ICS874S02AMILFT [IDT]

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, ROHS COMPLIANT, MS-013, MO-119, SOIC-20;
ICS874S02AMILFT
型号: ICS874S02AMILFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, ROHS COMPLIANT, MS-013, MO-119, SOIC-20

驱动 光电二极管 逻辑集成电路
文件: 总15页 (文件大小:200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS874S02I is a highly versatile 1:1 LVDS One differential LVDS output pair designed to meet  
ICS  
Clock Generator and a member of the  
HiPerClockS™family of High Performance Clock  
Solutions from ICS. The ICS874S02I has a fully  
integrated PLL and can be configured as zero  
or exceed the requirements of ANSI TIA/EIA-644,  
One differential feedback output pair  
HiPerClockS™  
Differential CLK, nCLK input pair  
delay buffer, multiplier or divider, and has an output frequency  
range of 62.5MHz to 1GHz. The Reference Divider, Feed-  
back Divider and Output Divider are each programmable,  
thereby allowing for the following output-to-input frequency  
ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8. The external feedback  
allows the device to achieve “zero delay” between the input  
clock and the output clock. The PLL_SEL pin can be used  
to bypass the PLL for system test and debug purposes. In  
bypass mode, the reference clock is routed around the PLL  
and into the internal output dividers.  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL  
Output frequency range: 62.5MHz to 1GHz  
Input frequency range: 62.5MHz to 1GHz  
VCO range: 500MHz to 1GHz  
External feedback for “zero delay” clock regeneration  
with configurable frequencies  
Programmable dividers allow for the following output-to-input  
frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8  
Cycle-to-cycle jitter: 26ps (typical)  
Output skew: 4ps (typical)  
Static phase offset: 98ps (typical)  
3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
Available in both standard and lead-free RoHS-compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
PLL_SEL  
CLK  
nCLK  
MR  
nFB_IN  
FB_IN  
SEL2  
VDDO  
nQFB  
QFB  
GND  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SEL1  
SEL0  
VDD  
PLL_SEL  
VDDA  
SEL3  
GND  
Q
÷1, ÷2, ÷4, ÷8,  
Q
0
1
÷16, ÷32, ÷64  
nQ  
CLK  
nCLK  
QFB  
nQFB  
PLL  
9
10  
nQ  
VDDO  
8:1, 4:1, 2:1, 1:1,  
1:2, 1:4, 1:8  
FB_IN  
nFB_IN  
ICS874S02I  
20-Lead, 300-MIL SOIC  
7.5mm x 12.8mm x 2.3mm body package  
M Package  
Top View  
SEL0  
SEL1  
SEL2  
SEL3  
MR  
The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on  
initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications  
without notice.  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
1
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
CLK  
Type  
Description  
1
2
Input Pulldown Non-inverting differential clock input.  
nCLK  
Input  
Pullup Inverting differential clock input.  
Active HIGH Master Reset. When logic HIGH, the internal dividers are reset  
causing the true outputs Qx to go low and the inverted outputs nQx to go  
high. When logic LOW, the internal dividers and the outputs are enabled.  
LVCMOS / LVTTL interface levels.  
3
MR  
Input Pulldown  
4
5
nFB_IN  
FB_IN  
SEL2  
VDDO  
Input  
Pullup Feedback input to phase detector for regenerating clocks with "zero delay".  
Input Pulldown Feedback input to phase detector for regenerating clocks with "zero delay".  
Input Pulldown Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
6
7, 11  
8, 9  
10, 14  
12, 13  
15  
Power  
Output supply pins.  
nQFB, QFB Output  
Differential feedback outputs. LVDS interface levels.  
Power supply ground.  
GND  
nQ, Q  
SEL3  
VDDA  
Power  
Output  
Differential clock outputs. LVDS interface levels.  
Input Pulldown Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
16  
Power  
Analog supply pin.  
Selects between the PLL and reference clock as the input to the dividers.  
When HIGH, selects PLL. When LOW, selects the reference clock.  
LVCMOS / LVTTL interface levels.  
17  
PLL_SEL  
Input  
Pullup  
18  
19  
20  
VDD  
Power  
Core supply pin.  
SEL0  
SEL1  
Input Pulldown Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
Input Pulldown Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
RPULLDOWN  
51  
51  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
2
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Outputs  
