IRG7IC30FDPBF [INFINEON]

Insulated Gate Bipolar Transistor, 24A I(C), 600V V(BR)CES, N-Channel;
IRG7IC30FDPBF
型号: IRG7IC30FDPBF
厂家: Infineon    Infineon
描述:

Insulated Gate Bipolar Transistor, 24A I(C), 600V V(BR)CES, N-Channel

文件: 总10页 (文件大小:285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRG7IC30FDPbF  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
ULTRAFAST SOFT RECOVERY DIODE  
Features  
Low VCE(on)  
C
VCES = 600V  
ZeroVCE(on) temperaturecoefficient  
3µs Short Circuit Capability  
Square RBSOA  
I
NOM = 24A  
VCE(on) typ. = 1.60V  
Benefits  
G
• BenchmarkEfficiencyforMotorControl  
Applications  
RuggedTransientPerformance  
LowEMI  
E
tSC 3μs, TJ(max) = 150°C  
n-channel  
Applications  
AirConditionerCompressor  
Refrigerator  
VacuumCleaner  
LowFrequencyInverter  
E
C
G
TO-220AB  
Full-Pak  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VCES  
Collector-to-Emitter Voltage  
Continuous Collector Current  
Continuous Collector Current  
600  
V
IC @ TC = 25°C  
24  
IC @ TC = 100°C  
12  
ICM  
ILM  
Pulse Collector Current, VGE = 15V  
72  
Clamped Inductive Load Current, VGE = 20V  
96  
A
IF @ TC = 25°C  
Diode Continous Forward Current  
Diode Continous Forward Current  
Diode Maximum Forward Current  
Gate-to-Emitter Voltage  
24  
IF @ TC = 100°C  
12  
IFM  
96  
±30  
VGE  
PD @ TC = 25°C  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
42  
W
PD @ TC = 100°C  
17  
TJ  
-55 to +150  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
°C  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
Typ.  
–––  
–––  
65  
Max.  
3.0  
Units  
°C/W  
RJC (IGBT)  
RJC (Diode)  
RJA  
Thermal Resistance Junction-to-Case-(each IGBT)  
Thermal Resistance Junction-to-Case-(each Diode)  
3.7  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
–––  
www.irf.com © 2012 International Rectifier  
August 1, 2012  
1
IRG7IC30FDPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min.  
600  
Typ.  
Max.  
Units  
V
Conditions  
GE = 0V, IC = 1.0mA  
V(BR)CES  
V
Collector-to-Emitter Breakdown Voltage  
Temperature Coeff. of Breakdown Voltage  
Collector-to-Emitter Saturation Voltage  
TJ  
V(BR)CES  
/
V
GE = 0V, IC = 2.0mA (25°C-150°C)  
0.51  
1.60  
1.60  
V/°C  
VCE(on)  
I
I
C = 24A, VGE = 15V, TJ = 25°C  
C = 24A, VGE = 15V, TJ = 150°C  
1.85  
V
V
VGE(th)  
V
V
V
CE = VGE, IC = 1.0mA  
Gate Threshold Voltage  
4.5  
7.0  
VGE(th)/ TJ  
CE = VGE, IC = 1.0mA (25°C - 150°C)  
CE = 50V, IC = 24A, PW = 30μs  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-14  
26  
mV/°C  
S
gfe  
ICES  
VGE = 0V, VCE = 600V  
GE = 0V, VCE = 600V, TJ = 150°C  
Collector-to-Emitter Leakage Current  
1.0  
30  
μA  
V
1.3  
mA  
V
VFM  
I
I
F = 24A  
Diode Forward Voltage Drop  
1.50  
1.40  
1.80  
F = 24A, TJ = 150°C  
IGES  
VGE = ±30V  
Gate-to-Emitter Leakage Current  
±100  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Max.  
130  
26  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min.  
Typ.  
88  
Units  
Conditions  
Qg  
IC = 24A  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
VGE = 15V  
17  
nC  
VCC = 400V  
43  
65  
I
C = 24A, VCC = 400V, VGE = 15V  
G = 22, L = 400μH, TJ = 25°C  
Energy losses include tail & diode reverse recovery  
C = 24A, VCC = 400V, VGE = 15V  
G = 22, L = 400μH, TJ = 25°C  
785  
780  
1570  
58  
1015  
1010  
2020  
76  
R
μJ  
I
R
36  
ns  
54  
td(off)  
tf  
Turn-Off delay time  
Fall time  
249  
114  
1090  
1530  
2620  
54  
283  
133  
Eon  
Eoff  
Etotal  
td(on)  
tr  
IC = 24A, VCC = 400V, VGE=15V  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
RG=22, L=400μH, TJ = 150°C  
μJ  
ns  
pF  
Energy losses include tail & diode reverse recovery  
I
C = 24A, VCC = 400V, VGE = 15V  
G = 22, L = 400μH  
TJ = 150°C  
R
35  
td(off)  
tf  
Turn-Off delay time  
Fall time  
295  
277  
2400  
130  
57  
Cies  
Coes  
Cres  
VGE = 0V  
Input Capacitance  
VCC = 30V  
Output Capacitance  
Reverse Transfer Capacitance  
f = 1.0Mhz  
TJ = 150°C, IC = 96A  
V
CC = 480V, Vp 600V  
Rg = 22, VGE = +20V to 0V  
GE = 15V, VCC = 400V, Vp 600V  
RBSOA  
SCSOA  
Reverse Bias Safe Operating Area  
Short Circuit Safe Operating Area  
FULL SQUARE  
V
3
μs  
  
