ICS874S336AGLFT [IDT]

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, LEAD FREE, TSSOP-24;
ICS874S336AGLFT
型号: ICS874S336AGLFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, LEAD FREE, TSSOP-24

驱动 光电二极管 逻辑集成电路
文件: 总18页 (文件大小:692K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
LVDS CLOCK MULTIPLIER FOR VIDEO APPLICATIONS  
ICS874S336  
General Description  
Features  
The ICS874S336 is a high performance, 1-to-1,  
One LVDS differential output pair, plus one LVDS feedback  
output pair  
S
IC  
Differential-to-LVDS Clock Multiplier and is a  
member of the HiPerClocksSfamily of High  
Performance Clock Solutions from IDT. The CLK/  
nCLK input pair can accept most standard  
HiPerClockS™  
One differential clock input pair CLK/nCLK can accept the  
following differential input levels: LVPECL, LVDS, LVHSTL,  
HCSL, SSTL  
differential input levels. The ICS874S336 has a fully integrated  
PLL along with frequency configurable outputs. An external  
feedback output regenerates clocks with “zero delay”.  
Input Frequency Range: 14MHz to 17MHz  
Maximum Output Frequency: 204MHz  
VCO range: 1.2GHz – 2GHz  
The ICS874S336 has multiple divide combinations designed to  
work with the most common video rates used in professional video  
systems.  
Cycle-to-cycle jitter: TBD  
3.3V operating supply voltage  
Low PLL bandwidth allows for better jitter attenuation  
0°C to 70°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Pin Assignment  
VDD  
Q
1
2
20 GND  
19  
nQFB  
nQ  
VDD  
3
4
18  
17  
QFB  
VDDA  
S_LOAD  
S_DATA  
S_CLOCK  
5
6
7
8
9
16 nFB_IN  
15  
14  
13  
FB_IN  
BYPASS  
SE_CLK  
VDD  
CLK  
nCLK 10  
12 CLK_SEL  
11  
GND  
ICS874S336I  
20-Lead TSSOP  
6.5mm x 4.4mm x 0.925mm  
package body  
G Package  
Top View  
The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization and/or qualification.  
Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
1
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Block Diagram  
BYPASS  
CLK_SEL  
CLK  
nCLK  
1
0
Q
1
0
/P  
/N  
nQ  
PLL  
SE_CLK  
QFB  
/M  
nQFB  
FB_IN  
nFB_IN  
S_CLOCK  
S_DATA  
S_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
2
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Functional Description  
The ICS874S336 features a fully integrated PLL and therefore  
requires no external components for setting the loop bandwidth.  
The VCO of the PLL operates over a range of 1.2GHz to 2GHz.  
The output of the M divider is also applied to the phase detector.  
frequencies are found in Table 3B, Programmable VCO Frequency  
Function Table. The actual data bits can be found in Tables 3C, 3D  
and 3E.  
Serial operation occurs when S_LOAD is LOW. The shift register  
is loaded by sampling the S_DATA bits with the rising edge of  
S_CLOCK. The contents of the shift register are loaded into the M,  
N and P dividers when S_LOAD transitions from LOW-to-HIGH.  
The divide values are latched on the HIGH-to-LOW transition of  
S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is  
passed directly to the dividers on each rising edge of S_CLOCK.  
The serial mode can be used to program the M, N and P bits.  
The phase detector and the M divider force the VCO output  
frequency to be M times the reference frequency by adjusting the  
VCO control voltage. Note that for some values of M (either too  
high or too low), the PLL will not achieve lock. The output of the  
VCO is scaled by a divider prior to being sent to each of the  
LVPECL output buffers. The divider provides a 50% output duty  
cycle.  
The relationship between the VCO frequency, the input frequency  
and the M divider is defined as follows:  
fIN x M x N  
fVCO = ---------------------------- x 2  
P
The M, N, and P values used to obtain the proper video  
SERIAL LOADING  
S_CLOCK  
S_DATA  
P1  
P0  
N6  
N5  
N4  
N3  
N2  
N1  
N0  
M4  
M3  
M2  
M1  
M0  
t
t
H
S
S_LOAD  
t
S
Figure 1. Serial Load Operation  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
3
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Table 1. Pin Descriptions  
Number  
1, 4, 8  
2, 3  
Name  
VDD  
Type  
Description  
Power  
Output  
Core supply pins.  
Q, nQ  
Differential output pair. LVDS interface levels.  
Controls transition of data from shift register into the dividers.  
LVCMOS/LVTTL interface levels.  
5
6
7
S_LOAD  
S_DATA  
Input  
Input  
Input  
Pulldown  
Shift register serial input. Data sampled on the rising edge of S_CLOCK.  
LVCMOS/LVTTL interface levels.  
Pulldown  
Clocks in serial data present at S_DATA input into the shift register on the  
rising edge of S_CLOCK. LVCMOS/LVTTL interface levels.  
S_CLOCK  
Pulldown  
Pulldown  
9
CLK  
nCLK  
GND  
Input  
Input  
Non-inverting differential clock input.  
10  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
Negative supply pin.  
11, 20  
Power  
Selects the reference clock. When LOW selects SE_CLK as the clock  
12  
13  
14  
CLK_SEL  
SE_CLK  
BYPASS  
Input  
Input  
Input  
Pullup  
source. When HIGH selects CLK, nCLK as the clock source.  
LVCMOS/LVTTL interface levels.  
Pulldown  
Pulldown  
Pulldown  
Single-ended clock input. LVCMOS/LVTTL interface levels.  
Selects between the PLL and reference clock as the input to the  
dividers.When LOW, selects PLL. When HIGH, selects reference clock.  
LVCMOS/LVTTL interface levels.  
15  
16  
FB_IN  
nFB_IN  
Input  
Input  
Non-inverting differential clock input.  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
Analog supply pin.  
17  
VDDA  
Power  
Output  
18, 19  
QFB, nQFB  
Differential output pair. LVDS interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
k  
RPULLDOWN Input Pulldown Resistor  
kΩ  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
4
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Function Tables  
Table 3A. Parallel and Serial Mode Function Table  
Inputs  
S_LOAD  
S_CLOCK  
S_DATA Conditions  
Data is latched into input registers and remains loaded until next LOW transition or until a  
serial event occurs.  
L
X
X
L
L
L
L
X
Data  
Data  
Data  
X
Shift register is loaded with data on S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the M, N and P dividers.  
M, N and P divider values are latched.  
Serial input do not affect shift registers.  
H
Data  
S_DATA passed directly to M, N and P dividers as it is clocked.  
NOTE: L = LOW  
H = HIGH  
X = Don’t care  
= Rising edge transition  
= Falling edge transition  
Table 3B. Device Configuration Table  
Input Frequency (MHz)  
P Divide Value  
N Divide Value  
M Divide Value  
Output Frequency (MHz)  
Min  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
Max  
17  
17  
17  
17  
17  
17  
17  
17  
17  
17  
17  
17  
17  
17  
17  
17  
17  
17  
Min  
168  
140  
119  
98  
Max  
204  
1
1
2
4
4
4
4
4
4
8
8
8
8
8
8
8
8
8
10  
10  
12  
10  
17  
28  
24  
20  
17  
14  
12  
20  
17  
14  
12  
10  
8
170  
12  
144.5  
119  
14  
16  
84  
102  
20  
70  
85  
22  
59.5  
49  
72.25  
59.5  
51  
28  
32  
42  
38  
35  
42.5  
36.125  
29.75  
25.5  
21.25  
17  
46  
29.75  
24.5  
21  
56  
64  
80  
17.5  
14  
100  
110  
130  
160  
7
12.25  
10.5  
8.75  
14.875  
12.75  
10.6  
6
5
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
5
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Table 3C. Pre-Divider (P) Configuration Table  
P Divide  
P1  
0
P0  
0
1
2
4
8
0
1
1
0
1
1
Table 3D. Output Divider (N) Configuration Table  
N Divide  
10  
N6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
N5  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
N4  
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
1
N3  
0
0
0
1
1
1
1
0
0
0
1
0
1
0
0
0
0
N2  
1
1
1
0
0
0
1
0
0
1
1
0
0
0
1
0
0
N1  
0
1
1
0
1
1
1
0
1
1
0
0
0
1
1
0
0
N0  
1
0
1
0
0
1
0
0
1
1
0
0
0
0
1
1
0
12  
14  
16  
20  
22  
28  
32  
38  
46  
56  
64  
80  
100  
110  
130  
160  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
6
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Table 3E. Feedback Divider (M) Configuration Table  
M Divide  
M4  
0
M3  
0
M2  
1
M1  
0
M0  
1
5
6
0
0
1
1
0
7
0
0
1
1
1
8
0
1
0
0
0
10  
12  
14  
17  
20  
24  
28  
0
1
0
1
0
0
1
1
0
0
0
1
1
1
0
1
0
0
0
1
1
0
1
0
0
1
1
0
0
0
1
1
1
0
0
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
7
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
Outputs, IO (LVDS)  
Continuos Current  
Surge Current  
10mA  
15mA  
Outputs, IO (LVDS)  
Continuos Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA  
87.2°C/W (0 mps)  
Storage Temperature, TSTG  
-65°C to 150°C  
DC Electrical Characteristics  
Table 4A. LVDS Power Supply DC Characteristics,VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
Units  
V
VDD  
VDDA  
IDD  
Positive Supply Voltage  
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
VDD – 0.15  
3.3  
VDD  
V
115  
15  
mA  
mA  
IDDA  
Table 4B. LVCMOS/LVTTL DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VDD + 0.3  
0.8  
Units  
VIH  
VIL  
Input High Voltage  
2
V
V
Input Low Voltage  
Input High Current  
-0.3  
SE_CLK, BYPASS,  
S_CLOCK, S_DATA,  
S_LOAD  
VDD = VIN = 3.465V  
150  
5
µA  
µA  
µA  
µA  
IIH  
CLK_SEL  
VDD = VIN = 3.465V  
SE_CLK, BYPASS,  
S_CLOCK, S_DATA,  
S_LOAD  
VDD = 3.465V, VIN = 0V  
-5  
IIL  
Input Low Current  
CLK_SEL  
V
DD = 3.465V, VIN = 0V  
-150  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
8
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Table 4C. Differential DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
CLK/nCLK,  
FB_IN/nFB_IN  
IIH  
Input High Current  
VDD = VIN = 3.465V  
150  
µA  
VDD = 3.465V,  
VIN = 0V  
CLK, FB_IN  
-5  
µA  
µA  
IIL  
Input Low Current  
VDD = 3.465V,  
nCLK, nFB_IN  
-150  
VIN = 0V  
VPP  
Peak-to-Peak Voltage; NOTE 1  
0.15  
1.3  
V
V
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
GND + 0.5  
VDD – 0.85  
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
Table 4D. LVDS DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
370  
50  
VOD  
VOS  
1.22  
50  
VOS  
VOS Magnitude Change  
mV  
Table 5. Input Frequency Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
MHz  
CLK/nCLK,  
SE_CLK; NOTE 1  
14  
17  
10  
Input  
Frequency  
fIN  
S_CLOCK  
NOTE 1: For the CLK/nCLK and SE_CLK frequency range, the M value must be set for the VCO to operate within the TBD MHz to TBD  
MHz range.  
Table 6. AC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Parameter Symbol  
Test Conditions  
Minimum Typical Maximum  
8.75 204  
Units  
MHz  
ps  
fMAX  
Output Frequency  
tjit(cc)  
t(Ø)  
Cycle-to-Cycle Jitter; NOTE 1  
Static Phase Offset; NOTE 1  
Period Jitter, RMS; NOTE 1  
Output Rise/Fall Time  
TBD  
TBD  
TBD  
270  
50  
ps  
tjit(per)  
tR / tF  
odc  
ps  
20% to 80%  
ps  
Output Duty Cycle  
%
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
9
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Parameter Measurement Information  
V
DD  
nCLK  
CLK  
SCOPE  
Qx  
V
VPP  
VCMR  
DD  
Cross Points  
3.3V 5%  
POWER SUPPLY  
V
DDA  
+
Float GND –  
LVDS  
nQx  
GND  
3.3V LVDS Output Load AC Test Circuit  
Differential Input Level  
VOH  
nQ, nQFB  
VREF  
Q, QFB  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
tcycle n  
tcycle n+1  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
tjit(cc) = tcycle n – tcycle n+1  
1000 Cycles  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
Period Jitter, RMS  
Cycle-to-Cycle Jitter  
nQ, nQFB  
Q, QFB  
80%  
80%  
tR  
tPW  
tPERIOD  
VOD  
Clock  
20%  
20%  
tPW  
Outputs  
tF  
odc =  
x 100%  
tPERIOD  
Output Duty Cycle/Pulse Width/Period  
Output Rise/Fall Time  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
10  
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Parameter Measurement Information, continued  
VDD  
VDD  
out  
out  
out  
DC Input  
LVDS  
LVDS  
DC Input  
100  
V
OD/VOD  
VOS/VOS  
out  
Offset Voltage Setup  
Differential Output Voltage Setup  
Application Information  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 2 shows how the differential input can be wired to accept  
single-ended levels. The reference voltage V_REF = VDD/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the  
center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VDD = 3.3V, V_REF should be 1.25V and  
VDD  
R1  
1K  
Single Ended Clock Input  
R2/R1 = 0.609.  
CLK  
V_REF  
nCLK  
C1  
0.1u  
R2  
1K  
Figure 2. Single-Ended Signal Driving Differential Input  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
11  
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the  
VPP and VCMR input requirements. Figures 3A to 3F show interface  
examples for the HiPerClockS CLK/nCLK input driven by the most  
common driver types. The input interfaces suggested here are  
examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example, in Figure 3A, the input termination applies for IDT  
HiPerClockS open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
nCLK  
LVPECL  
HiPerClockS  
LVHSTL  
R1  
50  
R2  
50  
Input  
R1  
50  
R2  
50  
IDT  
HiPerClockS  
LVHSTL Driver  
R2  
50  
Figure 3A. HiPerClockS CLK/nCLK Input  
Driven by an IDT Open Emitter  
HiPerClockS LVHSTL Driver  
Figure 3B. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
LVPECL  
Receiver  
LVDS  
R1  
84  
R2  
84  
Figure 3C. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
Figure 3D. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVDS Driver  
2.5V  
2.5V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120  
120  
Zo = 50Ω  
*R3  
*R4  
33  
33  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
HiPerClockS  
HiPerClockS  
Input  
SSTL  
HCSL  
R1  
50  
R2  
50  
R1  
120  
R2  
120  
*Optional – R3 and R4 can be 0Ω  
Figure 3E. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V HCSL Driver  
Figure 3F. HiPerClockS CLK/nCLK Input  
Driven by a 2.5V SSTL Driver  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
12  
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. The ICS874S336 provides separate  
power supplies to isolate any high switching noise from the outputs  
to the internal PLL. VDD and VDDA should be individually  
connected to the power supply plane through vias, and bypass  
capacitors should be used for each pin. To achieve optimum jitter  
performance, power supply isolation is required. Figure 4  
illustrates how a 10resistor along with a 10µF and a 0.01µF  
bypass capacitor should be connected to each VDDA pin.  
3.3V  
VDD  
.01µF  
.01µF  
10Ω  
VDDA  
10µF  
Figure 4. Power Supply Filtering  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
CLK/nCLK Inputs  
LVDS Outputs  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to  
ground.  
All unused LVDS output pairs can be either left floating or  
terminated with 100across. If they are left floating, there should  
be no trace attached.  
SE_CLK Input  
For applications not requiring the use of a clock input, it can be left  
floating. Though not required, but for additional protection, a 1kΩ  
resistor can be tied from the SE_CLK input to ground.  
LVCMOS Control Pins  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
3.3V LVDS Driver Termination  
A general LVDS interface is shown in Figure 5. In a 100Ω  
differential transmission line environment, LVDS drivers require a  
matched load termination of 100across near the receiver input.  
For a multiple LVDS outputs buffer, if only partial outputs are used,  
it is recommended to terminate the unused outputs.  
3.3V  
50Ω  
3.3V  
LVDS Driver  
+
R1  
100Ω  
50Ω  
100Differential Transmission Line  
Figure 5. Typical LVDS Driver Termination  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
13  
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Schematic Example  
Figure 6 shows an example of ICS874S336 application schematic.  
In this example, the device is operated at VDD = 3.3V. The  
decoupling capacitors should be located as close as possible to  
the power pin. Two examples of LVDS terminations are shown in  
this schematic. The input is driven either by a 3.3V LVPECL driver  
or a 3.3V LVCMOS. .  
Figure 6. ICS874S336 Schematic Example  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
14  
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS874S336.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS74S336 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
Power (core)MAX = VDD_MAX * (IDD_MAX + IDDA_MAX) = 3.465V * (115mA + 15mA) = 450.45mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 87.2°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.450W * 87.2°C/W = 109.2°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (single layer or multi-layer).  
Table 7. Thermal Resistance θJA for 20 Lead TSSOP, Forced Convection  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
87.2°C/W  
82.9°C/W  
80.7°C/W  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
15  
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Reliability Information  
Table 8. θJA vs. Air Flow Table for a 20 Lead TSSOP  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
87.2°C/W  
82.9°C/W  
80.7°C/W  
Transistor Count  
The transistor count for ICS874S336 is: 2434  
Package Outline and Package Dimension  
Package Outline - G Suffix for 20 Lead TSSOP  
Table 9. Package Dimensions  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
20  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
0.65 Basic  
L
0.45  
0°  
0.75  
8°  
α
aaa  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
16  
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
874S336AG  
874S336AGT  
874S336AGLF  
874S336AGLFT  
Marking  
TBD  
TBD  
ICS874S336AL  
ICS874S336AL  
Package  
20 Lead TSSOP  
20 Lead TSSOP  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Tube  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
“Lead-Free” 20 Lead TSSOP  
“Lead-Free” 20 Lead TSSOP  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements  
are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any  
IDT product for use in life support devices or critical medical instruments.  
IDT™ / ICS™ LVDS CLOCK MULTIPLIER  
17  
ICS874S336AGOCTOBER 17, 2007  
ICS874S336  
LVDS CLOCK MULTIPLIER  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
+408 284 8200 (outside U.S.)  
#20-03 Wisma Atria  
Singapore 238877  
+65 6 887 5505  
England  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
Printed in USA  
www.IDT.com  

相关型号:

ICS874S336AGT

PLL Based Clock Driver, 874S Series, 1 True Output(s), 0 Inverted Output(s), PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, TSSOP-24
IDT

ICS8752

LOW SKEW, 1-TO-8 LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER
ICSI

ICS8752

LOW SKEW, 1-TO-8 LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER
IDT

ICS8752BYLF

Low Skew Clock Driver, 8 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8752BYT

Low Skew Clock Driver, 8 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8752CY

LOW SKEW, 1-TO-8 LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER
ICSI

ICS8752CYI

PLL Based Clock Driver, 8752 Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8752CYILFT

暂无描述
IDT

ICS8752CYIT

PLL Based Clock Driver, 8752 Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8752CYLF

PLL Based Clock Driver, 8752 Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-32
IDT

ICS8752CYLFT

PLL Based Clock Driver, 8752 Series, 8 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-32
IDT

ICS8752CYT

LOW SKEW, 1-TO-8 LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER
ICSI