ICS8745BYT [ICSI]

1:5 DIFFERENTIAL-TO-LVDS ZERO DELAY CLOCK GENERATOR; 1 : 5差分至LVDS零延迟时钟发生器
ICS8745BYT
型号: ICS8745BYT
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

1:5 DIFFERENTIAL-TO-LVDS ZERO DELAY CLOCK GENERATOR
1 : 5差分至LVDS零延迟时钟发生器

时钟发生器 逻辑集成电路 驱动
文件: 总15页 (文件大小:185K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS8745B is a highly versatile 1:5 LVDS Clock 5 differential LVDS outputs designed to meet  
ICS  
Generator and a member of the HiPerClockS™  
family of High Performance Clock Solutions from  
ICS. The ICS8745B has a fully integrated PLL  
and can be configured as zero delay buffer, multi-  
or exceed the requirements of ANSITIA/EIA-644  
HiPerClockS™  
Selectable differential clock inputs  
CLKx, nCLKx pairs can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL  
plier or divider, and has an output frequency range of 31.25MHz  
to 700MHz. The Reference Divider, Feedback Divider and  
Output Divider are each programmable, thereby allowing for  
the following output-to-input frequency ratios: 8:1, 4:1, 2:1, 1:1,  
1:2, 1:4, 1:8.The external feedback allows the device to achieve  
“zero delay” between the input clock and the output clocks.  
The PLL_SEL pin can be used to bypass the PLL for system  
test and debug purposes. In bypass mode, the reference clock  
is routed around the PLL and into the internal output dividers.  
Output frequency range: 31.25MHz to 700MHz  
Input frequency range: 31.25MHz to 700MHz  
VCO range: 250MHz to 700MHz  
External feedback for “zero delay” clock regeneration  
with configurable frequencies  
Programmable dividers allow for the following output-to-input  
frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8  
Cycle-to-cycle jitter: 30ps (maximum)  
Output skew: 35ps (maximum)  
Static phase offset: 25ps 125ps  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Lead-Free package fully RoHS compliant  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
PLL_SEL  
Q1  
nQ1  
÷1, ÷2, ÷4, ÷8,  
÷16, ÷32, ÷64  
0
CLK0  
nCLK0  
32 31 30 29 28 27 26 25  
Q2  
nQ2  
0
SEL0  
SEL1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
1
Q3  
CLK1  
1
Q3  
nQ3  
VDDO  
Q2  
nQ3  
nCLK1  
CLK0  
PLL  
Q4  
nQ4  
nCLK0  
CLK1  
CLK_SEL  
ICS8745B  
nQ2  
GND  
Q1  
8:1, 4:1, 2:1, 1:1,  
1:2, 1:4, 1:8  
nCLK1  
CLK_SEL  
FB_IN  
nFB_IN  
MR  
nQ1  
9
10 11 12 13 14 15 16  
SEL0  
SEL1  
SEL2  
SEL3  
MR  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
Y Package  
TopView  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
1
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
SEL0  
Type  
Description  
1
2
3
4
5
6
Input Pulldown Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
Input Pulldown Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
Input Pulldown Non-inverting differential clock input.  
SEL1  
CLK0  
nCLK0  
CLK1  
nCLK1  
Input  
Pullup Inverting differential clock input.  
Input Pulldown Non-inverting differential clock input.  
Input  
Pullup Inverting differential clock input.  
Clock select input. When HIGH, selects CLK1, nCLK1.  
7
CLK_SEL Input Pulldown  
When LOW, selects CLK0, nCLK0. LVCMOS / LVTTL interface levels.  
Active HIGH Master Reset. When logic HIGH, the internal dividers are reset  
causing the true outputs Qx to go low and the inverted outputs nQx to go  
high. When logic LOW, the internal dividers and the outputs are enabled.  
LVCMOS / LVTTL interface levels.  
8
MR  
Input Pulldown  
Power  
9, 32  
10  
VDD  
Core supply pins.  
nFB_IN  
FB_IN  
SEL2  
GND  
Input  
Pullup  
Feedback input to phase detector for regenerating clocks with "zero delay".  
11  
Input Pulldown Feedback input to phase detector for regenerating clocks with "zero delay".  
Input Pulldown Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
12  
13, 19, 25  
14, 15  
16, 22, 28  
17, 18  
20, 21  
23, 24  
26, 27  
29  
Power  
Power supply ground.  
nQ0, Q0 Output  
VDDO Power  
Differential output pair. LVDS interface levels.  
Output supply pins.  
nQ1, Q1 Output  
nQ2, Q2 Output  
nQ3, Q3 Output  
nQ4, Q4 Output  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
SEL3  
VDDA  
Input Pulldown Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
30  
Power  
Input  
Analog supply pin.  
Selects between the PLL and reference clock as the input to the dividers.  
When LOW, selects reference clock. LVCMOS / LVTTL interface levels.  
31  
PLL_SEL  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
RPULLDOWN  
51  
51  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
2
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Outputs  
Inputs  
SEL0  
PLL_SEL = 1  
PLL Enable Mode  
Q0:Q4, nQ0:nQ4  
SEL3  
SEL2  
SEL1  
Reference Frequency Range (MHz)*  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
250 - 700  
125 - 350  
62.5 - 175  
31.25 - 87.5  
250 - 700  
125 - 350  
62.5 - 175  
250 -700  
÷ 1  
÷ 1  
÷ 1  
÷ 1  
÷ 2  
÷ 2  
÷ 2  
÷ 4  
÷ 4  
÷ 8  
x 2  
x 2  
x 2  
x 4  
x 4  
x 8  
125 - 350  
250 - 700  
125 - 350  
62.5 - 175  
31.25 - 87.5  
62.5 - 175  
31.25 - 87.5  
31.25 - 87.5  
*NOTE: VCO frequency range for all configurations above is 250MHz to 700MHz.  
TABLE 3B. PLL BYPASS FUNCTION TABLE  
Inputs  
Outputs  
PLL_SEL = 0  
PLL Bypass Mode  
SEL3  
SEL2  
SEL1  
SEL0  
Q0:Q4, nQ0:nQ4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
÷ 4  
÷ 4  
÷ 4  
÷ 8  
÷ 8  
÷ 8  
÷ 16  
÷ 16  
÷ 32  
÷ 64  
÷ 2  
÷ 2  
÷ 4  
÷ 1  
÷ 2  
÷ 1  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
3
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
DD  
Inputs, V  
-0.5V to VDD + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
10mA  
15mA  
PackageThermal Impedance, θJA 47.9°C/W (0 lfpm)  
StorageTemperature,T -65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VDD  
VDDA  
VDDO  
IDD  
Core Supply Voltage  
3.135  
3.135  
3.135  
3.3  
3.3  
3.3  
3.465  
3.465  
3.465  
125  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
V
mA  
mA  
mA  
IDDA  
IDDO  
17  
59  
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VDD + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
CLK_SEL, MR, SEL0,  
SEL1, SEL2, SEL3  
V
DD = VIN = 3.465V  
150  
5
µA  
µA  
µA  
IIH  
Input High Current  
PLL_SEL  
VDD = VIN = 3.465V  
CLK_SEL, MR, SEL0,  
SEL1, SEL2, SEL3  
-5  
V
DD = 3.465V, VIN = 0V  
IIL  
Input Low Current  
PLL_SEL  
-150  
µA  
VDD = 3.465V, VIN = 0V  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CLK0, CLK1, FB_IN  
nCLK0, nCLK1, nFB_IN  
CLK0, CLK1, FB_IN  
nCLK0, nCLK1, nFB_IN  
V
DD = VIN = 3.465V  
DD = VIN = 3.465V  
150  
5
µA  
µA  
µA  
µA  
V
Input  
IIH  
High Current  
V
V
DD = 3.465V, VIN = 0V  
DD = 3.465V, VIN = 0V  
-5  
-150  
Input  
IIL  
Low Current  
V
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
GND + 0.5  
VDD - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLK0, nCLK0 and CLK1, nCLK1 is VDD + 0.3V.  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
4
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4D. LVDS DC CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
440  
0
Maximum Units  
VOD  
Differential Output Voltage  
320  
550  
50  
mV  
mV  
V
Δ VOD  
VOS  
VOD Magnitude Change  
Offset Voltage  
1.05  
1.2  
1.35  
25  
Δ VOS  
VOS Magnitude Change  
mV  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
fIN Input Frequency  
Test Conditions  
PLL_SEL = 1  
PLL_SEL = 0  
Minimum Typical Maximum Units  
31.25  
700  
700  
MHz  
MHz  
CLK0, nCLK0,  
CLK1, nCLK1  
TABLE 6. AC CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
ns  
fMAX  
Output Frequency  
700  
3.7  
150  
35  
tPD  
Propagation Delay; NOTE 1  
Static Phase Offset; NOTE 2, 5  
Output Skew; NOTE 3, 5  
Cycle-to-Cycle Jitter; NOTE 5, 6  
Phase Jitter; NOTE 4, 5, 6  
Output Duty Cycle  
PLL_SEL = 0V, f 700MHz  
3.1  
3.4  
25  
tsk(Ø)  
tsk(o)  
tjit(cc)  
tjit(θ)  
odc  
PLL_SEL = 3.3V  
-100  
ps  
ps  
30  
ps  
52  
ps  
46  
50  
54  
tL  
PLL Lock Time  
1
ms  
ps  
tR / tF  
Output Rise/Fall Time; NOTE 7  
200  
700  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as the time difference between the input reference clock and the averaged feedback  
input signal across all conditions, when the PLL is locked and the input reference frequency is stable.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 4: Phase jitter is dependent on the input source used.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 6: Characterized at VCO frequency of 622MHz.  
NOTE 7: Measured from the 20ꢀ to 80ꢀ points. Guaranteed by characterization. Not production tested.  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
5
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
VDD  
3.3V  
SCOPE  
Qx  
nCLK0,  
nCLK1  
Power Supply  
Float GND  
VPP  
VCMR  
Cross Points  
LVDS  
+
-
CLK0,  
CLK1  
nQx  
GND  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nCLK0,  
nCLK1  
VOH  
VOL  
nQx  
Qx  
CLK0,  
CLK1  
VOH  
VOL  
nFB_IN  
nQy  
FB_IN  
Qy  
t(Ø)  
tsk(o)  
tjit(Ø) = t(Ø) — t(Ø) mean = Phase Jitter  
t(Ø) mean = Static Phase Offset  
(where t(Ø) is any random sample, and t(Ø) mean is the average  
of the sampled cycles measured on controlled edges)  
PHASE JITTER AND STATIC PHASE OFFSET  
OUTPUT SKEW  
nQ0:nQ4  
Q0:Q4  
80ꢀ  
tF  
80ꢀ  
VOD  
Clock  
20ꢀ  
20ꢀ  
tcycle n  
tcycle n+1  
Outputs  
tR  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
CYLE-TO-CYCLE JITTER  
OUTPUT RISE/FALL TIME  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
6
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
nCLK0,  
nCLK1  
nQ0:nQ4  
Q0:Q4  
CLK0,  
CLK1  
Pulse Width  
tPERIOD  
nQ0:nQ4  
Q0:Q4  
tPW  
odc =  
tPD  
tPERIOD  
PROPAGATION DELAY  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
VDD  
VDD  
out  
out  
out  
out  
DC Input  
LVDS  
LVDS  
DC Input  
100  
V
OD/Δ VOD  
VOS/Δ VOS  
OFFSET VOLTAGE SETUP  
DIFFERENTIAL OUTPUT VOLTAGE SETUP  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
7
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position theV_REF in  
single ended levels. The reference voltage V_REF ~ VDD/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1.This bias circuit clock swing is only 2.5V andVDD = 3.3V, V_REF should be 1.25V  
should be located as close as possible to the input pin.The ratio and R2/R1 = 0.609.  
VDD  
R1  
1K  
Single Ended Clock Input  
CLKx  
V_REF  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
LVDS DRIVER TERMINATION  
A general LVDS interface is shown in Figure 2. In a 100Ω differ-  
ential transmission line environment, LVDS drivers require a  
matched load termination of 100Ω across near the receiver in-  
put. For a multiple LVDS outputs buffer, if only partial outputs  
are used, it is recommended to terminate the un-used outputs.  
3.3V  
3.3V  
LVDS_Driv er  
+
R1  
100  
-
100 Ohm Differiential Transmission Line  
FIGURE 2. TYPICAL LVDS DRIVER TERMINATION  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
8
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise.The ICS8745B provides sepa-  
rate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VDD, VDDA, and VDDO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 3 illustrates how  
a 10Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VDDA pin.  
3.3V  
.01μF  
.01μF  
10Ω  
VDDA  
10 μF  
FIGURE 3. POWER SUPPLY FILTERING  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals. Both VSWING andVOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 4A to 4D show inter- For example in Figure 4A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
9
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
LAYOUT GUIDELINE  
The schematic of the ICS8745B layout example is shown in  
Figure 5A. The ICS8745B recommended PCB board layout  
tem will depend on the selected component types, the den-  
sity of the components, the density of the traces, and the  
for this example is shown in Figure 5B. This layout example stack up of the P.C. board.  
is used as a general guideline. The layout in the actual sys-  
VDD  
SP = Space (i.e. not intstalled)  
R7  
VDD  
VDDA  
RU2  
SP  
RU3  
1K  
RU4  
1K  
RU5  
SP  
RU6  
1K  
RU7  
SP  
10  
C11  
0.01u  
CLK_SEL  
PLL_SEL  
SEL0  
C16  
10u  
SEL1  
SEL2  
SEL3  
Zo = 50 Ohm  
Zo = 50 Ohm  
(77.76 MHz)  
+
-
RD2  
1K  
RD3  
SP  
RD4  
SP  
RD5  
1K  
RD6  
SP  
RD7  
1K  
R4  
100  
VDD  
VDDO  
LVDS_input  
U3  
3.3V  
(155.5 MHz)  
SEL0  
SEL1  
Zo = 50 Ohm  
1
24  
SEL0  
SEL1  
Q3  
nQ3  
VDDO  
Q2  
nQ2  
GND  
Q1  
2
3
4
5
6
7
8
23  
22  
21  
20  
19  
18  
17  
CLK0  
nCLK0  
CLK1  
nCLK1  
CLK_SEL  
MR  
Zo = 50 Ohm  
CLK_SEL  
VDD=3.3V  
3.3V PECL Driver  
nQ1  
VDDO=3.3V  
R8A  
50  
R9  
