SA58631 [NXP]

3 W BTL audio amplifier; 3 W BTL音频放大器
SA58631
型号: SA58631
厂家: NXP    NXP
描述:

3 W BTL audio amplifier
3 W BTL音频放大器

音频放大器
文件: 总19页 (文件大小:375K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SA58631  
3 W BTL audio amplifier  
Rev. 01 — 1 December 2005  
Preliminary data sheet  
1. General description  
The SA58631 is a one channel audio amplifier in a HVSON8 package. It provides power  
output of 3 W with a 8 load at 9 V supply. The internal circuit is comprised of a BTL  
(Bridge Tied Load) amplifier with a complementary PNP-NPN output stage and  
standby/mute logic. The SA58631 is housed in an 8-pin HVSON package which has an  
exposed die attach paddle enabling reduced thermal resistance and increased power  
dissipation.  
2. Features  
Low junction-to-ambient thermal resistance using exposed die attach paddle  
Gain can be fixed with external resistors from 6 dB to 30 dB  
Standby mode controlled by CMOS compatible levels  
Low standby current <10 µA  
No switch-on/switch-off plops  
High power supply ripple rejection 50 dB minimum  
ElectroStatic Discharge (ESD) protection  
Output short circuit to ground protection  
Thermal shutdown protection  
3. Applications  
Professional and amateur mobile radio  
Portable consumer products: toys and games  
Personal computer remote speakers  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
4. Quick reference data  
Table 1:  
Quick reference data  
Symbol Parameter  
Conditions  
Min  
Typ  
Max Unit  
VCC  
Iq  
supply voltage  
quiescent current  
standby current  
output power  
2.2  
9
8
-
18  
12  
10  
V
VCC = 5 V  
-
-
mA  
µA  
Istb  
Po  
THD + N = 10 %; RL = 8 Ω  
VCC = 5 V  
1
-
1.2  
3
-
-
-
W
W
%
VCC = 9 V  
THD + N total harmonic  
distortion-plus-noise  
Po = 0.5 W  
-
0.15  
PSRR  
power supply rejection  
ratio  
50  
-
-
dB  
5. Ordering information  
Table 2:  
Ordering information  
Type  
number  
Package  
Name  
Description  
Version  
SA58631TK HVSON8 plastic thermal enhanced very thin small outline package; SOT909-1  
no leads; 8 terminals; body 4 x 4 x 0.8 mm  
6. Block diagram  
SA58631  
4
3
5
8
IN−  
IN+  
OUT−  
R
6
V
CC  
R
20 kΩ  
20 kΩ  
OUT+  
2
1
SVR  
MODE  
STANDBY/MUTE LOGIC  
7
GND  
002aac005  
Fig 1. Block diagram of SA58631  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
2 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
7. Pinning information  
7.1 Pinning  
terminal 1  
index area  
MODE  
SVR  
IN+  
1
2
3
4
8
7
6
5
OUT+  
GND  
SA58631TK  
V
CC  
IN−  
OUT−  
002aac006  
Transparent top view  
Fig 2. Pin configuration for HVSON8  
7.2 Pin description  
Table 3:  
Pin description  
Symbol  
MODE  
SVR  
Pin  
1
Description  
operating mode select (standby, mute, operating)  
half supply voltage, decoupling ripple rejection  
positive input  
2
IN+  
3
IN−  
4
negative input  
OUT−  
VCC  
5
negative output terminal  
supply voltage  
6
GND  
OUT+  
7
ground  
8
positive output terminal  
8. Functional description  
The SA58631 is a single channel BTL audio amplifier capable of delivering 3 W output  
power to an 8 load at THD + N = 10 % using a 9 V power supply. Using the MODE pin,  
the device can be switched to standby and mute condition. The device is protected by an  
internal thermal shutdown protection mechanism. The gain can be set within a range of  
6 dB to 30 dB by external feedback resistors.  
8.1 Power amplifier  
The power amplifier is a Bridge Tied Load (BTL) amplifier with a complementary  
PNP-NPN output stage. The voltage loss on the positive supply line is the saturation  
voltage of a PNP power transistor, on the negative side the saturation voltage of an NPN  
power transistor. The total voltage loss is < 1 V. With a supply voltage of 9 V and an 8 Ω  
loudspeaker, an output power of 3 W can be delivered to the load.  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
3 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
8.2 Mode select pin (MODE)  
The device is in Standby mode (with a very low current consumption) if the voltage at the  
MODE pin is greater than VCC 0.5 V, or if this pin is floating. At a MODE voltage in the  
range between 1.5 V and VCC 1.5 V the amplifier is in a mute condition. The mute  
condition is useful to suppress plop noise at the output, caused by charging of the input  
capacitor.  
9. Limiting values  
Table 4:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
0.3  
0.3  
-
Max  
+18  
Unit  
V
VCC  
VI  
supply voltage  
operating  
input voltage  
VCC + 0.3  
1
V
IORM  
Tstg  
Tamb  
Vpsc  
Ptot  
repetitive peak output current  
storage temperature  
ambient temperature  
AC and DC short-circuit safe voltage  
total power dissipation  
A
non-operating  
operating  
55  
40  
-
+150  
+85  
°C  
°C  
V
10  
HVSON8  
-
2.3  
W
10. Thermal characteristics  
Table 5:  
Symbol  
Rth(j-a)  
Thermal characteristics  
Parameter  
Conditions  
Typ  
80  
Unit  
K/W  
K/W  
thermal resistance from junction to free air  
ambient  
[1]  
[1]  
1.5 square inch  
heat spreader  
32  
5 square inch  
heat spreader  
28  
5
K/W  
K/W  
Rth(j-sp)  
thermal resistance from junction to  
solder point  
[1] Rth is 28 K/W with DAP soldered to 5 square inch, 1 ounce copper heat spreader.  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
4 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
11. Static characteristics  
Table 6:  
Static characteristics  
VCC = 5 V; Tamb = 25 °C; RL = 8 ; VMODE = 0 V; measured in test circuit Figure 3; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
operating  
RL = ∞  
Min  
Typ  
Max  
18  
Unit  
V
VCC  
supply voltage  
2.2  
9
8
-
[1]  
[2]  
Iq  
quiescent current  
-
12  
mA  
µA  
V
Istb  
standby current  
VMODE = VCC  
-
10  
VO  
output voltage  
-
2.2  
-
-
| VOUT+ VOUT−  
IIB(IN+)  
|
differential output voltage offset  
input bias current on pin IN+  
input bias current on pin IN−  
voltage on pin MODE  
-
50  
mV  
nA  
nA  
V
-
-
500  
500  
0.5  
IIB(IN)  
-
-
VMODE  
operating  
0
-
mute  
1.5  
-
VCC 1.5  
VCC  
20  
V
standby  
VCC 0.5  
-
V
IMODE  
current on pin MODE  
0 V < VMODE < VCC  
-
-
µA  
[1] With a load connected at the outputs the quiescent current will increase, the maximum of this increase being equal to the DC output  
offset voltage divided by RL.  
[2] The DC output voltage with respect to ground is approximately 0.5 × VCC  
.
12. Dynamic characteristics  
Table 7:  
Dynamic characteristics  
VCC = 5 V; Tamb = 25 °C; RL = 8 ; f = 1 kHz; VMODE = 0 V; measured in test circuit Figure 3; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
1.2  
Max  
Unit  
W
Po  
output power  
THD + N = 10 %  
THD + N = 0.5 %  
THD + N = 10 %; VCC = 9 V  
Po = 0.5 W  
1
-
0.6  
0.9  
-
W
-
-
3.0  
-
W
THD + N  
total harmonic distortion  
plus noise  
0.15  
0.3  
%
[1]  
Gv(cl)  
closed-loop voltage gain  
6
-
-
30  
-
dB  
Zi  
differential input  
impedance  
100  
kΩ  
[2]  
[3]  
[4]  
[5]  
Vn(o)  
noise output voltage  
-
-
-
-
-
100  
µV  
dB  
dB  
µV  
PSRR  
power supply rejection  
ratio  
50  
40  
-
-
-
VO  
output voltage  
mute condition  
200  
[1] Gain of the amplifier is 2 × (R2 / R1) in test circuit of Figure 3.  
[2] The noise output voltage is measured at the output in a frequency range from 20 Hz to 20 kHz (unweighted), with a source impedance  
of RS = 0 at the input.  
[3] Supply voltage ripple rejection is measured at the output with a source impedance of Rs = 0 at the input. The ripple voltage is a  
sine wave with a frequency of 1 kHz and an amplitude of 100 mV (RMS), which is applied to the positive supply rail.  
[4] Supply voltage ripple rejection is measured at the output, with a source impedance of Rs = 0 at the input. The ripple voltage is a  
sine wave with a frequency between 100 Hz and 20 kHz and an amplitude of 100 mV (RMS), which is applied to the positive supply rail.  
[5] Output voltage in mute position is measured with an input voltage of 1 V (RMS) in a bandwidth of 20 kHz, which includes noise.  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
5 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
13. Application information  
V
CC  
R2  
56 kΩ  
C1  
1 µF  
R1  
11 kΩ  
100 nF  
100 µF  
6
IN−  
IN+  
4
3
2
1
OUT−  
5
8
V
I
SA58631  
R
L
SVR  
OUT+  
C2  
47 µF  
MODE  
7
GND  
002aac007  
R2  
------  
Gain = 2 ×  
R1  
Fig 3. Application diagram of SA58631 BTL differential output configuration  
14. Test information  
14.1 Test conditions  
The junction to ambient thermal resistance, Rth(j-a) = 27.7 K/W for the HVSON8 package  
when the exposed die attach paddle is soldered to 5 square inch area of 1 ounce copper  
heat spreader on the demo PCB. The maximum sine wave power dissipation for  
Tamb = 25 °C is:  
150 25  
27.7  
= 4.5 W .  
--------------------  
Thus, for Tamb = +85 °C the maximum total power dissipation is:  
150 85  
= 2.35 W .  
--------------------  
27.7  
The power dissipation versus ambient temperature curve (Figure 5) shows the power  
derating profiles with ambient temperature for three sizes of heat spreaders. For a more  
modest heat spreader using 1.5 square inch area on the top side of the PCB, the  
R
th(j-a) is 31.25 K/W. When the package is not soldered to a heat spreader, the Rth(j-a)  
increases to 83.3 K/W.  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
6 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
002aac009  
002aac008  
5.0  
4.0  
3.0  
2.0  
1.0  
0
6.0  
(3)  
(2)  
P
(W)  
P
o
(W)  
R
L
= 8  
16 Ω  
4.0  
(1)  
2.0  
0
0
50  
100  
150  
0
5.0  
10.0  
15.0  
20.0  
T
(°C)  
V
(V)  
amb  
CC  
(1) No heat spreader.  
(2) Top only heat spreader (1.5 in2, 1 ounce copper).  
(3) Both top and bottom heat spreader (approximately  
5 in2, 1 ounce copper).  
Fig 4. Output power versus supply voltage @  
THD + N = 10 %; 5 in2 heat spreader  
Fig 5. Power dissipation versus ambient temperature  
14.2 BTL application  
Tamb = 25 °C, VCC = 9 V, f = 1 kHz, RL = 8 , Gv = 20 dB, audio band-pass 20 Hz to  
20 kHz. The BTL diagram is shown in Figure 3.  
The quiescent current has been measured without any load impedance. The total  
harmonic distortion + noise (THD + N) as a function of frequency was measured with a  
low-pass filter of 80 kHz. The value of capacitor C2 influences the behavior of PSRR at  
low frequencies; increasing the value of C2 increases the performance of PSRR. Figure 6  
“VMODE versus VCCshows three areas: operating, mute and standby. It shows that the DC  
switching levels of the mute and standby respectively depends on the supply voltage level.  
The following characterization curves show the room temperature performance for  
SA58631 using the demo PCB shown in Figure 21. The 8 curves for power dissipation  
versus output power (Figure 10 through Figure 17) as a function of supply voltage, heat  
spreader area, load resistance and voltage gain show that there is very little difference in  
performance with voltage gain; however, there are significant differences with supply  
voltage and load resistance.  
The curves for THD + N versus output power (Figure 18) show that the SA58631 yields  
the best power output using an 8 load at 9 V supply. Under these conditions the part  
delivers typically 3 W output power for THD + N = 10 %.  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
7 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
002aac042  
002aac043  
16  
15  
V
MODE  
(V)  
I
q
(mA)  
12  
8
standby  
10  
mute  
5
0
4
operating  
16  
0
0
4
8
12  
0
4
8
12  
16  
V
CC  
20  
(V)  
V
(V)  
CC  
Fig 6. VMODE versus VCC  
Fig 7. Iq versus VCC  
002aac044  
002aac045  
10  
20  
V
o
(V)  
SVRR  
(dB)  
1
1  
10  
40  
2  
3  
4  
5  
6  
10  
10  
10  
10  
10  
(1)  
(1)  
(2) (3)  
(2)  
(3)  
60  
80  
2
3
4
5
1  
2
10  
10  
10  
10  
10  
10  
1
10  
10  
f (Hz)  
V
MODE  
(V)  
VCC = 5 V, RL = 8 ; Rs = 0 ; VI = 100 mV.  
(1) Gv = 30 dB  
Band-pass = 22 Hz to 22 kHz.  
(1) VCC = 3 V  
(2) VCC = 5 V  
(3) VCC = 12 V  
(2) Gv = 20 dB  
(3) Gv = 6 dB  
Fig 8. SVRR versus frequency  
Fig 9. Vo versus VMODE  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
8 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
002aac027  
002aac028  
5.0  
P
(W)  
4.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
P
(W)  
V
CC  
= 9.0 V  
7.5 V  
V
CC  
= 9.0 V  
7.5 V  
3.0  
2.0  
1.0  
0
5.0 V  
5.0 V  
0
0.6  
1.2  
1.8  
2.4  
0
0.6  
1.2  
1.8  
2.4  
P
(W)  
P (W)  
o
o
Fig 10. Power dissipation versus output power;  
Fig 11. Power dissipation versus output power;  
RL = 4.0 ; Gv = 10 dB; 1.5 inch2 heat spreader  
RL = 4.0 ; Gv = 20 dB; 1.5 inch2 heat spreader  
002aac029  
002aac030  
3.0  
3.0  
P
(W)  
P
(W)  
V
CC  
= 9.0 V  
7.5 V  
V
CC  
= 9.0 V  
7.5 V  
2.0  
1.0  
0
2.0  
1.0  
0
5.0 V  
5.0 V  
0
1.0  
2.0  
3.0  
4.0  
0
1.0  
2.0  
3.0  
4.0  
P
o
(W)  
P (W)  
o
Fig 12. Power dissipation versus output power;  
Fig 13. Power dissipation versus output power;  
RL = 8.0 ; Gv = 10 dB; 1.5 inch2 heat spreader  
RL = 8.0 ; Gv = 20 dB; 1.5 inch2 heat spreader  
002aac031  
002aac032  
1.6  
1.6  
P
(W)  
P
(W)  
V
CC  
= 9.0 V  
7.5 V  
V
CC  
= 9.0 V  
7.5 V  
1.2  
1.2  
0.8  
0.4  
0
0.8  
0.4  
0
5.0 V  
5.0 V  
0
1.0  
2.0  
3.0  
0
1.0  
2.0  
3.0  
P
o
(W)  
P (W)  
o
Fig 14. Power dissipation versus output power;  
Fig 15. Power dissipation versus output power;  
RL = 16 ; Gv = 10 dB; 1.5 inch2 heat spreader  
RL = 16 ; Gv = 20 dB; 1.5 inch2 heat spreader  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
9 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
002aac033  
002aac034  
3.0  
P
1.6  
P
V
CC  
= 9.0 V  
7.5 V  
V
CC  
= 9.0 V  
7.5 V  
(W)  
(W)  
1.2  
2.0  
1.0  
0
0.8  
0.4  
0
5.0 V  
5.0 V  
0
1.0  
2.0  
3.0  
4.0  
0
1.0  
2.0  
3.0  
P
(W)  
P (W)  
o
o
Fig 16. Power dissipation versus output power;  
Fig 17. Power dissipation versus output power;  
RL = 8.0 ; Gv = 20 dB; 5 inch2 heat spreader  
RL = 16 ; Gv = 20 dB; 5 inch2 heat spreader  
002aac035  
002aac036  
100.00  
100.00  
P
P
(W)  
(W)  
V
= 5.0 V  
7.5 V  
9.0 V  
V
= 5.0 V  
7.5 V  
9.0 V  
CC  
CC  
10.00  
1.00  
0.10  
0.01  
10.00  
1.00  
0.10  
0.01  
0.01  
0.10  
1.00  
10.00  
0.01  
0.10  
1.00  
10.00  
P
o
(W)  
P (W)  
o
a. f = 1 kHz; RL = 4 Ω  
b. f = 1 kHz; RL = 8 Ω  
002aac037  
100.00  
P
(W)  
V
= 5.0 V  
7.5 V  
9.0 V  
CC  
10.00  
1.00  
0.10  
0.01  
0.01  
0.10  
1.00  
10.00  
P
o
(W)  
c. f = 1 kHz; RL = 16 Ω  
Fig 18. THD + N versus output power  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
10 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
002aac038  
002aac039  
2.0  
THD + N  
(%)  
1.2  
THD + N  
(%)  
1.6  
0.8  
0.4  
0
1.2  
0.8  
0.4  
0
0.10  
1.00  
10.00  
0.10  
1.00  
10.00  
f (kHz)  
f (kHz)  
a. RL = 4 Ω  
b. RL = 8 Ω  
002aac040  
1.0  
THD + N  
(%)  
0.8  
0.6  
0.4  
0.2  
0
0.10  
1.00  
10.00  
f (kHz)  
c. RL = 16 Ω  
Fig 19. THD + N versus frequency  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
11 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
14.3 Single-ended application  
Tamb = 25 °C; VCC = 7.5 V; f = 1 kHz; RL = 8 ; Gv = 20 dB; audio band-pass 20 Hz to  
20 kHz.  
The Single-Ended (SE) application diagram is shown in Figure 20.  
V
CC  
R2  
110 kΩ  
C1  
1 µF  
R1  
11 kΩ  
100 nF  
C3  
100 µF  
6
IN−  
IN+  
4
3
2
1
OUT−  
5
8
V
I
470 µF  
SA58631  
R
L
SVR  
OUT+  
C2  
47 µF  
MODE  
7
GND  
002aac041  
R2  
Gain =  
------  
R1  
Fig 20. SE application circuit configuration  
The capacitor value of C3 in combination with the load impedance determines the low  
frequency behavior. The total harmonic distortion + noise as a function of frequency was  
measured with a low-pass filter of 80 kHz. The value of the capacitor C2 influences the  
behavior of the PSRR at low frequencies; increasing the value of C2 increases the  
performance of PSRR.  
14.4 General remarks  
The frequency characteristics can be adapted by connecting a small capacitor across the  
feedback resistor. To improve the immunity of HF radiation in radio circuit applications, a  
small capacitor can be connected in parallel with the feedback resistor (56 k); this  
creates a low-pass filter.  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
12 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
14.5 SA58631TK PCB demo  
The application demo board may be used for evaluation in either BTL or SE configuration  
as shown in the schematics in Figure 3 and Figure 20. The demo PCB is laid out for the  
5 square inch heat spreader (total of top and bottom heat spreader area).  
top layer  
bottom layer  
SA58631TK  
6.8 k  
6.8 k  
Gnd  
MS  
Rev3  
OUT+  
47 µF  
P1  
11 k  
INPUT  
OUT−  
V
CC  
Gnd  
002aac047  
Fig 21. SA58631TK PCB demo  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
13 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
15. Package outline  
HVSON8: plastic thermal enhanced very thin small outline package; no leads;  
8 terminals; body 4 x 4 x 0.85 mm  
SOT909-1  
0
1
2 mm  
scale  
X
B
A
D
E
A
A
1
c
detail X  
terminal 1  
index area  
e
1
C
terminal 1  
index area  
M
v
w
C
C
A
B
e
b
y
1
y
M
C
1
4
L
exposed tie bar (4×)  
E
h
8
5
D
h
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
A
b
E
e
e
y
c
D
D
E
L
v
w
y
1
1
h
1
h
max.  
0.05  
0.00  
0.4  
0.3  
4.1  
3.9  
3.25  
2.95  
4.1  
3.9  
2.35  
2.05  
0.65  
0.40  
mm  
0.05  
0.1  
1
0.2  
0.8  
2.4  
0.1  
0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
05-09-26  
05-09-28  
SOT909-1  
MO-229  
Fig 22. Package outline SOT909-1 (HVSON8)  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
14 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
16. Soldering  
16.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
16.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
16.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
15 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
16.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
16.5 Package related soldering information  
Table 8:  
Package [1]  
Suitability of surface mount IC packages for wave and reflow soldering methods  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable [4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L [8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
16 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
17. Abbreviations  
Table 9:  
Abbreviations  
Description  
Acronym  
BTL  
Bridge Tied Load  
CMOS  
DAP  
Complementary Metal Oxide Silicon  
Die Attach Paddle  
ESD  
ElectroStatic Discharge  
Negative-Positive-Negative  
Printed-Circuit Board  
NPN  
PCB  
PNP  
Positive-Negative-Positive  
Root Mean Squared  
RMS  
THD  
Total Harmonic Distortion  
18. Revision history  
Table 10: Revision history  
Document ID  
Release date Data sheet status  
20051201 Preliminary data sheet  
Change notice Doc. number  
SA58631_1  
Supersedes  
SA58631_1  
-
-
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
17 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
19. Data sheet status  
Level Data sheet status [1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
20. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
22. Trademarks  
Notice — All referenced brands, product names, service names and  
21. Disclaimers  
trademarks are the property of their respective owners.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
23. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
SA58631  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 1 December 2005  
18 of 19  
SA58631  
Philips Semiconductors  
3 W BTL audio amplifier  
24. Contents  
1
2
3
4
5
6
General description. . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
8
8.1  
8.2  
Functional description . . . . . . . . . . . . . . . . . . . 3  
Power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Mode select pin (MODE) . . . . . . . . . . . . . . . . . 4  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Thermal characteristics. . . . . . . . . . . . . . . . . . . 4  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 5  
Dynamic characteristics . . . . . . . . . . . . . . . . . . 5  
Application information. . . . . . . . . . . . . . . . . . . 6  
10  
11  
12  
13  
14  
Test information. . . . . . . . . . . . . . . . . . . . . . . . . 6  
Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . 6  
BTL application. . . . . . . . . . . . . . . . . . . . . . . . . 7  
Single-ended application . . . . . . . . . . . . . . . . 12  
General remarks. . . . . . . . . . . . . . . . . . . . . . . 12  
SA58631TK PCB demo . . . . . . . . . . . . . . . . . 13  
14.1  
14.2  
14.3  
14.4  
14.5  
15  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 14  
16  
16.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 15  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 15  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 16  
Package related soldering information . . . . . . 16  
16.2  
16.3  
16.4  
16.5  
17  
18  
19  
20  
21  
22  
23  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 17  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 18  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Contact information . . . . . . . . . . . . . . . . . . . . 18  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 1 December 2005  
Document number: SA58631  
Published in The Netherlands  

相关型号:

SA58631TK

3 W BTL audio amplifier
NXP

SA58631TK,115

SA58631 - 3 W BTL audio amplifier SON 8-Pin
NXP

SA58631TK,157

SA58631TK
NXP

SA58632

2 x 2.2 W BTL audio amplifier
NXP

SA58632BS

2 x 2.2 W BTL audio amplifier
NXP

SA58632BS,118

SA58632 - 2 x 2.2 W BTL audio amplifier QFN 20-Pin
NXP

SA58635UK

IC AUDIO AMPLIFIER, PBGA16, 1.70 X 1.70 MM, 0.56 MM HEIGHT, WLCSP-16, Audio/Video Amplifier
NXP

SA58637

2 X 2.2 W BTL audio amplifier
NXP

SA58637BS

2 X 2.2 W BTL audio amplifier
NXP

SA58640

Low-voltage mixer FM IF system
NXP

SA58640DK

Low-voltage mixer FM IF system
NXP

SA58640DK,118

SA58640 - Low-voltage mixer FM IF system SSOP2 20-Pin
NXP