Inputs  
PLL_SEL = 1  
PLL Enable Mode  
SEL3  
SEL2  
SEL1  
SEL0  
Reference Frequency Range (MHz)*  
500 - 1000  
Q, nQ  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
÷ 1  
÷ 1  
÷ 1  
÷ 1  
÷ 2  
÷ 2  
÷ 2  
÷ 4  
÷ 4  
÷ 8  
x 2  
x 2  
x 2  
x 4  
x 4  
x 8  
250 - 500  
125 - 250  
62.5 - 125  
500 - 1000  
250 - 500  
125 - 250  
500 - 1000  
250 - 500  
500 - 1000  
250 - 500  
125 - 250  
62.5 - 125  
125 - 250  
62.5 - 125  
62.5 - 125  
*NOTE: VCO frequency range for all configurations above is 500MHz to 1GHz.  
TABLE 3B. PLL BYPASS FUNCTION TABLE  
Inputs  
Outputs  
PLL_SEL = 0  
PLL Bypass Mode  
SEL3  
SEL2  
SEL1  
SEL0  
Q, nQ  
÷ 4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
÷ 4  
÷ 4  
÷ 8  
÷ 8  
÷ 8  
÷ 16  
÷ 16  
÷ 32  
÷ 64  
÷ 2  
÷ 2  
÷ 4  
÷ 1  
÷ 2  
÷ 1  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
3
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
DD  
Inputs, V  
-0.5V to VDD + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
10mA  
15mA  
PackageThermal Impedance, θJA 46.2°C/W (0 lfpm)  
StorageTemperature,T -65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VDD  
VDDA  
VDDO  
IDD  
Core Supply Voltage  
3.135  
VDD - 0.18  
3.135  
3.3  
3.3  
3.3  
84  
3.465  
3.465  
3.465  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
V
mA  
mA  
mA  
IDDA  
IDDO  
18  
30  
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VDD + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
CLK_SEL, MR, SEL0,  
SEL1, SEL2, SEL3  
V
DD = VIN = 3.465V  
150  
5
µA  
µA  
µA  
IIH  
Input High Current  
PLL_SEL  
VDD = VIN = 3.465V  
CLK_SEL, MR, SEL0,  
SEL1, SEL2, SEL3  
-5  
V
DD = 3.465V, VIN = 0V  
IIL  
Input Low Current  
PLL_SEL  
-150  
µA  
VDD = 3.465V, VIN = 0V  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
CLK, FB_IN  
V
DD = VIN = 3.465V  
150  
5
µA  
µA  
µA  
µA  
V
IIH  
Input High Current  
nCLK, nFB_IN  
CLK, FB_IN  
VDD = VIN = 3.465V  
V
DD = 3.465V, VIN = 0V  
DD = 3.465V, VIN = 0V  
-5  
-150  
IIL  
Input Low Current  
nCLK0, nFB_IN  
V
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
GND + 0.5  
VDD - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLK, nCLK is VDD + 0.3V.  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
4
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4D. LVDS DC CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum  
Typical  
440  
Maximum Units  
VOD  
Differential Output Voltage  
mV  
Δ VOD  
VOS  
VOD Magnitude Change  
Offset Voltage  
0
50  
25  
mV  
V
1.27  
Δ VOS  
VOS Magnitude Change  
mV  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
fIN Input Frequency  
Test Conditions  
PLL_SEL = 1  
PLL_SEL = 0  
Minimum Typical Maximum Units  
62.5  
1000  
1000  
MHz  
MHz  
CLK,  
nCLK  
TABLE 6. AC CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
62.5  
Typical  
Maximum  
Units  
MHz  
ns  
fMAX  
Output Frequency  
1000  
tPD  
Propagation Delay; NOTE 1  
Static Phase Offset; NOTE 2, 4  
Output Skew; NOTE 3, 4  
Cycle-to-Cycle Jitter; NOTE 4, 5  
Output Duty Cycle  
1.85  
98  
4
tsk(Ø)  
tsk(o)  
tjit(cc)  
odc  
PLL_SEL = 3.3V  
ps  
ps  
26  
50  
ps  
tL  
PLL Lock Time  
1
ms  
ps  
tR / tF  
Output Rise/Fall Time; NOTE 6  
180  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as the time difference between the input reference clock and the averaged feedback  
input signal across all conditions, when the PLL is locked and the input reference frequency is stable.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 5: Characterized at VCO frequency of 800MHz.  
NOTE 6: Measured from the 20ꢀ to 80ꢀ points.  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
5
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
VDD  
3.3V 3.3V  
nCLK  
CLK  
SCOPE  
VDD  
Qx  
3.3V 5ꢀ  
POWER SUPPLY  
Float GND  
VDDA  
VPP  
VCMR  
Cross Points  
LVDS  
+
nQx  
GND  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nCLK  
CLK  
VOH  
VOL  
nQx  
Qx  
VOH  
VOL  
nFB_IN  
nQy  
FB_IN  
Qy  
t(Ø)  
tsk(o)  
t(Ø) mean = Static Phase Offset  
(where t(Ø) mean is the average of the sampled cycles  
measured on controlled edges)  
STATIC PHASE OFFSET  
OUTPUT SKEW  
nQ, nQFB  
Q, QFB  
80ꢀ  
tF  
80ꢀ  
VOD  
Clock  
20ꢀ  
20ꢀ  
tcycle n  
tcycle n+1  
Outputs  
tR  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
CYLE-TO-CYCLE JITTER  
OUTPUT RISE/FALL TIME  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
6
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
nCLK  
CLK  
nQ, nQFB  
Q, QFB  
tPW  
tPERIOD  
nQ, nQFB  
Q, QFB  
tPW  
tPD  
odc =  
x 100ꢀ  
tPERIOD  
PROPAGATION DELAY  
OUPUT DUTY/CYCLE/PULSE WIDTH/PERIOD  
VDD  
VDD  
out  
out  
out  
out  
DC Input  
LVDS  
LVDS  
DC Input  
100  
V
OD/Δ VOD  
VOS/Δ VOS  
OFFSET VOLTAGE SETUP  
DIFFERENTIAL OUTPUT VOLTAGE SETUP  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
7
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position theV_REF in  
single ended levels. The reference voltage V_REF ~ VDD/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1.This bias circuit clock swing is only 2.5V andVDD = 3.3V, V_REF should be 1.25V  
should be located as close as possible to the input pin.The ratio and R2/R1 = 0.609.  
VDD  
R1  
1K  
Single Ended Clock Input  
CLK  
V_REF  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
POWER SUPPLY FILTERINGT ECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS874S02I provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VDD, VDDA, and VDDO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VDDA pin. The 10Ω  
resistor can also be replaced by a ferrite bead.  
3.3V  
.01μF  
.01μF  
10Ω  
VDDA  
10 μF  
FIGURE 2. POWER SUPPLY FILTERING  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
8
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals. Both VSWING andVOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 3A to 3D show inter- For example in Figure 3A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers.If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 3C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 3D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
RECOMMENDATIONS FOR UNUSED INPUT PINS  
INPUTS:  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
9
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
LVDS DRIVER TERMINATION  
A general LVDS interface is shown in Figure 4. In a 100Ω  
differential transmission line environment, LVDS drivers re-  
quire a matched load termination of 100Ω across near the  
receiver input. For a multiple LVDS outputs buffer, if only par-  
tial outputs are used, it is recommended to terminate the un-  
used outputs.  
3.3V  
3.3V  
LVDS_Driv er  
+
R1  
100  
-
100 Ohm Differiential Transmission Line  
FIGURE 4. TYPICAL LVDS DRIVERT ERMINATION  
LAYOUT GUIDELINE  
The schematic of the ICS874S02I layout example is shown in depend on the selected component types and the density of  
Figure 5A. The ICS874S02I recommended PCB board layout  
for this example is shown in Figure 5B. This layout example is  
used as a general guideline.The layout in the actual system will  
the P.C. board.  
3.3V  
U1  
Zo = 50 Ohm  
SEL1  
SEL0  
VDD  
PLL_SEL  
VDDA  
1
20  
C1  
0.1uF  
CLK  
2
SEL1  
19  
nCLK  
3
4
5
6
7
8
9
10  
SEL0  
18  
MR  
VDDI  
17  
Zo = 50 Ohm  
R7  
VDD  
nFB_IN  
FB_IN  
SEL2  
VDDO  
nQFB  
QFB  
PLL_SEL  
16  
VDDA  
15  
SEL2  
VDDO  
SEL3  
SEL3  
14  
3.3V PECL Driver  
10  
GND  
13  
C11  
Q
nQ  
VDDO  
12  
11  
0.01u  
C16  
10u  
R8  
50  
R9  
50  
VDDO  
GND  
R2  
100  
ICS8745B-21  
SP = Space (i.e. not intstalled)  
R10  
50  
VDD  
+
-
RU3  
1K  
RU4  
1K  
RU5  
SP  
RU6  
1K  
RU7  
SP  
Bypass capacitors located  
near the power pins  
R4  
100  
PLL_SEL  
SEL0  
SEL1  
SEL2  
SEL3  
LVDS_input  
VDD=3.3V  
(U1-7)  
(U1-11)  
VDDO  
VDDO=3.3V  
C4  
0.1uF  
C2  
0.1uF  
Zo = 100 Ohm Dif f erential  
RD3  
SP  
RD4  
SP  
RD5  
1K  
RD6  
SP  
RD7  
1K  
SEL[3:0] = 0101,  
Divide by 2  
FIGURE 5A. ICS874S02I LVDS ZERO DELAY BUFFER SCHEMATIC EXAMPLE  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
10  
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
The following component footprints are used in this layout  
example:  
trace delay might be restricted by the available space on the board  
and the component location.While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
• The 100Ω differential output traces should have equal  
Place the decoupling capacitors as close as possible to the power  
pins. If space allows, placement of the decoupling capacitor on  
the component side is preferred.This can reduce unwanted in-  