Rg = 22 , Rshunt = 11m TC = 100°C  
TJ = 150°C  
Erec  
trr  
Reverse Recovery Energy of the Diode  
Diode Reverse Recovery Time  
147  
105  
22  
μJ  
ns  
A
VCC = 400V, IF = 24A  
VGE = 15V, Rg = 22 , L =400μH  
Irr  
Peak Reverse Recovery Current  
Notes:  
 VCC = 80% (VCES), VGE = 20V, L = 400μH, RG = 22.  
‚ Pulse width limited by max. junction temperature.  
ƒ Ris measured at TJ of approximately 90°C.  
„ Maximum limits are based on statistical sample size characterization.  
www.irf.com © 2012 International Rectifier  
August 1, 2012  
2
IRG7IC30FDPbF  
20  
18  
16  
14  
12  
10  
8
For both:  
Duty cycle : 50%  
Tj = 150°C  
Tcase = 100°C  
Gate drive as specified  
Power Dissipation = 16.7W  
Square Wave:  
VCC  
I
6
4
Diode as specified  
2
0
0.1  
1
10  
100  
f , Frequency ( kHz )  
Fig. 1 - Typical Load Current vs. Frequency  
(Load Current = IRMS of fundamental)  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
0
25  
50  
75  
100  
(°C)  
125  
150  
25  
50  
75  
100  
(°C)  
125  
150  
T
T
C
C
Fig. 2 - Maximum DC Collector Current vs.  
Fig. 3 - Power Dissipation vs. Case  
CaseTemperature  
Temperature  
1000  
100  
10μsec  
10  
100  
10  
1
100μsec  
1
1msec  
0.1  
DC  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
0.01  
10  
100  
(V)  
1000  
1
10  
100  
(V)  
1000  
10000  
V
V
CE  
CE  
Fig. 5 - Reverse Bias SOA  
Fig. 4 - Forward SOA  
TC = 25°C, TJ 150°C, VGE =15V  
TJ = 150°C, VGE =20V  
3
www.irf.com © 2012 International Rectifier  
August 1, 2012  
IRG7IC30FDPbF  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
V
= 18V  
V
= 18V  
GE  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 30μs  
Fig. 7 - Typ. IGBT Output Characteristics  
TJ = 25°C; tp = 30μs  
100  
100  
V
= 18V  
GE  
-40°C  
25°C  
150°C  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
0
2
4
6
8
10  
0.0  
1.0  
2.0  
3.0  
V
(V)  
F
V
(V)  
CE  
Fig. 8 - Typ. IGBT Output Characteristics  
TJ = 150°C; tp = 30μs  
Fig. 9 - Typ. Diode Forward Characteristics  
tp = 30μs  
8
7
6
8
7
6
I
I
I
I
= 6.0A  
= 12A  
= 24A  
= 48A  
I
I
I
I
= 6.0A  
= 12A  
= 24A  
= 48A  
CE  
CE  
CE  
CE  
CE  
CE  
CE  
CE  
5
4
3
2
1
5
4
3
2
1
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 11 - Typical VCE vs. VGE  
Fig. 10 - Typical VCE vs. VGE  
TJ = 25°C  
TJ = -40°C  
www.irf.com © 2012 International Rectifier  
August 1, 2012  
4
IRG7IC30FDPbF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
7
6
5
4
3
2
1
0
I
I
I
I
= 6.0A  
= 12A  
= 24A  
= 48A  
CE  
CE  
CE  
CE  
T
= 25°C  
J
T
= 150°C  
J
0
5
10  
15  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 12 - Typical VCE vs. VGE  
Fig. 13 - Typ. Transfer Characteristics  
VCE = 25V; tp = 30μs  
TJ = 150°C  
3000  
1000  
td  
OFF  
2500  
2000  
1500  
1000  
500  
t
F
100  
10  
1
E
OFF  
td  
ON  
E
ON  
t
R
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
I
(A)  
C
I
(A)  
C
Fig. 14 - Typ. Energy Loss vs. IC  
Fig. 15 - Typ. Switching Time vs. IC  
TJ = 150°C; L = 400μH; VCE = 400V, RG = 22; VGE = 15V  
TJ = 150°C; L = 400μH; VCE = 400V, RG = 22; VGE = 15V  
2500  
1000  
td  
OFF  
2000  
E
OFF  
t
F
1500  
100  
E
ON  
td  
1000  
500  
0
ON  
t
R
10  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
( )  
R
G
Rg ()  
Fig. 17 - Typ. Switching Time vs. RG  
TJ = 150°C; L = 400μH; VCE = 400V, ICE = 24A; VGE = 15V  
Fig. 16 - Typ. Energy Loss vs. RG  
TJ = 150°C; L = 400μH; VCE = 400V, ICE = 24A; VGE = 15V  
5
www.irf.com © 2012 International Rectifier  
August 1, 2012  
IRG7IC30FDPbF  
30  
25  
20  
15  
10  
28  
26  
24  
22  
20  
18  
16  
R
10  
G =  
R
22  
G =  
R
47  
G =  
R
100  
G =  
10 15 20 25 30 35 40 45 50  
(A)  
0
25  
50  
(  
75  
100  
I
R
F
G
Fig. 18 - Typ. Diode IRR vs. IF  
Fig. 19 - Typ. Diode IRR vs. RG  
TJ = 150°C  
TJ = 150°C  
2500  
2000  
1500  
1000  
500  
28  
26  
24  
22  
20  
18  
16  
48A  
10  
22  
100  
24A  
47  
12A  
0
0
200  
400  
600  
800  
1000  
200  
300  
400  
500  
600  
700  
800  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 21 - Typ. Diode QRR vs. diF/dt  
VCC = 400V; VGE = 15V; TJ = 150°C  
Fig. 20 - Typ. Diode IRR vs. diF/dt  
VCC = 400V; VGE = 15V; IF = 24A; TJ = 150°C  
14  
30  
300  
T
R
= 10  
I
sc  
G
sc  
12  
10  
8
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
= 22  
R
G
R
= 47  
G
G
6
R
= 100  
4
8
10  
12  
14  
(V)  
16  
18  
10  
20  
30  
(A)  
40  
50  
V
I
GE  
F
Fig. 23 - VGE vs. Short Circuit Time  
Fig. 22 - Typ. Diode ERR vs. IF  
VCC = 400V; TC = 25°C  
TJ = 150°C  
www.irf.com © 2012 International Rectifier  
August 1, 2012  
6
IRG7IC30FDPbF  
10000  
1000  
100  
16  
14  
12  
10  
8
V
V
= 400V  
CES  
CES  
Cies  
= 300V  
6
Coes  
Cres  
4
2
10  
0
0
100  
200  
V
300  
(V)  
400  
500  
0
20  
Q
40  
60  
80  
100  
, Total Gate Charge (nC)  
CE  
G
Fig. 24 - Typ. Capacitance vs. VCE  
Fig. 25 - Typical Gate Charge vs. VGE  
ICE = 24A; L = 600μH  
VGE= 0V; f = 1MHz  
10  
D = 0.50  
1
0.20  
0.10  
0.05  
0.1  
0.02  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) i (sec)  
0.01  
0.19486 0.000256  
J J  
C  
0.01  
0.32103 0.001648  
1.21121 0.116269  
11  
Ci= iRi  
2 2  
33  
44  
SINGLE PULSE  
( THERMAL RESPONSE )  
1.27150  
2.1752  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 26. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) i (sec)  
0.40773 0.000657  
J J  
C  
0.01  
0.001  
0.0001  
0.55987 0.002467  
1.37229 0.108148  
11  
Ci= iRi  
2 2  
33  
44  
1.36164  
2.2461  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig. 27. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com © 2012 International Rectifier  
7
August 1, 2012  
IRG7IC30FDPbF  
L
L
80 V  
+
-
DUT  
VCC  
0
DUT  
VCC  
1K  
Rg  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
diode clamp /  
DUT  
L
4X  
-5V  
Rg  
DC  
DUT  
VCC  
DUT /  
DRIVER  
VCC  
Fig.C.T.3 - S.C. SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
VCC  
ICM  
R =  
VCC  
DUT  
Rg  
Fig.C.T.5 - Resistive Load Circuit  
www.irf.com © 2012 International Rectifier  
August 1, 2012  
8
IRG7IC30FDPbF  
500  
400  
300  
200  
100  
0
50  
500  
400  
300  
200  
100  
0
50  
40  
30  
20  
10  
0
tr  
tf  
TEST  
CURRENT  
40  
90%  
ICE  
30  
20  
90% test  
current  
10% test  
current  
5% VCE  
10  
10% ICE  
5% VCE  
0
Eon  
Loss  
Eoff Loss  
-100  
-10  
-100  
-10  
3E-01  
-5E-01  
0E+00  
5E-01  
1E+00  
-3E-01  
-1E-01  
1E-01  
time(µs)  
time (µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 150°C using Fig. CT.4  
@ TJ = 150°C using Fig. CT.4  
30  
600  
500  
400  
300  
200  
100  
0
600  
QRR  
500  
400  
300  
200  
100  
0
20  
VCE  
tRR  
10  
0
Peak  
-10  
IRR  
ICE  
-20  
-30  
-100  
-100  
-0.25  
-0.05  
0.15  
time (ns)  
0.35  
-2.0  
0.0  
2.0  
4.0  
6.0  
8.0  
time (µs)  
Fig. WF3 - Typ. Diode Recovery Waveform  
Fig. WF4 - Typ. S.C. Waveform  
@ TJ = 25°C using Fig. CT.3  
@ TJ = 150°C using Fig. CT.4  
9
www.irf.com © 2012 International Rectifier  
August 1, 2012  
IRG7IC30FDPbF  
TO-220AB Full-Pak Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Full-Pak Part Marking Information  
TO-220AB Full-Pak package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.  
www.irf.com © 2012 International Rectifier  
August 1, 2012  
10  

相关型号:

IRG7PA19UPBF

Insulated Gate Bipolar Transistor, 50A I(C), 360V V(BR)CES, N-Channel, TO-247AC, LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRG7PG35UPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PG35UPBF_15

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PG42UDPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PG42UDPBF_15

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH28UD1MPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE
INFINEON

IRG7PH28UD1PBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE
INFINEON

IRG7PH28UD1PBF_15

Low switching losses
INFINEON

IRG7PH30K10DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRG7PH30K10PBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH35U-EP

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH35UD-EP

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON