
07  
VOLCTL  
read/write  
read/write  
read only  
-
Volume setting and mute left and right bits.  
HIZ  
High-impedance controls for left and right channel.  
Vendor Identification and chip version number.  
Reserved; this address is empty and will be NACKed.  
This register is for manufacturing test.  
ID  
-
TEST1  
-
read/write  
read/write  
Reserved; this register is empty and will be NACKed.  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
4 of 30  
 
 
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
7.3.1 MODE1 register, MODE1  
Table 4.  
MODE1 - Mode register 1 (address 01h) bit description  
Legend: * default value.  
Bit  
Symbol  
Access  
Value  
Description  
7
HP_EN_L  
R/W  
0*  
Left channel inactive. A zero will turn off the left  
channel.  
1
Left channel active.  
6
HP_EN_R  
R/W  
0*  
Right channel inactive. A zero will turn off the right  
channel.  
1
Right channel active.  
5
4
3
2
1
-
read only  
read only  
read only  
read only  
read only  
0*  
0*  
0*  
0*  
0*  
1
Reserved; always reads back as a 0.  
Reserved; always reads back as a 0.  
Reserved; always reads back as a 0.  
Reserved; always reads back as a 0.  
Device is operating normally.  
-
-
-
THERMAL  
Device is in thermal shutdown.  
Device is enabled.  
0
SWS  
R/W  
0*  
1
Software shutdown; charge pump is disabled.  
7.3.2 Volume control register, VOLCTL  
Table 5.  
VOLCTL - Volume control register (address 02h) bit description  
Legend: * default value.  
Bit  
Symbol  
Access  
Value  
Description  
7
MUTEL  
R/W  
0
A zero indicates that the left channel is not muted.  
Left channel is muted.  
1*  
0
6
MUTER  
R/W  
A zero indicates that the right channel is not  
muted.  
1*  
0*  
Right channel is muted.  
5 to 1 VOL[4:0]  
R/W  
These bits indicate the volume on the outputs per  
the gain table shown in Table 9.  
0
-
read only  
0*  
This bit is reserved and will always return a zero.  
7.3.3 High-impedance register, HIZ  
Table 6.  
HIZ - High-impedance register (address 03h) bit description  
Legend: * default value.  
Bit  
7 to 2  
1
Symbol  
Access  
read only  
R/W  
Value  
0*  
Description  
-
Unused; always returns 0.  
HIZL  
0*  
Device outputs are not in high-impedance.  
Device outputs are in high-impedance.  
Device outputs are not in high-impedance.  
Device outputs are in high-impedance.  
1
0
HIZR  
R/W  
0*  
1
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
5 of 30  
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
7.3.4 Chip identification register, ID  
Table 7.  
ID - Chip identification register (address 04h) bit description  
Legend: * default value.  
Bit Symbol  
7 to 6 SUPPLIER  
Access  
Value  
Description  
read only  
11b*  
This is the supplier identification for this device,  
indicating that this device is manufactured by  
NXP Semiconductors.  
5 to 4  
-
read only  
read only  
00b*  
Unused; always returns 0.  
3 to 0 VER[3:0]  
0000b These bits indicate the version number for this  
device. Initial silicon will be set to 0h.  
7.3.5 Test register 1, TEST1  
Table 8.  
TEST1 - Test register 1 (address 06h) bit description  
Legend: * default value.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0  
-
R/W  
00h*  
Software should refrain from writing to this register.  
Software should write only 0’s to this register.  
Values other than 0 may cause the part to not  
function as expected.  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
6 of 30  
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
7.4 Volume control  
Volume levels are set in the VOLCTL register (register 02h) as described in Section 7.3.2.  
As the volume is changed including muting and un-muting, the SA58635, will step to the  
new value at an incremental (or decremental) rate of approximately one millisecond per  
step. A full sweep from 00h to 1Fh will take roughly 32 milliseconds. The VOLCTL register  
values represent a gain on the output channels as indicated in Table 9.  
Table 9.  
Volume and gain control  
Volume control word  
0000 000x  
0000 001x  
0000 010x  
0000 011x  
0000 100x  
0000 101x  
0000 110x  
0000 111x  
0001 000x  
0001 001x  
0001 010x  
0001 011x  
0001 100x  
0001 101x  
0001 110x  
0001 111x  
0010 000x  
0010 001x  
0010 010x  
0010 011x  
0010 100x  
0010 101x  
0010 110x  
0010 111x  
0011 000x  
0011 001x  
0011 010x  
0011 011x  
0011 100x  
0011 101x  
0011 110x  
0011 111x  
1xxx xxxx  
x1xx xxxx  
Gain ± 0.5 (dB)  
59  
55  
51  
47  
43  
39  
35  
31  
27  
25  
23  
21  
19  
17  
15  
13  
11  
10  
9  
8  
7  
6  
5  
4  
3  
2  
1  
0
+1  
+2  
+3  
+4  
Mute Left active  
Mute Right active  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
7 of 30  
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
7.5 Power-on reset  
When power is applied to AVDD, an internal power-on reset holds the SA58635 in a reset  
condition until AVDD has reached VPOR. At this point, the reset condition is released and  
the SA58635 registers and I2C-bus state machine are initialized to their default states  
(all zeroes) causing all the channels to be deselected. Thereafter, AVDD must be lowered  
below 0.2 V to reset the device.  
8. Characteristics of the I2C-bus  
The I2C-bus is for 2-way, 2-line communication between different ICs or modules. The two  
lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be  
connected to a positive supply via a pull-up resistor when connected to the output stages  
of a device. Data transfer may be initiated only when the bus is not busy.  
8.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
will be interpreted as control signals (see Figure 4).  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 4. Bit transfer  
8.1.1 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW  
transition of the data line while the clock is HIGH is defined as the START condition (S). A  
LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP  
condition (P) (see Figure 5).  
SDA  
SCL  
S
P
STOP condition  
START condition  
mba608  
Fig 5. Definition of START and STOP conditions  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
8 of 30  
 
 
 
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
8.2 System configuration  
A device generating a message is a ‘transmitter’; a device receiving is the ‘receiver’. The  
device that controls the message is the ‘master’ and the devices which are controlled by  
the master are the ‘slaves’ (see Figure 6).  
SDA  
SCL  
SLAVE  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
2
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
I C-BUS  
MULTIPLEXER  
SLAVE  
002aaa966  
Fig 6. System configuration  
8.3 Acknowledge  
The number of data bytes transferred between the START and the STOP conditions from  
transmitter to receiver is not limited. Each byte of eight bits is followed by one  
acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter,  
whereas the master generates an extra acknowledge related clock pulse.  
A slave receiver which is addressed must generate an acknowledge after the reception of  
each byte. Also a master must generate an acknowledge after the reception of each byte  
that has been clocked out of the slave transmitter. The device that acknowledges has to  
pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable  
LOW during the HIGH period of the acknowledge related clock pulse; set-up time and hold  
time must be taken into account.  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from master  
1
2
8
9
S
clock pulse for  
START  
condition  
acknowledgement  
002aaa987  
Fig 7. Acknowledgement on the I2C-bus  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
9 of 30  
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
9. Bus transactions  
(1)  
slave address  
control register  
data for register D[5:0]  
S
A6 A5 A4 A3 A2 A1 A0  
0
A
X
X
D5 D4 D3 D2 D1 D0  
A
A
P
START condition  
R/W  
Auto-Increment flag  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
STOP  
condition  
002aad612  
(1) See Table 3 for register definition.  
Fig 8. Write to a specific register  
general call  
software reset  
S
0
0
0
0
0
0
0
0
A
0
0
0
0
0
1
1
0
A
P
START condition  
R/W  
acknowledge  
from slave  
acknowledge  
from slave  
STOP  
condition  
002aae118  
Fig 9. Software reset  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
10 of 30  
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
10. Limiting values  
Table 10. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol Parameter  
Conditions  
Min  
0.3  
0.3  
0.3  
Max  
+6.0  
+6.0  
2.1  
Unit  
V
VDD  
supply voltage  
Active mode  
Shutdown mode  
INRN, INRP, INLN, INLP  
SCL, SDA  
V
VI  
input voltage  
V
VIO  
IBR  
P
input/output voltage  
breakdown current  
power dissipation  
VAGND 0.5 VDD  
V
[2]  
continuous  
-
200  
mA  
WLCSP16; derating factor 10 mW/K  
Tamb = 25 °C  
-
1000  
550  
400  
+85  
+85  
+150  
-
mW  
mW  
mW  
°C  
°C  
°C  
V
Tamb = 70 °C  
-
Tamb = 85 °C  
-
Tamb  
Tj  
ambient temperature  
junction temperature  
storage temperature  
operating in free air  
operating  
40  
40  
65  
±4000  
±300  
±750  
Tstg  
VESD  
electrostatic discharge  
voltage  
human body model  
machine model  
-
V
charged-device model  
device use level:  
-
V
[3]  
[3]  
IEC61000-4-2 level 4, contact  
IEC61000-4-2 level 4, air discharge  
±30  
±30  
-
-
kV  
kV  
[1] VDD is the supply voltage on pin AVDD.  
[2] Breakdown current of output protection diodes.  
[3] ESD shock needs to be conducted to the connector pins (see Figure 10).  
All functions of a device/system perform as designed during and after exposure to a disturbance.  
Remark: External ESD suppressor ASIP protects the amplifier outputs. Suppressor is between amplifier and connector;  
15 Ω serial resistance + 5 nF capacitor and Zener diodes (14 V breakdown voltage) connected to the ground. In addition, there is a  
ferrite bead in series between suppressor and connector (see Figure 10).  
Remark: Air discharge test can be ignored if contact discharge test range is increased to corresponding same voltages as air discharge  
(reason: contact discharge is more stable and repeatable test than air discharge).  
SA58635  
FB  
OUTR  
A1  
C1  
A2  
B2  
C2  
SGND  
OUTL  
ESD  
ASIP  
AGND  
FB  
IP5311CX5/LF  
shield  
AGND  
002aae119  
Fig 10. ESD suppressor ASIP  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
11 of 30  
 
 
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
11. Static characteristics  
Table 11. Static characteristics  
V
DD = 3.6 V; RL = 15 Ω + 32 Ω; two channels in phase; Tamb = 25 °C, unless otherwise specified.[1]  
Symbol Parameter  
Conditions  
Min  
2.3  
-
Typ Max  
Unit  
V
VDD  
supply voltage  
supply current  
continuous  
-
5.5  
-
IDD  
both channels enabled;  
no audio signal  
1.5  
mA  
IDD(sd)  
Vi(cm)  
shutdown mode supply current  
common-mode input voltage  
power-on reset voltage  
I2C-bus in operation  
-
1
5
μA  
V
differential  
1.3  
-
+1.3  
VPOR  
-
-
2.1  
0.5  
-
V
|VO(offset)  
|
output offset voltage  
absolute value;  
3
mV  
both channels enabled  
PSRR  
Zi  
power supply rejection ratio  
input impedance  
Gv = 0 dB  
100  
20  
-
-
-
-
dB  
differential  
high-impedance mode  
<40 kHz  
kΩ  
Zo  
output impedance  
10  
-
-
-
-
-
-
kΩ  
Ω
6 MHz  
500  
75  
36 MHz  
Ω
I2C-bus pins (SCL, SDA)  
IOL  
LOW-level output current  
SDA output; VOL = 0.4 V;  
VDD = 3.6 V  
3
-
-
mA  
ILI  
input leakage current  
input capacitance  
SCL, SDA  
SCL, SDA  
SCL, SDA  
SCL, SDA  
1  
-
-
-
-
-
+1  
10  
-
μA  
pF  
V
Ci  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
1.2  
-
0.6  
V
[1] VDD is the supply voltage on pin AVDD.  
002aaf009  
10  
I
DD  
(mA)  
8
6
4
2
0
2.5  
3.5  
4.5  
5.5  
V
DD  
(V)  
Fig 11. Supply current versus supply voltage  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
12 of 30  
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
12. Dynamic characteristics  
Table 12. Dynamic characteristics  
V
DD = 3.6 V; RL = 15 Ω + 32 Ω; two channels in phase; Tamb = 25 °C; unless otherwise specified.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
-
Max  
-
Unit  
mW  
mA  
mA  
mA  
Po  
output power  
supply current  
stereo; f = 1 kHz; THD+N = 1 %  
output 2 × 100 μW at 3 dB crest factor  
output 2 × 500 μW at 3 dB crest factor  
output 2 × 1 mW at 3 dB crest factor  
amplifier  
2 × 25  
IDD  
-
-
-
2.5  
4.5  
6.5  
3.5  
5.5  
7.5  
Vo(RMS)  
RMS output voltage  
RL = 16 Ω; THD+N = 1 %; L + R in phase  
RL = 32 Ω; THD+N = 1 %; L + R in phase  
f = 1 kHz; VO = 700 mV (RMS)  
0.63  
0.89  
-
-
-
-
-
V
-
V
THD+N  
SVRR  
αct(ch)  
total harmonic  
distortion-plus-noise  
0.02  
%
supply voltage ripple  
rejection  
Gv = 4 dB; f = 217 Hz  
75  
-
-
dB  
channel crosstalk  
Po = 15 mW; f = 1 kHz  
90  
80  
-
-
-
dB  
dB  
μV  
ms  
line out > 10 kΩ  
-
-
Vn(o)(RMS) RMS output noise voltage Gv = 4 dB; A-weight  
7
-
-
td(sd-startup) delay time from shutdown  
to start-up  
-
15  
S/N  
Toff  
signal-to-noise ratio  
VO = 1 V (RMS); f = 1 kHz  
threshold  
100  
-
-
-
-
dB  
°C  
°C  
switch-off temperature  
-
-
180  
35  
hysteresis  
[1] VDD is the supply voltage on pin AVDD.  
002aaf025  
002aaf026  
60  
(1)  
60  
P
P
o
o
(mW)  
(mW)  
(1)  
(2)  
40  
40  
(2)  
20  
0
20  
0
2.5  
3.5  
4.5  
5.5  
2.5  
3.5  
4.5  
5.5  
V
DD  
(V)  
V
DD  
(V)  
(1) THD+N = 10 %  
(2) THD+N = 1 %  
(1) THD+N + 10 %  
(2) THD+N + 1 %  
a. RL = 16 Ω; in phase  
b. RL = 32 Ω; in phase  
Fig 12. Output power per channel versus supply voltage  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
13 of 30  
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
002aaf027  
002aaf028  
100  
100  
P
P
o
o
(mW)  
80  
(mW)  
80  
(2)  
60  
40  
20  
0
60  
40  
20  
0
(1)  
(3)  
(2)  
(1)  
(3)  
2
3
2
3
10  
10  
10  
10  
10  
10  
R
L
(Ω)  
R (Ω)  
L
a. THD+N = 1 %; in phase  
b. THD+N = 1 %; out of phase  
(1) VDD = 2.5 V  
(2) VDD = 3.6 V  
(3) VDD = 5 V  
Fig 13. Output power per channel versus load resistance  
002aaf029  
002aaf030  
2
2
10  
10  
V
DD  
= 5.0 V  
3.6 V  
I
I
DD  
(mA)  
DD  
2.5 V  
V
DD  
= 5.0 V  
3.6 V  
(mA)  
2.5 V  
10  
10  
1
10  
1
10  
3  
2  
1  
2
3  
2  
1  
2
10  
10  
1
10  
o(tot)  
10  
(mW)  
10  
10  
1
10  
P
o(tot)  
10  
(mW)  
P
a. f = 1 kHz; RL = 16 Ω  
b. f = 1 kHz; RL = 32 Ω  
Fig 14. Supply current versus total output power  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
14 of 30  
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
002aaf031  
002aaf032  
3
10  
1.6  
V
o(RMS)  
(V)  
P
(mW)  
tot  
1.4  
(3)  
(4)  
2
10  
1.2  
1.0  
0.8  
0.6  
(2)  
(1)  
(1)  
(2)  
10  
1
2  
1  
2
10  
10  
1
10  
P
10  
(mW)  
2.5  
3.5  
4.5  
5.5  
V
DD  
(V)  
o(tot)  
(1) RL = 16 Ω  
(2) RL = 32 Ω  
f = 1 kHz; THD+N = 1 %  
(1) RL = 16 Ω  
(2) RL = 32 Ω  
(3) RL = 600 Ω  
(4) RL 1000 Ω  
Fig 15. Total power dissipation versus  
total output power  
Fig 16. RMS output voltage versus supply voltage  
002aaf033  
002aaf034  
0
0
α
ct  
(dB)  
output amplitude (dBV)  
20  
30  
40  
60  
60  
90  
80  
120  
150  
100  
2
3
4
5
10  
10  
10  
10  
10  
0
5
10  
15  
20  
f (Hz)  
f (kHz)  
RL = 16 Ω; Po = 15 mW  
RL = 16 Ω  
Fig 17. Crosstalk versus frequency  
Fig 18. Output amplitude versus frequency  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
15 of 30  
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
002aaf012  
002aaf011  
2
2
10  
10  
THD+N  
(%)  
THD+N  
(%)  
10  
10  
1
1
V
DD  
= 5.0 V  
3.6 V  
2.5 V  
1  
V
DD  
= 5.0 V  
3.6 V  
10  
1  
2.5 V  
10  
10  
2  
10  
3  
2  
10  
10  
4  
3  
2  
1  
10  
4  
3  
2  
1  
10  
10  
10  
10  
10  
10  
P
o
(W)  
P
o
(W)  
a. f = 1 kHz; RL = 16 Ω  
b. f = 1 kHz; RL = 32 Ω  
002aaf010  
2
10  
THD+N  
(%)  
10  
1
(1)  
(2)  
1  
10  
2  
10  
10  
4  
3  
2  
1  
10  
10  
10  
P
o
(W)  
(1) In phase.  
(2) Out of phase.  
c. f = 1 kHz; RL = 32 Ω; VDD = 3.6 V  
Fig 19. Total harmonic distortion-plus-noise versus output power  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
16 of 30  
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
002aaf013  
002aaf014  
1
1
THD+N  
(%)  
THD+N  
(%)  
1  
1  
10  
10  
(1)  
(3)  
(3)  
(2)  
2  
2  
(2)  
10  
10  
(1)  
3  
3  
10  
10  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
a. RL = 16 Ω  
b. RL = 32 Ω  
(1) Po = 1 mW / channel  
(2) Po = 4 mW / channel  
(3) Po = 10 mW / channel  
Fig 20. Total harmonic distortion-plus-noise versus frequency (VDD = 2.5 V)  
002aaf015  
002aaf016  
1
1
THD+N  
(%)  
THD+N  
(%)  
1  
1  
10  
10  
(2)  
(3)  
(1)  
(3)  
(1)  
2  
2  
10  
10  
(2)  
3  
3  
10  
10  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
a. RL = 16 Ω  
b. RL = 32 Ω  
(1) Po = 1 mW / channel  
(2) Po = 10 mW / channel  
(3) Po = 15 mW / channel  
Fig 21. Total harmonic distortion-plus-noise versus frequency (VDD = 3.6 V)  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
17 of 30  
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
002aaf017  
002aaf018  
1
1
THD+N  
(%)  
THD+N  
(%)  
1  
1  
10  
10  
(2)  
(2)  
(3)  
2  
2  
(1)  
(1)  
10  
10  
10  
(3)  
3  
3  
10  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
(1) Po = 1 mW / channel  
(1) Po = 1 mW / channel  
(2) Po = 10 mW / channel  
(3) Po = 15 mW / channel  
(2) Po = 10 mW / channel  
(3) Po = 20 mW / channel  
a. RL = 16 Ω  
b. RL = 32 Ω  
Fig 22. Total harmonic distortion-plus-noise versus frequency (VDD = 5 V)  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
18 of 30  
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
002aaf035  
SDA  
voltage  
(V)  
V
O
vertical scale = 100 mV/div  
horizontal scale = 2 ms/div  
time (ms)  
RL = 32 Ω; f = 1 kHz; Vi(p-p) = 200 mV.  
Based on single channel 1 demo board only.  
Fig 23. Start-up waveform  
002aaf036  
SDA  
voltage  
(V)  
V
O
vertical scale = 100 mV/div  
horizontal scale = 2 ms/div  
time (ms)  
RL = 32 Ω; f = 1 kHz; Vi(p-p) = 200 mV; Gv = 4 dB.  
Based on single channel 1 demo board only.  
Fig 24. Shutdown waveform  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
19 of 30  
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
Table 13. Dynamic characteristics for I2C-bus  
Symbol Parameter  
Conditions  
Standard-mode  
I2C-bus  
Fast-mode  
I2C-bus  
Unit  
Min  
0
Max  
100  
-
Min  
0
Max  
fSCL  
tBUF  
SCL clock frequency  
400 kHz  
bus free time between a STOP and START  
condition  
4.7  
1.3  
-
μs  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tVD;ACK  
tVD;DAT  
tSU;DAT  
tLOW  
hold time (repeated) START condition  
set-up time for a repeated START condition  
set-up time for STOP condition  
data hold time  
4.0  
4.7  
4.0  
0
-
0.6  
0.6  
-
-
-
-
μs  
μs  
μs  
ns  
-
-
0.6  
-
3.45  
3.45  
-
0
[1]  
[2]  
data valid acknowledge time  
data valid time  
0.3  
0.3  
250  
4.7  
4.0  
-
0.1  
0.9 μs  
0.9 μs  
0.1  
data set-up time  
100  
-
-
-
ns  
μs  
μs  
LOW period of the SCL clock  
HIGH period of the SCL clock  
fall time of both SDA and SCL signals  
rise time of both SDA and SCL signals  
-
1.3  
tHIGH  
tf  
-
0.6  
[3][4]  
[6]  
[5]  
[5]  
300  
20 + 0.1Cb  
300 ns  
300 ns  
50 ns  
tr  
-
1000 20 + 0.1Cb  
50  
tSP  
pulse width of spikes that must be suppressed  
by the input filter  
-
-
[1] tVD;ACK = time for Acknowledgement signal from SCL LOW to SDA (out) LOW.  
[2] tVD;DAT = minimum time for SDA data out to be valid following SCL LOW.  
[3] A master device must internally provide a hold time of at least 300 ns for the SDA signal (refer to the VIL of the SCL signal) in order to  
bridge the undefined region of SCL’s falling edge.  
[4] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time (tf) for the SDA output stage is specified at  
250 ns. This allows series protection resistors to be connected between the SDA and the SCL pins and the SDA/SCL bus lines without  
exceeding the maximum specified tf.  
[5] Cb = total capacitance of one bus line in pF.  
[6] Input filters on the SDA and SCL inputs suppress noise spikes less than 50 ns.  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
20 of 30  
 
 
 
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
13. Application information  
2.3 V to 5.5 V  
10 μF  
3.3 μH  
SW  
HPVDD  
AVDD  
1 μF  
1 μF  
1 μF  
1 μF  
A1  
C1  
A2  
B2  
C2  
OUTL  
INLP  
ESD  
ASIP  
to headphone jack  
OUTR  
SGND  
INLN  
INRP  
INRN  
AUDIO  
SOURCE  
IP5311CX5/LF  
shield  
SA58635  
HPVSS  
CPP  
AGND  
2.2 μF  
CPN  
SCL SDA  
2.2 μF  
2
I C-bus  
002aae120  
Fig 25. Typical application  
13.1 Power supply decoupling considerations  
The SA58635 is a stereo class-G headphone driver amplifier that requires proper power  
supply decoupling to ensure the rated performance for THD+N and power efficiency. To  
decouple high frequency transients, power supply spikes and digital noise on the power  
bus line, a low Equivalent Series Resistance (ESR) capacitor, of typically 1 μF is placed  
as close as possible to the AVDD terminals of the device. It is important to place the  
decoupling capacitor at the power pins of the device because any resistance or  
inductance in the PCB trace between the device and the capacitor can cause a loss in  
efficiency. 10 μF or greater capacitors are usually not required due to high PSRR of the  
SA58635.  
13.2 Input capacitor selection  
The SA58635 does not require input coupling capacitors when used with a differential  
audio source that is biased from 1.3 V to +1.3 V. In other words, the input signal must be  
biased within the common-mode input voltage range. If high-pass filtering is required or if  
it is driven using a single-ended source, input coupling capacitors are required.  
The 3 dB cut-off frequency is created by the input coupling capacitors and the input  
resistance of the SA58635. Ci is the value of the input coupling capacitors. The input  
resistance (Ri) of the SA58635 is a function of amplifier gain; it will vary from  
approximately 11.06 kΩ (minimum) to 28.47 kΩ (maximum) (see Table 14).  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
21 of 30  
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
Table 14. Input resistance as a function of amplifier gain  
Steps  
0
Ri (kΩ)  
28.468  
28.450  
28.421  
28.375  
28.298  
28.177  
27.995  
27.697  
27.302  
26.982  
26.587  
26.163  
25.550  
24.910  
24.183  
23.264  
22.173  
21.560  
20.947  
20.334  
19.607  
18.880  
18.267  
17.420  
16.572  
15.725  
14.998  
14.207  
13.480  
12.754  
11.906  
11.058  
Gain (dB)  
58.986  
55.185  
51.083  
47.117  
42.942  
38.819  
34.884  
30.758  
27.155  
24.997  
22.858  
20.981  
18.751  
16.826  
14.967  
12.953  
10.893  
9.846  
8.861  
7.925  
6.868  
5.857  
5.034  
3.930  
2.857  
1.804  
0.913  
0.052  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0.939  
1.831  
2.884  
3.958  
The 3 dB cut-off frequency is calculated by Equation 1:  
1
f3dB  
=
(1)  
-----------------------------  
2π × Ri × Ci  
Since the values of the input coupling capacitor and the input resistor affects the low  
frequency performance of the audio amplifier, it is important to consider in the system  
design.  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
22 of 30  
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
For a required 3 dB cut-off frequency, Equation 2 is used to determine Ci:  
1
Ci =  
(2)  
------------------------------------  
2π × Ri × f3dB  
For Ci = 1 μF, the 3 dB cut-off frequency will vary with gain settings. For gain setting of  
4 dB, the SA58635 input resistance, Ri is 11.06 kΩ (refer to Table 14). Substituting Ri and  
Ci in Equation 1 yields f3dB = 14.4 Hz.  
13.3 PCB layout considerations  
Component location is very important for performance of the SA58635. Place all external  
components very close to the device. Placing decoupling capacitors directly at the power  
supply pins increases efficiency because the resistance and inductance in the trace  
between the device power supply pins and the decoupling capacitor causes a loss in  
power efficiency.  
The trace width and routing are also very important for power output and noise  
considerations.  
For the input pins (INLP, INLN, INRP, INRN), the traces must be symmetrical and run  
side-by-side to maximize common-mode cancellation.  
13.4 Thermal information  
The SA58635 16-bump WLCSP package ground bumps are soldered directly to the PCB  
heat spreader. The heat spreader is the PCB ground plane or special heat sinking layer  
designed into the PCB. The thickness and area of the heat spreader may be maximized to  
optimize heat transfer and achieve lower package thermal resistance.  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
23 of 30  
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
14. Package outline  
WLCSP16: wafer level chip-size package; 16 balls; 1.7 x 1.7 x 0.56 mm  
SA58635UK  
D
B
A
ball A1  
index area  
A
2
E
A
A
1
detail X  
e
1
v  
w  
C A  
C
B
e
b
y
D
e
C
B
A
e
2
X
ball A1  
index area  
1
2
3
4
0
0.5  
1 mm  
y
scale  
Dimensions  
Unit  
A
A
1
A
2
b
D
E
e
e
e
2
v
w
1
max 0.615 0.23 0.385 0.29 1.725 1.725  
mm nom 0.560 0.20 0.360 0.26 1.695 1.695 0.4 1.2 1.2 0.02 0.01 0.03  
min 0.505 0.17 0.335 0.23 1.665 1.665  
sa58635uk_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
10-01-18  
10-01-19  
SA58635UK  
Fig 26. Package outline SA58635UK (WLCSP16)  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
24 of 30  
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
15. Soldering of WLCSP packages  
15.1 Introduction to soldering WLCSP packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering WLCSP (Wafer Level Chip-Size Packages) can be found in application note  
AN10439 “Wafer Level Chip Scale Package” and in application note AN10365 “Surface  
mount reflow soldering description”.  
Wave soldering is not suitable for this package.  
All NXP WLCSP packages are lead-free.  
15.2 Board mounting  
Board mounting of a WLCSP requires several steps:  
1. Solder paste printing on the PCB  
2. Component placement with a pick and place machine  
3. The reflow soldering itself  
15.3 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 27) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues, such as smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature), and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic) while being low enough that the packages and/or boards are not  
damaged. The peak temperature of the package depends on package thickness and  
volume and is classified in accordance with Table 15.  
Table 15. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
260  
> 2000  
260  
< 1.6  
1.6 to 2.5  
> 2.5  
260  
250  
245  
250  
245  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 27.  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
25 of 30  
 
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 27. Temperature profiles for large and small components  
For further information on temperature profiles, refer to application note AN10365  
“Surface mount reflow soldering description”.  
15.3.1 Stand off  
The stand off between the substrate and the chip is determined by:  
The amount of printed solder on the substrate  
The size of the solder land on the substrate  
The bump height on the chip  
The higher the stand off, the better the stresses are released due to TEC (Thermal  
Expansion Coefficient) differences between substrate and chip.  
15.3.2 Quality of solder joint  
A flip-chip joint is considered to be a good joint when the entire solder land has been  
wetted by the solder from the bump. The surface of the joint should be smooth and the  
shape symmetrical. The soldered joints on a chip should be uniform. Voids in the bumps  
after reflow can occur during the reflow process in bumps with high ratio of bump diameter  
to bump height, i.e. low bumps with large diameter. No failures have been found to be  
related to these voids. Solder joint inspection after reflow can be done with X-ray to  
monitor defects such as bridging, open circuits and voids.  
15.3.3 Rework  
In general, rework is not recommended. By rework we mean the process of removing the  
chip from the substrate and replacing it with a new chip. If a chip is removed from the  
substrate, most solder balls of the chip will be damaged. In that case it is recommended  
not to re-use the chip again.  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
26 of 30  
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
Device removal can be done when the substrate is heated until it is certain that all solder  
joints are molten. The chip can then be carefully removed from the substrate without  
damaging the tracks and solder lands on the substrate. Removing the device must be  
done using plastic tweezers, because metal tweezers can damage the silicon. The  
surface of the substrate should be carefully cleaned and all solder and flux residues  
and/or underfill removed. When a new chip is placed on the substrate, use the flux  
process instead of solder on the solder lands. Apply flux on the bumps at the chip side as  
well as on the solder pads on the substrate. Place and align the new chip while viewing  
with a microscope. To reflow the solder, use the solder profile shown in application note  
AN10365 “Surface mount reflow soldering description”.  
15.3.4 Cleaning  
Cleaning can be done after reflow soldering.  
16. Abbreviations  
Table 16. Abbreviations  
Acronym  
ASIP  
DVD  
ESD  
ESR  
FB  
Description  
Application Specific Instruction-set Processor  
Digital Versatile Disk  
ElectroStatic Discharge  
Equivalent Series Resistance  
FeedBack  
HP  
HeadPhone  
I2C-bus  
Inter-integrated Circuit bus  
Personal Computer  
PC  
PCB  
Printed-Circuit Board  
17. Revision history  
Table 17. Revision history  
Document ID  
Release date  
20100326  
Data sheet status  
Change notice  
Supersedes  
SA58635_1  
Product data sheet  
-
-
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
27 of 30  
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
18.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on a weakness or default in the  
customer application/use or the application/use of customer’s third party  
customer(s) (hereinafter both referred to as “Application”). It is customer’s  
sole responsibility to check whether the NXP Semiconductors product is  
suitable and fit for the Application planned. Customer has to do all necessary  
testing for the Application in order to avoid a default of the Application and the  
product. NXP Semiconductors does not accept any liability in this respect.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
18.3 Disclaimers  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
non-automotive qualified products in automotive equipment or applications.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
28 of 30  
 
 
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
19. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
SA58635_1  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 01 — 26 March 2010  
29 of 30  
 
 
SA58635  
NXP Semiconductors  
2 × 25 mW class-G stereo headphone driver  
20. Contents  
1
2
3
4
5
General description. . . . . . . . . . . . . . . . . . . . . . 1  
18  
Legal information . . . . . . . . . . . . . . . . . . . . . . 28  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 28  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
18.1  
18.2  
18.3  
18.4  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
19  
20  
Contact information . . . . . . . . . . . . . . . . . . . . 29  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
7.1  
7.2  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
Functional description . . . . . . . . . . . . . . . . . . . 4  
Device address. . . . . . . . . . . . . . . . . . . . . . . . . 4  
Control register. . . . . . . . . . . . . . . . . . . . . . . . . 4  
Register definitions. . . . . . . . . . . . . . . . . . . . . . 4  
MODE1 register, MODE1 . . . . . . . . . . . . . . . . . 5  
Volume control register, VOLCTL. . . . . . . . . . . 5  
High-impedance register, HIZ. . . . . . . . . . . . . . 5  
Chip identification register, ID. . . . . . . . . . . . . . 6  
Test register 1, TEST1 . . . . . . . . . . . . . . . . . . . 6  
Volume control . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . 8  
7.5  
8
Characteristics of the I2C-bus . . . . . . . . . . . . . 8  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
START and STOP conditions . . . . . . . . . . . . . . 8  
System configuration . . . . . . . . . . . . . . . . . . . . 9  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
8.1  
8.1.1  
8.2  
8.3  
9
Bus transactions . . . . . . . . . . . . . . . . . . . . . . . 10  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 11  
Static characteristics. . . . . . . . . . . . . . . . . . . . 12  
Dynamic characteristics . . . . . . . . . . . . . . . . . 13  
10  
11  
12  
13  
Application information. . . . . . . . . . . . . . . . . . 21  
Power supply decoupling considerations . . . . 21  
Input capacitor selection. . . . . . . . . . . . . . . . . 21  
PCB layout considerations . . . . . . . . . . . . . . . 23  
Thermal information . . . . . . . . . . . . . . . . . . . . 23  
13.1  
13.2  
13.3  
13.4  
14  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 24  
15  
15.1  
15.2  
15.3  
15.3.1  
15.3.2  
15.3.3  
15.3.4  
Soldering of WLCSP packages. . . . . . . . . . . . 25  
Introduction to soldering WLCSP packages . . 25  
Board mounting . . . . . . . . . . . . . . . . . . . . . . . 25  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 25  
Stand off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Quality of solder joint . . . . . . . . . . . . . . . . . . . 26  
Rework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
16  
17  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 27  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2010.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 26 March 2010  
Document identifier: SA58635_1  
 

相关型号:

SA58637

2 X 2.2 W BTL audio amplifier
NXP

SA58637BS

2 X 2.2 W BTL audio amplifier
NXP

SA58640

Low-voltage mixer FM IF system
NXP

SA58640DK

Low-voltage mixer FM IF system
NXP

SA58640DK,118

SA58640 - Low-voltage mixer FM IF system SSOP2 20-Pin
NXP

SA58641

High performance mixer FM IF system with high-speed RSSI
NXP

SA58641DK

High performance mixer FM IF system with high-speed RSSI
NXP

SA58641DK,118

SA58641 - High performance mixer FM IF system with high-speed RSSI SSOP2 20-Pin
NXP

SA58643

Single-Pole Double-Throw (SPDT) switch
NXP

SA58643DP

Single-Pole Double-Throw (SPDT) switch
NXP

SA58643DP,118

SA58643 - Single-Pole Double-Throw (SPDT) switch TSSOP 8-Pin
NXP

SA58646

UHF 900 MHz transceiver IC
NXP