IRG7I313UPBF [INFINEON]

PDP TRENCH IGBT; PDP TRENCH IGBT
IRG7I313UPBF
型号: IRG7I313UPBF
厂家: Infineon    Infineon
描述:

PDP TRENCH IGBT
PDP TRENCH IGBT

光电二极管 双极性晶体管
文件: 总7页 (文件大小:204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97411  
IRG7I313UPbF  
PDP TRENCH IGBT  
Key Parameters  
Features  
VCE min  
V
330  
1.35  
160  
150  
V
V
l
Advanced Trench IGBT Technology  
Optimized for Sustain and Energy Recovery  
circuits in PDP applications  
CE(ON) typ. @ IC = 20A  
l
I
RP max @ TC= 25°C  
A
°C  
TM  
l
Low VCE(on) and Energy per Pulse (EPULSE  
for improved panel efficiency  
)
TJ max  
l
l
High repetitive peak current capability  
Lead Free package  
C
E
G
C
G
E
TO-220 Full-Pak  
IRG7I313UPbF  
n-channel  
G
C
E
Gate  
Collector  
Emitter  
Description  
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced  
trenchIGBTtechnologytoachievelowVCE(on)andlowEPULSETM ratingpersiliconareawhichimprovepanel  
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current  
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP  
applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VGE  
±30  
Gate-to-Emitter Voltage  
V
IC @ TC = 25°C  
IC @ TC = 100°C  
IRP @ TC = 25°C  
PD @TC = 25°C  
PD @TC = 100°C  
Continuous Collector Current, VGE @ 15V  
Continuous Collector, VGE @ 15V  
Repetitive Peak Current  
20  
10  
160  
A
W
34  
Power Dissipation  
14  
Power Dissipation  
0.27  
Linear Derating Factor  
W/°C  
°C  
TJ  
-40 to + 150  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 seconds  
Mounting Torque, 6-32 or M3 Screw  
300  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Typ.  
Max.  
3.7  
Units  
°C/W  
g
Rθ  
Junction-to-Case  
–––  
0.50  
JC  
RθCS  
Case-to-Sink, flat, greased surface  
Junction-to-Ambient, typical socket mount  
Weight  
Rθ  
65  
JA  
Wt  
2.0  
www.irf.com  
1
08/05/09  
IRG7I313UPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGE = 0V, ICE = 250µA  
Parameter  
Collector-to-Emitter Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Min. Typ. Max. Units  
330 ––– –––  
––– 0.4 ––– V/°C  
BVCES  
∆Β  
V
Reference to 25°C, ICE = 1mA  
VGE = 15V, ICE = 12A  
V
CES/ TJ  
––– 1.21 1.45  
––– 1.35 –––  
1.75 –––  
VGE = 15V, ICE = 20A  
VCE(on)  
VGE = 15V, ICE = 40A  
Static Collector-to-Emitter Voltage  
V
V
VGE = 15V, ICE = 60A  
––– 2.14 –––  
––– 1.41 –––  
VGE = 15V, ICE = 20A, TJ = 150°C  
VCE = VGE, ICE = 1.0mA  
VGE(th)  
Gate Threshold Voltage  
2.2  
––– 4.7  
VGE(th)/TJ  
ICES  
Gate Threshold Voltage Coefficient  
Collector-to-Emitter Leakage Current  
––– -10 ––– mV/°C  
VCE = 330V, VGE = 0V  
–––  
1.0  
25  
75  
10  
VCE = 330V, VGE = 0V, TJ = 125°C  
VCE = 330V, VGE = 0V, TJ = 150°C  
µA  
nA  
150  
–––  
–––  
V
GE = 30V  
GE = -30V  
IGES  
Gate-to-Emitter Forward Leakage  
Gate-to-Emitter Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
Gate-to-Collector Charge  
Turn-On delay time  
Rise time  
––– ––– 100  
––– ––– -100  
V
VCE = 25V, ICE = 12A  
CE = 240V, IC = 12A, VGE = 15V  
gfe  
Qg  
Qgc  
td(on)  
tr  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
47  
33  
12  
11  
13  
75  
68  
11  
14  
86  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
S
V
nC  
IC = 12A, VCC = 196V  
RG = 10 , L=210µH  
ns  
ns  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
TJ = 25°C  
Turn-Off delay time  
Fall time  
IC = 12A, VCC = 196V  
RG = 10, L=200µH, LS= 150nH  
TJ = 150°C  
Turn-On delay time  
Rise time  
Turn-Off delay time  
Fall time  
––– 190 –––  
100 ––– –––  
V
CC = 240V, VGE = 15V, RG= 5.1Ω  
L = 220nH, C= 0.20µF, VGE = 15V  
Ω,  
tst  
Shoot Through Blocking Time  
ns  
µJ  
––– 480 –––  
––– 570 –––  
EPULSE  
VCC = 240V, RG= 5.1  
TJ = 25°C  
Energy per Pulse  
L = 220nH, C= 0.20µF, VGE = 15V  
Ω,  
TJ = 100°C  
VCC = 240V, RG= 5.1  
Class 1C  
Human Body Model  
Machine Model  
(Per JEDEC standard JESD22-A114)  
ESD  
Class B  
(Per EIA/JEDEC standard EIA/JESD22-A115)  
VGE = 0V  
––– 880 –––  
Cies  
Coes  
Cres  
LC  
Input Capacitance  
VCE = 30V  
Output Capacitance  
–––  
–––  
–––  
47  
26  
–––  
–––  
pF  
ƒ = 1.0MHz  
Between lead,  
Reverse Transfer Capacitance  
Internal Collector Inductance  
4.5 –––  
nH 6mm (0.25in.)  
from package  
LE  
Internal Emitter Inductance  
–––  
7.5 –––  
and center of die contact  
Notes:  
 Half sine wave with duty cycle = 0.05, ton=2µsec.  
‚ R is measured at TJ of approximately 90°C.  
θ
ƒ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRG7I313UPbF  
200  
160  
120  
80  
200  
160  
120  
80  
V
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
V
V
V
V
V
V
= 18V  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
40  
40  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig 2. Typical Output Characteristics @ 75°C  
Fig 1. Typical Output Characteristics @ 25°C  
200  
200  
V
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
V
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
160  
120  
80  
160  
120  
80  
40  
40  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig 3. Typical Output Characteristics @ 125°C  
Fig 4. Typical Output Characteristics @ 150°C  
200  
14  
I
= 12A  
C
12  
10  
8
160  
120  
T = 25°C  
J
T
= 150°C  
J
T
T
= 25°C  
J
J
6
= 150°C  
80  
40  
0
4
2
0
0
5
10  
15  
20  
2
4
6
8
10  
12  
14  
16  
V
(V)  
V
(V)  
GE  
GE  
Fig 5. Typical Transfer Characteristics  
Fig 6. VCE(ON) vs. Gate Voltage  
www.irf.com  
3
IRG7I313UPbF  
20  
160  
140  
120  
100  
80  
ton= 2µs  
Duty cycle = 0.05  
Half Sine Wave  
15  
10  
5
60  
40  
20  
0
0
25  
50  
75  
100  
(°C)  
125  
150  
25  
50  
75  
100  
125  
150  
Case Temperature (°C)  
T
C
Fig 8. Typical Repetitive Peak Current vs. Case Temperature  
Fig 7. Maximum Collector Current vs. Case Temperature  
1300  
1300  
V
= 240V  
L = 220nH  
C = 0.4µF  
CC  
1200  
1100  
1000  
900  
1200  
1100  
1000  
900  
L = 220nH  
C = variable  
100°C  
100°C  
25°C  
25°C  
800  
700  
800  
600  
700  
500  
400  
600  
160 170 180 190 200 210 220 230  
195 200 205 210 215 220 225 230 235 240  
Collector-to-Emitter Voltage (V)  
I , Peak Collector Current (A)  
C
V
CE,  
Fig 9. Typical EPULSE vs. Collector Current  
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage  
100  
1600  
V
= 240V  
CC  
C= 0.4µF  
C= 0.3µF  
L = 220nH  
t = 1µs half sine  
1400  
1200  
1000  
800  
10µsec  
100µsec  
10  
1msec  
1
C= 0.2µF  
125  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
600  
0.1  
400  
1
10  
100  
1000  
25  
50  
75  
100  
150  
V
(V)  
T , Temperature (ºC)  
CE  
J
Fig 11. EPULSE vs. Temperature  
Fig 12. Forrward Bias Safe Operating Area  
4
www.irf.com  
IRG7I313UPbF  
10000  
1000  
100  
20  
16  
12  
8
I = 12A  
D
V
V
V
= 240V  
= 150V  
= 60V  
DS  
DS  
DS  
Cies  
4
Coes  
Cres  
0
10  
0
10  
20  
30  
40  
0
100  
200  
Q
Total Gate Charge (nC)  
G
V
(V)  
CE  
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage  
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage  
10  
D = 0.50  
1
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.05  
0.0433  
1.3307  
1.5908  
0.7282  
0.000006  
0.000170  
0.001311  
0.006923  
τ
τ
J τJ  
τ
0.1  
0.01  
0.02  
0.01  
Cτ  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
SINGLE PULSE  
Notes:  
1. Duty Factor D = t1/t2  
( THERMAL RESPONSE )  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRG7I313UPbF  
A
RG  
C
PULSE A  
PULSE B  
DRIVER  
L
VCC  
B
Ipulse  
RG  
DUT  
tST  
Fig 16a. tst and EPULSE Test Circuit  
Fig 16b. tst Test Waveforms  
VCE  
Energy  
IC Current  
L
VCC  
DUT  
0
1K  
Fig 16c. EPULSE Test Waveforms  
Fig. 17 - Gate Charge Circuit (turn-off)  
6
www.irf.com  
IRG7I313UPbF  
TO-220 Full-Pak Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220 Full-Pak Part Marking Information  
TO-220 Full-Pak package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.08/2009  
www.irf.com  
7