ductance between the decoupling capacitor and the power pin  
caused by the via.  
length.  
• Avoid sharp angles on the clock trace.Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
• Keep the clock traces on the same layer.Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors.This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VDDA pin as possible.  
CLOCK TRACES AND TERMINATION  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
• Make sure no other signal traces are routed between the  
clock trace pair.  
• The series termination resistors should be located as  
close to the driver pins as possible.  
U1  
GND  
VDDO  
C1  
VDD  
C16  
VDDA  
C11  
VIA  
C4  
R7  
100 Ohm  
Differential  
Traces  
C2  
FIGURE 5B. PCB BOARD LAYOUT FOR ICS874S02I  
www.icst.com/products/hiperclocks.html  
874S02AMI  
REV.A APRIL 27, 2006  
11  
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS874S02I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS874S02I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
Power (core)MAX = VDD_MAX * (IDD_MAX + IDDA_MAX) = 3.465V * (84mA + 18mA) = 353.43mW  
Power (outputs)MAX = VDDO_MAX * IDDO_MAX = 3.465V * 30mA = 103.95mW  
Total Power_MAX = 353.43mW + 103.95mW = 457.38mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of  
the device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
qJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used.  
Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 39.7°C/W per  
Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.457W * 39.7°C/W = 103.1°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air  
flow, and the type of board (single layer or multi-layer).  
TABLE 7. THERMAL RESISTANCE θJA FOR 20-LEAD SOIC, FORCED CONVECTION  
θ
JA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
65.7°C/W  
57.5°C/W  
46.2°C/W  
39.7°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
12  
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOWT ABLE FOR 20 LEAD SOIC  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
65.7°C/W  
57.5°C/W  
46.2°C/W  
39.7°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS874S02I is: 1358  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
13  
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - M SUFFIX FOR 20 LEAD SOIC  
TABLE 9. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
20  
--  
2.65  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
12.60  
7.40  
--  
2.55  
0.51  
0.32  
13.00  
7.60  
C
D
E
e
1.27 BASIC  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-013, MO-119  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
14  
PRELIMINARY  
ICS874S02I  
1:1 DIFFERENTIAL-TO-LVDS  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS874S02AMI  
ICS874S02AMIT  
ICS874S02AMILF  
ICS874S02AMILFT  
ICS874S02AMI  
ICS874S02AMI  
TBD  
20 Lead SOIC  
20 Lead SOIC  
1000 tape & reel  
tube  
20 Lead "Lead-Free" SOIC  
20 Lead "Lead-Free" SOIC  
TBD  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or  
for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without  
additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices  
or critical medical instruments.  
874S02AMI  
www.icst.com/products/hiperclocks.html  
REV.A APRIL 27, 2006  
15  

相关型号:

ICS874S02AMIT

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-20
IDT

ICS874S02BMI

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-20
IDT

ICS874S02BMILF

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, ROHS COMPLIANT, MS-013, MO-119, SOIC-20
IDT

ICS874S336AG

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, TSSOP-24
IDT

ICS874S336AGLFT

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, LEAD FREE, TSSOP-24
IDT

ICS874S336AGT

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, TSSOP-24
IDT

ICS8752

LOW SKEW, 1-TO-8 LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER
ICSI

ICS8752

LOW SKEW, 1-TO-8 LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER
IDT

ICS8752BYLF

Low Skew Clock Driver, 8 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8752BYT

Low Skew Clock Driver, 8 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8752CY

LOW SKEW, 1-TO-8 LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER
ICSI

ICS8752CYI

PLL Based Clock Driver, 8752 Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT