IRG6S320UTRL [INFINEON]

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, PLASTIC, D2PAK-3;
IRG6S320UTRL
型号: IRG6S320UTRL
厂家: Infineon    Infineon
描述:

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, PLASTIC, D2PAK-3

栅 功率控制 晶体管
文件: 总8页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD-96218A  
IRG6S320UPbF  
Key Parameters  
PDP TRENCH IGBT  
Features  
VCE min  
330  
1.45  
160  
150  
V
l
Advanced Trench IGBT Technology  
l
Optimized for Sustain and Energy Recovery  
circuits in PDP applications  
Low VCE(on) and Energy per Pulse (EPULSE  
for improved panel efficiency  
V
CE(ON) typ. @ IC = 24A  
V
I
RP max @ TC= 25°C  
A
TM  
l
)
TJ max  
°C  
l
l
High repetitive peak current capability  
Lead Free package  
C
C
E
G
G
D2Pak  
E
IRG6S320UPbF  
n-channel  
G
C
E
Gate  
Collector  
Emitter  
Description  
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced  
trenchIGBTtechnologytoachievelowVCE(on)andlowEPULSETM ratingpersiliconareawhichimprovepanel  
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current  
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP  
applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VGE  
±30  
Gate-to-Emitter Voltage  
V
IC @ TC = 25°C  
IC @ TC = 100°C  
IRP @ TC = 25°C  
PD @TC = 25°C  
PD @TC = 100°C  
Continuous Collector Current, VGE @ 15V  
Continuous Collector, VGE @ 15V  
Repetitive Peak Current  
50  
25  
A
W
160  
114  
Power Dissipation  
45  
Power Dissipation  
0.91  
Linear Derating Factor  
W/°C  
°C  
TJ  
-40 to + 150  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 seconds  
300  
Thermal Resistance  
Parameter  
Typ.  
Max.  
Units  
RθJC  
Junction-to-Case  
–––  
1.1  
°C/W  
www.irf.com  
1
09/11/09  
IRG6S320UPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGE = 0V, ICE = 500µA  
Parameter  
Min. Typ. Max. Units  
BVCES  
Collector-to-Emitter Breakdown Voltage  
Emitter-to-Collector Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
330 ––– –––  
30 ––– –––  
V
V
VGE = 0V, ICE = 1 A  
V(BR)ECS  
Reference to 25°C, ICE = 1mA  
VGE = 15V, ICE = 12A  
∆ΒVCES/TJ  
––– 0.30 ––– V/°C  
––– 1.20 –––  
VGE = 15V, ICE = 24A  
––– 1.45 1.65  
VCE(on)  
VGE = 15V, ICE = 48A  
Static Collector-to-Emitter Voltage  
1.95 –––  
––– 2.20 –––  
––– 2.26 –––  
V
VGE = 15V, ICE = 60A  
VGE = 15V, ICE = 48A, TJ = 150°C  
VCE = VGE, ICE = 250µA  
VGE(th)  
Gate Threshold Voltage  
2.6  
––– 5.0  
V
ICES  
VGE(th)/ TJ  
Gate Threshold Voltage Coefficient  
Collector-to-Emitter Leakage Current  
––– -10 ––– mV/°C  
VCE = 330V, VGE = 0V  
–––  
–––  
1.0  
10  
V
CE = 330V, VGE = 0V, TJ = 100°C  
CE = 330V, VGE = 0V, TJ = 125°C  
5.0 –––  
µA  
nA  
V
20  
75  
100  
–––  
VCE = 330V, VGE = 0V, TJ = 150°C  
VGE = 30V  
–––  
IGES  
Gate-to-Emitter Forward Leakage  
Gate-to-Emitter Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
Gate-to-Collector Charge  
Turn-On delay time  
Rise time  
––– ––– 100  
––– ––– -100  
VGE = -30V  
VCE = 25V, ICE = 12A  
VCE = 200V, IC = 12A, VGE = 15V  
gfe  
Qg  
Qgc  
td(on)  
tr  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
28  
46  
–––  
–––  
S
nC  
7.7 –––  
IC = 12A, VCC = 196V  
24  
20  
89  
70  
23  
52  
–––  
–––  
–––  
–––  
–––  
–––  
RG = 10 , L=210µH, LS= 150nH  
ns  
ns  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
TJ = 25°C  
Turn-Off delay time  
Fall time  
IC = 12A, VCC = 196V  
RG = 10, L=200µH, LS= 150nH  
TJ = 150°C  
Turn-On delay time  
Rise time  
Turn-Off delay time  
Fall time  
––– 130 –––  
––– 140 –––  
100 ––– –––  
V
CC = 240V, VGE = 15V, RG= 5.1Ω  
L = 220nH, C= 0.10µF, VGE = 15V  
Ω,  
tst  
Shoot Through Blocking Time  
ns  
µJ  
––– 240 –––  
––– 280 –––  
EPULSE  
VCC = 240V, RG= 5.1  
TJ = 25°C  
Energy per Pulse  
L = 220nH, C= 0.10µF, VGE = 15V  
Ω,  
VCC = 240V, RG= 5.1  
Class 2  
TJ = 100°C  
Human Body Model  
Machine Model  
(Per JEDEC standard JESD22-A114)  
Class B  
(Per EIA/JEDEC standard EIA/JESD22-A115)  
ESD  
V
GE = 0V  
Cies  
Coes  
Cres  
LC  
Input Capacitance  
––– 1160 –––  
VCE = 30V  
Output Capacitance  
–––  
–––  
–––  
61  
38  
–––  
–––  
pF  
ƒ = 1.0MHz,  
See Fig.13  
Reverse Transfer Capacitance  
Internal Collector Inductance  
5.0 –––  
Between lead,  
nH 6mm (0.25in.)  
from package  
LE  
Internal Emitter Inductance  
–––  
13 –––  
and center of die contact  
„ Packaging limitation for this device is 42A.  
Notes:  
 Half sine wave with duty cycle <= 0.05, ton=2µsec.  
‚ Rθ is measured at TJ of approximately 90°C.  
ƒ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRG6S320UPbF  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
V
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
V
V
V
V
V
V
= 18V  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
60  
60  
40  
40  
20  
20  
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
(V)  
V
(V)  
CE  
CE  
Fig 2. Typical Output Characteristics @ 75°C  
Fig 1. Typical Output Characteristics @ 25°C  
200  
200  
V
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
V
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
(V)  
V
(V)  
CE  
CE  
Fig 3. Typical Output Characteristics @ 125°C  
Fig 4. Typical Output Characteristics @ 150°C  
25  
160  
I
= 12A  
C
T
= 25°C  
140  
120  
100  
80  
J
T
= 150°C  
20  
15  
10  
5
J
T
T
= 25°C  
J
J
= 150°C  
60  
40  
20  
0
0
0
5
10  
15  
20  
2
4
6
8
10  
12  
14  
V
, Voltage Gate-to-Emitter (V)  
V
, Gate-to-Emitter Voltage (V)  
GE  
GE  
Fig 5. Typical Transfer Characteristics  
Fig 6. VCE(ON) vs. Gate Voltage  
www.irf.com  
3
IRG6S320UPbF  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
160  
140  
120  
100  
80  
PW= 2µs  
Duty cycle <= 0.05  
Half Sine Wave  
60  
40  
20  
0
0
25  
50  
T
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
, Case Temperature (°C)  
C
Case Temperature (°C)  
Fig 8. Typical Repetitive Peak Current vs. Case Temperature  
Fig 7. Maximum Collector Current vs. Case Temperature  
3000  
3000  
V
= 240V  
L = 220nH  
CC  
C = 0.4µF  
2500  
2500  
2000  
1500  
1000  
500  
L = 220nH  
C = variable  
100°C  
2000  
100°C  
25°C  
1500  
25°C  
1000  
0
500  
100  
120  
140  
160  
180  
200  
220  
180  
190  
200  
210  
220  
230  
240  
I , Peak Collector Current (A)  
V
Collector-to-Supply Voltage (V)  
C
CC,  
Fig 9. Typical EPULSE vs. Collector Current  
Fig 10. Typical EPULSE vs. Collector-to-Supply Voltage  
4000  
1000  
V
= 240V  
CC  
3500  
3000  
2500  
2000  
1500  
1000  
500  
L = 220nH  
t = 1µs half sine  
C= 0.4µF  
100  
10µsec  
100µsec  
10  
1
1msec  
C= 0.2µF  
C= 0.1µF  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
0
0.1  
25  
50  
75  
100  
125  
150  
1
10  
100  
1000  
T , Temperature (ºC)  
V
(V)  
J
CE  
Fig 11. EPULSE vs. Temperature  
Fig 12. Forrward Bias Safe Operating Area  
4
www.irf.com  
IRG6S320UPbF  
16  
14  
12  
10  
8
10000  
1000  
100  
V
= 0V,  
f = 1 MHZ  
GS  
I
= 12A  
C
C
= C + C , C SHORTED  
ies  
ge gd ce  
C
= C  
V
V
V
= 240V  
CES  
res  
gc  
C
= C + C  
ce gc  
oes  
= 150V  
CES  
Cies  
= 60V  
CES  
6
4
Coes  
Cres  
2
0
10  
0
50  
100  
150  
200  
0
10  
Q
20  
30  
40  
50  
V
, Collector-toEmitter-Voltage(V)  
, Total Gate Charge (nC)  
CE  
G
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
0.1  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.04220  
0.30593  
0.50336  
0.25017  
0.000027  
0.000129  
0.001257  
0.007858  
τ
τ
J τJ  
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRG6S320UPbF  
A
RG  
C
PULSE A  
PULSE B  
DRIVER  
L
VCC  
B
Ipulse  
DUT  
RG  
tST  
Fig 16b. tst Test Waveforms  
Fig 16a. tst and EPULSE Test Circuit  
VCE  
Energy  
IC Current  
L
VCC  
DUT  
0
1K  
Fig 16c. EPULSE Test Waveforms  
Fig. 17 - Gate Charge Circuit (turn-off)  
6
www.irf.com  
IRG6S320UPbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
7
IRG6S320UPbF  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.09/2009  
8
www.irf.com  

相关型号:

IRG6S320UTRLPBF

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRG6S320UTRR

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRG6S320UTRRPBF

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRG6S330UPBF

PDP TRENCH IGBT
INFINEON

IRG7CH35UB

Insulated Gate Bipolar Transistor, 20A I(C), 1200V V(BR)CES, N-Channel
INFINEON

IRG7I313UPBF

PDP TRENCH IGBT
INFINEON

IRG7I319UPBF

Insulated Gate Bipolar Transistor, 30A I(C), 330V V(BR)CES, N-Channel, TO-220AB, LEAD FREE, PLASTIC, FULL-PAK-3
INFINEON

IRG7IA19UPBF

Insulated Gate Bipolar Transistor, 30A I(C), 360V V(BR)CES, N-Channel, TO-220AB, LEAD FREE, PLASTIC, TO-220, FULL PACK-3
INFINEON

IRG7IC18FDPBF

Insulated Gate Bipolar Transistor, 14A I(C), 600V V(BR)CES, N-Channel
INFINEON

IRG7IC28UPBF

Insulated Gate Bipolar Transistor, 25A I(C), 600V V(BR)CES, N-Channel, TO-220AB, LEAD FREE, PLASTIC, TO-220, FULL PACK-3
INFINEON

IRG7IC30FDPBF

Insulated Gate Bipolar Transistor, 24A I(C), 600V V(BR)CES, N-Channel
INFINEON

IRG7PA19UPBF

Insulated Gate Bipolar Transistor, 50A I(C), 360V V(BR)CES, N-Channel, TO-247AC, LEAD FREE, PLASTIC PACKAGE-3
INFINEON