相关型号:

IRG7I319UPBF

Insulated Gate Bipolar Transistor, 30A I(C), 330V V(BR)CES, N-Channel, TO-220AB, LEAD FREE, PLASTIC, FULL-PAK-3
INFINEON

IRG7IA19UPBF

Insulated Gate Bipolar Transistor, 30A I(C), 360V V(BR)CES, N-Channel, TO-220AB, LEAD FREE, PLASTIC, TO-220, FULL PACK-3
INFINEON

IRG7IC18FDPBF

Insulated Gate Bipolar Transistor, 14A I(C), 600V V(BR)CES, N-Channel
INFINEON

IRG7IC28UPBF

Insulated Gate Bipolar Transistor, 25A I(C), 600V V(BR)CES, N-Channel, TO-220AB, LEAD FREE, PLASTIC, TO-220, FULL PACK-3
INFINEON

IRG7IC30FDPBF

Insulated Gate Bipolar Transistor, 24A I(C), 600V V(BR)CES, N-Channel
INFINEON

IRG7PA19UPBF

Insulated Gate Bipolar Transistor, 50A I(C), 360V V(BR)CES, N-Channel, TO-247AC, LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRG7PG35UPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PG35UPBF_15

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PG42UDPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PG42UDPBF_15

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH28UD1MPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE
INFINEON

IRG7PH28UD1PBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE
INFINEON