SA58631TK,115 [NXP]

SA58631 - 3 W BTL audio amplifier SON 8-Pin;
SA58631TK,115
型号: SA58631TK,115
厂家: NXP    NXP
描述:

SA58631 - 3 W BTL audio amplifier SON 8-Pin

放大器 光电二极管 商用集成电路
文件: 总21页 (文件大小:131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SA58631  
3 W BTL audio amplifier  
Rev. 02 — 12 October 2007  
Product data sheet  
1. General description  
The SA58631 is a one channel audio amplifier in an HVSON8 package. It provides power  
output of 3 W with an 8 load at 9 V supply. The internal circuit is comprised of a BTL  
(Bridge Tied Load) amplifier with a complementary PNP-NPN output stage and  
standby/mute logic. The SA58631 is housed in an 8-pin HVSON package which has an  
exposed die attach paddle enabling reduced thermal resistance and increased power  
dissipation.  
2. Features  
I Low junction-to-ambient thermal resistance using exposed die attach paddle  
I Gain can be fixed with external resistors from 6 dB to 30 dB  
I Standby mode controlled by CMOS-compatible levels  
I Low standby current < 10 µA  
I No switch-on/switch-off plops  
I High power supply ripple rejection: 50 dB minimum  
I ElectroStatic Discharge (ESD) protection  
I Output short circuit to ground protection  
I Thermal shutdown protection  
3. Applications  
I Professional and amateur mobile radio  
I Portable consumer products: toys and games  
I Personal computer remote speakers  
 
 
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
4. Quick reference data  
Table 1.  
Quick reference data  
VCC = 5 V; Tamb = 25 °C; RL = 8 ; f = 1 kHz; VMODE = 0 V; measured in test circuit Figure 3; unless  
otherwise specified.  
Symbol Parameter  
Conditions  
operating  
Min Typ Max Unit  
VCC  
Iq  
supply voltage  
quiescent current  
standby current  
output power  
2.2  
9
18  
12  
10  
-
V
[1]  
RL = ∞ Ω  
-
8
mA  
µA  
W
Istb  
Po  
VMODE = VCC  
THD+N = 10 %  
THD+N = 0.5 %  
-
-
1
1.2  
0.9  
3.0  
0.6  
-
-
W
THD+N = 10 %;  
VCC = 9 V  
-
W
THD+N  
PSRR  
total harmonic distortion-plus-noise Po = 0.5 W  
power supply rejection ratio  
-
0.15 0.3  
%
[2]  
[3]  
50  
40  
-
-
-
-
dB  
dB  
[1] With a load connected at the outputs the quiescent current will increase, the maximum of this increase  
being equal to the DC output offset voltage divided by RL.  
[2] Supply voltage ripple rejection is measured at the output with a source impedance of Rs = 0 at the input.  
The ripple voltage is a sine wave with a frequency of 1 kHz and an amplitude of 100 mV (RMS), which is  
applied to the positive supply rail.  
[3] Supply voltage ripple rejection is measured at the output, with a source impedance of Rs = 0 at the input.  
The ripple voltage is a sine wave with a frequency between 100 Hz and 20 kHz and an amplitude of  
100 mV (RMS), which is applied to the positive supply rail.  
5. Ordering information  
Table 2.  
Ordering information  
Type  
number  
Package  
Name  
Description  
Version  
SA58631TK HVSON8 plastic thermal enhanced very thin small outline package; SOT909-1  
no leads; 8 terminals; body 4 x 4 x 0.85 mm  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
2 of 21  
 
 
 
 
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
6. Block diagram  
SA58631  
4
3
5
8
IN−  
IN+  
OUT−  
R
6
V
CC  
R
20 kΩ  
20 kΩ  
OUT+  
2
1
SVR  
MODE  
STANDBY/MUTE LOGIC  
7
GND  
002aac005  
Fig 1. Block diagram of SA58631  
7. Pinning information  
7.1 Pinning  
terminal 1  
index area  
MODE  
SVR  
IN+  
1
8
7
6
5
OUT+  
GND  
2
3
4
SA58631TK  
V
CC  
IN  
OUT−  
002aac006  
Transparent top view  
Fig 2. Pin configuration for HVSON8  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
3 of 21  
 
 
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
7.2 Pin description  
Table 3.  
Symbol  
MODE  
SVR  
Pin description  
Pin  
1
Description  
operating mode select (standby, mute, operating)  
half supply voltage, decoupling ripple rejection  
positive input  
2
IN+  
3
IN−  
4
negative input  
OUT−  
VCC  
5
negative output terminal  
supply voltage  
6
GND  
7
ground  
OUT+  
8
positive output terminal  
8. Functional description  
The SA58631 is a single-channel BTL audio amplifier capable of delivering 3 W output  
power to an 8 load at THD+N = 10 % using a 9 V power supply. Using the MODE pin,  
the device can be switched to standby and mute condition. The device is protected by an  
internal thermal shutdown protection mechanism. The gain can be set within a range of  
6 dB to 30 dB by external feedback resistors.  
8.1 Power amplifier  
The power amplifier is a Bridge Tied Load (BTL) amplifier with a complementary  
PNP-NPN output stage. The voltage loss on the positive supply line is the saturation  
voltage of a PNP power transistor, on the negative side the saturation voltage of an NPN  
power transistor. The total voltage loss is < 1 V. With a supply voltage of 9 V and an 8 Ω  
loudspeaker, an output power of 3 W can be delivered to the load.  
8.2 Mode select pin (MODE)  
The device is in Standby mode (with a very low current consumption) if the voltage at the  
MODE pin is greater than VCC 0.5 V, or if this pin is floating. At a MODE voltage in the  
range between 1.5 V and VCC 1.5 V the amplifier is in a mute condition. The mute  
condition is useful to suppress plop noise at the output, caused by charging of the input  
capacitor.  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
4 of 21  
 
 
 
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
9. Limiting values  
Table 4.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
0.3  
0.3  
-
Max  
+18  
Unit  
V
VCC  
VI  
supply voltage  
operating  
input voltage  
VCC + 0.3  
1
V
IORM  
Tstg  
Tamb  
VP(sc)  
Ptot  
repetitive peak output current  
storage temperature  
ambient temperature  
short-circuit supply voltage  
total power dissipation  
A
non-operating  
operating  
55  
40  
-
+150  
+85  
°C  
°C  
V
[1]  
10  
HVSON8  
-
2.3  
W
[1] AC and DC short-circuit safe voltage.  
10. Thermal characteristics  
Table 5.  
Thermal characteristics  
Parameter  
Symbol  
Conditions  
Typ  
80  
Unit  
K/W  
K/W  
Rth(j-a)  
thermal resistance from junction to free air  
ambient  
9.7 cm2 (1.5 in2)  
32  
[1]  
[1]  
heat spreader  
32 cm2 (5 in2)  
heat spreader  
28  
5
K/W  
K/W  
Rth(j-sp)  
thermal resistance from junction to  
solder point  
[1] Thermal resistance is 28 K/W with DAP soldered to 32 cm2 (5 in2), 35 µm copper (1 ounce copper) heat  
spreader.  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
5 of 21  
 
 
 
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
11. Static characteristics  
Table 6.  
Static characteristics  
VCC = 5 V; Tamb = 25 °C; RL = 8 ; VMODE = 0 V; measured in test circuit Figure 3; unless otherwise specified.  
Symbol  
VCC  
Parameter  
Conditions  
operating  
Min  
Typ  
Max  
18  
Unit  
V
supply voltage  
2.2  
9
8
-
[1]  
[2]  
Iq  
quiescent current  
RL = ∞ Ω  
-
12  
mA  
µA  
V
Istb  
standby current  
VMODE = VCC  
-
10  
VO  
output voltage  
-
2.2  
-
-
VO(offset)  
IIB(IN+)  
IIB(IN)  
VMODE  
differential output voltage offset  
input bias current on pin IN+  
input bias current on pin IN−  
voltage on pin MODE  
-
50  
mV  
nA  
nA  
V
-
-
500  
500  
0.5  
-
-
operating  
0
-
mute  
1.5  
-
VCC 1.5  
V
standby  
V
-
CC 0.5  
-
VCC  
20  
V
IMODE  
current on pin MODE  
0 V < VMODE < VCC  
-
µA  
[1] With a load connected at the outputs the quiescent current will increase, the maximum of this increase being equal to the DC output  
offset voltage divided by RL.  
[2] The DC output voltage with respect to ground is approximately 0.5 × VCC  
.
12. Dynamic characteristics  
Table 7.  
Dynamic characteristics  
VCC = 5 V; Tamb = 25 °C; RL = 8 ; f = 1 kHz; VMODE = 0 V; measured in test circuit Figure 3; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
1.2  
Max  
Unit  
W
Po  
output power  
THD+N = 10 %  
THD+N = 0.5 %  
THD+N = 10 %; VCC = 9 V  
Po = 0.5 W  
1
-
0.6  
0.9  
-
W
-
-
3.0  
-
W
THD+N  
total harmonic  
0.15  
0.3  
%
distortion-plus-noise  
[1]  
Gv(cl)  
closed-loop voltage gain  
6
-
-
30  
-
dB  
Zi  
differential input  
impedance  
100  
kΩ  
[2]  
[3]  
[4]  
[5]  
Vn(o)  
noise output voltage  
-
-
-
-
-
100  
µV  
dB  
dB  
µV  
PSRR  
power supply rejection  
ratio  
50  
40  
-
-
-
Vo  
output voltage  
mute condition  
200  
[1] Gain of the amplifier is 2 × (R2 / R1) in test circuit of Figure 3.  
[2] The noise output voltage is measured at the output in a frequency range from 20 Hz to 20 kHz (unweighted), with a source impedance  
of RS = 0 at the input.  
[3] Supply voltage ripple rejection is measured at the output with a source impedance of Rs = 0 at the input. The ripple voltage is a  
sine wave with a frequency of 1 kHz and an amplitude of 100 mV (RMS), which is applied to the positive supply rail.  
[4] Supply voltage ripple rejection is measured at the output, with a source impedance of Rs = 0 at the input. The ripple voltage is a  
sine wave with a frequency between 100 Hz and 20 kHz and an amplitude of 100 mV (RMS), which is applied to the positive supply rail.  
[5] Output voltage in mute position is measured with an input voltage of 1 V (RMS) in a bandwidth of 20 kHz, which includes noise.  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
6 of 21  
 
 
 
 
 
 
 
 
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
13. Application information  
V
R2  
56 kΩ  
CC  
C1  
1 µF  
R1  
11 kΩ  
100 nF  
100 µF  
IN−  
IN+  
6
4
3
2
1
OUT−  
5
8
V
I
SA58631  
R
L
SVR  
OUT+  
MODE  
C2  
47 µF  
7
GND  
002aac007  
R2  
------  
R1  
Gain = 2 ×  
Fig 3. Application diagram of SA58631 BTL differential output configuration  
14. Test information  
14.1 Test conditions  
The junction to ambient thermal resistance, Rth(j-a) = 27.7 K/W for the HVSON8 package  
when the exposed die attach paddle is soldered to 32 cm2 (5 in2) area of 35 µm (1 ounce)  
copper heat spreader on the demo PCB. The maximum sine wave power dissipation for  
Tamb = 25 °C is:  
150 25  
27.7  
= 4.5 W  
--------------------  
Thus, for Tamb = +85 °C the maximum total power dissipation is:  
150 85  
= 2.35 W  
--------------------  
27.7  
The power dissipation versus ambient temperature curve (Figure 5) shows the power  
derating profiles with ambient temperature for three sizes of heat spreaders. For a more  
modest heat spreader using 9.7 cm2 (1.5 in2) area on the top side of the PCB, the  
Rth(j-a) is 31.25 K/W. When the package is not soldered to a heat spreader, the Rth(j-a)  
increases to 83.3 K/W.  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
7 of 21  
 
 
 
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
002aac009  
002aac008  
5.0  
4.0  
3.0  
2.0  
1.0  
0
6.0  
(3)  
(2)  
P
(W)  
P
o
(W)  
R
L
= 8 Ω  
16 Ω  
4.0  
(1)  
2.0  
0
0
50  
100  
150  
0
5.0  
10.0  
15.0  
20.0  
T
(°C)  
V
(V)  
amb  
CC  
(1) No heat spreader.  
(2) Top only heat spreader (9.7 cm2 (1.5 in2), 35 µm  
(1 ounce) copper).  
(3) Both top and bottom heat spreader (approximately  
32 cm2 (5 in2), 35 µm (1 ounce) copper).  
Fig 4. Output power versus supply voltage @  
THD+N = 10 %; 32 cm2 (5 in2) heat spreader  
Fig 5. Power dissipation versus ambient temperature  
14.2 BTL application  
Tamb = 25 °C, VCC = 9 V, f = 1 kHz, RL = 8 , Gv = 20 dB, audio band-pass 20 Hz to  
20 kHz. The BTL diagram is shown in Figure 3.  
The quiescent current has been measured without any load impedance. The total  
harmonic distortion + noise (THD+N) as a function of frequency was measured with a  
low-pass filter of 80 kHz. The value of capacitor C2 influences the behavior of PSRR at  
low frequencies; increasing the value of C2 increases the performance of PSRR. Figure 6  
shows three areas: operating, mute and standby. It shows that the DC switching levels of  
the mute and standby respectively depends on the supply voltage level.  
The following characterization curves show the room temperature performance for  
SA58631 using the demo PCB shown in Figure 21. The 8 curves for power dissipation  
versus output power (Figure 10 through Figure 17) as a function of supply voltage, heat  
spreader area, load resistance and voltage gain show that there is very little difference in  
performance with voltage gain; however, there are significant differences with supply  
voltage and load resistance.  
The curves for THD+N versus output power (Figure 18) show that the SA58631 yields the  
best power output using an 8 load at 9 V supply. Under these conditions the part  
delivers typically 3 W output power for THD+N = 10 %.  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
8 of 21  
 
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
002aac042  
002aac043  
16  
15  
V
MODE  
(V)  
I
q
(mA)  
12  
8
standby  
10  
mute  
5
0
4
operating  
16  
0
0
4
8
12  
0
4
8
12  
16  
V
20  
(V)  
V
(V)  
CC  
CC  
Fig 6. VMODE versus VCC  
Fig 7. Iq versus VCC  
002aac044  
002aac045  
10  
20  
V
o
(V)  
SVRR  
(dB)  
1
1  
10  
40  
2  
3  
4  
5  
6  
10  
10  
10  
10  
10  
(1)  
(1)  
(2) (3)  
(2)  
(3)  
60  
80  
2
3
4
5
1  
2
10  
10  
10  
10  
10  
10  
1
10  
10  
f (Hz)  
V
(V)  
MODE  
VCC = 5 V; RL = 8 ; Rs = 0 ; VI = 100 mV.  
(1) Gv = 30 dB  
Band-pass = 22 Hz to 22 kHz.  
(1) VCC = 3 V  
(2) VCC = 5 V  
(3) VCC = 12 V  
(2) Gv = 20 dB  
(3) Gv = 6 dB  
Fig 8. SVRR versus frequency  
Fig 9. Vo versus VMODE  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
9 of 21  
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
002aac027  
002aac028  
5.0  
P
(W)  
4.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
P
(W)  
V
= 9.0 V  
7.5 V  
V
= 9.0 V  
7.5 V  
CC  
CC  
3.0  
2.0  
1.0  
0
5.0 V  
5.0 V  
0
0.6  
1.2  
1.8  
2.4  
0
0.6  
1.2  
1.8  
2.4  
P
(W)  
P (W)  
o
o
Fig 10. Power dissipation versus output power;  
RL = 4.0 ; Gv = 10 dB; 9.7 cm2 (1.5 in2)  
heat spreader  
Fig 11. Power dissipation versus output power;  
RL = 4.0 ; Gv = 20 dB; 9.7 cm2 (1.5 in2)  
heat spreader  
002aac029  
002aac030  
3.0  
3.0  
P
(W)  
P
(W)  
V
= 9.0 V  
7.5 V  
CC  
V
= 9.0 V  
7.5 V  
CC  
2.0  
1.0  
0
2.0  
1.0  
0
5.0 V  
5.0 V  
0
1.0  
2.0  
3.0  
4.0  
0
1.0  
2.0  
3.0  
4.0  
P
(W)  
P (W)  
o
o
Fig 12. Power dissipation versus output power;  
RL = 8.0 ; Gv = 10 dB; 9.7 cm2 (1.5 in2)  
heat spreader  
Fig 13. Power dissipation versus output power;  
RL = 8.0 ; Gv = 20 dB; 9.7 cm2 (1.5 in2)  
heat spreader  
002aac031  
002aac032  
1.6  
1.6  
P
(W)  
P
(W)  
V
= 9.0 V  
7.5 V  
V
= 9.0 V  
7.5 V  
CC  
CC  
1.2  
1.2  
0.8  
0.4  
0
0.8  
0.4  
0
5.0 V  
5.0 V  
0
1.0  
2.0  
3.0  
0
1.0  
2.0  
3.0  
P
(W)  
P (W)  
o
o
Fig 14. Power dissipation versus output power;  
RL = 16 ; Gv = 10 dB; 9.7 cm2 (1.5 in2)  
heat spreader  
Fig 15. Power dissipation versus output power;  
RL = 16 ; Gv = 20 dB; 9.7 cm2 (1.5 in2)  
heat spreader  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
10 of 21  
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
002aac033  
002aac034  
3.0  
P
1.6  
P
V
= 9.0 V  
7.5 V  
V
= 9.0 V  
7.5 V  
CC  
CC  
(W)  
(W)  
1.2  
2.0  
1.0  
0
0.8  
0.4  
0
5.0 V  
5.0 V  
0
1.0  
2.0  
3.0  
4.0  
0
1.0  
2.0  
3.0  
P
(W)  
P (W)  
o
o
Fig 16. Power dissipation versus output power;  
RL = 8.0 ; Gv = 20 dB; 32 cm2 (5 in2)  
heat spreader  
Fig 17. Power dissipation versus output power;  
RL = 16 ; Gv = 20 dB; 32 cm2 (5 in2)  
heat spreader  
002aac035  
002aac036  
2
2
10  
10  
THD+N  
(%)  
THD+N  
(%)  
V
= 5.0 V  
7.5 V  
9.0 V  
V
= 5.0 V  
7.5 V  
9.0 V  
1
1
CC  
CC  
10  
10  
1
1
1  
1  
10  
10  
2  
2  
10  
10  
2  
1  
1
2  
1  
1
10  
10  
1
10  
10  
10  
1
10  
P
(W)  
P (W)  
o
o
a. f = 1 kHz; RL = 4 Ω  
b. f = 1 kHz; RL = 8 Ω  
002aac037  
2
10  
THD+N  
(%)  
V
= 5.0 V  
7.5 V  
9.0 V  
1
CC  
10  
1
1  
10  
2  
10  
2  
1  
1
10  
10  
1
10  
P
(W)  
o
c. f = 1 kHz; RL = 16 Ω  
Fig 18. THD+N versus output power  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
11 of 21  
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
002aac038  
002aac039  
2.0  
THD+N  
(%)  
1.2  
THD+N  
(%)  
1.6  
0.8  
0.4  
0
1.2  
0.8  
0.4  
0
1  
1
1  
1
10  
1
10  
10  
1
10  
f (kHz)  
f (kHz)  
a. RL = 4 Ω  
b. RL = 8 Ω  
002aac040  
1.0  
THD+N  
(%)  
0.8  
0.6  
0.4  
0.2  
0
1  
1
10  
1
10  
f (kHz)  
c. RL = 16 Ω  
Fig 19. THD+N versus frequency  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
12 of 21  
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
14.3 Single-ended application  
Tamb = 25 °C; VCC = 7.5 V; f = 1 kHz; RL = 8 ; Gv = 20 dB; audio band-pass 20 Hz to  
20 kHz.  
The Single-Ended (SE) application diagram is shown in Figure 20.  
V
R2  
110 kΩ  
CC  
C1  
1 µF  
R1  
11 kΩ  
100 µF  
100 nF  
C3  
6
IN−  
IN+  
4
3
2
1
OUT−  
5
8
V
I
470 µF  
SA58631  
R
L
SVR  
OUT+  
C2  
47 µF  
MODE  
7
GND  
002aac041  
R2  
Gain =  
------  
R1  
Fig 20. SE application circuit configuration  
The capacitor value of C3 in combination with the load impedance determines the low  
frequency behavior. The total harmonic distortion + noise as a function of frequency was  
measured with a low-pass filter of 80 kHz. The value of the capacitor C2 influences the  
behavior of the PSRR at low frequencies; increasing the value of C2 increases the  
performance of PSRR.  
14.4 General remarks  
The frequency characteristics can be adapted by connecting a small capacitor across the  
feedback resistor. To improve the immunity of HF radiation in radio circuit applications, a  
small capacitor can be connected in parallel with the feedback resistor (56 k); this  
creates a low-pass filter.  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
13 of 21  
 
 
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
14.5 SA58631TK PCB demo  
The application demo board may be used for evaluation in either BTL or SE configuration  
as shown in the schematics in Figure 3 and Figure 20. The demo PCB is laid out for the  
32 cm2 (5 in2) heat spreader (total of top and bottom heat spreader area).  
top layer  
bottom layer  
SA58631TK  
6.8 k  
GND  
MS  
Rev3  
6.8 k  
OUT+  
47 µF  
P1  
11 k  
INPUT  
OUT−  
V
CC  
GND  
002aac047  
Fig 21. SA58631TK PCB demo  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
14 of 21  
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
15. Package outline  
HVSON8: plastic thermal enhanced very thin small outline package; no leads;  
8 terminals; body 4 x 4 x 0.85 mm  
SOT909-1  
0
1
2 mm  
scale  
X
B
A
D
E
A
A
1
c
detail X  
terminal 1  
index area  
e
1
C
terminal 1  
index area  
M
v
C
C
A
B
e
b
y
y
M
w
C
1
1
4
L
exposed tie bar (4×)  
E
h
8
5
D
h
DIMENSIONS (mm are the original dimensions)  
(1)  
A
max.  
(1)  
(1)  
UNIT  
A
1
b
E
e
e
y
c
D
D
E
L
v
w
y
1
h
1
h
0.05  
0.00  
0.4  
0.3  
4.1  
3.9  
3.25  
2.95  
4.1  
3.9  
2.35  
2.05  
0.65  
0.40  
mm  
0.05  
0.1  
1
0.2  
0.8  
2.4  
0.1  
0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
05-09-26  
05-09-28  
SOT909-1  
MO-229  
Fig 22. Package outline SOT909-1 (HVSON8)  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
15 of 21  
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
16. Soldering  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
16.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
16.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus PbSn soldering  
16.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
16 of 21  
 
 
 
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
16.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 23) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 8 and 9  
Table 8.  
SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
350  
220  
< 2.5  
235  
220  
2.5  
220  
Table 9.  
Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 23.  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
17 of 21  
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 23. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
17. Abbreviations  
Table 10. Abbreviations  
Acronym  
BTL  
Description  
Bridge Tied Load  
CMOS  
DAP  
Complementary Metal Oxide Silicon  
Die Attach Paddle  
ESD  
ElectroStatic Discharge  
Negative-Positive-Negative  
Printed-Circuit Board  
NPN  
PCB  
PNP  
Positive-Negative-Positive  
Root Mean Squared  
RMS  
THD  
Total Harmonic Distortion  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
18 of 21  
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
18. Revision history  
Table 11. Revision history  
Document ID  
SA58631_2  
Release date  
20071012  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
SA58631_1  
Modifications:  
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Figure 4: changed incorrect character font  
Soldering information updated  
SA58631_1  
20060308  
Product data sheet  
-
-
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
19 of 21  
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of a NXP Semiconductors product can reasonably be expected to  
19.2 Definitions  
result in personal injury, death or severe property or environmental damage.  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
19.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
19.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
20. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
SA58631_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 12 October 2007  
20 of 21  
 
 
 
 
 
 
SA58631  
NXP Semiconductors  
3 W BTL audio amplifier  
21. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
8
8.1  
8.2  
Functional description . . . . . . . . . . . . . . . . . . . 4  
Power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Mode select pin (MODE) . . . . . . . . . . . . . . . . . 4  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal characteristics. . . . . . . . . . . . . . . . . . . 5  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 6  
Dynamic characteristics . . . . . . . . . . . . . . . . . . 6  
Application information. . . . . . . . . . . . . . . . . . . 7  
10  
11  
12  
13  
14  
Test information. . . . . . . . . . . . . . . . . . . . . . . . . 7  
Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . 7  
BTL application. . . . . . . . . . . . . . . . . . . . . . . . . 8  
Single-ended application . . . . . . . . . . . . . . . . 13  
General remarks. . . . . . . . . . . . . . . . . . . . . . . 13  
SA58631TK PCB demo . . . . . . . . . . . . . . . . . 14  
14.1  
14.2  
14.3  
14.4  
14.5  
15  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 15  
16  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Introduction to soldering . . . . . . . . . . . . . . . . . 16  
Wave and reflow soldering . . . . . . . . . . . . . . . 16  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 16  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 17  
16.1  
16.2  
16.3  
16.4  
17  
18  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 19  
19  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 20  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 20  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
19.1  
19.2  
19.3  
19.4  
20  
21  
Contact information. . . . . . . . . . . . . . . . . . . . . 20  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 12 October 2007  
Document identifier: SA58631_2  
 

相关型号:

SA58631TK,157

SA58631TK
NXP

SA58632

2 x 2.2 W BTL audio amplifier
NXP

SA58632BS

2 x 2.2 W BTL audio amplifier
NXP

SA58632BS,118

SA58632 - 2 x 2.2 W BTL audio amplifier QFN 20-Pin
NXP

SA58635UK

IC AUDIO AMPLIFIER, PBGA16, 1.70 X 1.70 MM, 0.56 MM HEIGHT, WLCSP-16, Audio/Video Amplifier
NXP

SA58637

2 X 2.2 W BTL audio amplifier
NXP

SA58637BS

2 X 2.2 W BTL audio amplifier
NXP

SA58640

Low-voltage mixer FM IF system
NXP

SA58640DK

Low-voltage mixer FM IF system
NXP

SA58640DK,118

SA58640 - Low-voltage mixer FM IF system SSOP2 20-Pin
NXP

SA58641

High performance mixer FM IF system with high-speed RSSI
NXP

SA58641DK

High performance mixer FM IF system with high-speed RSSI
NXP