50  
8745  
SEL[3:0] = 0101,  
Divide by 2  
R10  
50  
SEL2  
R2  
100  
Decoupling capacitor located near the power pins  
VDD  
VDDO  
(U1-9)  
(U1-32)  
(U1-22)  
(U1-28)  
(U1-16)  
C1  
0.1uF  
C6  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C2  
0.1uF  
FIGURE 5A. ICS8745B LVDS ZERO DELAY BUFFER SCHEMATIC EXAMPLE  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
10  
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
The following component footprints are used in this layout  
example:  
trace delay might be restricted by the available space on the board  
and the component location.While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
• The differential 50Ω output traces should have same  
Place the decoupling capacitors C1, C6, C2, C4, and C5, as  
close as possible to the power pins. If space allows, placement  
of the decoupling capacitor on the component side is preferred.  
This can reduce unwanted inductance between the decoupling  
capacitor and the power pin caused by the via.  
length.  
• Avoid sharp angles on the clock trace.Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
• Keep the clock traces on the same layer.Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors.This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VDDA pin as possible.  
CLOCK TRACES AND TERMINATION  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
• Make sure no other signal traces are routed between the  
clock trace pair.  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
GND  
VDDO  
VDD  
R7  
C16  
C11  
C5  
C6  
U1  
Pin 1  
C4  
VDDA  
VIA  
50 Ohm  
Traces  
C1  
C2  
FIGURE 5B. PCB BOARD LAYOUT FOR ICS8745B  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
11  
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8745B is: 2772  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
12  
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
13  
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS8745BY  
Marking  
Package  
Shipping Packaging Temperature  
ICS8745BY  
ICS8745BY  
32 Lead LQFP  
tray  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS8745BYT  
32 Lead LQFP  
1000 tape & reel  
tray  
ICS8745BYLF  
ICS8745BYLFT  
ICS8745BYLF  
ICS8745BYLF  
32 Lead "Lead-Free" LQFP  
32 Lead "Lead-Free" LQFP  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or  
for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for  
use in life support devices or critical medical instruments.  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
14  
ICS8745B  
1:5 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
LVDS DC Characteristics Table - modified VOS 0.90V min. to 1.05V min,  
1.15V typical to 1.2V typical, and 1.4V max. to 1.35V max.  
Added Lead-Free bullet.  
Ordering Information Table - added Lead-Free part.  
Features Section - delete bullet, "Industrial temperature available upon  
request."  
B
T4D  
5
3/17/04  
1
14  
1
B
B
12/2/04  
3/18/05  
T9  
T9  
14  
Ordering Information Table - added Lead-Free note.  
8745BY  
www.icst.com/products/hiperclocks.html  
REV. B DECEMBER 2, 2004  
15  

相关型号:

ICS874S02AMI

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-20
IDT

ICS874S02AMILF

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, ROHS COMPLIANT, MS-013, MO-119, SOIC-20
IDT

ICS874S02AMILFT

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, ROHS COMPLIANT, MS-013, MO-119, SOIC-20
IDT

ICS874S02AMIT

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-20
IDT

ICS874S02BMI

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-20
IDT

ICS874S02BMILF

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, ROHS COMPLIANT, MS-013, MO-119, SOIC-20
IDT

ICS874S336AG

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, TSSOP-24
IDT

ICS874S336AGLFT

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, LEAD FREE, TSSOP-24
IDT

ICS874S336AGT

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, TSSOP-24
IDT

ICS8752

LOW SKEW, 1-TO-8 LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER
ICSI

ICS8752

LOW SKEW, 1-TO-8 LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER
IDT

ICS8752BYLF

Low Skew Clock Driver, 8 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT